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ABSTRACT   I 

 

Standing up from a seated position, known as sit-to-stand (STS) movement, is one of the most 

frequently performed activities of daily living (ADLs). However, the aging generation are often 

encountered with STS issues owning to their declined motor functions and sensory capacity 

for postural control. The motivated is rooted from the contemporary market available STS 

assistive devices that are lack of genuine interaction with elderly users. Prior to the software 

implementation, the robot chair platform with integrated sensing footmat is developed with 

STS biomechanical concerns for the elderly.   

 

The work has its main emphasis on recognising the personalised behavioural patterns from the 

elderly users’ STS movements, namely the STS intentions and personalised STS feature 

prediction. The former is known as intention recognition while the latter is defined as assistance 

prediction, both achieved by innovative machine learning techniques. The proposed intention 

recognition performs well in multiple subjects scenarios with different postures involved 

thanks to its competence of handling these uncertainties. To the provision of providing the 

assistance needed by the elderly user, a time series prediction model is presented, aiming to 

configure the personalised ground reaction force (GRF) curve over time which suggests 

successful movement. This enables the computation of deficits between the predicted 

oncoming GRF curve and the personalised one. A multiple steps ahead prediction into the 

future is also implemented so that the completion time of actuation in reality is taken into 

account.   
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CHAPTER 1 INTRODUCTION 

 

1.1 Background and Motivations 

 

As people aging, physiological changes occur including reduced muscle strength and mass, 

musculoskeletal weakness in addition to reduced sensory capacity. Besides, their social space 

contracts and they tend to spend more time indoors and mainly seated in a chair. However, 

known as sit-to-stand (STS) movement, standing up from a seated position is one of the most 

common active daily livings (ADL). The performance on STS movement is crucial for 

independent living as is regarded as a prerequisite for other transferring activities. 

 

However, the aging generation are more likely to be confronted with difficulties in STS 

movement. These difficulties may cause substantial decreasing of the elderly mobility, leading 

to inactive participation in social activities (sedentary lifestyle) and increasing the risk of 

chronic diseases that may cause premature death. Therefore, assisting the elderly to overcome 

these difficulties has significance for their independent living.   

 

Thanks to the rising public awareness, various genres of STS assistive devices become market 

available over the decades. Nevertheless, these devices, often act like elevators with push 

buttons, move the lifting parts back and forth to itself end points without virtual interaction 

with the user. It may seem like a one-fit-all solution from the first glimpse. However, without 

professional clinical analysis and advice, the subject will never know the exact amount of 

assistance he/ she needs. The performance is far from satisfactory in the sense of encouraging 

the elderly to use their own motor functions.  

 

All of these inspire the development of a robot chair that is able to aid the elderly users’ STS 

transfers according to the elderly users’ own STS performance.  

 

1.2 Problem definition 

 

For the proposed robot chair to be able to recognise the elderly users’ intention and provide 
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personalised assistance, the human-robot interaction (HRI) is confronted with the following 

difficulties: 

• How a chair robot could properly assign the expected mapping according to various STS 

movements performed by the elderly users. Due to safety reasons the system needs to 

correctly recognise the STS intentions in early stages, otherwise false actuations could 

happen when the user does not hold an intention of standing up. The discovery on the 

feasible features is the key to the success of this fuzzy inference system (FIS). Owning to 

the limited sensing capabilities, uncertainties need to be handled so as to maximise the 

accuracy of the recognition. 

• How to deal with biomechanical and postural differences among multiple subjects. The 

trail-an-error methods used in the conventional FIS based classifier can be time-consuming 

and poor performing. It is worth investigating if the developed fuzzy based classification 

performs well when users of different biomechanical features are at present. If not, 

adaptation can be made to cope with such uncertainties.  

• How to optimise the structure of the network as well as the training methods adopted to 

make sure they are suitable for the prediction model. The predictor should be assessed in 

a way whether it is able to figure out the deficit between actual ground reaction force (GRF) 

curve and the personalised one indicating successful STS transfer through on-coming GRF 

prediction. Prediction into the future needs to be carried out as the in reality there will be 

delays for the actuator to complete the desired motion.  

 

1.3 Aim and Objectives 

 

This study aims to develop a robot chair for the elderly with STS problems. The chair should 

be capable of 1). Recognising the users’ STS intention, 2). Predicting the GRF values generated 

by users and 3). Offering personalised assistance to aid users’ STS transfers.  

Specific objectives of this study are: 

• To conduct a comprehensive review of existing researches in STS problems 

experienced by the elderly people and the contemporary solutions: 1). The 

biomechanical will also be investigated to give an in-depth understanding of why the aged 
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group often suffer from STS issues. 2). The commercial available STS assistive devices, 

followed by the critical analysis of the latency problems. 3). The state-of-art chair based 

sensing techniques and the feasibilities of applying to the robot chair. 4). The artificial 

intelligent methods that enable the interaction between chair robot and its elderly users. 

• To develop an actuated chair and a sensing footmat: The chair structure should fully 

comply with the biomechanical concerns of STS problems for the aged group. The 

actuation of the lifting mechanism should provide the STS-suffered elderly comfort 

assistance while the use of user’s own motor function is still encouraging. The complexity 

of the sensing footmat should fulfil the demand of capturing GRF value as well as pressure 

matrix. For further exploitation, the change in centre of pressure should also be obtained 

via data processing. 

• To develop a FIS based classifier that is able to recognise the chair users’ STS 

intention in early stages.  Using the extracted key features, the FIS classification will 

rule out the random movements where the elderly user does not intend to stand up from 

seated positions. Experiments will be conducted to determine the fuzzy sets and 

membership functions. Which feature(s) performs the best in terms of handling the 

uncertainties will be verified.  

• To further extend the early stage intention recognition to a multi-users scenario: 

Figuring out the extractable features to be used as manifestations of the uncertainties 

brought by multiple users and different sitting behaviours. Examine the performance of 

Experiments will be carried out for the purpose of figuring out the significance of the 

extracted features that best coping with the uncertainties.  

• To develop a neural network based predictor that is capable of predicting the 

oncoming GRF values for the STS movement: The personalised GRF curve referring 

to successful STS movements will be obtained through effective training process. In order 

to realise the “assistance-as-needed” according to the elderly users’ motor functions, 

deficit between the actual GRF curve and the personalised one will be computed. 

Depending on the quickness of the actuation, the ability of prediction a couple of time 

steps ahead will be investigated. 
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1.4 Thesis Structure/ Overview 

 

The rest of the thesis will be organised into 6 chapters: 

Chapter 2 gives a literature review on the sit-to-stand (STS) difficulties suffered by the elderly 

as well as the health implications of sedentary lifestyle, followed by the state-of-the-art of 

commercial available assistive devices. Afterwards, a critical analysis was presented with 

examples demonstrated by a series of related studies on chair based sensing techniques.  

 

Chapter 3 describes the design and manufacture of the chair structure with biomechanical 

concerns. The development of the sensing footmat is also demonstrated, followed by the data 

processing to turn the raw data into the important feature, GRF values.  

 

Based on such platform of the robot chair, Chapter 4 focuses on the establishing a FIS based 

classifier for intention recognition method. Such FIS is implemented as three classifiers , using 

STS feature (the shift of centre of pressure) in different variations, namely, point-wise lateral 

shift of centre of pressure (COP), accumulated lateral shift of COP (ACLS) and max-difference 

lateral shift of COP. The fuzzy sets of each classifier is designed based on the distribution of    

extracted from STS movements. The performance of the classifiers is later evaluated from 

several aspects.   

 

In Chapter 5, the proposed classifier is equipped with self-adaptation abilities to handle the 

uncertainties of different users and sitting postures. It is discovered that the manually defined 

FIS classifiers have rather low performance when applied on multiple-user STS scenarios. The 

substantial difference in biomechanical features and sitting habits can be the disturbances that 

lead to inaccurate classification. Therefore a self-adaptive fuzzy-neural hybrid method is 

developed that is capable of handle these uncertainties through effective training process.  

 

Afterwards, a neural network based predictor is elaborated in Chapter 6. This prediction 

contributes to the construction of personalised GRF curve indicating capable STS movement. 

Besides, it enables the possibility of predicting GRF values into the future, which facilitates 
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more actuation time. Finally, conclusions and further work are outlined in Chapter 7. 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 Introduction 

 

Part of the literature review (mainly Sections 2.2.2 and 2.2.4) is largely based on the journal 

paper published on with more content added. Also it is worth noting some terminologies in the 

literature review are adapted to this thesis purely for categorisation and demonstration purposes. 

For example, terms originally used by the authors, including “sit to stand”, “rising from seated 

position” and “rising to standing” are unified as sit-to-stand (STS), when appearing in the 

context of this chapter. 

 

According to the charity AgeUK, the number of people over the age of 65 in the UK is currently 

11.4 million and is expected to rise by 40.77% to over 16 million in the next 17 years (Various, 

2016). Demographically there are more people over the age of 60 than there are under the age 

of 18 with nearly 1 in 5 people expecting to see their 100th birthday. 

 

Functional declines, long-term persisting loss of functions, are often faced by the elderly after 

hospitalisations, equivalent to the date of discharge from one or more diseases (Kaplan et al, 

1993; Murray et al, 1993).  

 

To assess whether the elderly individual meets the requirements of independent living, active 

daily livings (ADLs) are proposed, including eating (feeding), transferring (locomotive 

activities), bathing, clothing and using the toilet (continence). Although these items may vary 

between the studies, it is widely used to assess the level of care criteria the elderly require.  

 

The public awareness in regard to restoring the ADL functions (rehabilitation interventions) 

should be arisen because the loss of function is largely irreversible among the elderly. In a study 

employing over 1,250 adults age 70 or older hospitalised for acute illness, it was found that 32% 

had experienced functional declines to perform one or more ADLs by the time of discharge 

(Sager et al, 1996). In Boyd et al’s work, for the subjects at 3 months after discharge, almost 



 

7 

one ADL is lost compared against the assessment prior to discharge (Boyd et al, 2008). Without 

rehabilitation interventions of longer duration provided for those discharged with new or 

additional ADL disability, 41.3% died, 28.6% were alive but had not recovered to baseline 

function by 12 months after discharge, in contrast with those discharged without ADL disability, 

only 17.8% mortality and 15.2% baseline functional disabled were seen after 12 months of 

observation (Boyd et al, 2008). 

 

ADL should be differentiated to instructional ADL (IADL) proposed by Lawton and Brody 

(Lawton and Brody, 1969) because the former is essential for fundamental functioning and 

considered within the scope of the thesis. The STS movement is regarded as the prerequisite 

for most of ADLs and IADLs. For instance, the elderly who were hospitalised with one or more 

lost functions in ADLs, would directly cause greater number of dependencies on IADLs (Boyd 

et al, 2008). 

 

Over the past decade there have been a lot of practitioners attempting to apply robotics to 

physically assist the elderly in their daily life. However, the elderly people were found to be 

holding different attitudes despite having different physical conditions. In regard to the 

assessment of ADLs the elderly can be divided into the 4 primary categories as described by 

Lawton and Brody (1969), i). The completely independent elderly person, ii). The elderly 

person who is able to clothe, feed, wash, take medicine and meet appointments albeit with 

some reminders required, iii). The elderly whom require physical assistance in these matters 

and iv). Those who actively refuse assistance.  

  

The literature review on these aspects firstly covered the importance of STS to the elderly, the 

sedentary lifestyle that the elderly are currently living. The two main biomechanical reasons 

that cause STS problems are also reviewed in Section 2.2.2. Towards the efforts have been 

made to tackle with STS problems, the market available assistive devices and recent 

experimental prototypes are reviewed in Section 2.2.3 and 2.2.4, respectively. 
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2.2 Sit-to-stand issue 

 

2.2.1 Sit-to-stand problems and health implication 

 

As people age, physiological changes occur including reduced muscle strength and mass, 

musculoskeletal weakness in addition to reduced sensory capacity. This will lead to a 

contracted social space in which the elderly tend to spend more time indoor and in a favourite 

spot. This spot from studies is often a chair from where they have maximum view of the 

television, neighbourhood and so on (Forlizzi et al, 2005). However, the aging population often 

encounter problems during unaided STS transferring process due to adverse physiological 

conditions like insufficient lower limbs capability and balance impairments due to the decline 

of neural mechanisms for postural control or asymmetric body-weight distribution between 

paretic and ipsilesional limbs (Engardt et al, 1995; Lord et al, 2002).  

 

When compared with the capabilities of STS transfers performed by able-bodied young people, 

the lacking of strength, speed, balance, sensory as well as psychological status for the older 

adults are all contribution factors to the performance and duration of STS movements (Hughes 

et al, 1996; Lord et al, 2002). The inability to rise from a seated position not only increase the 

chance of failing, it also contributes to institutionalisation and hinders a number of ADLs. The 

psychological factors are also worth pointing out because it plays an important role as the 

elderly commonly go through the STS movements with the presence of pain, anxiety and 

depression (Lord et al, 2002).  

 

General physiological changes when people age can be summarised as the considerable 

reduction in muscle strength and sensory capacity. However, how the sedentary lifestyle and 

STS problem will change the life of elderly is reviewed.  

 

A range of authorised questionnaires elucidate that elderly spend an average 10 hours in chair 

(sedentary behaviour) and many of them suffer from STS problem (could not rise unaided or 

at high risks of fall) (Matthews et al, 2008; Munton et al, 1984). Researches on sedentary 

lifestyle show that sitting for prolonged period of time is not a healthy living style. Apart from 

this, degeneration problems like metabolism, vascular health, and muscle skeleton can arise 

(Hvid et al, 2011; Tremblay et al, 2010), which could further elicit diseases including 
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osteoporosis, cardiovascular disease and type 2 diabetes (Warren et al, 2010; Hu et al, 2003; 

Nguyen et al, 2000; Davis et al, 2011). 

 

Currently, sedentary behaviour has the possession of approximately 60% of people’s total 

waking hours in the UK population, and over 70% in those with a high risk of chronic disease, 

especially among the elderly community.  

 

In the perspective of this thesis, the sedentary lifestyle experienced by the elderly should be 

reviewed differently according to their social positions. Because aged people often have very 

limited participation in social activities, a passive sedentary lifestyle due to functional 

inadequacies will precipitate the situations. Therefore, depressed moods and decreased 

enjoyment of life can also be seen as consequent effects of living a prolonged sedentary.   

 

Researchers investigated the term “sedentary” (physiology) in opposition to “active”. Whether 

the elderly people share sedentary problems is evaluated with a quantifiable figure called 

metabolic equivalents (METS). When the METS of an individual is lower than 1.5, his/her 

lifestyle is defined as sedentary while the active lifestyle, is defined with a METS greater than 

three. The METS is often computed through a list of guidelines for public health activity in 

different age groups (Tremblay, 2007). An “active” lifestyle reflects a well participation in both 

ADLs and IADLs. And it is the lifestyle the proposed robot chair should promote for the elderly 

with STS problems. 

 

Being sedentary is harmful for cardio metabolic system, as the main effect of the levels of high-

density lipoprotein cholesterol (HDL) as well as insulin sensitivity can significantly decrease. 

The reduction of these naturally produced substances would suggest high potential of cardio 

metabolic risk like type-2 diabetes (mainly caused by the fault when producing insulin) 

(Tremblay et al, 2010; Hu et al, 2003), which could also be classified as metabolic dysfunction 

and may subsequently deter physiological response and adaptation. Recent researches 

conducted in the UK have proved the acute cardiometabolic changes on the participants after 

short-term interventional experiments on adopting sedentary behaviours (Hedge et al, 2015).  

 

In the long run, for those already defined as sedentary group, 10% higher risk of developing 

type 2 diabetes and 7.5% higher risk of developing cardiovascular disease with each additional 

hour of sitting (Biswaset al, 2015). Furthermore, studies have even reported a 5% increased 
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risk in premature mortality for those who spend more than 7h/day in seated positions with each 

additional hour of sitting (Chau et al, 2013). However, those who followed the recommended 

guideline (strategies to incorporate reduced sitting hours) have seen a drop in the risks of 

chronic disease. 

 

In the past decades, the public awareness on STS difficulties has already been arisen along with 

the come into being of assistive chairs. In terms of the difficulties experienced by the elderly, 

standing up and sitting down rank in the top three on the list of the most expected homecare 

assistances in the robotic world (Qiu et al, 2012). This, following the trend of home based 

robots such as care-o-bot, brings promising opportunities for the development of a chair robot 

incorporating HRI techniques.  

 

Therefore, an assistive chair that will assist the elderly in need is in demand, and could possibly 

delay age-related impairment and further change their lifestyle to reduce the risk of potential 

diseases. These concerns bring the survey further to the approaches that could enable assistive 

chairs to recognise the users’ personalised features and ongoing intentions. 

 

2.2.2 Biomechanics study on sit-to-stand mechanisms  

 

STS ranked at Level 1 frequently performed activity by several health implication studies 

(Huge et al, 1996; Kaya, 1998; Tremblay, 2007). Moreover, STS movement is considered as 

the most biomechanically demanding movement than other ADLs, requiring lower limbs 

strength, range of motions at different joints and stabilising of HAT (Berger et al, 1988; Hodge 

et al, 1989; Huge et al, 1996). 

 

The related work that target on why elderly adults are experiencing difficulties in STS can be 

allocated into the following two main aspects to demonstrate the determinant factors in STS 

performance: i). Deficit in physiological strength and range of motions and ii). Lack of postural 

control.  

 

The biomechanics study on STS mechanisms is regarded as the most crucial subject of the 

literature review because without a thorough understanding on how the STS transfers are 

performed by different groups of humans, it is impossible to realise the key features should be 

extracted from the movement patterns, let along recognise the STS intentions. 
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i). Lack of lower limbs strength and range of hip flexion (physiological issues) ---- reflected 

by STS speed / lower angular momentum in sagittal plane 

 

 

 

Figure 2.1 A simple biomechanical model of STS movement and in sagittal plane where the hip, knee 

and ankle (𝜃𝐻 , 𝜃𝐾 𝑎𝑛𝑑 𝜃𝐴), were configured as the angle between adjacent body segments (Lord et al, 

2002). 

 

The entire STS process can be described as 6 distinctive events through the measurement on 

ground reaction force (GRF). A test was conducted on 100 individuals to measure their GRFs 

under 4 possible postures (Etnyre & Thomas, 2007), in which average GRF (normalised to the 

percentage of body weight) were similar for the arms-free, arms-crossed, and hands-on-knees 

conditions in the 6 events: initiation (≈20%), counter (≈12%), seat-off (≈60%–70%), peak 

(≈116%), rebound (≈80%), and standing (≈100%)，as shown in Figure 2.2. Note only vertical 

GRF is interested in the development of assistive robot chair because both Fore-Aft 

(longitudinal) and Lateral GRF are not in the scope of this this study.  

 

Under condition of hands-on-armrest, significantly less normalised GRFs were found 

comparing to other 3 conditions, especially in the event of seat-off. 
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Figure 2.2 Distinctive events in STS through normalised GRF to the percentage of body weight 

(Etnyre & Thomas, 2007) 

Table 2.1 Vertical GRF generated by able-bodied young subjects in corresponding STS events 

 

GRF has been a fever-topic and investigated by hundreds of research groups in the last decades. 

However, generalized standard is hardly achieved mainly because researchers tend to use their 

preferred measurement parameters and definition of stages. This might not be a huge handicap 

because when the on-chair measurement system attempts to deal with a familiar aged person 

continuously. After appropriate training procedure, an adequate model could be created 

eventually. This summarizes a resultant peak force measuring 118.7% of body weight, which 

clearly explains why a large amount of the elderly could stand still and walk without aided yet 

suffering STS problems. In the experiment on STS conducted by Etnyre & Thomas (2007), the 

100 participants performed the STS movements when the sign of initiation was seen. It is 

noticed that each measurement was initiated by the direct view of the subject, where a 

consistent initiation (response) time were recorded. An improved triggering method might be 

in demand as a future work to limit the deviation of data. A detailed walk through on all STS 

events will be elaborated later in chapter 4.  
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The term STS speed is superficial but widely adopted by related work on STS movements of 

the elderly to describe the quickness of movement. It is also used as the criterion to assess the 

performance of STS transfers generated by the elderly (Yamada & Demura, 2009). The STS 

speed, in fact, is affected by a combination of physiological factors including above mentioned 

lower limbs strength, range of motion, postural control. In Lord el all’s work, 12 subjects were 

select with different level of physiological conditions. The reported study outcomes were 

mostly in consistent with the conclusions drawn by other studies (Yamada & Demura, 2009).  

 

Strength training is highly recommended for those lacking of physiological capabilities. 

Functionally impaired elderly may regain strength of up to 174% after completing a strength 

training program. Personalised training regime is highly recommended to be well maintained 

in order to stay at the same level of motor function and encourage the regain of ADLs for 

independent living (Gross et al, 1998).  

 

The seat height from which elderly subject is able to perform the STS transfer has significant 

influence on STS performance (Munton et al, 1981; Hughes et al, 1996; Schenkman, 1996). 

Transferring from a lower seated position is more biomechanically demanding in the sense of 

lower limbs strength, range of motion, and stabilisation. These make the determination of robot 

chair geometries (seat height, range of extensions) particularly crucial for the elderly with STS 

difficulties, hence are further elaborated in Chapter 3 with in-depth reviews. 

 

In addition to the overall quickness of STS movements, the peak hip flexion velocity was 

measured to assess the performances elderly subjects generated with seat height purposefully 

varied (Demura & Yamada, 1997). In consequent, with the seat height decreased, the elderly 

subjects were observed to rely on more conservative strategy of STS with increased difficulty, 

along with decreased rate of success STS movements. 

 

When performing STS movements, there are mainly 3 strategies used to control posture and 

body balance, including hip and ankle strategies, as well as the mixed strategy (Nashner and 

McCollum, 1985; Horak and Nashner, 1986). The hip strategy and ankle strategy are short for 
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ankle dorsiflexion strategy and hip flexion strategy, respectively. They were categorised in 

terms of which part of joint movement is more significant. Ankle strategy suggests an early 

and significant activation at ankle joints, unlike hip strategy where hip and thigh muscle play 

a more important role in the sense of generating the STS motion (Horak and Nashner, 1986). 

Although hip strategy tends to minimise muscle efforts when achieving the same amount of 

COG raise, proved by the monitoring of muscle activation, the functionally less capable elderly 

commonly suffer from hip trunk flexion issues that will significantly hinge the movements of 

hip joints, known as limitations of the movements. The use of different strategies is not only 

determined by the individual’s physical conditions, but also postural goals and environmental 

constraints, for example the support surface and the height of seat (Kuo and Zajac, 1993).  

 

However, separations of these strategies proposed by previous studies are arguable when being 

analysed through in-depth EMG examination on joints in sagittal plane (Runge Et al, 1997). 

Because many current studies explained the two strategies in STS transfers, hip and ankle, as 

compensatory strategies where the elderly trades off between both, regarding their own 

physiological conditions. According to latest research findings, more hip strategy tends to be 

used to counter-balance the limited range at ankle dorsiflexion. Hence when sufficient ankle 

dorsiflexion is available, less hip flexion is required (Rocha et al, 2015). 

 

ii). Lack of postural control (balance impairment and psychological issues)---- More 

efforts in terms of stabilising the HAT in STS movements. 

 

Apart from the significantly less GRF value and slower speed in STS transfers compared to 

that of the young people, the elderly are also discovered to spend extra efforts in terms of 

stabilising the locomotive ADLs (STS and gait). In contrast, able-bodied adults perform STS 

with little conscious effort needed to accomplish these movement patterns (Riley et al, 1997; 

Kaya et al, 1998). This phenomenon is further explained with anticipatory postural control 

(Klous et al, 2011), which is however out of the boundaries of this study. 

 

Owning to the loss of balance, more than one third of the elderly living in community care 
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homes will fall or are at high risk of fall when performing STS transfers (Perry, 1982; 

Rubenstein et al, 1994). Comparisons were made between STS capable elderly and those 

elderly who suffered from STS difficulties due to bilateral vestibular hypofunction (BVH), the 

most typical balance-impairment among aged adults (Kaya et al, 1998). Suffering from BVH, 

the elderly may need to take a further corrective step sideward to regain balance after 

completing STS transfer (Riley et al, 1997). Although the elderly with BVH showed no 

significant deficits in lower limbs strength, the captured linear vertical momentum and GRF, 

were found significantly lower than the control group in this study. The subjects with balance 

impairment were suggested to avoid excessive momentums (both lateral and longitudinal) that 

may cause substantially increase of fall risks (Kaya et al, 1998). 

 

The human body is inherently unstable because it involves the small support area, high center 

of mass, and multi-joint features. Voluntary movements to handle the instability are known as 

anticipatory postural control with the help of postural muscles. The further demonstration on 

this can be seen at (Massion, 1992). These voluntary movements are performed readily by able-

bodied healthy elderly, but can be particularly difficult for the elderly with balance-impairment.   

 

Most of balance-impairment owned to syndrome of post-fall, which can psychologically affect 

the elderly and worsen the postural control regimes by means of retropulsion. This stabilising 

disorder will result in a tendency to fall behind without compensation reactions, which is used 

by the capable elderly to restore balance(Riley et al, 1997; Médéric et al, 2004; Mak et al, 2011). 

Figure 2.3 shows how a subject is affected by retropulsion during STS transfer where his 

balancing fails to counteract the falling back motion and position his HAT (upper torso) to 

antepulsion postures.  
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Figure 2.3 The Antepulsion and Retropulsion postures appearing in the initiation of STS transfer 

(Médéric et al, 2004) 

 

Momentum strategy is often used by the able-bodied young adults in STS transfers as it uses 

the compound movements generated by the entire low limbs with upper body stabilisation. In 

contrast, the functionally impaired elderly use a stabilisation strategy (Schenkman et al, 1996) 

which may explain why the former finish STS movements significantly quicker. 

 

M.M.Gross et al deployed the crucial factors that substantially affect the STS performance of 

the elderly. Significant weakness in hip and knee extensors were spotted, which are mainly 

caused by reduction in strength generated by lower extremities. Motions were captured in a 

sophisticated way using Motion analysis system (Motion Analysis Corporation) AMTI force 

plates as well as Electromyographic devices mounted on several muscle groups. This 

combination accommodated the acquirement of maximum torque around the lift-off (seat-off) 

instant at various crucial points, including pip extensor, knee extensor as well as ankle 

dorsiflexor. The maximum moment occurs shortly after lift-off from the chair, roughly 60 

degree of knee angle. 

The maximum torques at knees, buttocks and ankles are generated at the instant of buttocks 

separation from seatpan (seat-off), with the only physical contact becoming the feet against the 

footmat. Again, as previously mentioned in experiment setup, all seated movements are 

preceded under hands-free conditions. When designing the chairs for community uses, the seat 

height that lower than the knee level should be avoided, which would require higher momentum 

and longer distance to travel during STS movements for the elderly.  
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Also, to the best of related work suggest, few comprehensive analysis of the arm-supported 

STS transfer in healthy adults has been accomplished. The main reason is the lower limbs motor 

functions are more interesting when it comes to improving the unaided STS performance in the 

long run.  

 

2.2.3 Commercial available assistive devices  

 

Towards solving these STS problems, a wide range of assistive devices are introduced to the 

market, including the following categories, i). Standing-up frames, ii). Electric lift chairs and 

iii). pneumatic lift chairs. Critical reviews are presented after the demonstration of each device 

to illustrate the limitations, other problems might be induced and the potential latencies.  

 

i). Standing-up frames 

Standing-up frames are generally low-cost and widely adopted by most of the elderly whoever 

has difficulties in STS transfers. It has its main advantage of versatility because it assists the 

STS transfer from almost any seat surfaces. Also, as its name suggests, some of the frames can 

be used as sturdy walking frames to help the elderly with the outdoor ADLs. 

 

 

Figure 2.4 Variations of standing frames: (a) ReTurn7600 (SystemRoMedic, 2012); (b) Standing 

frame (Praschberger, n.d.); (c) Three-wheeler; (d) Four-wheeler (Rica, n.d.). 

 

The first two variants of standing-up frames shown in Figure 2.4 are solely designed to provide 

STS assistance, offering stationary support whereas the rest two also supports walking and can 

be used as shopping carts. The first two variants, (a) and (b), are widely adopted by care-homes 
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and needed to be operated by specialised carers because the locking mechanisms have to be 

activated or released manually. This means the users can never be left unattended without carers 

around. Once stepped on the frames with knees against the knee pads, the users are not allowed 

to step off and must be transported by carers.  

 

The last two variants, (c) and (d), are also known as walking frames from which the users not 

only receive STS aid but also walking aid. However, the extra walking assistance functions are 

not in the scope of this study because as previously explained, some elderly with functional 

declines are able to bare their BW and walk but still suffering STS problems. The walking 

frames require users to hold the braking level at the handle to activate the locking system prior 

to the STS transfer. This is regarded as a potential hazard especially in the events when the 

elderly forget to activate the braking mechanisms they will lose the balance entirely and fell 

with the walking frame.  

 

In general, when applying the standing-up frame, users need to hold it with their upper limbs 

to lift-up the entire body. Sharing a similar concept with lift-up grab handles in disabled toilet, 

standing-up frame serve its purpose in aiding the subject to use his/her own motor function and 

rise from seated position. However, in the cases where their upper limbs are weak or the seats 

are too low, the users will have to ask their relatives or health care professionals to either give 

them a gentle pull or adjust the height of the frames. Even for those with capable upper 

extremities, using the standing-up frames excessively will accumulate pressures on other 

muscle groups that not meant to participate in STS movements, such as deltoids and triceps. 

After a prolonged period, the users may be confronted with shoulder risks and complications, 

suggested by Bromley (2006).  

 

ii). Electric lift chairs  

Presently, there exist plenty of Electric lift chair manufacturers on the market, among which 

the market leading brands as suggested by disabled world are Pride lift chairs and Golden 

technologies (Disabled world, 2010). Disabled world is an organization that provides 

information and news to the general public and disabled people (Disabled world, 2010). Other 
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Electric lift chair manufacturers include La-Z Boy, Med-Lift and Maxi-Comfort. Electric lift 

chairs generally service home-use purposes but not limited to. This type of device can be easily 

integrated into a wheelchair (Aubert, 1987; Fontecchio, 1990) or automobile seat (Zalewski, 

1991).  

 

Market available lift chairs deliver all its functions manipulated by a control panel (Figure 2.5). 

The chair, acts like an elevator, moves back and forth to itself end points without virtual 

interaction with the user. It seems to be a ubiquitous solution to the elderly from the first 

glimpse. However, such chairs can hardly change how much assistance they provide regarding 

to users with different size and physiological condition. 

 

 

Figure 2.5 Commercial available Electric lift chairs: (a) Restwell Seattle Intalift (Motionhaus, n.d.);  

(b) La-Z-Boy AVENGERluxury lift chair in operation (La-Z-Boy, 2010); (c)Pride C-30 in operation 

(U.S Medical Supplies, 2012) 

 

However, two major problems and one hazard are highlighted to raise the awareness of those 

in need. Admittedly, Electric lift chairs enable users to perform STS motion easily with manual 

controller. These chairs are controlled manually by the subject seated and can merely provide 

fixed amount of assistant within the end-points. Comprehensive analysis suggests that most of 

lift chairs fail to offer sufficient muscle resistance exercises (Gross et al, 1998).This causes 

their physiological conditions to deteriorate faster especially when they become undue 

dependent on the chairs for standing up.  
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Moreover, latency may be induced by these electric lift chairs. As it can be seen in Figure 2.5 

most electric lift chairs are operated using controller with a cable attached. This may develop 

an electric shock hazard as one was reported where the cable had got caught in the moving 

metal frame of the lifting mechanism without the awareness of the chair user. The Electric lift 

chair has operated repeatedly over a period of time until the outer insulation of cable peeled 

off, causing short circuit between power supply and the metal frame (Markowitz, 2012). The 

developed hazard, even though was recovered in time, could have killed the couple involved. 

In addition, even those advanced lift chairs with blind operating buttons may still have 

problems. Buttons being touched without conscious could cause an unwanted lift for the elderly. 

Also, functional failure due to fatigues or contaminations of the switches could also be a 

potential risk, especially under this circumstance abundant ADLs including drinking and eating 

are expected to be done while user seated. 

 

iii). Pneumatic lift chairs 

As a low-cost alternative to electric lift chairs, pneumatic lift seat assists are promoted. Without 

the need of batteries and electricity, these seats can be easily attached to a bed or chair. The 

power of lifting stroke can be regulated by selecting the level of weight resistance. But, without 

professional clinical analysis, the user will never know the exact amount of lifting he/ she 

actually needs. The manufacturer claims the product will be activated with the user leaning 

forward and “acting as if he is getting up” (Stuffseniorsneed, n.d.), shown in Figure 2.6. This 

will become the most sever latency because the chair seat lift comes with no perceptive 

(sensory) system built-in, the lifting motion is very likely to be accidentally triggered, 

especially when the user needs to change the sitting posture by leaning forward. Besides, 

attaching this pneumatic device to existing chair will inevitably increase the seat height, which 

may have adverse influence on the elderly in ADLs. Additionally, using a gas spring to capture 

motion and store the energy, this device requires large amount of power every time the subject 

sits back. It can be particularly difficult for the handicapped elderly when the device has not 

been used for a while in which gas spring may become stiff. 
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Figure 2.6 The pneumatic chair seat lift (Stuffseniorsneed, n.d.) 

 

These commercial available devices seem to solve the problem to some extent. However, being 

operated completely manually to move back and forth to its end points like an elevator, the 

systems fail to provide an appropriate level of assistance to the user in order to fulfil his/her 

actual need. Instead, in most of the cases, it is an overkill solution towards the STS problem in 

the sense of users always receiving the maximum output the lift chair could possibly generate. 

It could eventually be detrimental to the health conditions of the elderly if they excessively rely 

on lift chairs. In Gross et al’s study, a guideline was proposed that effective strength training 

regimes for the hip musculature is necessary to maintain the STS ability of the elderly (Gross 

et al, 1998). This may further aggravate the functional decline of the elderly adults who spend 

too long in chair with increased disc degeneration or spine stiffness (Galumbeck, 2004). 

 

The changes in motor function and body configuration of the user are not considered when 

designing these lift devices. Since the system is not able to adjust its output accordingly to 

overcome the user’s changes in STS performances. In extremities, these lift chairs are 

providing inappropriate assistance, which could which could discourage potential condition 

improvements and actually worsen the condition of the user. Besides, in the circumstances 

when users have substantially gained their own BW, they would have to purchase a new lift 

chair of larger size to adapt to this change. 
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2.2.4 Experimental assistive devices  

 

i). Standing frames 

Either based on or inspired by the previously demonstrated off-the-shelf assistive devices, a 

wide range of experimental prototypes was developed aiming to assist the STS movements 

using different approaches. At present, the prototypes involve powered walking frames, 

actuated lift chair/ seatpan powered by electric or pneumatic actuators, functional electric 

simulation (FES), and autonomous wearable robots. This taxonomy is based on the platform 

itself regardless of the sensing and assistance techniques implemented, which will be 

elaborated later in Section 2.2. 

 

As briefly illustrated before, this type of protocols aims to provide the STS transfer assistance 

purely at upper torso, inspired by the off-the-shelf standing frames. Note some standing frame 

protocols may have the possibility of aiding the gait process after STS transfer from chair, 

which is not discussed here as it is beyond the scope of this study.  

 

Médéric et al, (2004) aimed to tackle the STS problems from the aspects of postural control 

accompanied with risks of falling back. The study has successfully utilised the measurement at 

arm handles to compute the actual required force to apply to the subject through the STS 

movement. The assistive force was provided via two actuators mounted in parallel position 

onto the cantilevers of the standing frame protocol, as shown in Figure 2.7.  
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Figure 2.7 The EJAD Standing frame inspired by the assistive motion provided by care givers when 

aiding STS transfers (Salah et al, 2013) 

 

Another standing-frame-based protocol, EJAD, was developed by Salah et al with a motorised 

2-degree-of-freedom (2-DOF) robot arm controlled by soft computing techniques (Salah et al, 

2013). It was inspired by the assistive motion that provided by the carers and aimed to imitate 

such motion shown in Figure 2.8. This typical motion proved by carer in helping STS transfer 

can be summarised as: Initially, a carer approaches the older user with 1. forward-back 

movement. The completion of assistance is provided as a compound movement with force 

generated at 2. hip joint, 3. shoulder joint and 4. wrist joint. Owning to the sensor fusion system 

(further explained in Section 2.2.2) and the computation of adaptive neuro-fuzzy inference 

systems (ANFIS), the EJAD managed to assist the older user throughout the STS transfer 

motion with the personalised level of assistance. 
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Figure 2.8 The EJAD Standing frame inspired by the assistive motion provided by care givers when 

aiding STS transfers (Salah et al, 2013) 

 

ii). Powered lift chairs 

 

In the lifting chair designed by Bae & Moon (2010 & 2011), the mechanism aim to lift the seat 

at a certain angle using gas-spring actuator, rather than rise up the entire seat horizontally, as 

illustrated in Figure 2.9. The sensing techniques implanted in Bae & Moon (2010 & 2011) is 

further demonstrated in the later sections.  

 

 

Figure 2.9 The lifting chair prototype with hip-up motion (Bae & Moon, 2010 & 2011) 

 

The SIT & STAND™ assistive chair developed by Galumbeck et al (2004) featured a unique 

design with an electric actuator that is able to lift the main frame of the chair according to the 

length of the lower limbs of the subjects. When assisting the STS movements of the subjects, 

the front frame of the assistive chair can automatically fold down gradually to enable the feet 

of the subject to move backwards to a more posterior position. The effectiveness of this lift 

chair protocol was proved by 7 elderly individuals who experienced different kinds of 



 

25 

difficulties in STS in a clinical study. However, this assistive device failed to recognise the 

actual deficit in the strengths and range of motion of the subjects in order to generate adequate 

level of assistance.  

 

 

Figure 2.10 The Ejector chair developed by (Munro et al, 1998) with the user seated and preparing to 

perform assisted STS movement 

 

When performing assisted STS movements, subjects were positioned with their buttocks as far 

back as possible on the seat, their back resting against the backrest of the chair to establish a 

standard experimental condition (Figure 2.10). Each subject was verbally instructed to stand 

using a natural rising motion. Munro et al has used a self-rating system for the subjects to 

estimate their own efforts made to complete the STS transfer as well as the pain level 

experienced using the rating scale proposed by Borg (1970) and Huskisson (1974). However, 

the selection criteria of subjects were based on a group of elderly with rheumatoid arthritic 

problems who were actually capable of performing unaided STS transfers.   

 

An assistive stand-up robot is developed featuring 3-DOF motion and advanced control 

algorithm (Kamnik & Bajd, 2004). This prototype can be recognised as a hybrid type with 

which the subject is able to perform STS with the seatpan and standing frame providing 

assistance simultaneously. In this work, an innovative data fusion framework has been built up 
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which integrates sensing data acquired from seat, arm, feet reaction force sensor and Infrared 

markers (position capture). Early experimental stage as it might be, the robot successfully 

detects subject’s intention with the integration of sensory data from multiple channels, which 

will be expanded in the next sections. 

 

 

Figure 2.11 The standing up robot equipped with integrated sensor networks (Kamnik & Bajd, 2004) 

 

iii). Functional electric simulation (FES) 

 

Confirmed by (Barrett et al, 2009), functional electrical stimulation (FES) has been recently 

recognised as an effective routinely (long-term) treatment towards functional regain for adults 

with paralysis or significant strength deficits caused by multiple sclerosis (stiffened muscle 

tissue) because of SCI. FES activates the nerves in affected muscles by exerting small electrical 

impulses directly onto targeted nerve system so as to assist the locomotive ADL of both STS 

and walking for the paraplegic subjects (Lynch & Popovic, 2008).  

 

An example of study incorporating FES to assist the elderly SCI patients in STS movements 

was conducted by (Hussain et al, 2014) with a successful simulation on a 3D body segments 

model of one degree of freedom (considering single joint movement at knee joints). The FES 

targeted quadriceps muscles group with the response to both natural activations exerted by the 

subjects and FES passive activations.  
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FES, however, is an intrusive technique that is not suitable for the home-use scenario in this 

study. Furthermore, this remedy only helps STS movements of those who suffer from lower 

limb paralysis caused by spinal cord injury (SCI) because it emulates the way how human brain 

controls the muscles (Lynch and Popovic, 2008). It is clearly not applicable for the elderly who 

are able to activate their lower limbs muscles however not able to perform STS owning to the 

deficit in motor function of muscles. 

 

iv). Autonomous wearable robots 

 

The autonomous wearable robots, also known as exoskeleton devices, aim to follow the human 

motion trajectories when performing STS movements. Some are capable of delivering 

assistance-as-needed according to the actual movements performed by the subjects. The 

Purposefully designed exoskeleton devices concentrate on different muscle groups: upper 

limbs (Kiguchi & Hayashi, 2012), lower limbs (Jamwal et al, 2014; Taslim et al, 2014) and the 

entire body (Tsukahara et al, 2010). 

 

A wearable robot was developed by Jamwal et al (2014), aiming to provide strength the range 

of motion exercises for subjects with ankle injuries like sprain. This ankle-based Exoskeleton 

robot has incorporated lightweight but powerful pneumatic muscle actuators (PMA) in the 

design to emulate the movement of skeletal muscles. 
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Figure 2.12 Wearable ankle robot proposed by Jamwal et al (2014) (a) Robot in use after construction. 

(b) 3-D solid model of the final concept. (c) Positions of force sensors and linear potentiometers. 

 

A complete wearable assistive device named PAL has been developed (Tsukahara et al, 2010) 

which harnesses the entire mechanical as well as the complicated mathematical modelling on 

geometric parameters in locomotive movements, including STS transfers. 

  

These assistive devices mainly target on incomplete and complete paraplegic patients which 

are not discussed in the content of this research. However, the concept of exoskeleton robot has 

its significant contributions in terms of rehabilitating lower limbs motor functions (joint(s) 

motion and strength). The HRI relationships are achieved as though the actuators are orthosis 

of human bodies.  

 

2.3 Sensing techniques for human-robot interactions 

 

The objective of intention recognitions implemented by the related work are summarised as:  

improve the sitting habits from posture wise (e.g. Tan et al, 2001; Xu et al, 2012), utilising the 

extracted intention to drive assistive devices (e.g. Yokota, 2009). This part is then followed by 

a critical analysis with adverse effects and problems might incur when applying these 

techniques and the reasons why they may not be suitable for this study.  
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2.3.1 Introduction of HRI 

 

The fundamental paradigms of human-robot interaction (HRI) can be epitomised as: physical 

interaction and cognitive interaction on the basis of home-use proximate scenarios (Breazeal, 

2004). The physical interaction between chair user and robot chair is achieved by the seatpan, 

seat back footmat as well as the lifting mechanism of the chair, which is demonstrated in 

Chapter 3. The cognitive interaction is carried out through the extraction of useful features on 

users’ on-chair behavioural patterns and the implications (manifestations) behind. Sections 

2.2.2 and 2.2.3 introduce the related work on the feature extraction techniques.  

  

2.3.2 A variety of on-chair sensory implementations 

 

The taxonomy presented here is purely allocated by the genre of sensing techniques themselves, 

regardless of the computing algorithms used. Note some studies have incorporated more than 

one sensing channel (technique) to fulfil the requirement of HRI, which is known as sensing 

fusion (e.g. Kamnik & Bajd, 2004; Tao el al, 2007; Bae & Moon, 2010; Salah et al, 2013). 

i).Force plate approaches 

ii).Flexible sensing approaches 

iii).Miniature sensing approaches (IMUs, Force transducer, Binary sensors) 

iv).Optical (camera) monitoring approaches 

 

i).Force plate approaches 

Yamada & Demura, (2009) successfully confirmed the relationships between GRF and STS 

stages by combining a power platform Gravicorder G5500, also known as stabilometer. The 

experimental setup incorporates a sheet switch system to capture the hip separation from chair. 

This helps identify GRF value at the moment when subject’s buttock leaves the bearing surface. 

The work separates the entire STS process to three phases, i) from the initiation to seat-off, ii) 

from seat-off to the appearance of peak GRF and iii) from the peak GRF moment to the 

completion of STS movement. This research has its significant in terms of justifying the 

correlation between GRF values at different phases and level of physiological lower limbs 
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motor functions as well as the falling risk of the elderly. 

 

A multichannel force platform manufactured by Kistler (Kistler, Switzerland, type 9281B) was 

used in the work of Munro et al (1998) to capture the reaction force in 3D, namely, vertical, 

anteroposterior (as shown in Figure 2.10). and mediolateral, generated by each subject. The 

force plate was placed in front of the assistive chair prototype to avoid force interferences.   

 

ii).Flexible sensing approaches 

In the study of manipulating a motorized wheelchair with the patient’s own upper body 

inclination (Yokota, 2009), inexpensive pressure sensing films are mounted on the seat pan and 

seat back respectively. The sensing system contributes to recognise the behavioural pattern 

where the shifting of COG can be extracted, implying the patient’s degree of indication. In 

addition, by moving upper body back and forth the user can drive the wheelchair along 

longitude direction, while leaning left and right functions as a steering wheel.    

 

However, the pressure sensing films applied in the study of Yokota suffers from poor resolution 

issues which might not be a concern when it comes to mapping the behavioural pattern of users 

into the direction of the wheelchair prototype (Yokota, 2009).  

 

As shown in Figure 2.13, a haptic sensing chair equipped with BPMS (body pressure 

measurement sensor) flexible mats from Tekscan is introduced in capable of classifying the 

sitting postures into a pre-defined model, termed as an Eigen-posture space (Tan et al, 2001), 

also known as pattern recognition. Such a classification has a reported accuracy of 96% for the 

“familiar” subjects when fitting up to 14 Eigen-postures, including leg crossing, slumping, 

leaning, etc. However, for those who haven’t used the system before, the accuracy would drop 

to 79%. However, when investigating the minimum distance from posture space method, the 

accuracy could still reach 93% encapsulating 1st & 2st choice of posture. It is speculated that 

when applying to the home based assistive chair, the training data can be continuously gained 

from the aging couple. Another scenario is presented as an input device for computer games. 

The sensing chair approach as a dynamic interactive input device to manipulate computer 
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games can be pivotal from the perception point of view. The control signal is thoroughly 

retrieved through occupant’s position, movement and weight shifting, indicating subject’s 

intention (Tan et al, 2001). However, with a system cost at approximately 2000 GBP, current 

BPMS sensors can hardly be applied on home-based assistive chairs.  

 

 

Figure 2.13 BPMS mats placed on chair (Tan et al, 2001) 

 

iii).Miniature sensing approaches (IMUs, Force transducer, Binary sensors) 

In the work conducted by Tanimoto (1998), an evaluation was conducted through the study of 

pressure distribution on 5 types of commercial available cushions, which are dedicated to 

relieving the pressure sores mainly experienced by patients with spine cord injuries (SCI). The 

measurement was conducted pressure films mounted on seatpan. The device used in this study 

has a spatial resolution of merely 16x16 mm. Although more generous resolution could be 

obtained with other more advanced devices, the results were considered valid because the 

research interest was mainly on identifying areas (of interest) of risk for developing pressure 

ulcers rather than the specific pressure values. Both the amplitude of excessive pressure points 

and the area of substantial pressure concentration were extracted through pressure pattern. 

 

Besides, as an affordable alternative to BPMS, another study on posture classification is carried 

using merely 4 force transducers (Schrempf et al, 2011). With the help of biomechanical model 

of seated person, Schrempf et al used a simple biomechanical model to estimate and measure 

the lumbar joint moment, flexion/extension angle, foot-support, force acting on the foot-
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support and back rest usage using four force transducers embedded in an office chair. This was 

done aiming to develop future posture guidance algorithms in order to improve office worker 

sitting behaviours.  

 

Another project that uses a converted arm chair is the SenseChair project by the Massachusetts 

Institute of Technology. It is an ordinary armchair fitted with pressure sensors in the seat, 

armrests and seatback. This chair is also fitted with vibration motors, lights and speakers in 

order to provide a variety of “personalities” to the elderly.  The chair uses a pattern of motor 

vibrations, light oscillations and sounds to help an elderly person sitting in the chair. For 

example, if the elderly is sitting in an ergonomically uncomfortable position, the chair would 

vibrate using the embedded motors to alert the elderly. If the elderly is unsettled, sounds could 

be used to soothe the elderly so that he or she falls asleep. Using the time of the day, the chair 

could wake the elderly up to go to bed for a more comfortable sleep whilst using its light to 

illuminate the room (Forlizzi et al, 2005). Investigating the on-chair sensor with vibration 

feedback clearly shows some significance. Since although in some occasions sedentary 

behaviour for the elderly is inevitable, it is advisable for the elderly to shift positions from time 

to time in order to encourage blood circulation and reduce stress on the lumbar. This could be 

done through dynamic seating in which the chair senses the changes in the posture of the user 

in real time and give feedback to the user in order to encourage changes in position or exercises.  

 

Similarly, researchers fitted a normal office chair with 7 force-sensitive resistors for posture 

detection and 6 vibrotactile actuators for haptic feedback as shown in Figure 2.14 (Zheng & 

Morrell, 2010). The vibrotactile actuators were miniature pager motors enclosed in a housing 

resulting in a low cost feedback system. By providing feedback via the vibrotactile actuators, 

they were able to guide people sitting in a chair to a correct posture. It was discovered in their 

study that after the vibrotactile feedback was disabled without the subject’s knowledge, the 

subjects still continued to sit in a correct upright or near-upright posture. These findings suggest 

that the use of haptic feedback is an effective way of providing the human sensory-motor 

system with correction cues or commands. 
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Figure 2.14 (a): Placement of the 7 Force Sensitive Resistors (b): 4 vibrotactile at the back of the seat 

(Zheng & Morrell, 2010) 

 

As an even more simplified approach, to classify the sitting patterns into 9 defined postures, 

Xu et al (2012) used 7 binary valued force sensors attached to a causal office chair. These 

binary valued force sensors can be functioning properly once the applied forces trigger the 

threshold. Similar to others studies, cover sheets consisting of 64 binary sensors are placed 

onto the cushion and seatback respectively. Novelty could be found in the classification 

methods used in the study. Several naïve Bayesian classifiers are integrated into a hybrid 

cascade structure. The first stage is defined as coarse classifier, only the sensors mounted on 

seat pan are taken into account, providing a relatively rough clue of classification. Later on, 

seatback sensors take their role as fine classifier, computing the final judgment. The reported 

accuracy is achieved by 82.3%, confirmed by cross-validation. With merely 6 subjects selected 

for the entire training procedure, the sample pool is considerably low (Xu et al, 2012). 

 

Inertial measured sensors (IMUs) are another genre of wearable miniature sensor for the 

compact in size and light weight. It is aimed to solve both stationary and dynamic problems of 

high complexity. The components of a typical IMU include accelerometer, gyroscope and 

magnetometer to capture angular speed, linear acceleration as well as spatial position (Lin et 

al, 2010). The IMUs generally require easy setup and calibration, which makes tracking human 

motions particularly handy. The applications of IMUs are known as non-affecting rehabilitative 

body segments tracking solutions, which can be seen from work of (Tao el al, 2007; Zhou et al, 

2008). A parallel setup, namely IMU motion positioning system and camera 3D sensor, was 

incorporated by Tao el al (2007). This camera-based monitor was used as a motion reference 

(a) (b) 
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system to verify the 3D positioning measured by IMUs after corrective algorithms. The 

credibility of employing IMU system was assessed in this manner. Rooted mean squared errors 

(RMS), coefficients and nonparametric tests have proved that both systems have generated 

similar results.  

  

From the EJAD assistive standing frame developed by Salah et al, two IMUs were attached to 

the trunk and leg of the subject so as to capture the motions during STS transfer (Salah et al, 

2013). This IMUs sensory system was used in conjunction with an infrared camera and a foot-

based force sensor plate to present a multi-channel sensory system for motion capture.  

 

The following related work on STS research makes use of Electromyogram (EMG) capture 

system as a manner of signal extracting from the actions that the subjects performed but may 

not directly link or contribute to STS process for understanding the effort experienced by the 

subject. 

 

Bae & Moon (2011) successfully matched the EMG signal to the extension of knee joint during 

STS transfers. Dry-type active electrode (DE-2.1, Delsys Co.) was used to collect anoigst 

signals from subjects’ rectus femoris muscle. This largely contributed to determination of 

assistance level offered by the hip-up mechanism, shown in Figure 2.9. The effectiveness of 

the lifting motions provided to the subjects was also confirmed by EMG, in contrast to the 

figures gathered at the initial position.  

 

Kiguchi & Hayashi (2012) used the EMG signals obtained from 16 positions to understand the 

level of assistance required by the subject in various upper limbs movements.  

 

However, how exactly can EMG be harnessed to assist the research has long been a problem 

due to different physiological conditions of subjects. Lee et al (2008) has attempted to solve 

the challenge of relating the captured EMG to the actual joint moments in STS transfers, which 

is explained in Section 2.3.2. 
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iv).Optical (vision) monitoring approaches 

The optical approaches commonly used in monitoring STS movements are in the form of 

reflective (Infrared) sensing (with markers attached on subject body, as shown in Figures 2.10 

and 11) or optical camera. However, the motion capturing system solely relies on vision sensors 

may suffer from focal length and lens distortion. These problems can be attenuated with an 

appropriate environmental setup and calibration process, or the usage of other sensing channels, 

such as inertial (IMUs) sensory system (Randeniya et al, 2008) and EMG sensors (Bae & Moon, 

2010 & 2011; Taslim Reza, 2014).   

  

The motion capturing system developed by Salah et al (2003), VICON, utilised 8 infrared (IR) 

cameras with LEDs bands as emission device. The emitted IR light was reflected by various 

makers attached to the hip, head, trunk, leg, and ankle of the subject. This, in conjunction with 

the use of IMUs, formed a sensing fusion system that is capable of monitoring as well as 

measuring features (accelerations and torques) of trunk flexion, momentum transfer, hip joint 

extension, movement stabilization.  

 

Taslim Reza et al (2014) used an inexpensive camera-based motion capturing system Kinetic, 

developed by (Microsoft, 2010). It features an innovative depth information which would 

normally require a transformation algorithm from 2D to 3D. Such system is known to be well 

suitable for indoor environments as it performs well even with poor illumination. The system 

captures STS movements which can be difficult to achieve with the usage of single channel 

EMG measurement (Figure 2.15). 
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Figure 2.15 A hybrid sensing system incorporating vision sensor as well as EMG sensor (Taslim 

Reza, 2014) 

 

Claus and his fellow researchers took the advantage of an optical tracking system to investigate 

the STS spine postures (Claus et al, 2016). Unlike other studies on STS postures, they stressed 

on the three postures defined by sagittal plane spine angles at thoracolumbar and lumbar spinal, 

specifically. Spontaneous Gender differences were up to 1/3 the magnitude of posture 

differences (in terms of angles in sagittal plane) from 10-minute measurement tests on STS 

conditions. 

 

2.3.3 Critical analysis 

 

Japanese researchers (Yamada & Demura, 2009) successfully tackled this problem by 

combining a power platform Gravicorder G5500, also known as stabilometer, to justify the 

correlation between GRF and level of physical activity as well as the falling risk of the elderly. 

Later on, comparison was also made between healthy young individuals and the elderly to 

identify the difference in STS movement. Consequently, the study suggests that GRF has a 

strong bond with physical activity (∣r∣= 0.27–0.28). Falling risk is a sign of decreasing in 

ambulatory and balancing ability, which was found significantly correlated with GRF (∣r∣= 
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0.26–0.41). Consequently, the STS movement speed and the stomping force of the elderly were 

indicated to be considerably slower and weaker than that of the young. 

 

The force plates used to acquire GRF by the studies so far, e.g. Kistler type 9281B and 

Gravicorder G5500, come with the systematic costs well over 2000USD. Not only it is a high-

cost solution of GRF caption, the thickness of the force plate was omitted by the researchers, 

which will clearly affect the actual seat height from which the STS performance was 

investigated (Munro et al, 1998). As suggested by another work using the identical force plate, 

type 9281B, the thickness was measured at 150mm (Franklyn et al, 2008). 

 

Besides, the other components of the reaction force, anteroposterior and mediolateral (lateral 

in horizontal plane), which can be measured by the expensively built force plates, has 

significantly less correlation with biomechanical STS performance, according to the recent 

researches standardisation of GRF in STS transfers (Etnyre & Thomas, 2007; Yamada & 

Demura, 2009).  

 

Aside from the well-known privacy issue it might induce, the main drawback of incorporating 

a vision motion capturing system is that most of the experimental setups have to be fixed and 

calibrated each time before usage (Moeslund et al, 2006).  

 

The Tekscan flexible pressure sensors from Tekscan, are widely used in biomechanics research 

for the sake of its capability of yielding pressure measurements of high resolutions on complex 

surfaces. Although they are generally manufactured at a high precision level, extra caution 

should be taken when using these pressure sensors to evaluate the pressure at different contact 

area. The typical accuracy of Tekscan pressure sensors have reported accuracies ranging from 

5% to 27%, which could be effectively reduced to 1% with the filtering algorithm applied 

(Drewniak, 2006). Moreover, the accuracy of BPMS is significantly affected by the curvature 

of measurement surface (Tekscan). Generally, a high curvature of sensing surface is prone to 

incur errors.  
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However, the main reason flexible sensing was not adopted in this study is its expenditure. The 

cheapest variation in BPMS series, CONFORmat 5330, costs in average of 1300 GBP, 

according to the quotations offered by UK suppliers. The cost of sensor matrix itself is affected 

by the number of sensing elements, known as Sensels, ranging from 1024 to 16128. However, 

the entire systematic solution typically costs well over 10, 000 USD, including the sensing 

matrix, readout electronics and software (Yip et al, 2009).  

 

As IMUs are built with 3-axial gyroscopes as well as 3-axial accelerometers, the the properties 

of micro-electro-mechanical systems (MEMS) are inevitably inherited. Inaccuracies caused by 

drift effects and accumulation of erroneous over time. The error will accumulate because the 

spatial positioning is derived through computation of the sensory outputs at all axes at certain 

duration of measurement time. The integration of the measurements of gyroscopes and 

accelerometers requires precise analogue algorithm to compute. This sees a difference in 

characteristics between navigation grade IMU and low-cost IMU (Randeniya et al, 2008).  

 

Due to the intrinsic characteristics of IMUs sensor, the spatial positioning accuracy (in world 

coordinate system) can be rather poor without calibration or effective corrective algorithms, 

hence this inertial sensing technique is often used in conjunction with camera-based (visual) 

tracking system to enhance the robustness (Tao et al, 2007; Randeniya et al, 2008). This type 

of inertial sensory system may also suffer from other issues caused by the experimental 

configurations. For example, the movements of the targeted muscle tissue itself may affect the 

initial measurements performed by IMUs and such error will accumulate when it comes to a 

multi-body-segment positioning measurements (Tao et al, 2007).  

 

For some applications with the use of a single camera, the error generated in a 2D image 

measurement will significantly affect the systematic accuracy when it is necessary to 

reconstruct the 2D visual system to a 3D scene (Tao et al, 2007).  

 

EMG monitoring system has been widely adopted by related studies (Bae & moon, 2007; 

Taslim Reza, 2014) for its capabilities of gathering sub-conscious signals throughout STS 
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transfers. However, the ideas of using EMG and 3D are not practical for a lifting chair, 

especially for the home-based ones that serve multi-users as in STS detection applications it 

requires the signal to be captured from subjects’ rectus femoral muscle. 

 

2.4 Machine learning technologies for intention recognition  

 

Regarding to the nature of interactivity, the assistance provided by this chair robot should be 

comfortable and acceptable to human whereas robots should be able to study and familiarise 

with specific human behaviours. However, in spite of the big advancement in sensory 

techniques, present robots are still struggling to benefit from its merits simply because of the 

challenging in cognitive capabilities (Dautenhahn, 2007).  

 

This cognitive interaction is stressed here as it provides the ability to recognise the intentions 

or implications of certain human behaviours that are difficult to be parameterised (modelled) 

using conventional mechanical and mathematical knowledge. Machine learning, also well 

known as soft computing, has long been used to tackle with inherently complicated problems. 

The machine learning methodologies are demonstrated with related work on STS movements 

(locomotive ADLs) or other inspirational applications.  

 

2.4.1 ANN and time series prediction 

 

Artificial neural network (ANN) has been on fever for the recent decades on movement 

classification (identification) as well as time series prediction. Related work involving a wide 

variety of applications can be seen at areas such as water flow forecasting (Wang et al, 2007), 

wind mill power prediction (Saroha and Aggarwalhas, 2014), glucose level monitoring (Zeccin 

et al, 2010), life span prediction of gearbox (Tian and Zuo, 2010), financial time series 

prediction like stock market and foreign exchange rate (Kuan and Liu, 1994; Brezak et al, 

2012). Only a walkthrough of these ANN applications is presented here whereas the structure 

and training of ANN are thoroughly demonstrated in Chapter 6. 
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Time series predictions with ANN have also played crucial roles in representing complex 

relationships between its inputs and outputs in human locomotive ADLs movement prediction 

(Zhang & Zhu, 2004; Zhang et al, 2005).   

 

As one of the forerunners who successfully employed ANN on STS study, Gioftsos and Grieve 

(1996) developed a classifier that is able to recognise whether the subject has experienced 

lower back pains during STS transfers. The network used the forces and COPs at knee and 

ankle, as well as the lower back movement trajectories as inputs, in order to compute a binary 

output (lower back pain or not). To test the performance of this ANN classifier, 36 subjects 

with different physical conditions were invited to conduct a cross-validation test with one of 

them after training process undertaken by the rest subjects. The study has a reported accuracy 

of 86.1%, which was encouraging compared against the classification results provided by 

professional physiotherapists.  

 

By using GRF features as the inputs of ANN, Zhang et al, (2005) were able to accurately (>97%) 

identify the type of activity as well as predict the speed of walking and running after effective 

training process.  

 

Unlike the other related work on using FES to assist STS movements, Zhang & Zhu (2004) has 

developed a robust ANN-based controller to deliver the appropriate signals according to the 

movement conditions. The 𝜃ℎ , 𝜃𝑘  𝑎𝑛𝑑 𝜃𝑎   representing the angles at hip, knee and ankle, 

respectively, were used as the input variables of the ANN. Through effective training, the ANN 

was able to generate PWM signals targeting on several lower limbs. Such system was evaluated 

through the efforts of upper limbs that can be reduced when performing STS transfers.  

 

Su et al (2013) concentrated on a three DOF exoskeleton arm that uses the users’ upper limb 

motion to assist STS movements. Although this is a different approach to overcome STS 

difficulties, the ANN modelling has its novelty in terms of computing the assistance-as-needed 

through STS movements. The assistive motion was provided through harmonic drive 

transmission which offers precise positioning of the exoskeleton harness. However, the control 



 

41 

process was complex owning to the unknown parameters of the harmonic drive and its 

oscillation characteristics.  

 

An ANN model was developed to bridge the captured EMG signal with the moment at knee 

joints during STS movements (Lee, 2008, October). The network in use is inherently a feed 

forward network (FFNN) with exogenous EMG values as input. The work was validated with 

the corresponding knee moments acquired through kinematic measurements at certain EMG 

values with two systems performing in parallel configurations.  

 

Tian and Zuo (2010) have developed an extended recurrent neural network (ERNN) 

incorporating Jordan recurrent network together with Elman recurrent network. The innovative 

technique was applied on the life span prediction of gearbox based on the experimental findings 

between usage conditions and year of failure, which has largely contributed to condition based 

maintenance (CBM).  

 

Zeccin et al (2010) has conducted a time series prediction based on glucose data extracted 

through continuous glucose monitoring (CGM) in clinical environments.  They combined 

conventional ANN together with first-order polynomial extrapolation algorithm, with ANN 

primarily served its function handling non-linear components of glucose data. Experiments 

have proved a significant advancement in both accuracy and time of prediction ahead, 

compared against the existing short-time glucose prediction techniques.  

 

Kuan and Liu started an era of using ANN, including FFNN and RNN to investigate financial 

time series like foreign exchange rate and stock market (1994). The study successfully 

optimised the suitable network based on the performance criteria. They confirmed different 

networks achieved varying results dealing with various exchange rate series. Brezak et al, 

(2012) have validated the capability of both FFNN and RNN for handling financial time series 

using benchmarking Mackey-Glass non-linear chaotic test series. Applications of 

implementing ANN on foreign exchange rate prediction can also be seen at related work from 

(Yao et at, 2014; Oancea & Ciucu, 2014).  
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However, the generalisation of has been the most challenging concern when training the ANN. 

A properly formed network that is suitable for training data with very satisfying performance 

may suffer overtraining (overfitting) issues with test data. Hence efforts have been made to 

mitigate this with different techniques, which will be further expanded in Chapter 6.  

 

A comparison model among Bayesian regularisation (BR), early stopping (ES) and no-stop 

training has been developed with the variance being the ratio of training sets over the number 

of weights (Wang et al, 2007). ANN was constructed aiming to predict hydrologic variants of 

several rivers through different training approaches. Unlike other related work which often uses 

MSE to verify performance, a particularly seasonal adjusted coefficient of efficiency was 

introduced as evaluation index. When ratio between training sets and weights was lower than 

10, both BR and early stop outperform the early stop training however little credit could be 

given to separate the both. When ratio was above 20, BR outperforms the rest two in most cases. 

When such ratio exceeded 50, no overfitting was observed albeit network gave poor results.  

It was also discovered that early stop training shown an incomparable training speed against 

the rest two. ANN was later extended to enable a 1-to-5 time steps ahead prediction, BR and 

ES training generated similar results through same performance measure. However, the 

performance of early stop approach was found to be inconsistence hence was not used in the 

multi-day-ahead prediction.  

 

2.4.2 Fuzzy logic system 

 

As to the exoskeleton robot developed by (Taslim Reza, 2014), fuzzy controller was designed 

to deal with the ambiguity of EMG signals. The status of STS movement was used gathered. 

The two exacted variables, EMG signal and acceleration angle were used as the fuzzy controller 

inputs. The output of such controller was the status of the motor, namely, “anti-clockwise 

rotation”, “no rotation” and “clockwise rotation”. The combinations of both inputs established 

the following 6 fuzzy rules:   

Rule 1: If Acceleration angle = “Low” and EMG readout = “Negative High”, then actuator 

output is “Anti-clockwise Rotation”.  
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Rule 2: If Acceleration angle = “Low” and EMG readout = “Low”, then actuator output is “No 

Rotation”.  

Rule 3: If Acceleration angle = “Low” and EMG readout = “Positive High”, then actuator 

output is “Clockwise Rotation”.  

Rule 4: If Acceleration angle = “High” and EMG readout = “Negative High”, then actuator 

output is “Clockwise Rotation”.  

Rule 5: If Acceleration angle = “High” and EMG readout = “Low”, then actuator output is “No 

Rotation”.  

Rule 6: If Acceleration angle = “High” and EMG readout = “Negative High”, then actuator 

output is “Anti-clockwise Rotation”.  

 

The corresponding truth values (weights) for all Rules were all set as 1 in Taslim et al’s work. 

The rules were constructed in a way that contradictory action (of the actuator) was avoided. 

 

However, this work did not account the level of assistance the subject actually requires, as 

previously discussed. The level of assistance could be defined by i.e. the rotational speed of 

the actuator and the angle of rotation. The exoskeleton device was controlled with the desired 

direction of motor spinning according to the capturing of movements. 

 

2.4.3 Adaptive neuro-fuzzy logic system 

 

As demonstrated before, although the functional electrical stimulation (FES) has its 

effectiveness in terms of improving the mobility of the lower limbs, the amount of stimulation 

amplitude to be applied has long been an issue because it is complicated to describe the 

relationship between the gain of error in (lower limbs) mobility and system output. The nature 

of this technique has hindered its usage in home-use conditions because a therapist has to be at 

present throughout the routine process of the treatment. However, the ANFIS algorithm 

harnessing the subject’s movement trajectory to control the FES shows encouraging results.  

 

The FES treatment developed by Hussain et al for the elderly suffering SCI, has incorporated 



 

44 

a parallel system with ANFIS and proportional-integral-derivative (PID) controllers, as shown 

in Figure 2.16. The latter has a conventional fixed parameter design as feedback controller 

handling the difference between target (reference) movement trajectory in need and the actual 

one. Meanwhile, such difference and its derivative were fed into the ANFIS controller. When 

trained properly, the ANFIS controller is capable of learning the mapping between amount of 

stimulation required by the quadriceps muscles and the difference of knee movement trajectory 

needs to be generated (Hussain et al, 2014).  

 

 

Figure 2.16 ANFIS-PID control system configuration developed by (Hussain et al, 2014) 

 

This study has successfully coped with such a non-linear and highly complex system that is 

difficult to be mathematically modelled. This soft computing technology sees its advantage in 

non-parameterised fields or complicated environmental conditions with disturbances (Hussain 

et al, 2014) where traditional methods are difficult to model. Based on fuzzy logic system, it 

does not anymore require the knowledge of the designer or trial-and-error process. Instead, 

such relationships (parameters in membership functions) are obtained through the training 

process based on the obtained personalised mappings between inputs and outputs, which will 

be further elaborated in Chapter 5.  

 

Consequently, through the comparisons with ANFIS alone and traditional PID controllers, this 

parallel ANFIS-PID control system has achieved the best results with reported errors of ±

0.0873 rad in terms of angular movement trajectory at knee joints. The overall performance of 

this parallel controller is considered to be better than the similar studies on the use of FES to 

assist STS movements, developed by (Zhang & Zhu, 2004) and (Abu Bakar & Abdullah, 2011).  
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Another ANFIS was prompted to handle the uncertainties and the geometric complexity, 

especially when used by subjects of different physiological abilities and biomechanical features 

(Jamwal et al, 2014). With the foot of subject placed onto the platform. Such a platform requires 

to be positioned by the actuator throughout the desired trajectories. ANFIS was adopted 

because this positioning of the platform is purely controlled by inflation and deflation of PMA 

(Figure 2.12) where traditional proportional-integral-derivative PID was not applicable. The 

output yielded by fuzzy controller is pressure value that needs to be applied, which is then 

converted into pulse width modulation (PWM) to control the pneumatic actuators. The 

experimental result was confirmed as the trajectories of motions provided were consistent to 

those generally adopted by therapist. With the help of fuzzy controller, safety actions are also 

provided so that the foot platform can be brought back to its initial configuration in time. 

 

The effectiveness of applying ANFIS to control upper-limb exoskeleton was demonstrated by 

Kiguchi & Hayashi (2012). The construction of robot has seven DOF achieved by seven motors, 

which is particularly complex to control using traditional parametric modelling methods. The 

system utilised the joint angles of the subject, captured with either the encoders on the motors 

or the potential meters attached, as the inputs of the ANFIS controller. Through training with 

multiple subjects, the controller was able to manipulate the motors that need to be activated for 

the movement performed by the subject. Meanwhile, multichannel EMG signals were used to 

estimate the actual assistance-as-needed of the subject.  

 

In Kiguchi & Hayashi’s work, four levels of assistance were defined according to the 

assistance-as-needed with the minimal amount of assistance being merely a follow-through of 

the subject’s upper-limb movements. The safety issues were also considered in the study. This 

was achieved from both algorithm and mechanical design with the former computing 

limitations on torque and speed according to the actual movements and the latter incorporating 

physical stoppers. 
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2.5 Summary 

 

The chapter briefly introduced general STS problems and related physiological conditions of 

the aged adults. Later, how the reduced lower limbs strength and sensory capacity of the elderly 

will affect their STS transfers was thoroughly explained in the biomechanics of STS. More 

importantly, reviewing the biomechanical largely contributed to the design of the mechanical 

structure and lifting mechanisms of the robot chair.   

 

Afterwards, the contemporary treatments were investigated, including market available 

assistive devices and experimental prototypes. The current off-the-shelf devices serve their 

functions to some extend but are problematic for many reasons. Especially, they have hardly 

adopted any sensors to help recognise or monitor the users’ STS movements, albeit the majority 

of them incorporate actuators that assist the STS motion in a simple on-and-off manner. The 

efforts made by previous studies incorporated a wide range of sensing techniques, which were 

elaborated in a way which may inspire the come into being of sensors used by the robot chair.  

 

To deal with the complexity of mechanical modelling of the systems, along with the actual STS 

movements performed by subjects, a series of machine learning techniques were used by the 

related work.  
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CHAPTER 3 THE DEVELOPMENT OF ROBOT CHAIR 

ASSEMBLY WITH INTEGRATED SENSING FOOTMAT 

 

The development of the chair assembly as well as its sensing foot prompts a platform to 

physically achieve the STS assistance. The essential features of movements can be also 

captured during the STS transferring process of the elderly.  

 

3.1 Design of chair mechanics 

 

3.1.1 Biomechanical concerns  

 

Kinematics of human biomechanical model for STS movement is taken into account when 

designing the structure of assistive chair, especially the seat height, tilting angle and endpoint 

of the assistive motion. Ng et al (2015) have proved the significant influence of seat height on 

STS performance of elderly female using five-time-STS tests, which is in line with the findings 

of other studies (Bohannon et al, 2010). In terms of STS strategies, the elderly would have to 

use more stabilising strategies in STS transfers from a lower seated position. Owing to a higher 

chair seat, the moments at knee level as well as hip level can be lowered up to 60% and 50%, 

respectively (Janssen et al, 2002). However, in order to validate the effectiveness of the 

assistive chair, the initial seat height should refer to that of general purpose chairs, such as 

office chair and those used for canteen sitting, reception waiting. These chairs are commonly 

designed considering human biomechanical model of human in chair to optimise the essential 

features like seat height.  

 

It is also interesting that the anthropometric database defining optimal seat height shows 

demographic preference due to body configuration. The corresponding ranges are set as 430- 

510 (British standards), 420-540 (German standards) and 390-540 (European standards). 

Nevertheless, Korean database recommends an optimal seat height of 428mm for the elderly 

(Bae & Moon, 2010 & 2011). These are referred for different standards used by different 

countries. 
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The nature of optimal seat height is commonly set by popliteal height (PH) plus the shoe 

thickness. The corresponding PH of male and female elderly are 425 and 395 in mm (at 50th 

percentile), suggested by British anthropometric expert (Pheasant, 1998). Fifty-five Finnish 

elderly were asked to perform simple tasks at home to find out the most suitable seat height. A 

scoring system was introduced where ergonomic specialists and participants both gave the 

chair of 450mm the highest score at x=0.05 and 0.01 significant level (Kirvesoja et al, 2000). 

Nevertheless, similar study in UK suggests a height of 450mm is preferable by 100 elderly 

participants covering a range of physical capabilities (particularly in disabled elderly) (Gyi et 

al, 2004).  

 

Thus, a seat height of 440mm is finalised in the actual design with a seat cushion of 30 mm in 

thickness mounted parallel to the ground. The opportunity of changing seat height could be 

achieved by simply replacing the seat pan cushion.   

 

Tilting the seat with a certain angle is the key to help the subject substantially reduce the 

required muscular effort in STS movement. In the measurement of EMG signal for rising 

motion, an average peak signal of 50.34 mV was captured without lift assistant. When the 

participants were provided with lift angle of 14 and 21 degree, the average peak signal was 

reduced to 37.4 and 25.42 mV (Bae & Moon, 2010 & 2011). In reality the maximum lift angle 

of the robot chair is set as 22.8 degree considering the space constraints set by the chair 

structure. 

  

The following specifications should be the foremost when carrying out the design of chair 

mechanics.  

• The maximum tilting angle (MTA) can be reached by the lifting mechanics is 22.8 degree.  

• The corresponding maximum rising height (MRH) is 87.78 mm. 

• For safety reasons, mechanical stoppers are designed to ensure the end positions when 

MTA and MRH are reached  
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3.1.2 2D sketch and 3D CAD sketch 

 

The chair structures have been constructed through computer aided design (CAD) and 

manufacturing process. Due to its unique structure and articulation functions, some parts of the 

chair frame require CNC machining. The 3D modeling of assistive chair is constructed with 

CREO Parametric 2.0, which can be seen at Figures 3.1, 3.2 and 3.3. The technical drawings 

are also generated by the software with manufacturing tolerances and notations, as shown in 

Figure 3.4. The sketch shown in Figure 3.8 is generated by Office Visio 2007. 

 

In order to fulfil the design criteria stated in Section 3.1.1, a quad-pivot design is carried out so 

that both rising and tilting motions are provided. The quad-pivot structure is core part of 

mechanical design, which enables a lifting height and angle simultaneously. To follow the 

motion contour of the chair users’ lower limbs, the combination of both rising and tilting 

motions is in demand. Synchronisation is assumed in the proposed chair where the relative time 

variants between each motion could be eligible owing to the time and expenditure boundaries 

of this study. Otherwise a linear mechanism serving vertical feeding and a tilting mechanism 

should be manufactured separately and controlled by at least 2 actuators.  

 

On top of the quad-pivot a trapezoid structure is placed to support the seat pan, so that the top 

surface is parallel to the ground at the initial position, as shown in Figure 3.1 (b) and (c). The 

parameters in Figure 3.1 (a) and 3.2 (a) indicate the corresponding lengths of the 4 pivots 

together with the crucial dimensions in mm and the reference angle that controls the tilting 

motion. The orange lines in Figure 3.1 (a) and Figure 3.2 (a) represent the quad-pivot structure 

highlighted in Figure 3.1 (b) and Figure 3.2 (b). At the end position of the assistive motion, this 

mechanism provides the MTA of 22.8 degree, which can be seen in Figure 3.2 (a). This means 

the trapezoid structure is tilted at such angle, as seen in Figure 3.2 (b) and (c). 
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Figure 3.1 Initial position of quad-pivot structure (a) principle 2D sketch (b) side view of the chair 

mechanism (c) 3D view of the chair mechanism 

 

 

 

(a) 

(a) 

(b) (c) 
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Figure 3.2 End position of quad-pivot mechanism (a) principle 2D sketch (b) side view of the chair 

mechanism (c) 3D view of the chair mechanism 

 

The MRH is determined as 87.78mm, when the end position of lifting motion is reached. This 

will entitle the chair a maximum seat height of 527.78mm, This is still considered as a safety 

seat height by the above mentioned European standards while effectively assisting the elderly’s 

STS movements. A seatpan is selected to provide sufficient support and confort. Eligible chair 

users will not experience huge deformation at the seatpan when the assistive motion is applied. 

The seatpan is fastened on top of the trazepoid structure with a 3D sketch shown in Figure 3.3.  

  

 

Figure 3.3 The placement of seatpan (graphics generated by CREO Parametric 2.0) 

 

(b) (c) 



 

52 

With tilting angle provided along with the raise in height, the subjects experience an easier 

seat-off transition than those high-chairs with the same designed seat height. Although there 

was no available elderly subjects with STS difficulties due to ethical concerns, 10 subjects with 

different demographics and biomechanical features were invited to test the lifting motion and 

describe the experience subjectively. Consequently they have reported a reasonably 

comfortable and smooth transition process with the lifting motion provided by the robot chair, 

where noticeably less effort from lower limbs is required during STS movements. This 

preliminary test was conducted in an on/off manner, regardless of the soft computing 

techniques introduced later. Note the purpose is simply to determine whether the travel of the 

lifting motion is suitable for the eligible chair users of different gender, height and physical 

conditions.  

 

More importantly, safety concerns are achieved a combination of mechanical stopper and the 

accordingly adjusted lockout from the actuator side. Owning to the unique design of the quad-

pivot mechanisms, the bearing housings on both sides will get in touch with the long rods 

(Figure 3.2),. This acts as a mechanical stopper as the rigidity of CNC machined alloy rods 

ensure the structure will not deform even with the maximum actuator power applied. The 

lockout of the actuator will be explained in Section 3.1.3. The combination of both, in addition 

to the high-level intention recognitions later used as safety precautions, introduced in Chapter 

4 and 5, will provide a comprehensive and safety prioritised HRI for the chair users.  

 

Afterwards, discussion has been taken place with veteran engineers to figure out the 

manufacturing difficulties appearing in the design of chair. This helps reengineering process 

with the functionality features retained. For instance, in initial model the side beam of the main 

frame was designed in a curved shape to realise the desired stability and ascetics. Feedback 

was given that it is hard to achieve unless the chair is going to be mass produced. Therefore, 

these beams were redesigned with a tilt angle of 95 degree respecting to the top rectangular 

structure to facilitate welding process, as shown in Figure 3.4. 
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Figure 3.4 Technical drawing of the main frame 

 

The mechanic parts of assistive chair were manufactured by Beijing Shizhi Hongyuan 

Technology due to cost-efficient. At first, the main frame was designed with aluminium to be 

as light as possible to facilitate oversee transportation. However, the factory had difficulties in 

welding aluminium beams together. The strength calculation was adjusted to stainless steel so 

as to minimize the net weight without sacrificing the functionality and robustness. 

 

Meanwhile, when welding the main chair frame, one has to assure the stability considering 

possible thermal expansion, in that the chair will not wobble when the motor is in operation. 

This is particularly critical to provide a sense of security for the subject seated.  

 

The backrest of chair is positioned similar to common office chair for the simplicity since no 

significant influence of backrest has been found by other scholars in STS studies (Janssen et al, 

2002). Note in assembly process the backrest brace of the chair is bended in a way to make 

sure it does not interference with movement provided by lifting mechanics, which can be seen 

in Figure 3.5.  

 

Similarly, few researches have conducted on the influence of the armrest height and horizontal 

position respecting to seat height on performance of STS movement, albeit pressing on armrest 

can reduce up to 50% the moment on lower hip extension (Arborelius et al, 1992). Mount 
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adaptors are installed on both sides for future armrest replacement, in case adjustable armrest 

is in demand to verify such a determinant. 

 

 

Figure 3.5 The final assembly of the robot chair mechanics 

 

3.2 Design of sensing footmat 

 

3.2.1 The sensing footmat 

 

In order to extract the essential features without affecting the elderly users’ STS performance, 

the following specifications of the sensing footmat were proposed. 

• The sampling rate is set as 10Hz (refer to Section 3.2.2), which ensures that the obtained 

data will not omit the sudden change of GRF, indicating imbalanced STS transfers, the 

trend of falling back to seated position (retropulsion postures), etc. 

• The design features a 7 by 8 matrix of FSR-400 sensing cells connected to 7 channels of 

analogue input of Arduino processing board via 7 multiplexers.  

• A fixed 40mm cell to cell distance was set between adjacent FSR sensing cells. A spacer 

was attached underneath each FSR cell.  

• The dimensions of the footmat are 294.68mm in width and 372.69mm in length (refer to 

longitudinal and lateral directions in Chapter 4). Based on such dimensions, the sensing 
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area is 280mm X 360mm.  

• The main casing of the footmat was made by sheet steel after galvanisation.  

On the basis of the above design specifications, a simplified schematic circuit design is carried 

out (Figure 3.6), followed by the structural design (Figure 3.7) 

 

Figure 3.6 The schematic circuit design of the sensing footmat 

 

 

Figure 3.7 Preliminary experiments on prototyping footmat with evenly distributed FSRs to test out 

the geometric layout and optimal number of cells 

 

Based on the electric diagram, a simplified sketch of footmat is shown in Figure 3.8. In total 
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of 56 FSR sensing cells are individually labelled as F11, F12,…,F18,…, F78. Seven 

multiplexers are positioned accordingly as U1-U7, enabling 7 rows of sensing cells in parallel 

configurations. Port P1 is the channel of power supper. Considering the power consumptions 

of multiplexers and 56 sensing cells, it is not recommended having the power directly sourced 

from Arduino board. Hence a constant voltage of 5V was supplied from one channel of a power 

supply unit. The power is distributed to multiplexers, accordingly. In this way, the terminal 

voltage (𝑉𝑐𝑐) at each FSR cell is ensured. The auxiliary ports, J1, J2 and J3 were created so 

that all digital inputs of all seven multiplexers are accessible without the need for disassembling 

the sensing footmat. This facilitates an easy verification if any problem occurs. 

 

Figure 3.8 Construction sketch of sensing footmat (sketch generated by Office Visio 2007) 

 

Thanks to the specifications, the designed footmat is able to fulfil the following design criteria,  

• The primary goal of the sensing footmat should be precisely capturing the GRF values 

respect to the subject’s body weight (BW). However as shown in Figure 2.2, the GRF 

curves also consist of transit peaks appearing at “counter” and “rebound” stages, the 
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sampling rate should be determined so that the complexity of the complete GRF curve is 

captured without omitting important information. 

• The complexity of sensing matrix needs to be achieved for the reasons of two: the footmat 

should be able to i) precisely capture the change in centre of pressure (COP) and ii) reflect 

the contour of subjects feet for further exploitations. The reaction force should be purely 

exerted on the sensing cells. Otherwise with a rather sparse distribution of force-sensitive 

resistor (FSR) cells, circumstances where part of the subject’s foot touches the non-

sensing area will lead to significantly inaccurate results in GRF capturing. For the cost-

effective reasons, the number of cell employed to fulfil the two requirements has been 

minimised. Therefore, the distribution of FSR sensing cells is confirmed as a matrix 

containing 7 rows of 8 cells, through prototyping experiments on the setup shown on 

Figure 3.7. 

• The cell to cell distance was set close enough through the preliminary tests using prototype 

footmat. In addition to the usage of spacers under the sensing cells, it ensures no contact 

can be made between the chair users’ feet and the non-sensing area.  

• The dimensions of the footmat facilitate an easy placement of the eligible subjects’ feet 

regardless of wearing shoes of not.  

• The base of the footmat should feature a sturdy design. The contact surface with subjects’ 

feet should not deform throughout the STS transferring process. This ensures the subject 

can perform the STS movements without paying additional attention to the existence of 

the footmat.   

 

The final construction of the sensing footmat is shown in Figure 3.9. 



 

58 

 

Figure 3.9 The sensing footmat that forms a robust structure to ensure robust force transition onto 

FSR cells 

 

3.2.2  Data acquisition and software implementation 

 

Arduino Mega 2560 is chosen as data acquisition (DAQ) module of the sensing system, which 

enables fast synchronisations between sensors and computer with simple IDE (integrated 

development environment) programming interface. 

 

As shown in Figure 3.10, because Arduino Mega 2560 has merely 16 analogue inputs while 56 

FSR cells are required, a set of 7 multiplexers CD4051B is introduced. With the binary rules 

applied, the input A, B, C on multiplexer are connected to the three digital inputs of Arduino, 

featuring a 2^3 = 8 channels of selection among analogue inputs. The Out/in pins of the 7 

multiplexers, are connected to 7 analogue inputs of the Arduino, respectively. By that, one 

channel of analogue input on Arduino is able to collect the readouts of the 8 FSR cells in a 

sequential manner.  
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(a)                                    (b)   

Figure 3.10 (a) Arduino Mega 2560 (b) Schematic diagram of CD4051B multiplexer 

 

 

Figure 3.11 demonstrates the basic structure of a FSR sensing cell, the principle of voltage 

divider and the resistance-force characteristics provided by the manufacturer.  

 

(a) (b) 

(c) 

Figure 3.11 (a) Construction of FSR-400 sensing cell (b) Simplified voltage divider with FSR cell tied 

to measuring resistor (R=10Kohm) (c) Resistance-force characteristics of FSR-400 (Interlink 

electronics, 2006) 
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When collecting GRF values, the sampling rate should be properly determined. Because the 

desired GRF curves also consist of rather transit peaks appearing at “counter” and “rebound” 

stages, suggested by Table 3.1, the GRF curves of the complete STS movement should be 

captured without omitting important information.”   

 

In Table 3.1, only arms free (AF) and arms crossed (AC) were investigated in this study. 

However, the transition time between counter and seat-off events is the shortest, with an 

average time of 0.28 seconds. From the previous knowledge, seat-off is the most demanding 

event of the all six, in terms of the requirement on subject’s lower limbs motor functions. This 

defines the upper limit of the sampling period, which must be smaller than 0.26 seconds. 

 

Table 3.1 Average event times (Etnyre and Thomas, 2007) 

 

 

However, the instinct downside of employing the multiplexers to expand the number of inputs 

is that a delay of data propagation should be taken into consideration. This limits the minimal 

sampling period. The limit of sampling is defined by the bandwidth of available analogue 

channels, which is restricted by the propagation delay of the multiplexers, 760ns (Texas 

Instruments, 2000). Therefore, the sampling period 𝑇𝑠 is restricted by the upper limit and the 

lower limit, which is,   

 𝑇𝑙𝑜𝑤𝑒𝑟 < 𝑇𝑠 < 𝑇𝑢𝑝𝑝𝑒𝑟 = 𝑇𝑒𝑣𝑒𝑛𝑡        (3.1) 

where 𝑇𝑙𝑜𝑤𝑒𝑟 suggests the delay of AD converter caused by the multiplexer, 𝑇𝑒𝑣𝑒𝑛𝑡 is the 

duration of the shortest event in STS movements. For the computational reasons, the sampling 

period was finalised as 0.1 seconds, suggesting a sampling frequency of 10Hz.  
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3.2.3 Data processing 

 

The primary goals of the data processing are 1) convert the collected raw data (serial) to GRF 

values, 2) normalise the GRF values with respect to subjects’ body weights (BWs). Based on 

the cell-wise force values, pressure patterns can also be obtained for further exploitations, 

referring to the implementations in Chapters 4 and 5. 

 

A pre-processing block is developed prior to the following feature extraction step. In this block, 

framed serial output captured from footmat is collected through bridging between Arduino IDE 

and Matlab 2014a. As Figure 3.12 suggests, each line of serial data encapsulates the entire 

readouts generated by 56 FSRs, which is refreshed at the sampling rate. This resolution of 0.1s 

enables a fairly smooth GRF curve yet without triggering (interfering) the previously explained 

time delay issue brought by multiplexers. 

 

 

Figure 3.12 On-time serial output displayed on Matlab 

 

However, initial measurements generated by footmat are considered inaccurate. This is proved 

by placing a fixed weight ranging from 100g to 5kg onto single cell, the derived measurement 

value varies from 2% to 20%. This clearly does not fall into the guidance claimed by 



 

62 

manufacturer instructions, which suggests the drift is expected to be less than 5% under a 

constant load of 1kg added for 35 days (Interlink electronics, 2006).  

 

Therefore, an initial calibration process was arranged prior to the GRF capturing experiments. 

The calibration places 4 weights, 100g, 500g, 2kg and 10kg onto a random sensing cell. The 

calibration is valid under the presumptions that 1) the measurement readouts provided by single 

FSR has good repeatability, 2) multi-FSR will perform consistently under the same conditions, 

suggested by Interlink electronics (2006). The above two presumptions have also been 

approved by experiments.   

 

The primary reason is discovered that in the initial setup the foam base board shown in Figure 

3.7 will significantly deform with subjects stepping on it, resulting indirect force transition to 

FSR cells. It was also realised that systematic error was introduced by both feet stepping onto 

the non-sensing area. Because the initial design of the footmat attempted to trade off the 

resolution with sensing area in real-life scenario, considering in daily living, both feet of a 

seated subject are supposed to be randomly placed within a certain region in front of the chair. 

Also the amount of FSR sensing cells are rather fixed due to cost-efficient reason, the distance 

between adjacent two cells is set at 35mm.  

 

The following Equations (3.2, 3.3 and 3.4) are introduced to achieve voltage-to-GRF 

conversion that minimises 1) operating temperature, 2) hysteresis, 3) drift effects of the FSR 

sensing cells.  

 

Thus the GRF value was derived as,  

𝐺𝑅𝐹 = ∑ 𝐹𝑐𝑒𝑙𝑙
𝑁𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑
𝑖=1         (3.2) 

where 𝐹𝑐𝑒𝑙𝑙 is the force readout on each FSR sensing cell. In the summation of Equation 3.2, 

it counts the number of FSR cells being activated (under loads greater than the pre-defined 

threshold). This is added to the equation to attenuate the intrinsic problems of FSR cells.   
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Equation (3.3) depicts the voltage-to-GRF relationships of with the DAQ module which is 

derived from experimental result. Note such an exponential relationship is in line with the 

resistance-force characteristics provided by (Interlink electronics, 2006).  

  

𝐹𝑐𝑒𝑙𝑙 = 𝜔 × 𝑒−𝑖𝜔𝑉𝑜𝑢𝑡 + 𝐷𝑒𝑣        (3.3) 

of with 𝜔  and 𝑖  are resistance-related coefficients that are subject to changes as such 

characteristics vary upon the load durations, load area, operating temperature, hysteresis, etc. 

𝐷𝑒𝑣 represents the resistance-related zero order deviation. These coefficients are determined 

by initial calibration. 

 

With the concept of  voltage divider applied, the single cell readout 𝑉𝑜𝑢𝑡 can be represented 

as,  

𝑉𝑜𝑢𝑡 =
𝑉𝑐𝑐×𝑅𝐹𝑆𝑅

(𝑅𝑀+𝑅𝐹𝑆𝑅)
        (3.4) 

 

where 𝑅𝑀  denotes the resistance of measuring resistor, which is 10Kohm. 𝑉𝑐𝑐  is the 

supplied voltage, which is 5V.   

 

Based on the derived GRF value (Equation 3.2), the normalised GRF value regarding body 

weight (BW),  

𝐺𝑅𝐹𝑁 =
𝐺𝑅𝐹

𝐵𝑊
        (3.5) 

of which the BW is measured as the average of GRF readouts at the standing event, recorded 

for a period of 0.5s. 

 

Stem from the load on each sensing cell 𝐹𝑐𝑒𝑙𝑙 the pressure pattern of the entire sensing footmat 

was also derived through the reconstruction of sensing matrix (transforming single-row 

𝐹𝑐𝑒𝑙𝑙 values to 7x8 matrix). Based on such pressure patterns, the other related STS features, 

such as change of COP in various directions and distance between both feet can also be 

acquired, which are further demonstrated in Chapters 4 and 5.  

 



 

64 

3.3 Actuation 

 

Linear actuator was chosen to feed the desired motion at a controlled pace. These actuators 

feature a compact size which allows easily-fit within a confined structural boundary, as shown 

in Figure 3.13. A commonly seen market available rise-recliner chair takes approximately 12-

20s to achieve the entire movement.  

 

Figure 3.13 Limited space for the actuator 

 

As to the robot chair, the requirement on stroke time depends on the actual STS time finished 

by the elderly and the time before they start to sit back when they struggle in STS transfers. 

However, two aspects, the length of stroke and the actuation force, were taken into account 

when selecting eligible actuator. 

• The length of stroke, 126.1mm, determined by the structural design of the chair, set the 

requirement for the extension of the linear actuator.  

• The maximum actuation force has to be delivered to ensure a smooth and consistent lifting 

motion. The maximum actuation force required by the system, denoted as 𝐹𝑎𝑐𝑡, appears 

at the initiation of the lifting motion thanks to the designed structural configuration (Figure 

3.1). In this position, actuator has to be capable of delivering sufficient force to bare the 

whole BW of the chair user. Hence, the calculation as below was carried out,  

𝐹𝑎𝑐𝑡 = 
𝐹𝐿𝑜𝑎𝑑×𝐾𝑐×𝐾𝑠

𝜂
        (3.6) 

in which the 𝐹𝐿𝑜𝑎𝑑  consists of 2 components, the BW of the subject and the upper mechanism 

(including seatpan), 85kg and 9.75kg are taken respectively, referring to the maximum allowed 

BW of eligible chair user and the weighted lifting mechanism with seatpan mounted.  
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𝐾𝑐: the equivalent gravity centre with respect to the rotation point, referring to the bottom left 

joint of the quad-pivot shown in Figure 3.1 (b). However, the combined gravity centre of both 

the upper frame and subject seated on, is hard to predict as it depends not only on the structural 

configuration, but also on how the chair user is seated. Note the sitting posture can affect the 

gravity centre significantly. Thus 𝐾𝑐 could be hard to predict. A value of 0.91 was estimated 

in the situations where the subject was seated with his back firmly against the seatback of chair.   

𝐾𝑠  : the safety factor that takes deformation of structure, wear and sudden change of force into 

account. A value of 1.2 was used.  

𝜂  : the mechanical efficiency of the lifting mechanisms, considering friction loss between 

moving parts. Considering the typical mechanical loss of a quad-pivot mechanism, an 

efficiency factor of 0.95 was taken.  

 

Hence the maximum actuation force can be calculated as,  

𝐹𝑎𝑐𝑡 = 
𝐹𝐿𝑜𝑎𝑑×𝐾𝑐×𝐾𝑠

𝜂
= 

(85+9.75)×9.81×0.91×1.2

0.95
= 1068𝑁    (3.7) 

Supplied at its nominal voltage (24V DC), the linear actuator has a feed force rating of 1200N, 

greater than 𝐹𝑎𝑐𝑡. 

 

However, at this stage, a low cost linear actuator that meets the above criteria was installed to 

demonstrate the lifting motion. A rather steady and smooth assistance were provided by the 

actuator during preliminary experiments. The operation characteristics are further discussed in 

Chapter 6.  

 

The extension stroke was also adjusted to mechanically fulfil the requirement of the safety 

concerns. The end position has been securely fixed in addition to a mechanical switch mounted 

to the end of travel. It ensures in no way the actuation motion will pass beyond the defined 

limit.  

 

3.4 Summary 

 

In this chapter, the mechanical design of the robot chair was first carried out. It features a quad-
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pivot structure that can enable a tilting motion together with the rise-up assistance with the 

usage of single actuator. The initial seat height, tilting angle and rising height were determined 

based on the biomechanics in STS movements, which played fundamental roles in chair design.  

 

The sensing footmat features in total of 56 sensing cells with the help of multiplexers expanding 

the number of analogue channels. The structure of footmat was built on a solid platform placed 

in front of the chair frame. Afterwards, certain calibration and transformation algorithms were 

applied to determine the actual force readout of single FSR cell. This was followed up by a 

summation of the entire 56 cells to gain the desired GRF. Later, a dynamic force matrix in every 

frame was also reconstructed for further exploitations.  

 

The actuator fulfils the requirements on feed force and stroke length. In conjunction with the 

mechanical stoppers of the chair frame, the actuator also features a lockout switch at the end 

of the stroke to ensure the safety concerns. 

 

A series of preliminary tests have proved the functions of the robot chair as a capable platform 

delivering smooth and comfort STS assistance, through manual operations.   
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CHAPTER 4 INTENTION RECOGNITION 

 

The previous chapter presented the design and the manufacturing process of both chair 

mechanics and sensing footmat. They are the major physical components of the robot chair and 

also serve a platform on which subjects can perform STS movements for the purpose of data 

collection. Essential features can then be identified and captured from the data to gain deeper 

understanding on STS process and to facilitate the robot chair to recognise its human users’ 

intentions.     

 

This chapter emphasises on human intention recognition, aiming to enable the robot chair to 

understand the envisaged intentions at seated position and to predict if assistance is required 

by human users from their behaviours. The followings need to be taken into account in the 

intention recognition and the prediction:  

• Safety is primarily critical to the intention recognition. In cases where human users do 

not intend to stand up, if the robot chair mis-interprets subjects’ behaviours and actuates 

the lifting mechanism, it could drive the elderly users into panic situations and potentially 

cause injuries.   

• Accuracy is another issue. The robot chair aims at supporting subjects’ STS movements 

at the point where they are not able to perform unaided STS. Although assistance 

provided at the time when not needed can also help the subject to stand up, it will 

discourage them from using own motor functions, leading to lose of function eventually.  

• Robustness is the third concern. Human users, even the same user, will not follow the 

same pattern when performing STS movements. A certain amount of uncertainties need 

to be dealt with. 

• Timing also plays a critical role. Intention recognition has to be completed within a 

limited time scale. STS process commonly takes from 1.91s to 2.30s for completely able-

bodied healthy adults to perform in natural speed depending on several related studies 

(Kerr et al, 1997; Schlicht et al, 2001; Etnyre and Thomas, 2007). Although STS duration 

is proved to be longer for able-bodied elderly users, some will not resist more than 3.00s 

until they sit back to seated position. In both cases, the first about 1.00s is the period 
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when STS is initiated and hence the intention recognition must be done within this period 

to support the followed-up motion of stand up. Otherwise incapable subjects will not 

reach the point of seat-off without any external assistance.   

 

To achieve a safety-critical, robust, accurate and timely intention recognition, a 2-stage 

recognition process was developed in this research, namely, a fuzzy inference system (FIS) 

based classification as well as an ANN based predictor. The FIS-based classifier aims at ruling 

out all unintended random movements out at the early stages of STS process.  

 

4.1 Background Knowledge 

 

In the study conducted by Etnyre and Thomas (2007), the entire STS process can be separated 

into 6 distinctive events according to vertical ground reaction force (GRF), namely, initiation, 

counter, seat-off, peak, rebound and standing, which are shown in Figure 4.1.  

 

The six events are defined as the following:  

i) Initiation (≈20% BW) refers to the period from subject being informed to initiate the 

STS, until the first deviation of GRF greater than 10N captured. This event commonly 

represents the duration it takes for the subject to get mentally prepared for oncoming STS 

from the neuro-musculo-skeletal system point of view.  

ii) Counter (≈12% BW) is mainly caused by early lifting of the thighs from the seat by 

contracting the hip flexor muscles while upper torso mostly remains in its original position.    

iii) Seat-off (≈60%–70%) is signified by the moment where subject’s buttocks separate from 

seatpan. It is also worth noting that captured GRF increases dramatically in this event 

which is reported to appear after 1.0s from the beginning of STS.  

iv) Peak (≈116%) is simply denoted as the event captured GRF reaches its maximum. 

v) Rebound (≈80%) represented by a less-than-body-weight GRF observed after the peak 

event which can also be understood the tendency of both feet leaving the ground.  

vi) Standing (=100%), apparently.  
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Figure 4.1 Distinctive events in STS through normalised GRF to the percentage of body weight 

(Etnyre and Thomas, 2007) 

 

This standardised curve suggests a resultant peak force measuring 118.7% of body weight, 

which clearly explains why a large number of the elderly could stand still (baring the whole 

body weight) and walk without aided yet suffering sit-to-stand problems.  

 

They conducted tests on 100 individuals to measure GRF under four possible postures, namely, 

arms-free, arms-crossed, hands-on-knees and hands-on-armrest conditions. In consequence, 

they found that the average normalised GRFs were similar for the first three conditions in the 

6 events.  

 

In contrary, under conditions of hands-on-armrest, significantly less normalised GRFs were 

found, especially in the event of seat-off. This is mainly because the pushing off force exerted 

on armrest will contribute to vertical lifting motions hence reducing the GRF, which is further 

confirmed by related work conducted by Yamada and Demura (2009). However, most of 

functional limitations and deficits will be spotted under the hands-free conditions, where 

subject has to primarily rely on lower limbs to provide the strength and stability to complete 

the STS transition. Therefore all the experiments are arranged under arm-crossed conditions to 

eliminate the use of hands providing extra assistance to STS movements. It is also realised that 

some of the original data set are found to be badly executed because of the ununiformed sitting 
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postures as well as different shoes worn. For the follow-up experiments, 2 Unintended and 2 

Intended movement samples were updated under the same conditions of posturing as the rest 

movements. The performed STS tests should be taken under the presumption that the back of 

the subject should stay reasonably close to the back rest. Although it is not obligatory for the 

subject to lean the back firmly against the backrest, used is not a recommended position for the 

elderly users to prevent from falling (Alexander et al, 1996).   

  

Referring to the previously mentioned human biomechanical model (Figure 4.1) for STS 

movements, the maximum torques at knees, buttocks and ankles are generated at the instant 

when buttocks separated from seatpan (seat-off), with the only physical contact being the feet 

against the ground (hands-free conditions) (Huges et al, 1996). This clarifies the necessity of 

the 1st stage classifier that is able to differentiate the cases where the users intend to stand up 

and where they do not before this critical point from which subject may experience the greatest 

difficulties if assistance is required. 

 

Fuzzy inference system (FIS) is a system that uses fuzzy logic theory to map input features to 

crisp output values or classes (Zimmermann, 2001). By definition, a fuzzy constraint 𝐴̃ is a 

fuzzy subset of U, ∀ 𝑢 ∈ U, a value μ𝐴̃(u) ∈ [0, 1] is defined as the membership degree of u 

to 𝐴̃, ranging from 0 to 1. Given the mapping, μÃ: U → [0, 1],u ↦ μÃ(u) is the membership 

function of 𝐴̃. U is the domain of discourse (Zimmermann, 2001). 

 

Sugeno type of FIS is implemented in the early-stage classification for its simplicity and also 

the classification output being countable and crisp classes (Abraham, 2001). This type of FIS 

shares the similar architecture with the most popular Mamdani FIS (Mamdani and Assilian, 

1975), with the only difference being the way data gets fed in and fuzzification. The output of 

Sugeno FIS is typically either constant or linear. Specifically, zero-order Sugeno type is applied 

here to verify the Unintended movements against other types of Intended STS movements in 

the early stages, as previously mentioned. Such a fuzzy controller output comprises of singleton 

spikes as output, which are crispy defined constants representing Unintended and Intended STS 

movements, accordingly. 
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The algorithm is simply multiplication which could significantly save the computational time 

while retaining a compact structure. This will also facilitate the follow up inter- subject 

adjustment by introducing a dynamic FIS, which will be further elaborated later.  

 

Rule number i: If input = A, then the output function 

 𝑍𝑖 = 𝑎𝑥 + 𝑐               (4.1) 

This suggests in Sugeno FIS, how the output generated by rule number i is related to input 𝑥.    

On the RHS of the equation, 𝑎  is the first-order parameter whereas 𝑐  is the zero-order 

parameter, also known as the scalar vector in (Tagaki and Sugeno, 1985). In the selected zero-

order Sugeno FIS, the RHS of equation is just constant 𝑐.  

 

The final output of the FIS, denoted as 𝑍𝑓, is computed as,  

𝑍𝑓 =
∑ 𝑤𝑖𝑍𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

                   (4.2) 

Where the truth degree 𝑤𝑖 is also known as firing strength, suggesting the weight of impact 

when rule number i is applied (Tagaki and Sugeno, 1985). 

 

4.2 Feasible Features for Intention Recognition 

 

Being the key to successfully meet the four requirements as stated at the beginning of this 

chapter, intention recognition must be done based on feasible and reliable features that 

distinguishing different intentions.  

 

Subjects’ on chair intentions can be sorted as the following three:  

A). The subject has a clear intention of rising up from seated position and he/she is capable of 

proceeding the entire STS movement, denoted as Successful STS movement. 

B). The subject generates an intention of rising up despite his/her physiological condition does 

not allow him/her to do so, denoted as Unsuccessful STS movement. 

C). The subject is not intended to rise up, denoted as Unintended movement.   
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A study on feasible feature was carried out here to figure out whether GRF can be the eligible 

feature to distinguish the three intentions. Data were collected from experiments where a 

subject performed following movements using the prototype described in Chapter 3 and a data 

collection unit.   

• 10 Successful STS movements, denoted as test No.1-10 

• 10 Unintended movements by rolling or buttock-off to change seated postures randomly, 

denoted as test No.11-20 

• 10 Unsuccessful STS movements, denoted as test No. 21-20 

 

Because the primary design purpose of the robot chair is to encourage the users to use their 

own lower limbs motor functions, all movements on STS are conducted under hands-free 

conditions, eliminating the supports from hands. Meanwhile, in order to avoid any ethical 

breaches, it is difficult to invite elderly or handicapped people with any risks when seated in 

the chair prototype. Therefore, unlike the incapable elderly with either functional or structural 

constraints, the healthy subject was asked to simulate the elderly adults who are lack of lower 

limbs strength to perform Unsuccessful movements. Namely, flex his upper trunk to bring it 

closer to seatpan before seat-off point to generate more momentum, and meanwhile elevates 

much slower than he normally does. As a consequent, Unsuccessful STS is defined when 

subject is not able to stand straight without external aid although efforts have been made to 

maximise the effectiveness of motor action (Papa and Cappozzo, 2000).  

 

4.2.1  Data analysis on GRF curves 

 

The data collection has framed serial output captured from the footmat as input through 

Arduino IDE to an Matlab based pre-processing algorithm. Please note each line of serial data 

encapsulates the whole outputs generated by 56 sensing cells -- force sensitive resisters (FSRs), 

which is refreshed at a frame rate of 10Hz. This resolution of 0.1 seconds enables a fairly 

smooth GRF curve yet without triggering the previously explained time delay issue brought by 

multiplexers. Afterwards, calibration and transformation are applied to determine the actual 

force output of single FSR cell. This is followed up by a summation of the entire 56 cells to 
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gain the desired GRF. Meanwhile, the derived GRF is normalised against subjects’ body weight 

derived under same circumstances (refer to Section 3.2.3). 

 

Six sets of normalised GRF curves are randomly selected from 60 successful STS movements 

performed by the subject, respecting to STS movement No. 8, 15, 26, 31, 44 and 59. These 

examples are illustrated in Figure 4.2. From the diagram, it can be readily seen that the captured 

GRF curves are generally in line with the theoretical GRF curves discovered by related work 

shown in Figure 2.2. 

 

   

Figure 4.2 Normalised GRF respecting to body weight from Successful STS movements 

 

The processed data from the experiments show that GRF is not able to convey adequate 

information to classify the type of movement. Because all three types of movements share 

similar patterns of GRF curves, particularly at the early stages such as initiation, counter and 

part of the seat-off event, where the movements need to be differentiated as seen in Figure 4.3. 

Especially between Unintended and Intended STS movements, there is not much deviation in 

GRF curves that is able to distinguish between the both, even via human interpretation. 
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Figure 4.3 Normalised GRF in three cases over first 1.1 seconds 

 

The first 1.1 seconds is set as a critical period for distinguishing situations of A, B, and C, 

known as the 1st stage classification. As discussed in Section 3.1, this period, before pivotal 

seat-off event, is the most demanding period for subjects to generate sufficient GRF, which 

should reflect very different efforts the subjects made in different situations. The 1.1 seconds 

from initiation of the movement is also the point from which assistance must be applied if it is 

needed, otherwise the subject would not be able to complete the STS movement. 

 

Figure 4.3 confirms Unintended movements can be similar to Unsuccessful or Successful 

movements in terms of GRF captured, which may cause issues where posture changing 

scenarios are still mis-classified as the rest two.  

 

From biomechanical model in 3D point of view, the captured GRF merely depicts subjects’ 

function of neuro-musculo-skeletal system in vertical directions. In reality, even some able-

bodied elderly struggling with STS are mainly because of lack of stability and motor control 

while rising, elucidated by the work of Carr (1998).    

 

In summary, exclusively relying on the GRF curves to predict subjects’ intention has the below 

shortcomings,  

i) The summed GRF response does not realise the full potential of design purpose of sensing 
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footmat.  

ii) The GRF curve is insufficient to identify the corresponding intention. 

iii) It is also not compatible with the time requirement, previously proposed as criteria of 

intention recognition. 

iv) It is not able to examine subject’s STS performance in non-vertical directions. 

 

4.2.2 Centre of Pressure 

 

In the related work on biomechanics of STS, because the centre of body mass is posterior, the 

Centre of Pressure (COP) transiently shifts backward after the initiation of STS movement. 

Afterwards, the COP shifts forward for the sake of the dominating upward movement. Before 

the completion of STS movement, the COP again shifts slightly backward. Meanwhile, ankles 

are consistently generating longitudinal and lateral motions, named ankle strategies, to adjust 

and maintain the balance along with the entire STS process. At last, a stable standing position 

is achieved following a postural adjustment (Hughes et al, 1996).    

 

Therefore, the study on shift of COP is conducted from three aspects, a) Magnitude of change 

in COP, b) Longitudinal shift of COP, c) Lateral shift of COP. Because all the sensory data is 

collected from footmat, any sort of COP captured here does not directly imply Centre of 

Gravity (COG) of the subject.  

 

COP is defined as the gravity centre of pressure subject exerted on footmat. With the COP 

captured at the very first time instance of each movement counted as the origin, oncoming shift 

of COP is computed with respect to this origin. Additionally, when plotting any sort of the shift 

of COP, the origin of the first 1.1 seconds of movements is omitted as there is no comparison 

against previous point. Hence only 10 meaningful points are shown on these graphs.  

 

While performing the Unsuccessful STS movements, subject had to simulate a less capable 

person lack 

ing of lower limbs strength, hence being conservative in terms of generating GRF. This may 
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result in a slower shifting of COP than he/she commonly does while performing any seated 

movements. The step diagram of how COP was computed from raw data is shown in Figure 

4.4  

 

Line of Raw data (Serial output)

Line of force values (Serial output)

Sensing Matrix (Actual layout)

COP  on footmat 

Reshape

Transformation 

Gravity centre 
algorithm 

 

Figure 4.4 Procedure of computing COP from the sensing footmat 

 

Figure 4.4 demonstrates the approach to obtaining the COP on footmat. On top of the diagram, 

the transformation process is computed the same way as obtaining GRF with the output being 

force per FSR cell rather than summed GRF. Because of the use of multiplexers the raw data 

is captured line by line with each line representing all sensors’ information per frame. The lined 

serial output is then reshaped back into the matrix that corresponding to the actual shape of the 

footmat. Afterwards, COP of this sensing matrix is computed through gravity centre algorithm.  

 

Magnitude of change in COP, Longitudinal shift of COG and Lateral shift of COP obtained 

through the above procedure are shown in Figures 4.5 to 4.7, respectively.  

 

Proofed by electromyogram (EMG) Magnitude of change in COP shows muscle activation in 

the sense of determining the intensity of activity over a period of time (Bae and Moon, 2010). 

However, it can be seen from Figure 4.5 that Unintended random movements is not 
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significantly different from the rest two at early stages. Therefore it is not considered as the 

optimal feature for intention recognition. 

 

Figure 4.5 Magnitude of change in COP from three previously selected movements 

 

Figure 4.6 Plot of Longitudinal shift of COP in three cases 

 

As related work (Kerr, 1997) suggested, a smooth transition of COG in Longitudinal directions 

is supposed to be observed from the Successful STS movement. Longitudinal shift of COG is 

minimal as the force applied to footmat is primarily vertical GRF to generate upwards motion, 

with the follow-up leaning forward motion given by upper torso. After this, with the upper 
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torso straightening after leaning forward in first 4 STS events, initiation, counter, rebound and 

seat-off. Again, neither forward motion nor COG of subject is able to be manifested by trend 

of Longitudinal shift appearing on footmat. Although similar pattern is hard to be found from 

the rest two types of movements, it is almost impossible to distinguish them at early stages.  

 

 

Figure 4.7 Plot of Lateral shift of COP in three cases 

 

Figure 4.7 clearly demonstrates that Lateral shift of COP captured in Unintended movements 

shows significantly greater absolute values when compared against the rest two. To further 

confirm this, the lateral shift of COP from all recorded data on the three types of movements 

are plotted respectively as Figures 4.8 to 4.10. With the vertical axis fixed at same range, it is 

obvious that subject’s feet shift laterally far more frequently when performing Unintended 

movements.  
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Figure 4.8 Lateral shift of COP in all Unintended movements 

 

 

Figure 4.9 Lateral shift of COP in all Successful STS movements 
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Figure 4.10 Lateral shift of COP in all Unsuccessful STS movements 

 

Theoretical background can be found from clinical research where the concept of peak pressure 

and the seated self-repositioning are brought in. NHS suggested that it is necessary for every 

seated person to take self-repositioning movements every 15 to 30 minutes to relieve the 

pressure, to prevent pressure ulcer and enable blood regulation as well as tissue oxygenation 

(Trumble, 1930; Coggrave and Rose, 2003). Rolling laterally is considered one of the most 

effective and easy-to-achieve movements in terms of repositioning one's body, in which the 

seated person moves from side to side, lifting each buttock off the seatpan to encourage tissue 

reperfusion at the lifted side. It is also commonly seen a seated person may lean leftwards/ 

rightwards to grab items fell on the ground, without the need of standing up to reach it. In other 

scenarios, the subject may intend to lean sideways to take a nap.  

 

From all of these descriptive phenomenon, it could be discovered, especially at early stages of 

each movement, change of Lateral shift of COP in Unintended motions is distinctively higher, 

comparing to the Successful STS and Unsuccessful STS movements. This signifies if there 

exists a fuzzy logic that could possibly rule out the case of Unintended movements from the 

very beginning, so that there is no need to get the control algorithm and actuator involved to 
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assist the subject. All of these brought in the come into being of the FIS.  

 

Meanwhile, it is confirmed that intuitive relationships are difficult to find through Magnitude 

of change in COP and Longitudinal shift of COP. 

 

In summary, Lateral shift of COP has shown significantly better results than the other envisaged 

features in light of its ability of distinguishing the Unintended movements from the rest two at 

the early stage. Therefore the essential feature is targeted on lateral shift of COP for the 1st 

stage classifier to distinguish the intention of STS, typically before 1.1 seconds from initiation 

of movement. Moreover, this study on shift of COP could also be used to examine the 

performance of subject in both static and dynamic stability during STS movements, which will 

be carried out later.  

 

4.3 Fuzzy Inference System Based Classification 

 

In human robot interaction (HRI), fuzzy inference system (FIS) has long been recognised as 

effective in intention recognition from human behaviours in the sense of handling uncertainties 

especially when direct mathematical modelling is difficult to achieve.  

 

In the development of the robot chair, FIS is employed to implement the classification aiming 

to recognise human intention via differentiating Intended and Unintended movements due to 

the following reasons:   

i). Lack of access to exact modelling of human biomechanical model as well as mechanical 

geometries 

ii). Uncertainties existing in human behavioural data of STS movements. The Lateral COP 

distributions displacement, will not be exactly the same among different users considering 

vast difference in health conditions. Even for the same user, health condition can vary 

from time to time and will not keep the same positioning and posture prior to standing up. 

All of these contribute to the uncertainties of Lateral shift of COP. Certain uncertainties 

have been observed through experiments carried out in this research, which can be foubnd 
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in Figures 4.8-10. 

 

The following three strategies have been developed to feed Lateral shift of COP to Sugeno-

type FIS-based classifier. They are point-wise, accumulation and max-diff classifications. 

 

4.3.1 Point-wise classification 

 

The point-wise classification approach makes decisions in the sense of fuzzification at each 

sampling point. Of the 200 data of Lateral shift (LS) of COP regarding to Intended STS 

movements, no matter subject succeeds or not, the majority have the value ranging from -0.5 

to 0.5 units. On the other hand, as to the 100 data regarding to Unintended movements, many 

land outside this region, either surpass 0.5 or below -0.5 units. This distinct phenomenon guides 

the research interest of designing fuzzy sets for the different types of movements.  

 

The distribution of actual data on LS of COP is shown in the following diagram with separation 

respecting to the type of movements, Unintended and Intended STS. 

 

Among 200 Intended movement samples, which were double the amount of points extracted 

from Unintended movements, there were merely a minority of points (22 out of 200) having 

an absolute LS of COP larger than 0.5 units. These ranges of lateral displacement not only help 

define the realms of fuzzy set, but also contribute to the truth degrees (weights) of fuzzy rules. 

Specifically, of all the Intended movements, 20 out of 200 points of ranged between -0.5 and -

0.75 units, 2 out of 200 points lied between 0.5 and 0.75 units. According to this discovery, the 

fuzzy sets of A, B and C for LS of COP are defined as shown in Figure 4.12.  
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Figure 4.11 Distribution of LS of COP in Unintended (100 points) and Intended (200 points) 

movements over the early stages 

 

 

Figure 4.12 Fuzzy sets of A, B and C regarding to LS 

 

Fuzzy rules were defined in an intuitive way. For a change in lateral direction that is outside of 

[-1, 1], 00it is more likely the movement to be classified as “Unintended”. Therefore, the 

following fuzzy rules were obtained to classify intention into “Intended” and “Unintended” 

according to the Lateral shift of COP (LS).  

 

Note when it comes to labelling the input data set as Unintended and Intended, the previously 
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defined “Successful” and “Unsuccessful” STS movements were combined. 

Rule 1: If LS = A, then intention = “Intended”, with a truth degree of 0.89 (178/ 200).  

Rule 2: If LS = B, then intention = “Unintended”, with a truth degree of 0.76 (37/49).  

Rule 3: If LS = C, then intention = “Unintended”, with a truth degree of 0.67 (34/51).  

Rule 4: If LS = A, then intention = “Unintended”, with a truth degree of 0.11 (22/ 200). 

Rule 5: If LS = B, then intention = “Intended”, with a truth degree of 0.24 (12/49). 

Rule 6: If LS =C, then intention = “Intended”, with a truth degree of 0.33 (17/51). 

 

The truth degree of the Rule 1 was considered based on the rate of the number of Intended 

samples that were in the range of [-0.5, 0.5] (178) over the total number of Intended samples 

(200). The truth degree of Rule 2 and 3 were computed in the similar fashion, shown in Figure 

4.13. Rule 4, 5 and 6 can also be understood as the negation part of the first three rules with 

significantly less degree of impact. 

 

The final output of the system will be the weighted average of all rule outputs, computed as 

equation (4.1). 

 

Figure 4.13 Criteria used when determining the truth degree of Rule 1, 2 and 3 

A 

37 points 

49 points 

Fuzzy set: B Fuzzy set: C 

51 points 

34 points 
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Example 4.1:  

The following shows how point-wise classification works based on the fuzzy sets and rules. 

Given the value of LS as 0.43, which is the sampled value at a point of 0.9 seconds of an 

Unintended movement. Fuzzy rules of 1, 3, 4 and 6 were fired, as shown in Figure 4.13. 

 

According to the zero-order Sugeno FIS, the output of each of fired rule can be calculated as: 

Rule 1 (Intended), 
0.5−0.43

0.5−0.25
 × 𝑊𝑚𝑓𝑝𝐴 = 0.28 × 0.89 = 0.255 , where 

0.5−0.43

0.5−0.25
  is the 

fuzzification of sample value on fuzzy set A.  

Rule 4 (Unintended), 
0.43−0.25

0.5−0.25
 × 𝑊𝑚𝑓𝑝𝐴′ = 0.72 × 0.11 = 0.079,  

Rule 3 (Unintended), 
0.43−0.25

0.5−0.25
 × 𝑊𝑚𝑓𝑝𝐶′ = 0.72 × 0.67 = 0.482, 

Rule 6 (Intended), 
0.5−0.43

0.5−0.25
 × 𝑊𝑚𝑓𝑝𝐶 = 0.28 × 0.33 = 0.092,  

where 𝑊𝑚𝑓𝑝𝐴 , 𝑊𝑚𝑓𝑝𝐴′, 𝑊𝑚𝑓𝑝𝐶′  and 𝑊𝑚𝑓𝑝𝐶 are corresponding truth degrees of the fired 

rules.  

 

The weighted sum of corresponding rules:   

Probability of classifying the sample point as “Unintended” is 0.48 + 0.079 = 0.569 

Probability of classifying the sample point as “Intended” is 0.092 + 0.23 = 0.322 
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Figure 4.14 Rules fired by Example 4.1 

 

Table 4.1 Complete point-wise classification of all sample points for Example 4.1 

 

 

With the same algorithm applied to the rest sample points of this specific movement, the final 

outputs of point-wise classifier are generated as 0.307 for “Unintended” and 0.602 for 

“Intended”. Hence the classification result is given as Intended, correctly matching the nature 

of Unsuccessful movements.  
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4.3.2 Accumulation change-based classification 

 

Accumulated change-based classification looks into the summation of absolute values of the 

shift of COP over a period of time, which represents the amount of changes relative to the 

initiation of an STS movement.  

 

Definition 4.1: Accumulated shift of COP 

Let f be the lateral shift of COP, the accumulated shift of COP within a period of time, ε𝑓, is 

defined as:  

ε𝑓 = ∑ |𝑓𝑇  − 𝑓𝑇−1|
𝑇=11
1                          (4.3)  

where 𝑓𝑇 is the feature captured at sampling time step T, of a STS movement, and 𝑓𝑜 is that 

captured at the first sampling step (origin). It can be seen the absolute differences between the 

adjacent values are accumulated.  

 

In this approach, the accumulated shift of COP in lateral directions is highlighted because it 

reflects the overall intensity of lateral shift of COP (LS) within a fixed period of time. Figure 

4.15 shows the distribution of accumulated shift of COP (ACLS) of the respecting Unintended 

and Intended movements. It can be seen that discernible variations of the feature regions signify 

the different types of movements. The feature values of Intended movements are mainly in the 

range of [0, 3] whereas the feature values of Unintended movements lie above 4. In the 

distribution plot, it can be easily observed that there is merely one sample with accumulated 

LS lower than 4 units appearing of all Unintended movements. And only one Intended 

movement at No.9 shows accumulated LS greater than 3.5 units. This distinctive difference 

signifies two fuzzy membership functions.  
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Figure 4.15 Distribution of accumulated LS of the respecting Unintended and Intended movements 

 

As ACLS (unit: time step) has positive values only, two fuzzy sets A and B were defined, as 

shown in Figure 4.16. Fuzzy set A represents Unintended movements, with boundaries set as 

[0, 3, 3.5]. Fuzzy set B represents Intended movements, with boundaries set as [3, 3.5, 20]. 

Both membership functions of A and B were designed in trapezoid shape for its simplicity. The 

region between 3 and 3.5 is where both fuzzy sets collapse, suggesting uncertainties.  

 

  

Figure 4.16 Fuzzy sets of A and B respecting to the accumulated LS 
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Four fuzzy rules were composed on the basis of antecedent data sets of both Intended and 

Unintended movements, according to the distributions shown in Figure 4.15.  

 

Rule 1: If ACLS = “A”, then intention = “Unintended”, with a truth degree 𝑊𝑚𝑓𝑎𝐴 of 0.9 

(9/10). 

Rule 2: If ACLS = “B”, then intention = “Intended”, with a truth degree 𝑊𝑚𝑓𝑎𝐵  of 0.95 

(19/20). 

Rule 3: If ACLS = “A”, then intention = “Intended”, with a truth degree 𝑊𝑚𝑓𝑎𝐴′ of 0.1 (1/10). 

Rule 4: If ACLS = “B”, then intention = “Unintended”, with a truth degree 𝑊𝑚𝑓𝑎𝐵′  of 0.05 

(1/20). 

 

The truth degrees of the Rule 1 and 2 were determined by all the samples with ACLS within 

the realm of membership functions, which were 19 out of 20 and 9 out of 10 respecting to 

Unintended and Intended movements. On the contrary, Rule 3 and 4 were derived based on the 

outliers appearing out of the boundaries of the fuzzy sets. Specifically, one outlier of both 

Intended and Unintended movements were spotted. 

 

Example 4.2:  

Taking the same sample movement in Example 4.1 as the example for this classifier, the ACLS 

was captured as 2.55 units.   

 

According to the zero-order Sugeno FIS, the output of each fired rule can be calculated as: 

Rule 2 (Intended), 1 × 𝑊𝑚𝑓𝑎𝐵 = 1 × 0.95 = 0.95   

Rule 4 (Untended), 1 × 𝑊𝑚𝑓𝑎𝐵′ = 1 × 0.05 = 0.05   

Hence the final outputs of point-wise classifier are 0.05 for “Unintended” and 0.95 for 

“Intended”. Hence the classification result is given as Intended.  
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Figure 4.17 Rules fired by Example 4.2 

 

4.3.3 Max-difference based classification 

 

Max-difference based classification was developed considering the difference between the 

maximum and the minimum, including negatives if applicable, change in Lateral shift of COP 

recorded in the first 1.1 seconds of each sample movement. Positive indicates lateral COP shift 

to the right, whilst negative indicates left.  

 

As seen from the previously extracted Lateral shift of COP from STS process, a substantial 

increase of magnitude could be spotted at the beginning of movements, followed by a gentle 

rebound at the following about 3 time intervals. When approaching the last few tenths of 

seconds, typically from 0.7 to 1.1 seconds, the magnitude tends to decrease and stabilise, unlike 

the Unintended random movements, which shows no alignment with certain phenomenon. 

Take the sample No. 3 of Successful STS movements as an example, LS of COP started to 

increase from -0.26 at 0.3 seconds, reached its peak value of -0.67 at 0.6 seconds, referring to 

Table 4.2. The magnitude then dropped back to 0.02 at 1 second. Similar pattern could be found 

in the No.4 movement of Successful STS. This observation inspired the development of the 

Max-difference Lateral Shift of COP (MDLS) classification.  
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Table 4.2  LS of COP captured from No. 3 of Intended STS movements   

 

 

 

Figure 4.18 Distribution of MDLS of the respecting Unintended and Intended movements 

 

Figure 4.18 shows the distribution of MDLS of the same sample Unintended and Intended 

movements. The majority of Intended movements show MDLS ranging from 0 to 1 with only 

1 out of 20 points lie above 1. As to Unintended movements, values of captured MDLS were 

all greater than 1 expect one outlier being less than 0.5. Such separation suggested the design 

of 2 fuzzy sets with A representing Unintended movements and B representing Intended 
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movements. The shape of membership functions were both defined as trapezoid to handle the 

uncertainties close to boundaries.  

 

 

Figure 4.19 Fuzzy sets of A and B respecting to the MDLS 

 

According to Figure 4.18, it can be readily seen that 8 out of 10 Unintended movement samples 

have MDLS greater than 1.4 units. However, 1 outlier was captured with MDLS just above 1 

unit whilst the other one was spotted near 0.4 units. Therefore the boundaries of fuzzy set A in 

trapezoid shape were determined to be [0.5, 1.4, 4.5] (Figure 4.18). And because of the outlier 

closing to 0.4, the truth degree of classifying set A as “Untended” was computed as 0.9 (9/10). 

As to 20 sets of Intended STS movements, 13 out of 20 show MDLS less than 0.5 and 8 have 

values greater than 0.5 yet smaller than 0.8. Therefore the boundaries of fuzzy set B were set 

as [0, 0.8, 1] so that these 19 samples can be encapsulated. Considering the outlier that was 

slightly above 1, the truth degree of classifying fuzzy set B as “Intended” was derived as 0.9 

(9/10). In contrast, when classifying A as “Intended” and B as “Unintended”, stated as Rule 3 

and 4, truth degree computed as 0.1 (1/10) and 0.05 (1/20), respectively. 

 

Thus, rules were composed as follows,  

Rule 1: If MDLS = “A” then “Unintended”, with a truth degree of 0.9 (9/10). 

Rule 2: If MDLS = “B” then “Intended”, with a truth degree of 0.95 (19/20). 

Rule 3: If MDLS = “A” then “Intended”, with a truth degree of 0.1 (1/10). 

Rule 4: If MDLS = “B” then “Unintended”, with a truth degree of 0.05 (1/20). 
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Example 4.3:  

Taking the same sample movement in Example 4.1 and 4.2 as the example for this classifier, 

the corresponding MDLS was captured as 0.63 units. Rules shown in Figure 4.20 were fired 

given the MDLS value as input value.  

 

According to the zero-order Sugeno FIS, the output of each fired rule can be calculated as: 

Rule 1 (Untended), 
0.63−0.5

1.4−0.5
 × 𝑊𝑚𝑓𝑚𝐴 = 0.14 × 0.9 = 0.13,   

Rule 2 (Intended), 1 × 𝑊𝑚𝑓𝑚𝐵 = 1 × 0.95 = 0.95, 

Rule 3 (Intended), 
0.63−0.5

1.4−0.5
 × 𝑊𝑚𝑓𝑚𝐵′ = 0.14 × 0.1 = 0.01, 

Rule 4 (Unintended), 1 × 𝑊𝑚𝑓𝑚𝐵′ = 1 × 0.33 = 0.05, 

where 𝑊𝑚𝑓𝑎𝐴 , 𝑊𝑚𝑓𝑎𝐴′ , 𝑊𝑚𝑓𝑎𝐵  and 𝑊𝑚𝑓𝑎𝐵′   are the truth degrees of the corresponding 

fuzzy rules.  

Thus, the probability of classifying the sample movement as “Unintended” and “Intended” are 

0.18 and 0.95, respectively.  

 

Figure 4.20 Rules fired by Example 4.3 

 

4.3.4 Discussion  

 

The following measures are defined to compare the three approaches of classification: 
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• False matching rate of Unintended movements to intended ones (FMR) is measure for the 

safety. The rate should be minimised as the false matching will cause the assist actions of 

the robot chair to take place, which may force the user who has no intention to stand up 

and lead to a fall.  

• True matching rate of intended to intended (TMR) is the measure for the accuracy. This 

should be maximised as the aim of the classification is to find out the user’s need for 

assistance in STS process. 

• Variety in sample data (VD) in conjunction with FMR and TMR are used to measure the 

robustness. High variety means high uncertainty level in sample data. Together with FMR 

and TMR, they reflect the capabilities of handling the uncertainty.  

• Responding time of the classification (RT) reflects the time criterion. The classification 

must be done at the end of first 1.1 seconds period.  

 

Tests with 2-fold testing data and with pure testing data were undertaken for the purpose of 

comparison of the three classification approaches. The 2-fold test data splits the data set into 

two halves. The first half is used for modelling the fuzzy classifier whereas the second half is 

taken for testing. The “pure” test data is fresh data sets fed into the build FIS-based classifier, 

which is independent of the data that is used to build the FIS. It is used to test how well the 

modelled FIS-based classifier can be applied to fresh new data. 

 

For the point-wise classification, the test results with 2-fold data are shown in Table 4.3. In 

each section of the table, the first row records the results regarding to Unintended movements 

while second row shows outputs for Intended movements. Despite all the Intended movements 

being successfully classified, No. 14, 15 and 17 are supposed to be Unintended movements 

however were classified as Intended STS movements. Tests were also performed with pure test 

data. The results are recorded in Table 4.4. Of all Intended movements, No. 1, 2, 3, 5, 6 and 8 

were incorrectly classified as Unintended. As to the Unintended movements, No. 15 and 19 

were classified as Intended.   
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Table 4.3 Results of point-wise classification with 2-fold data 

 

 

Table 4.4 Results of point-wise classification with pure test data 

 

 

The test results of ACLS classification with 2-fold data is shown in Table 4.5. Of all 2-fold 

datasets, sample No. 5 was supposed to be Intended movements however was classified as 

Unintended movements. With pure test data fed in, 10 Unintended movement samples were 

classified as “Unintended” (100%), whereas 14 data sets of Intended movements were 

classified as “Intended” (70%). 

 

Table 4.5 Results of ACLS classification with 2-fold data 
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Table 4.6 Results of ACLS classification with pure test data 

 

 

Tests were also carried out to verify the results of MDLS classification, with 2-fold and pure 

test data. In spite of 10 Unintended movements being accurately classified, 7 out of 20 Intended 

movements were wrongly classified as “Unintended”, which can be seen in Table 4.7 showing 

2-fold data. When feeding the MDLS classifier with pure test data, one in both Unintended and 

Intended were incorrectly classified opposite to their movement types.  

 

Table 4.7 Results of MDLS classification with 2-fold data 

 

 

Table 4.8 Results of MDLS classification with pure test data 

 

 

The corresponding confusion matrices for the 3 classification approaches with 2-fold and pure 
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test data are given in Figure 4.21- 4.26, respectively.  

 

 

Figure 4.21 Confusion matrix of point-wise classification with Two-fold input data 

 

 

Figure 4.22 Confusion matrix of point-wise classification with pure test data 

 

 

Figure 4.23 Confusion matrix of ACLS classification with 2-fold test data 

 



 

98 

 

Figure 4.24 Confusion matrix of ACLS classification with pure test data 

 

   

Figure 4.25 Confusion matrix of MDLS classification with 2-fold test data 

  

 

Figure 4.26 Confusion matrix of MDLS classification with pure test data 

 

As introduced in the beginning of Section 4.3.4, FMR is primarily highlighted for safety 

concerns of the robot chair. It will cause safety issues in the scenarios where subject is intended 

to simply change his/her posture but the actuator mechanism arises the entire seatpan due to 

the false matching of intention. The top-right corner of each confusion matrix above shows the 
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FMRs of the different approaches. With 2-fold test data FMR were recorded as 30%, 0% and 

0%, for point-wise, ACLS and MDLS classifications. When fed in with pure test data, the 

FMRs became 20%, 0% and 0%, respectively. Consequently, it is readily concluded that both 

ACLS and MDLS classifications outperform point-wise classification in terms of minimising 

the FMR. Referring to the weakness of point-wise classifier as Table 4.2 suggested, it will 

considerably affect the FMR of this approach. Owning to the rebound phenomenon of LS at 

early stages of STS movements, some sample points captured from Untended movements 

would be classified as Intended only owning to the lack of sample points with LS values 

surpassing the threshold of fuzzy sets B and C.  

 

TMR is used as another critical measure to benchmark the accuracy of the 3 classifiers. 

Referring to the bottom-right corner of the above confusion matrices, the TMRs of the 3 

approaches with 2-fold input test data were recorded as 100%, 95% and 70%, respectively. 

With pure test data, the TMRs became 70%, 70% and 65%, respectively.  

 

As the nature of MDLS demonstrates, this approach takes the registered maximum and 

minimum over the period of first 1.1 seconds, which will be subsequently sensitive to the 

ambiguities brought in by the following scenarios in Intended movements: randomly reposition 

of arms while standing up, difficulties when stabilising body motion in a significant torque. All 

of these will change the captured LS in a rather short time span. Nevertheless this negative 

effect can be minimised when taking ACLS into account, which can potentially be the reason 

why it outperforms the MDLS considering the TMR.  

 

VD is another measure of performance of the classification approaches. VD refers to the 

different ways in which COP shifts. The LS of COP is related to the sitting postures such as 

positions of feet and arms, buttock position on seatpan the subject used while conducting each 

type of test movements. These positions determine what strategy subject uses to stabilise his/ 

her body when standing up. As previously discussed in Chapter 2, subjects tend to adapt his/ 

her STS strategies to environments and conditions to perform STS movements. According to 

findings derived by (Nardone et al, 1990; Kuo and Zajac, 1993; Kuo, 1995), ankle positioning 
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and subjects’ functional capability are correlated to strategies used for postural control and 

upper torso stabilisation, proved by the extraction of joint torques. For example, subject appears 

to use ankle strategy when upper torso movements are restricted, which will affect the captured 

LS appearing on footmat. In contrast, when STS is performed based on a rather wide stance 

the stabilisation motion will require less muscle activation hence results in different shift of 

COP. When generating data for defining and testing the classifiers, subject was advised to avoid 

retaining the same foot, arm or buttock positions. It can be summarised that VD is high in the 

datasets as movements were executed naturally to introduce realistic uncertainties. The same 

datasets were applied to all three classification approaches. Testing with VD guarantees the 

robustness of the classification. 

 

According to the measure of criteria proposed to examine the performance of the classifier, all 

3 approaches were characterised to be timely efficient and capable of handling different kind 

of uncertainties to some extends. The RT is considered through 2 aspects, the captured time 

span of input data and processing time of FIS function. The time duration of input data is 

limited to 1.1 seconds. In addition to this, the average processing times of FIS function for 3 

classification approaches were recorded as 0.077, 0.003 and 0.001 seconds. With the processing 

time of both ACLS and MDLS classifications rather negligible comparing to the 1.1 seconds 

of input data capturing.  

 

4.4 Summary 

 

This chapter first reviewed the biomechanics of STS process in order to seek possible features 

for intention recognition at early stages of STS process. The extracted LS was verified as the 

feasible feature in capable of distinguishing Unintended movements from Intended ones within 

the time constraints. Three fuzzy logic based classifiers, point-wise, ACLS and MDLS, were 

then designed and tested via 2-fold and pure test data. The performance of these classifiers was 

examined through criteria proposed to meet the requirements of intention recognition. 

Consequently, ACLS was verified to outperform the other two in terms of handling 

uncertainties and recognising subjects’ STS intention at early stages. 
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CHAPTER 5 SELF-ADAPTIVE FUZZY CLASSIFIER 

5.1 The need for self-adaptive classification 

 

In Chapter 4, fuzzy logic based classification approaches have been developed, namely point-

wise, ACLS and MDLS classifiers. ACLS was proved the most successful one, reaching 100% 

TMR in terms of classifying Unintended movements.  

 

However, in real-world applications, more than one family member will use the robot chair and 

expect the same assistance to the STS movements if experiencing difficulties in STS 

movements. This requires the robot chair to be able to support different users with different 

biomechanical features such as body weights, heights (measured with shoes on instead of 

stature heights) and thigh lengths, as well as sitting habits. To simulate this home-use scenario, 

Subject B was introduced to further develop the robot chair.  

 

It is essential to examine how the classifiers perform on Subject B with the fuzzy logic based 

classification with fuzzy sets determined for Subject A. In order to obtain representative 

experimental results, Subject B was purposefully chosen with completely different 

biomechanical features (Table 5.1) and preferable sitting postures (Table 5.2). This can not only 

create a wider span of the targeted features but also shed light on the STS patterns often used 

by the elderly. Although owning to the above mentioned ethical issues (Section 4.2) the elderly 

subjects suffering STS problems are not available, it would be more convincing to introduce a 

subject with similar STS features and behaviours.   

Table 5.1 The biomechanical features of Subject A and B 

 

 

Table 5.2 The recorded sitting postures of both subjects when performing STS movements 

 

Body weight Height (w/ shoes) Length of thighs Shoe size Body weight Height (w/ shoes) Length of thighs Shoe size

85 kg 185 cm 49 cm UK 10.5 49 kg 156 cm 42 cm UK 3.5

*mid-knee to hip bone *mid-knee to hip bone

Subject BSubject A

arms-free arms-crossed hands-on-knees arms-free arms-crossed hands-on-knees 

47 2 11 27 7 26

Total No. of Movements60

Subject A Subject B

60Total No. of Movements
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Subject B was informed to go through all three types of movements as performed by Subject 

A, namely Successful STS, Unsuccessful STS and Unintended. The key feature, Lateral shift 

of COP (LAT) over the first 1.1 seconds, was extracted from these three movements as the 

same as what was done with Subject A. The tests were then performed on two contender 

classification approaches, ACLS and MDLS, with the classification results shown in Figure 5.1 

and 5.2, respectively.  
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Figure 5.1 Confusion matrix of the original ACLS classification applied on Subject B’s test data 
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Figure 5.2 Confusion matrix of the original MDLS classification with test data only applied on 

Subject B’s test data 

 

The above confusion matrices show a significant drop in TMRs, which are 70% and 65% for 

ACLS and MDLS, respectively, comparing to an accuracy of 100% for both approaches when 
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the tests were performed by Subject A. It was speculated that the well-defined fuzzy based 

classifier in Chapter 4 may not be directly applicable to other chair users with great variations 

in biomechanical features. 

 

It was found that the extracted magnitude of lateral shift (LAT) of Subject B is much smaller 

than that of Subject A. Variations in biomechanical features and sitting postures of the two 

subjects can be the reasons that caused such differences in LAT. This is because when 

conducting the Unintended movements by random movements, different subject will yield 

different buttock movements due to the vast difference in subjects’ biomechanical features 

(length of thighs), LAT will not remain the same. Also, owning to the different sitting postures 

the subjects adopted when performing STS movements, the resultant LAT will be different.  

 

In addition to the difference in biomechanical features between Subject A and B, they were also 

observed to perform the STS movements with different habits in terms of sitting postures. As 

previously explained, the posture of hands-on-armrest was not considered within the scope of 

this study, as the main design objective of the chair is to encourage the motor functions of lower 

limbs and cores. Besides, because there is no sensor attached to arm rests, the amount of force 

subject would have applied on arm rests to assist the STS motion is impossible to be recorded. 

Apart from this hands-on-armrests posture that needed to be avoided, both subjects did not give 

a conscious effort on sitting postures. Consequently, three sitting postures, arms-free, arms-

crossed, and hands-on-knees were observed throughout all the movements performed by both 

subjects, which coincided with the mainstream of posture analysis in STS study (Schlicht et al, 

2001; Etnyre and Thomas, 2007; Yamada and Demura, 2009).  

 

Therefore, to enable smart chair to become well suitable for supporting different users，two 

main error-related factors below were extracted and investigated.  

i). Width of shoes     

ii). Width of seated stance 

 

The below advantages are realised when considering the concept of shoe width   
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• It can be easily extracted through different numbers of FSRs activated by subject’s feet 

while stepping on the footmat. In comparison, a larger shoes size will create a larger 

contact region with the footmat hence result in more FSRs being activated. The width of 

shoes can be normalised in a fashion using the average No. of FSRs activated per row as 

only this value affects the obtained LAT. 

• The width of shoes also reflects the size of shoes which has a correlation with subjects’ 

biomechanical features suggested by several anthropometric researches (Robbins 1986; 

Siminoski 1993; Ozden, 2005). 

• The analysis on shoe geometry is essentially an affecting factor for the lateral balancing 

during STS process (Tencer et al, 2004; Lord et al, 2007). This offers an expansion 

opportunity for the robot chair to be able to investigate the relationship between rate of 

Successful STS and shoe geometry. However this is beyond the scope of this study as it 

is impossible to recruit the elderly subject with falling risks. This could provide 

suggestions for the shoes that chair user should wear to reduce the risks of fall.  

 

Although it is preferably to use a wide stance for more stabilisation while standing up, it is 

common that different people show difference in stance width owning to causal sitting habits. 

For example, as Table 5.2 suggests, given the percentage of arms-free posture (78.3%) used by 

Subject A, he would also favourite a wider stance along with this type of posture . The average 

captured distance between feet is  6.12 units (cell-to-cell distance)In addition, the seated 

stance measured from Subject B’s was noticeably narrower. Both subjects reported that they 

were naïve to the focus of this sitting posture test and sat spontaneously because they were only 

informed to perform the three types of movements for the required sets. The seated stance may 

also be a Gender Preference (Gunter et al, 2000) but needs to be further investigated/ confirmed. 

 

Therefore, the investigation on stance width has four main advantages,  

• It is readily extractable via processing blocks through the information gathered from the 

footmat. Width of seated stance of each subject is derived by his/her COP of each foot 

when stepping on footmat. For example, subject A has an average stance width of 5.4, 

derived from 30 test results. Same principle applied, subject B has an average stance width 
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of 4.76 units. 

• When being analysed in conjunction with width of shoes, it helps verify the biomechanical 

features of Subject. Although the height of subject is not directly measurable from the 

chair setups, it can still be perceived/ extracted through the combination of stance width 

and shoe width, given the fact that a subject with longer limbs, would be more likely to 

result in a broader stance during STS process (Fujiwara et al, 2009) 

• It can help verify the type of sitting postures because it was realised when subjects conduct 

STS movements under arms-free or arms-crossed movements, the respecting width of 

seated stance is significantly higher than that of hands-on-knees (Table 5.2) 

• More importantly, it can rectify the cases that variations in seated stance result in different 

measured LAT while subject proceeding movements with same buttocks travelling 

distance.  

 

From Table 5.3 it can be seen the variations in stance width under different postures adopted 

by Subject A and B when performing STS movements.  

Table 5.3 The extracted stance width of each subject under different sitting postures 

 

 

Conventional FIS requires “predetermined” variables either determined based on trial-and-

error or via experimental results, as elaborated in point-wise, ACLS and MDLS fuzzy logic 

based classifiers from the previous chapter. These variables, including boundaries of all fuzzy 

sets, cannot be directly transferred to other chair users, apparently.  

 

To further expand the Fuzzy based classifier to a more robust multi-user oriented classifier 

considering inter-subject biomechanical variations, a self-adaptive system is developed.  

 

Stance Width As per Sitting Posture/ Subject 

Posture arms-free arms-crossed hands-on-knees arms-free arms-crossed hands-on-knees 

Average Stance Width 6.12 5.93 4.55 5.39 5.55 3.89

Subject A Subject B

Overall Stance Width  5.83 Overall Stance Width  4.76
(Unit: cell-to-cell

distance)
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5.2 Self-adaptive fuzzy classification for handling 1st biomechanical feature 

5.2.1 Manual adaptation and discussion 

 

The influence of the variations in shoe width, the 1st biomechanical features, on the fuzzy sets 

and corresponding rules of ACLS and MDLS classification was investigated separately. 

 

 

Figure 5.3 Distribution of ACLS of the respecting Unintended and Intended movements performed 

by Subject B 

 

Because the ACLS classification uses accumulated change in LAT value extracted from Subject 

B’s experimental data as input, the determination of fuzzy sets for ACLS classifier followed 

the same procedure illustrated in Chapter 4. As the accumulated change in LAT values show 

positive values only and the classifier aims to yield two classis, Unintended and Intended, two 

fuzzy sets A and B were defined based on the distribution plot shown in Figure 5.3.  
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Figure 5.4 Input fuzzy sets of A and B of ACLS classifier for Subject B  

 

Figure 5.4 shows the fuzzy sets of ACLS classifier, re-defined for Subject B. Fuzzy set A 

represents Unintended movements, with boundaries set as [2.5, 3.5, 14]. Fuzzy set B represents 

Intended movements, with boundaries set as [0, 2, 3]. The shape of membership functions was 

again set as trapezoid for its simplicity. Fuzzy rules and the corresponding truth degrees were 

established as:  

 

Rule 1: If ACLS = “A”, then intention = “Unintended”, with a truth degree of 0.9 (9/10). 

Rule 2: If ACLS = “B”, then intention = “Intended”, with a truth degree of 0.95 (19/20). 

Rule 3: If ACLS = “A”, then intention = “Intended”, with a truth degree of 0.1 (1/10). 

Rule 4: If ACLS = “B”, then intention = “Unintended”, with a truth degree of 0.05 (1/20). 

 

The same procedure was then applied on MDLS classifier to re-define the fuzzy sets for Subject 

B. The determination of fuzzy sets for MDLS classifier was based on distribution of MDLS 

values yielded by Subject B, shown as Figure 5.5. 
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Figure 5.5 Distribution of MDLS of the respecting Unintended and Intended movements 

performed by Subject B 

 

 

Figure 5.6 Fuzzy sets of A and B respecting to the MDLS classifier for Subject B  

 

Fuzzy set A represents Unintended movements, with boundaries set as [0.6, 1, 4]. Fuzzy set B 

represents Intended movements, with boundaries set as [0, 0.6, 0.8] (Figure 5.6). The shape of 

membership functions remained the same as trapezoid. Fuzzy rules and the corresponding truth 

degrees were established as: 

Rule 1: If MDLS = “A” then “Unintended”, with a truth degree of 0.9 (9/10). 
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Rule 2: If MDLS = “B” then “Intended”, with a truth degree of 0.95 (19/20). 

Rule 3: If MDLS = “A” then “Intended”, with a truth degree of 0.1 (1/10). 

Rule 4: If MDLS = “B” then “Unintended”, with a truth degree of 0.05 (1/20). 
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Figure 5.7 Confusion Matrix of ACLS applied on Subject B after manual adjustment 
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Figure 5.8 Confusion matrix of MDLS applied on Subject B after manual adjustment 

 

Comparing the confusion matrices shown in Figure 5.7 and 5.8 against those shown in Figure 

5.1 and 5.2, it can be seen the necessity for the shoe-width adaptation on fuzzy sets and rules 

to satisfy different users.  

 

5.2.2 Self-adaptive neural fuzzy classification 

 

Because of the ununiformed geometry of shoe soles and the limited number of FSRs adopted 

on footmat, it would be unrealistic to acquire the exact widths of shoes. 
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(a)                      (b) 

Figure 5.9 The distance between (a) the widest points of subject A’s trainer: 116.95mm, (b) the 

narrowest points of Subject A’s trainer: 79.85mm 

 

Figure 5.9 shows the measurements on the trainer Subject A wears of the widest and narrowest 

points, respectively.  

 

 

(a)                     (b) 

Figure 5.10  The distance between (a) the widest points of subject B’s flat: 83.05mm, (b) the 

narrowest points of subject B’s flat: 81.45mm 

 

Figure 5.10 shows the measurements on Subject B’s flat shoe at different points, such a 

substantial difference in geometries of shoe soles will certainly cause different areas of footmat 

being activated while subjects sitting on the robot chair.  

 

The 3D mesh plot, Figure 5.11, demonstrates the difference in number of activated cells as well 

as GRF patterns (cell-wise) generated by the two subjects. In Figure 5.5, the horizontal 

rectangular grid reflects the actual positioning of FSRs being activated while the vertical 

direction represents the single-valued GRF output of each cell with no smoothing effects added 

to the plot. This shows the different manifestations on footmat caused by different geometric 



 

112 

shapes of shoe.  

 

 

(a) 

 

(b) 

Figure 5.11 3D mesh plot of activated FSRs with height being cell-wise GRF values generated by 

Subject A (a) and Subject B (b), respectively 

 

From Figure 5.11 it can be seen that Subject A occupies 7 rows and 26 cells while Subject B 

occupies 6 rows and 15 cells. However, the number of rows and the total number of cells 

activated by the same subject are rather fixed. This offers a possibility that the shoe widths of 

individuals can be normalised and converted to a computational feature. In order to realise this 

normalisation, the average number of cells occupied in each row was investigated in a way that 

only the number of cells activated per row was considered, regardless of the number of rows 

(of FSR cells) occupied by both feet.  

 

Hence the normalised shoe width, 𝑤𝑠, was derived as, 

𝑤𝑠 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑆𝑅𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑜𝑤𝑠 
         (5.1) 
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As to the 60 sets of movements performed by Subject A, each foot can active in average of 

13.12 FSRs when stepping on the footmat, comparing to merely 7.54 FSRs activated by Subject 

B. They were both normalised to an average of 3.75 and 2.51 FSRs across each row, activated 

by both feet of the two subjects, which were denoted as normalised shoe width. And the span 

of this normalised shoe width, [2.51 3.75], resembles a range of all possible shoe widths of all 

eligible chair uses because of the characteristics of Subject A and B.  

 

A hybrid method incorporating neural network (ANN) and fuzzy logic system is implemented 

to achieve self-adaptation of the classifier. As it can reflect the biomechanical feature of 

different users, 𝑤𝑠 is used as a signal to tune the fuzzy sets of this hybrid neural fuzzy system, 

which will be further demonstrated using the structure of ACLS and MDLS models. In general, 

this self-adaptation equips the conventional fuzzy logic based classifier the abilities of adapting 

to complex individual characteristics and condition variables despite the compact architecture. 

All MFs of input fuzzy sets are able to adapt themselves to new subject once figured out his/her 

biomechanical feature, namely the normalised shoe width. 

 

To better understand the model, a reference setting was introduced prior to the training process: 

a full set of MFs with predefined parameters was generated as a starting point where the hybrid 

system initialises. This follows the identical procedure as previous FIS models, using the 

empirical data. In the training process, which employed LSE-BP combined method, the 

contribution of ANN is to tune the reference setting, through automatically expanding, 

shrinking or shifting the reference MFs. All the computational efforts will be undertaken by 

ANN part of the model through training process.  

 

The structure of the hybrid neural fuzzy classification is shown in Figure 5.12. 
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Figure 5.12  Architecture of hybrid neural fuzzy system for ACLS and MDLS classification handling 

the variations in shoe width 

 

Such architecture was determined with the followings:  

• Number of inputs: 2.  

Input 1 is the Accumulated change in LAT or Max-difference in LAT. Input 2 is the normalised 

shoe width 𝑤𝑠. 

• Number of Fuzzy sets for each input 

Input 1 (MDLS/ ACLS): 2,  

Input 2 (Normalised shoe width 𝑤𝑠): 5,   

The number of fuzzy sets for 𝑤𝑠 was set as 5 to achieve a refined partition. The boundaries of 

all fuzzy sets of both inputs, in addition to the parameters of the corresponding MFs, would be 

optimised through the training of the ANN of such a hybrid system.  

• Shape (type) of MFs “Bell, Trapezoid, Triangle, …” 

The shape of MFs of each input fuzzy set has been determined through the comparison of 

training results (Table 5.4) to figure out the most suitable one for the MDLS and ACLS model.  

• Output: constant “2” and “1”   

Input Layer Output LayerRule Layer

Input 1:                                 
Accumulated change in LAT

Or Max-difference in LAT

Input 2:                                 
Normalised shoe width

2 fuzzy sets of Input 1 
(Fuzzification process)                                 

5 fuzzy sets of Input 2 
(Fuzzification process)                                 

Intention classification output

Unintended Movements 

 
Intended STS Movements 

Logical Operations: “And”  

Weights (Truth degrees)
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“2” and “1” represent Unintended and Intended STS movements, respectively. 

 

The connections between input layer and output layer are described as fuzzy rules, where all 

possible combinations of fuzzy sets of the two inputs are bonded together using “and” logical 

operations. Afterwards, the output node computes the weighted sum of the outputs generated 

by the fired rules, which is also known as defuzzification process in fuzzy logic system. The 

crisp result of this output node is the classified intention, apparently.  

 

5.2.3 Training and testing results  

 

Training process of this inter-subject self-adaptive classifier has incorporated 60 sets of data, 

comprising of 30 sets of movements, namely 10 Intended Successful STS, 10 Unintended and 

10 Unsuccessful STS movements, generated by Subjects A and B, respectively. A training 

method of LSE-BP was adopted.  

 

It is also worth to mention that the shape of input MFs has been determined through comparison 

among Bell, Gaussian and trapezoid, which was previously adopted in fuzzy logic based 

classification for Subject A as well as manual adjustments on Subject B. The training 

performances yielded by the different shapes of MF were listed in Table 5.4. The metrics 

discussed in Chapter 4, TMR and FMR in relation to accuracy and safety were used to find out 

the ideal shape of MFs. Through the separate training carried out on each type of MF, the 

Gaussian-type was found to be superior to others for both ACLS and MDLS classifications.  

 

Table 5.4 Training results investigating the shape of MFs for both classifiers 

 

As to the above hybrid structure with the optimised shape of MFs, the convergence of training 

error is shown in Figure 5.13. The convergence of training error was evaluated using mean 

Shape of MF Trapezoid Triangle Gaussian Bell Trapezoid Triangle Gaussian Bell

TMR (%) 85.00 90.00 90.00 85.00 85.00 85.00 90.00 85.00

FMR (%) 2.50 5.00 2.50 2.50 2.50 2.50 0.00 0.00

44 39 73 62 49 45 57 69

2.80

ACLS classification MDLS classification

Self-adaptive classification for handling normalised Shoe Width 

3.90

No. of epochs 

Average convergence

time           (Seconds)
2.40 2.30 3.80 4.70 1.90 2.00
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squared error (MSE) for its simplicity, which will be further explained in Chapter 6. The 

training reached its best performance at epoch 73, which signifies the end of convergence 

process as the performance was no longer improving.  

 

 

Figure 5.13 The convergence of training error of ACLS self-adaptive classifier 

 

To test the trained ACLS and MDLS self-adaptive classifiers, another 60 sets of movements 

were allocated, including 10 Intended Successful STS, 10 Unintended and 10 Unsuccessful 

STS movements, generated by Subjects A and B, respectively. The test results of the trained 

ACLS classifier can be seen in Figure 5.14, where 3 sets of Unintended movements were 

classified as Intended while 1 set of Intended STS movement was classified as Unintended. 

This caused a TMR of 85% and FMR of 2.5%, which forms the confusion in Figure 5.15. 

 

 

Figure 5.14 Test results with the raw defuzzification outputs generated by ACLS self-adaptive 

classifier 
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Figure 5.15 Confusion Matrix of the self-adaptive ACLS classifier tested by two subjects along with 

their 1st biomechanical feature (60 sets of pure test data) 
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Figure 5.16 Confusion matrix of self-adaptive MDLS classifier tested by two subjects along with their 

1st biomechanical feature (60 sets of pure test data) 

 

The test with same data was also conducted on the self-adaptive MDLS classifier, with 

confusion matrix shown in Figure 5.16. Apparently, both results outperformed the test results 

shown in Figure 5.1 and 5.2 where the ACLS and MDLS classifiers defined for Subject A were 

applied to Subject B. However, when comparing them against those manually adjusted 

classifiers (for Subject B), the combination of Subject A and B’s test results has to be taken 

into consideration. In order to achieve a like-to-like comparison, the test data fed in self-

adaptive classifier needs to be identical to that used for the previously defined classifiers.  
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The results shown in Figure 5.7, along with the test results in Figure 4.24, has yielded an overall 

TMR of 95% and FMR of 15%. The manual adaptation test results of Subject B (Figure 5.8), 

together with the results of Subject A (Figure 4.26), has reached an overall TMR of 95% and 

FMR of 17.5%. Therefore it can be addressed that the self-adaptive ACLS classifier generates 

less TMR (90% against 95%) but less FMR (2.5% against 15%), when applied on the same test 

data. The latter was reduced in a good manner because it relates to the safety concerns of the 

robot chair and was discussed as the primary measure of criteria in Chapter 4. The self-adaptive 

MDLS classifier generates less TMR (90% against 95%) but less FMR (0 against 17.5%) when 

applied on the same test data. Therefore, such self-adaptation on the 1st biomechanical feature 

has its merit in terms of reducing the FMR of the classification.  

 

The following shows how rules are triggered in the self-adaptive ACLS classifier based on the 

input variables. Given the value of accumulated change in LAT as 3.31, which is the sampled 

value of input 1 from an Intended movement, generated by Subject A at a measured shoe 

width of 3.69, fuzzy rule No. 4, 5, 9 and 10 were triggered, as shown in Figure 5.17. 

 

 

   Figure 5.17 Rules fired by Example 5.1 in the self-adaptive ACLS classifier 
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5.3 Self-adaptive fuzzy classification for handling 2nd biomechanical feature 

 

Previously, the manual adaptation on both ACLS and MDLS was elaborated prior to the 

implementation of the neural fuzzy based classifier for a better understanding of the self-

adaptation process. However, the manual adaptation process was omitted because it is difficult 

to generalise in multi-subject scenarios, albeit decent results were generated for Subject B. 

When implemented and trained properly, the neural fuzzy based classifier would be able to 

tackle the variations in width of stance in a time-efficient manner.  

 

The remedy to deal with the seated stance was called the 2nd biomechanical adaptation, where 

the classifier has to actively adapt to the changes yielded by the different stances generated 

from the same subject between movements. The seated stance width cannot be ascribed as an 

attribute to different subjects because each movement performed by the same subject will show 

variations in stance width appearing on the footmat.  

 

As the experimental data suggests, for the same amount of buttock movement achieved, the 

subject with a naturally wider stance while seated will produce a greater difference between 

COPs on both feet. However, such a relationship is not linear and would be difficult to describe 

mathematically for the following reasons:  

• Due to different thigh lengths of subjects for the same stance width, the resultant LAT will 

vary. 

• The positioning of the upper trunk will result in different captured LAT for the same subject 

at the same stance width, through observations. As the activities of the head-arm-torso 

(HAT) system will vary its position and velocity when the subject performs each 

experimental movement. 

• Because the muscle activation patterns in STS transfers with the same sitting posture and 

stance may alter (O’Sullivan et al, 2002), the resultant LAT will be different.  

 

Although it is unrealistic to model mathematically the influence of stance width on LAT, the 

necessary capture of this 2nd biomechanical feature has been performed at the instance of 
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initialising every single movement. This was achieved by computing the magnitude difference 

between the COP generated by both feet in lateral directions, at a unit of cell-to-cell distance. 

Note the COP of each foot’s pressure pattern (Figure 5.11) is different to the geometric centre 

of each foot. As an outcome, the normalised stance width of subject A varied from 4.1 to 6.2, 

whereas the normalised value of Subject B ranged from 3.2 to 5.9, with cell-to-cell distance as 

per unit. The narrowest possible stance was only achieved by placing both feet extremely close 

to each other (with the edges of both shoes touching side by side). 

 

5.3.1 Architecture of self-adaptive ANFIS classification 

 

The structure of the self-adaptive classifier handling 2nd biomechanical feature was formed as 

follows. 

 

Figure 5.18 Architecture of hybrid neural fuzzy system for ACLS and MDLS classification handling 

the variations in stance width 

 

• Number of inputs: 2 (MDLS/ ACLS and Stance width) 

Input 1 is the Accumulated change in LAT or Max-difference in LAT. 

Input 2 is the normalised stance width.  

Input Layer Output LayerRule Layer

Input 1:                                 
Accumulated change in LAT

Or Max-difference in LAT

Input 2:                                 
Stance Width

2 fuzzy sets of Input 1                                

6 fuzzy sets of Input 2               

Intention Classification Output

Unintended Movements

Intended STS Movements

Weights (Truth degrees)                                 

Logical operation: ”And”                                 
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• Number of Fuzzy sets for each input 

Input 1 (MDLS/ ACLS): 2,  

Input 2 (Stance width): 6 Compared against the previous self-adaptive classifier, more 

fuzzy sets were assigned to Input 2 as the training data on stance width incorporates 

available values in a range of 3.2 to 6.9, rather than merely two normalised shoe widths 

from two subjects.  

• Shape (type) of MFs: “Bell, Trapezoid, Triangle, …” 

The shape of MFs of each input fuzzy set has been determined through the comparison of 

training results (Table 5.5) to figure out the most suitable conditions for the MDLS and 

ACLS model.  

• Output: constant “2” and “1”  

“2” and “1” represent Unintended and Intended STS movements, respectively. 

 

5.3.2 Training and testing results  

 

The training process of this self-adaptive classifier has incorporated 60 sets of data, which 

consist of 30 sets of movements generated by each of the two subjects, namely 10 Unintended 

and 20 Intended STS movements. The corresponding stance width of each movement has been 

computed using the data processing methods introduced before. A training method of LSE-BP 

was adopted. 

 

Table 5.5 Training results investigating the shape of MFs for both classifiers 

 
 

Shape of MF Trapezoid Triangle Gaussian Bell Trapezoid Triangle Gaussian Bell

TMR (%) 85.00 95.00 100.00 95.00 90.00 90.00 95.00 95.00

FMR (%) 2.50 5.00 2.50 2.50 2.50 5.00 2.50 2.50

411 497 991 605 347 611 760 742

6.5015.00

Training performance as per type of MF

ACLS classification MDLS classification

Self-adaptive classification for handling normalised Stance Width 

5.00 7.50 6.00

No. of epochs 

Average convergence

time           (Seconds)
9.30 13.80 14.50
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Figure 5.19 The convergence of training error (MSE) of the ACLS self-adaptive classifier on 2nd 

biomechanical adaptation 

 

The training of the ANN model has its convergence of MSE shown in Figure 5.19. The training 

reached its best performance at epoch 991, which signifies the end of convergence process as 

the performance was no longer improving.  

 

To test the trained ACLS and MDLS self-adaptive classifiers, another 60 sets of movements 

were allocated, including 10 Unintended and 20 Intended STS movements STS movements, 

generated by Subjects A and B, respectively. The test results of the trained ACLS classifier can 

be seen in Figure 5.20, where 2 out of 20 sets of all Unintended movements were classified as 

Intended while 1 out of 40 sets of all Intended STS movements was classified as Unintended. 

This caused a TMR of 90% and FMR of 2.5%, which forms the confusion matrix in Figure 

5.20. The confusion matrix of the 2nd biomechanical adaptation tested on MDLS classifier is 

presented in Figure 5.21.  
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90% 10%

2.5% 97.5%

Unintended Intended 

Classification         Results 

Unintended 

Intended 
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True Positive

True NegativeFalse Positive

False Negative

 

Figure 5.20 Confusion Matrix of self-adaptive ACLS classifier tested by two subjects along with their 

2nd biomechanical feature (60 sets of pure test data) 
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Figure 5.21 Confusion matrix of self-adaptive MDLS classifier tested by two subjects along with their 

2nd biomechanical feature (60 sets of pure test data) 

 

Comparing to those test results generated by the manually constructed fuzzy based classifiers, 

both 2nd feature ACLS and MDLS self-adaptive classifiers yielded better performance in terms 

of the respective TMR and FMR, referring to Table 5.6. For both ACLS and MDLS classifiers, 

it is interesting to see results generated by this self-adaptive classification with the 2nd 

biomechanical feature outperformed those with the 1st biomechanical feature.  
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Table 5.6 Test results generated by ACLS and MDLS classifiers 

 
 

5.4 Discussion 

 

As the self-adaptive classifier is as an enhancement of the manually defined fuzzy based 

classifier introduced in Chapter 4, those previously proposed criteria should be reviewed first.  

• FMR is the primary measure related to safety issues, which should be minimised as false 

matching will cause a potential hazard when an assist motion is provided to the user who 

has no intention to stand up and is not expecting to be pushed upwards.   

• TMR is the essential measure for the accuracy. This should be maximised as the aim of 

the self-adaptive classification is accurately recognise the intentions of the user, regardless 

of the variations in biomechanical features.  

• Variety in sample data (VD) is used to measure the robustness. In addition to the VD in 

captured LAT discussed in Chapter 4, VD also concerns the biomechanical features newly 

introduced: normalised shoe width and stance width. The high uncertainty level in the 

sample data implies the capabilities of handling the uncertainty in intention recognition.  

• Responding time of the classification (RT) reflects the time criterion set for intention 

recognition; STS movement classification must be completed at the end of the first 1.1 

seconds period.  

 

The first two measures, the FMR and the TMR, were considered together according to the four 

confusion matrices listed in Figures 5.15, 5.16, 5.20 and 5.21. As the test results indicated, the 

2nd adaptive classification has outperformed the 1st adaptive classification) in terms of both 

TMR and FMR, when applied to either ACLS or MDLS classifier. However, whether the 2nd 

adaptive classification is always superior to the 1st one is an open question. It is worth 

investigating whether there are circumstances where the 2nd adaptive classification generates 

incorrect results while the 1st biomechanical classification generates correct ones. From the 

results of the 1st adaptive classification applied on the ACLS classifiers, the erroneous 

Manul Fuzzy

Classification

Manul Fuzzy

Classification

Not applicable Shoe Width Stance Width Not applicable Shoe Width Stance Width

88.33 93.33 95.00 86.67 96.67 98.33

TMR (%) 95.00 85.00 90.00 95.00 90.00 95.00

FMR (%) 15.00 2.50 2.50 17.50 0.00 0.00

ACLS Classifier MDLS Classifier 

Overal Accuracy (%) 

Self-adaptive classification Self-adaptive Classification

Biomechanical Feature 



 

125 

classification outputs appeared at movements Nos. 12 and 44 (meant to be Unintended) and 

No. 10 (meant to be Intended), which contribute to a TMR of 90% and a FMR of 2.5%. When 

applying the 2nd adaptive classification on the ACLS classifiers, the test results show errors at 

movements Nos. 12 and 44 (meant to be Unintended), resulting in a TMR of 90%. This signifies 

that the misclassified movements generated by the 2nd adaptive classification would also be 

misclassified by the 1st adaptive classification. The same pattern was also observed when 

implementing both adaptations on the MDLS classifiers.  

 

Consequently, the possible explanation would be, that the 2nd biomechanical feature, rooted in 

the sitting postures when subjects perform STS movements, has greater influence on the 

extracted ACLS and MDLS values, albeit the degree of impact is difficult to prove 

mathematically, as previously stated. Therefore, the self-adaptive classification incorporating 

normalised stance width deserves higher priority than the one incorporating normalised shoe 

width.  

 

As explained before, when comparing the two self-adaptive classifications, it is crucial to have 

the test data with 1st inputs, the ACLS or MDLS values as well as the classification targets 

fixed. This primarily ensures the VD, which refers to the different ways in which COP shifts. 

As discussed in previous chapters, the VD in LS of COP is provided by subjects’ STS strategies, 

muscle activation patterns, and postures, and how they position their arms, upper torso, 

buttocks, ankles and feet. These factors are also interrelated because, for instance, different 

sitting postures will result in different STS strategies, which all contribute to a rich VD from 

one aspect.  

 

As to another of the VD, the biomechanical features incorporated by both classifications, shoe 

width and stance width, should be thoroughly analysed. As demonstrated in Section 5.2.2, the 

shoe widths of both subjects after normalisation have only two mean values simply because of 

the number of subjects, although the actual shoe width extracted from the footmat can be 

slightly different between movements performed by the same subject. Because of the limitation 

that confines this study, it has been difficult to employ more subjects willing to conduct the test. 

Although two subjects fulfilled the home-use scenarios, further subjects will certainly enrich 
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the variations in shoe widths, hence increasing the VD. In contrast, the stance width generated 

by both subjects has a much wider range [3.2, 6.9] and greater variations owning to the different 

postures adopted (Table 5.3) for the movements. The second facet of VD confirms the ability 

to adapt to a wide range of the targeted feature, in which the 2nd adaptive classification is 

superior to the 1st adaptive classification.  

 

When it comes to the RT, both self-adaptive classifications were characterised as time efficient 

and capable of handling different kinds of uncertainties. The processing times of the 1st 

adaptive classification applied to the ACLS and MDLS classifiers were recorded as 0.006 

seconds and 0.004 seconds, respectively. The processing times of the 2nd adaptive classification 

applied on the ACLS and MDLS classifiers were recorded as 0.01 seconds and 0.007 seconds, 

respectively. These are considered negligible compared to the 1.1 seconds of input data 

extraction.  

 

Therefore, all four performance measures ensure that under the current experimental setups 

and conditions, with the test data used so far, the 2nd adaptive classification applied to the 

MDLS classifier deserves more credibility over the other combinations, and hence was 

finalised as the most competent intention classifier. And in the sense of the first three 

performance measures and RT concerns, there is no need for integrating both self-adaptive 

classifications.  

 

5.5 Summary 

 

In this chapter, a new subject with completely different biomechanical features was introduced 

to fulfil the demand of the home-use scenario where one or two users can receive personalised 

STS aided by the robot chair. The previously defined fuzzy logic based intention recognition 

should be expanded to a multi-user scenario where subjects of completely different heights and 

sitting habits can be recognised during STS transfer. The self-adaptive classifications handling 

1st and 2nd biomechanical features were developed separately, incorporating both knowledge-

based fuzzy logic part and ANN part. The testing process using pure fresh data generated by 

Subjects A and B was then carried out. This ensured the self-adaptive classification trained with 



 

127 

existing (training) data will generalise so that it will be well-suitable for new test data involving 

different biomechanical features. The results generated by both adaptive classifications were 

also evaluated through the proposed measures of criteria. 

 

Applying this self-adaptive fuzzy system will encourage a multi-user scenario. Moreover, 

having adaptive fuzzy sets and corresponding MFs can advance the fuzzy logic based classifier 

to its maximum potential, especially when the same subject changes sitting postures to adapt 

to different environmental and physical conditions.   
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CHAPTER 6 NEURAL NETWORK BASED ASSISTANCE 

PREDICTION 

 

After the recognition of the user’s intention of standing up, a prediction on the GRF a couple 

of steps ahead will enable the robot chair to foresee the user’s needs for assistance. This 

prediction is also regarded as intent recognition. The predicted GRF can then be used to 

compare against the personalised ideal GRF indicating Successful STS as described in Section 

4.1. The difference between the two is proportional to the amount of assistance required to 

stand up. 

 

GRF contains both spatial information and temporal information, which are related to the 

trajectory (posture changes along with time) of the chair user during the later stages of the STS 

process. Therefore, the recorded GRF data are of the form of time series. This research 

developed artificial neural network (ANN) based predictor that undertake predictions based on 

the time series data. 

 

 

6.1 Background Knowledge on time series prediction 

 

Time series is widely known as a sequence of continuous data that includes information of 

historical values over a period of time. Time series forecasting refers to predicting the future 

value of a time series based upon previous historical records. This prediction can be challenging 

as time series data largely comprises of random noise in spite of the identifiable and predictable 

mainstream trends.  

 

Difficulties confronted in time series prediction due to its non-linear modelling because data is 

only formed through given observation. It is hard to presume any statistical distributions 

through this observation of the timely phenomenon. Therefore to tackle this prediction problem, 

possible predictor has to be self-adaptive without the exact mathematical model of the data 

instincts. Primarily, a briefing analysis on the observed series has to be conducted to explore 
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the underlying of how series are generated and evolved (Chatfield, 1996). Besides, 

understanding how time series are affected by other factors, if any, is of the same importance 

as the model itself.  

 

Traditional methods handling time series data are commonly recognised such as moving 

average (MA) as well as regression models (RG), like linear trend and exponential smoothing. 

These methods share similarities in terms of attempting to assume a constant model for the 

series solely based on statistical analysis. Variance of the error is separated into two parts, error 

when estimating the mean of series and error brought in by noise. The new estimate is the old 

estimate plus a proportion of the observed error. 

 

The selection of a forecasting method is a difficult but pre-requisite task that must be achieved 

on the basis of instincts of time series itself. This is commonly a trail-an-error process due to 

the intangible characteristics of data. Without a concrete understanding of model, it is hard to 

adequately fit the system because whether trend is driven by fundamental change or purely 

random noise is far from interpretable.  

  

Also, based on statistical principles, the most recent fitting errors have more impact on the 

predicted value. This explains the reason that for all these moving average and regression 

methods, accuracy will decrease dramatically with predictions into the future, which is the also 

known as prediction horizons due to the accumulation of random noise.   

 

6.2 Feed forward neural network and its regimes 

As the overwhelming advantage, ANN does not require time series model to be thoroughly 

interpreted. This offers ANN the capability of modelling highly non-linear systems with 

complexities beyond human expectations and mathematic estimations that exist in human 

behaviour, natural phenomena and financial time series. Using ANN to handle these temporal-

spatial data in order to predict future values is called neural network time series (NNTS). 
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ANNs, including feed forward neural networks (FFNNs) and recurrent neural networks 

(RNNs), have been widely used in time series prediction over decades. Figure 6.1 illustrates 

the basic scheme of FFNN used in NNTS. 

 

 

Figure 6.1 Schematic structure of FFNN for time series prediction 

 

Figure 6.1 illustrates a simplified structure of FFNN used in time series prediction. Firstly, time 

series data feed in the input layer in a manner of tapped delay. Data is then forward propagated 

into hidden layer. Hidden layer generates output 𝑦i, with i representing one of hidden layer 

neurons. Subsequently, data flow reaches output neuron j which accordingly delivers output 

𝑦𝑗, regarded as next time step predicted value 𝑦𝑗 from the viewpoint of time series prediction.  

 

Each neuron j contains a summation function and an activation function. The summation is a 

weighted sum of all the outputs generated by the previous layer and received by neuron j. 

Activation function is used for the sake of handling non-linear data, the greater magnitude of 

input (weighted sum) is, the closer activation is to 1. The output of a neuron can therefore be 

represented as, 

𝑦𝑗 = φ(∑ 𝑤ij ∙ 𝑦i
N
i=0 )            (6.1) 

where 𝜑  is the activation function of the neuron and ∑ wij ∙ 𝑦i
N
i=0   is the summation of 

weighted inputs that are the outputs of the neurons from the previous layer.  
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6.3 FFNN based GRF Prediction 

 

6.3.1 FFNN Structure  

 

As can be readily seen in Figure 4.2, the Successful GRF curves follow a similar pattern, with 

intuitive observations. The study on temporal GRF features a human autoregressive (AR) time 

series without exogenous input, focusing on trend rather than seasonal or cyclic as mainstream 

of components. This instinct nature offers the potential of reconstructing a particular STS 

pattern for the featured GRF curve using ANN, namely. All input data are sequences of 

consecutive discrete GRF points of measurement. 

 

This FFNN based predictor aims at foreseeing the oncoming GRF values and compare them 

with standard personalised curve obtained via continuous training. 

 

Figure 6.2 Structure outline of FFNN used to handle time series GRF data 

 

Based on the simplified scheme design, the FFNN model to predict the future values of GRF 

was structured in Figure 6.2. It can be seen the predicted output solely depends on the past 

values of the captured GRF within the duration of time delay. The BP training was conducted 

based on the error occurred in output layer, and back propagated to update the weights at hidden 

layer.  
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This FFNN has a 3-layer design, namely input layer, output layer and one hidden layer in 

between. Given the GRF being the only input and output feature of the FFNN, only one hidden 

layer was employed for its computational simplicity and fast response. FFNN with 1 hidden 

layer has been long employed as effective predictor by study on time series prediction, which 

can be seen from related work on FFNN incorporating one hidden layer for clinical prediction 

(Fogel et al, 1995; Colin, 2004; Mohktar, 2013) and foreign exchange rate prediction (Oancea 

and Clucu, 2014). Specifically, the input layer incorporates 4 neurons, the hidden layer employs 

20, and the output layer has 1 neuron, generating 1 predicted value for each time step after 

delays. The entire process that configured the structure is demonstrated below.  

 

Such structure of the FFNN was determined by manipulating the initial parameters, namely, 

the number of input neurons, representing time delays in NNTS, and the number of hidden 

neurons. GRF with time delays are the input of the network and the number of delays in 

addition to the GRF value at time t refers to the number of input neurons. When determining 

the steps of time delay, 1, 2, and 3 time delay steps were considered, respectively. The time 

delay, d, is not suitable to be set too long for the prediction of GRF. This is because the GRF 

captured at the beginning of STS movement, typically 0.4 seconds, implies the initiation event 

of STS for the elderly, suggested by (Kerr et al, 1997; Etnyre and Thomas, 2007). This implies 

that the robot chair should be able to figure out whether assistance is needed within the initial 

period of 0.4 seconds. If the chair failed to do so, the elderly users may have already stated to 

sit back.  

 

The number of hidden neurons greatly affects the performance of network, because the 

prediction result is the function of weighted sum of hidden layer outputs.  

 

The delay, d, reflected by the time intervals taken as the predictor’s inputs, and the number of 

hidden neurons, N, were purposefully varied to figure out the effect of both on prediction 

results. All responses of GRF time series generated by the FFNNs with different d and N are 

plotted below. This network response test is performed to select appropriate FFNN structure. 
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(a)      (b)     

 
(c)                            (d)      

Figure 6.3 Prediction and deviations against the captured actual GRF curve 

(a) d = 1, N = 5, (b) d = 1, N = 10, (c) d = 1, N = 20, (d) d = 1, N = 50 

 

 

(a)                                (b) 
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(c)                                 (d) 

Figure 6.4 Prediction and deviations against the captured actual GRF curve  

(a) d = 2, N = 5, (b) d = 2, N = 10, (c) d = 2, N = 20, (d) d = 2, N = 50 

 

 

(a)                               (b) 

 

                     (c)                               (d) 

Figure 6.5 Prediction and deviations against the captured actual GRF curve              

(a) d = 3, N = 5, (b) d = 3, N = 10, (c) d = 3, N = 20, (d) d = 3, N = 50 

 

From these comparative predictions, it can be clearly drawn that the FFNN predictor reached 

a good result when d = 3 and N = 20. The definition of delay d suggests the number of past 
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values (in the captured GRF time series) feeding into the developed FFNN. The network 

deploys 4 inputs, including the 3 input delays and the input point at time t, suggested by Figure 

6.2. The network with delay d=3 outperforms that with d=1 because the former plotted test 

results (network response) is closer to the actual curve of GRF data, yielding less deviations. 

The FFNNs with N = 10 or less provided poor results as the network structure might not be 

able to reflect the complexity of the GRF time series. Whilst the FFNN with 50 hidden layer 

neurons seem to over fit the system, despite the number of input delay time steps. In this case 

although some training and validation results are seemingly satisfying, the network with 

overfitting issues are difficult to generalise to new input data, resulting in poor predictions. 

However, network with delay d=3 outperforms that with d=1 because the former plotted test 

results (network response) is closer to the actual curve of GRF data, yielding less deviations. 

 

6.3.2 FFNN training  

 

The general procedure of the FFNN training can be summarised as:  

1. Randomise weights  

2. Predict value of oncoming time steps  

3. Compare the prediction results against targets  

4. Update the weights of hidden layer neurons (guided by the selected regularisation        

techniques) 

5. Iterations until the local minimum update of weights triggers the set criteria.  

 

However, overtraining could be incurred as network may be trained to be so well adequate for 

certain batch of training data but may not be able to generate satisfying prediction results for 

new test data. 

 

Therefore two regularisation techniques are investigated to mitigate overtraining and facilitate 

generalisation of the network, namely, early stopping (ES) and Bayesian regularisation (BR). 

Both training techniques belong to epoch-wise training, which resets the network state at the 

beginning of each epoch.  
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The algorithm with ES is Levenberg-Marquardt optimization. Often used in non-linear 

optimisation problems, the Levenberg-Marquardt (LM) algorithm can be viewed as a robust 

algorithm mixing the steepest descent method and the Gauss–Newton method. It incorporates 

the speed advantage of the Gauss–Newton algorithm and the stability of the steepest descent 

method (Levenberg, 1944; Marquardt; 1963 and Roweis, 1996).  

 

The basic concept of the LM algorithm is that it performs a combined training process (Roweis, 

1996): Around the area with complex curvature (on the error surface), the LM algorithm 

switches to the steepest descent algorithm, until the local curvature is proper to make a 

quadratic approximation; then it approximately becomes the Gauss–Newton algorithm, which 

can speed up the convergence significantly. The briefings on these algorithms are explained 

below.  

 

i).The gradient decent method  

The gradient decent method uses the first-order derivative of the overall error function to find 

the minima in error space. The gradient 𝒈 is defined as the first-order derivative of the overall 

error (Yu and Wilamowski, 2011):  

𝒈 = [
𝜕𝐸

𝜕𝑤1
 

𝜕𝐸

𝜕𝑤2
   ⋯ 

𝜕𝐸

𝜕𝑤𝑁
]
𝑇

      (6.2) 

When updating the weight with each iteration, the method function is presented as:  

𝒘𝒌 = 𝒘𝒌−𝟏 − 𝛼𝐠𝒌        (6.3) 

where 𝒘𝒌 is the weight vector at iteration k, α is the learning constant (step size).   

 

ii).The Gauss-Newton method  

The Gauss-Newton method assumes that all the gradient components 𝑔1, 𝑔2, ⋯ , 𝑔𝑁  are 

functions of weights and all weights are linearly independent. This method uses second-order 

derivations (with the help of Hessian matrix) to evaluate error surface (Hagen & Menhaj, 1994). 

It features fast convergence speed compared against the gradient decent method.   

 

Hessian is a square matrix of second-order partial derivatives of the overall error function, 

representing how error changes related to weight updates. With the second-order derivatives of 
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the overall error:  

𝐇 =

[
 
 
 
 

𝜕2𝐸

𝜕𝑤1
2 ⋯

𝜕2𝐸

𝜕𝑤1𝑤𝑁

⋮ ⋱ ⋮
𝜕2𝐸

𝜕𝑤𝑁𝑤1
⋯

𝜕2𝐸

𝜕𝑤𝑁
2 ]

 
 
 
 

      (6.4) 

where 𝑤1, ⋯ ,𝑤𝑁 represent the weights at nodes 1 ⋯N.  

Hessian matrix 𝐇 gives an evaluation of how weight changes (gradient) will affect gradient: 

𝒘𝒌 = 𝒘𝒌−𝟏 − 𝐇𝒌𝐠𝒌        (6.5) 

 

Under the assumptions given by Newton’s method (Hagen & Menhaj, 1994), Hessian matrix 

can be simplified as:  

𝐇 ≈ 𝑱𝑻𝑱          (6.6) 

where 𝑱 is defined as Jacobian matrix.  

 

The relationship between gradient 𝒈 and Jacobian matrix 𝑱 is represented as:  

𝒈 = 𝑱𝑇𝒆          (6.7) 

where 𝒆 is the overall (training) error vector, namely the difference between predicted value 

and target value.  

 

When combining the above three equations (6.3-5), the Gauss-Newton method can be 

represented as: 

𝒘𝒌 = 𝒘𝒌−𝟏 − [𝑱𝑻𝑱]−𝟏𝑱𝑻𝒆       (6.8) 

 

iii).The Levenberg-Marquardt algorithm 

LM algorithm presents an approximation of the Hessian matrix as following: 

𝐇 ≈ 𝑱𝑻𝑱 + 𝜇𝑰        (6.9) 

where 𝜇 is always positive, called combination coefficient, 𝑰 is the identity matrix. 

 

When applying such approximation to Equation (6.3) and (6.5),   

  𝒘𝒌 = 𝒘𝒌+𝟏 + [𝑱𝑻𝑱 +  𝜇𝑰]−𝟏𝑱𝑻𝒆          (6.10) 

where 𝒘𝒌 is the weight vector at iteration k, 𝒆 is the overall errors (in vector form) of the 

network, 𝜇 is known as LM’s damping (adjustment) factor and 𝑰 is the identity matrix. 
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The damping factor 𝜇 is adjusted in every iteration step, guiding the trend of generalisation. 

When the damping factor μ is very small (closing to zero), the above equation is approaching 

to the Gauss–Newton algorithm (6.8). When 𝜇 is taken as a large value, the LM equation 

approximates the gradient descent method Equation (6.3).   

 

In the ES, the performance of neural network training is primarily examined via a validation 

process in each epoch of training against Mean Squared Error (MSE), denoted as 𝐸𝑣𝑎 . 

Benefiting from its simplicity, MSE is qualified as an easy-to-use method to give an overall 

look of the system, without the need to account the scale of predicted values. Hence it was 

firstly checked to optimise the structure of FFNNs. The stopping criterion is  

𝐸𝑣𝑎(𝑘) > 𝐸𝑣𝑎(𝑘 − 1)       (6.11) 

 𝐸𝑣𝑎(𝑘 − 1) > 𝐸𝑣𝑎(𝑘 − 2)      (6.12) 

Equation (6.11) along with (6.12) stand for a criterion where two consecutive epochs have both 

generated the validation MSE (𝐸𝑣𝑎) that is greater than the 𝐸𝑣𝑎 of previous epoch. This means 

the network will not see the improvement on performance.  

 

If this criterion is not satisfying after a long training process, 3 other criteria were considered 

so that training will automatically complete with any of the followings fulfilled:  

• The set maximum number of epochs is reached  

• The maximum computation time is reached  

• The set minimum gradient is reached 

 

The training process was executed using batch mode, where weights and biases were updated 

only after all the training data was presented in each epoch. In each epoch, input data comprised 

20 Successful STS movements, to ensure sample quantity being 10 times greater than the 

Degree of Freedom (DOF) of feature to be statistically convincing. All of these 20 sets of GRF 

data were assigned with a separation rate of 2-to-1 for training and validation. This separation 

was randomised so that there did not exist a fixed training group with same GRF data feeding 

to the network. Each training epoch contains training and validation. The training was executed 

with batch mode, where weights and biases were updated only after all the training data was 
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presented in each epoch. Taking into account of limited data used for training (only 20 

Successful STS movements), “random sampling” was adopted when choosing training data 

from the pool of the 20 data sets. This mitigated potential problems caused by the particular 

same samples repeatedly used in training, as suggested by Witten & Frank (2005). Two-third 

of the 20 data sets were used as training data and for validation in each epoch. 

 

The validation in each epoch serves for two purposes. One is to check the network performance 

outside of training data and the other to avoid overtraining. Although the validation set of one 

epoch can contain data that were used in training in the previous epochs, implying not “purely 

independent” data used in the validation, it can argue that the random sampling adopted in this 

research served well for the second purpose. Figures 6.6 and 6.7 show the clear difference 

between 𝐸𝑡𝑟  and 𝐸𝑣𝑎 . 𝐸𝑣𝑎  did not decrease alongside 𝐸𝑡𝑟 , indicating the identification of 

overtraining. 

  

The construction and training of network, including the ES and BR generalisations, were 

implemented via Neural Network Toolbox provided by MATLAB 2014a. The training and 

validation errors, 𝐸𝑡𝑟 and 𝐸𝑣𝑎, of the network with d = 3 and N = 20 are shown in Figure 6.6 

in blue and in green, respectively. The training stopped at Epoch 8 because of 𝐸𝑣𝑎(8) >

𝐸𝑣𝑎(7) > 𝐸𝑣𝑎(6). The performance of the FFNN at Epoch 6 was then considered as the best 

before it started to be over trained. The weights obtained at this epoch were adopted.  
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Figure 6.6 FFNN (d = 3, N = 20) training performance validation with early stopping 

 

On the other hand, BR is also known as a suitable ANN generalisation technique for time series 

data within range of [-1, 1] (Foresee and Hagan, 1997). It brings the concept of mean squared 

weights (MSW) in BP and offers smaller and smoother weight updates (Narendra and 

Mukhopadhyay, 1997). In BR, the regularisation process is mathematically represented as:  

𝑅𝐸𝐺 = 𝛼 ∙ 𝑀𝑆𝐸 + 𝛽 ∙ 𝑀𝑆𝑊       (6.13) 

REG is denoted as regularisation function, where 𝛼 and β are arbitrary numbers, taking the 

values [0, 1] and the sum of both is 1. The two parameters are used to adjust the influence of 

mean squared error (MSE) and MSW. MSW is defined as:  

𝑀𝑆𝑊 =
1

𝑁
∑ (𝑤𝑖𝑗)

2
   𝑁

𝑖=1        (6.14) 

The combination of both regularisation parameters determines the trade-off between 

minimising MSE by penalising large weight updates, or vice versa (Mackay, 1992). Also note 

that the above equations contain acronyms adapted to this model. For the basic BP learning 

process, choosing a high learning rate can help speed up the training process, however, if the 

learning rate is set too high, the weights are not likely to converge. The training process of BR 

successfully solved this trade-off with Bayes’ rules applied in which the posterior distribution 

optimises both parameters, in which the appropriate priors are used to enable minimisation of 

weight updates. 
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Different from the basic gradient descent function (6.3) which only focuses on minimising 

MSE regardless whether the weight update is a local minima or a global one, the regularisation 

process takes the combination of MSE and MSW updates into account. It automatically 

optimises the minimisation process and reduces the overhead computational difficulties. This 

is superior to the conventional gradient descent method which can be trapped at local minima, 

hence resulting better generalisation. Consequently, this technique attempts to modestly update 

the weights, in the sense that the real underlying function is assumed to have a certain level of 

smoothness. This is regarded as the criterion of when BR needs to stop. Related work (Mackay, 

1996; Wang, 2007; Kelemen and Liang, 2008) suggests, BR commonly produces a well 

generalised ANN, resulting considerably higher training performance than ES.  

           

When training with BR regularisation, weight updates of the network follow LM algorithm, as 

shown in Equation (6.10). The stopping criteria are considered as signals to cease the training 

process: 

• The set maximum number of epochs is reached  

• The maximum computation time is reached  

• The desired performance has achieved  

• The set minimum gradient is reached 

• The set 𝜇 (LM’s damping factor) exceeds the predefined maximum value   

 

 

Figure 6.7 FFNN (d = 3, N = 20) training performance with Bayesian regularisation 
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Figure 6.7 depicts the training process which has ceased at Epoch 73 where the combination 

of MSE and MSW has reached its minimum value (refer to Equation (6.13)), signifying the 

convergence of the network.  

 

The FFNN of various initiations were thus compared in conjunction with both generalisation 

techniques, results of which can be seen in Table 6.1. In addition, Table 6.1 records the average 

convergence time as well as number of training iterations, computed with the same computer 

and operation system. When training the network with 2 generalisation techniques respectively, 

it was also noticed that the number of iterations required before reaching its expected standards 

reveals the computation time of training. And the training iterations are in accordance of the 

complexity of network, which can be manipulated with hidden neuron size and input delays. 

 

Table 6.1 Training results of ES and BR (compared in conjunction with) respect to various 

initialisations of FFNN 

 
 

Table 6.1 suggests under all network initialisations, BR has outperformed ES and it was 

adopted as the training method for the FFNN. 

 

6.3.3 Prediction results and discussion 

 

Three metrics (measures) were used to examine the performance of the FFNN with the 

optimised structure and trained by the generalisation technique in the sense of GRF prediction 

as follows:  

1. MSE is still recognised as the most popular performance metric to examine ANN 

structures and training results, regardless of the scale of units.  

2. Error autocorrelations depict the dependence of significant prediction errors 

(d)

Size (N) 5 10 20 50 5 10 20 50

1 1.5E-02 9.2E-03 7.5E-04 8.7E-03 2.6E-04 9.0E-13 1.3E-14 5.2E-13

2 5.2E-03 2.6E-04 6.5E-05 5.0E-04 7.6E-05 5.0E-13 2.7E-15 1.7E-14

3 7.9E-03 5.8E-05 3.7E-06 3.3E-04 7.6E-15 7.1E-15 2.9E-17 7.7E-15

9 11 12 11 180 273 322 331No. of epochs 

Training Performance (MSE)

Generalisation techniques

Early Stopping Bayesian Regularisation

Average convergence

time           (Seconds)
0.8 1.1 1.5 3.9

Number of Delays

12 19 70 480
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respecting to previous errors. It reflects the robustness of prediction because a credible 

prediction results should have errors fairly independent to the previous prediction errors. By 

significant, it is meant the error is above a pre-defined threshold, which is recognised as 

confidence limit. 

3. Regressions of prediction results are equally important as MSE in terms of judging 

the prediction outputs against the actual target GRF measurements.  

 

From Figure 6.8 it can be seen that the optimised FFNN generalised by BR has achieved 

satisfying prediction results respecting 3-fold test data, i.e. among the 30 sets of Successful 

STS data, 20 sets were used for training while the rest are used for testing. 

 

Figure 6.8 GRF prediction result to 3-fold test data achieved by the optimised FFNN after BR 

generalisation (a random test sample is presented) 

From Figure 6.8 it can be seen that the optimised FFNN generalised by BR has achieved 

satisfying prediction results respecting to pure test data. The greatest error along with time was 

captured as 6.1% body weight from the GRF prediction shown in Figure 6.8. An MSE of 

6.7 × 10−6 was recorded from the prediction results respecting to 3-fold data in the following 

diagram, which is noticeably higher than MSE generated by training results for the same FFNN. 

However such test result is acceptable when compared against the actual GRF curve in STS 

movements, hence considered as credible prediction results. The metric of MSE has been 

fulfilled regarding to 3-fold data. 

 

The autocorrelation of significant error at time t and errors that occurred at the adjacent time 
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steps with lag L in between signifies the robustness of the prediction. If the predictor is robust, 

a significant error should not be the consequent of the previous prediction errors at different 

lags.  

 

For the same GRF prediction value (variable), the autocorrelations between error at time t and 

the previous error with lag L, is given by Equation (6.15), where L is the lag between two 

variables in one time series, namely 𝐿 = ±1, ±2,±3⋯ time steps of the GRF.  

∅(𝐿) =
1

𝑇−2𝐿
∑ 𝑋𝑡 ∙ 𝑋𝑡−𝐿

𝑇−𝐿
𝐿       (6.15) 

This is derived from autocorrelation function (ACF) (Hartmann, 2014, p.133), with acronyms 

adapted to this model. T is the length of GRF time series, consists of 27 (30 − 𝑑, 𝑑 = 3) time 

steps. Note that with lag L=0 substituted in (6.15), ∅(0) = 𝑋𝑡
2, which is MSE of the predicted 

GRF because it indicates the errors occurred without lag, regardless of the scale of variables.  

 

With X replaced by 𝑦𝑡 − 𝑡𝑡, the prediction error at time t , such equation is modified as,  

∅(𝐿) =
1

𝑇−2𝐿
∑ (𝑦𝑡 − 𝑡𝑡) ∙ (𝑦𝑡−𝐿 − 𝑡𝑡−𝐿)

𝑇−𝐿
𝐿      (6.16) 

Based on Equation (6.16), the following error autocorrelation of the optimized FFNN’s 3 

prediction results is shown in Figure 6.9. The blue bars represent the autocorrelations and the 

red bands depict 95% confidence limit that is used to test whether the autocorrelation at lag L 

is significant.   

 

Figure 6.9 Autocorrelation of prediction errors when d = 3, N = 20 

 

Such plot of error autocorrelation is compared against those generated by FFNNs with varying 

delays, shown in Figure 6.10 and 6.11. This is investigated because error autocorrelation is 
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significantly affected by inappropriately assigned delay d.   

 

Figure 6.10 Autocorrelation of prediction errors when d = 1, N = 20 

 

Figure 6.11 Autocorrelation of prediction errors when d = 2, N = 20 

 

From this comparison, it can be readily seen that FFNN with input delay of 3 time steps is 

superior to others in the interest of resulting lower significant error autocorrelations with non-

zero lags. Also, the autocorrelations at non-zero lags shown in Figure 6.10 are not considered 

as significant because they both fell within the confidence bands. Hence the FFNN with 3 input 

time delays is proven to be robust. 

 

The regression test was also conducted to examine the relationships between the actual GRF 

of 3-fold data and its predicted values generated by trained networks. With this principle 

applied, ideally, a well converged network should generate prediction values with R 

approaching to 1. This regression correlation value R, is defined as  

𝑅2 ≡ 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
          (6. 17) 

of which 𝑆𝑆𝑡𝑜𝑡 represents the sum of squared target values while 𝑆𝑆𝑟𝑒𝑠, the sum of squared 

residual value, is computed as,  
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𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑦𝑡 − 𝑡𝑡)
2𝑇+1−𝑑

𝑡=1        (6. 18) 

 

 

Figure 6.12 The regression correlation between 3-fold test data and prediction results with FFNN 

generalised by BR 

 

The regression correlation of results regarding to 3-fold test data is plotted in Figure 6.12, with 

vertical axis and horizontal axis representing the prediction output and actual GRF value, 

respectively. The regression line, also known as best-fitting line, is shown as green solid line. 

The regression line is imposed based on the estimation that the predicted values and respecting 

targets values are linearly correlated. Because the prediction is only meaningful if this linear 

correlation exists: network responses are high when the actual GRF measurements are high, 

vice versa. And the coefficient R describes how credible is such an estimation. As when 𝑆𝑆𝑟𝑒𝑠 

is huge, the linear fit is expected to be poor.  

 

Ideally, a linear slop of 1 will be obtained when the predicted values show no error comparing 

against the actual values, indicating 𝑦𝑡 = 𝑡𝑡 throughout the entire period of prediction. This 

is depicted as dotted line in Figure 6.12. The green solid line stays reasonably close to dotted 

line, hence it suggests strong correlation between the tested prediction results and the actual 

GRF values of 3-fold data (R=0.99).  
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6.4 MSAP network 

6.4.1 Structure and training 

 

The significant amount of assistance is provided via seatpan lifting height of 50mm, proposed 

by (Moon, 2010) in a similar study. For the lifting mechanism to generate this required motion, 

a minimal extension of 70mm at the linear actuator has to be provided. Considering a chair 

user with BW of 85kg, the average time required to reach this minimal extension was recorded 

as 𝑇𝑎𝑐𝑡 at the nominal voltage.  

 

From Table 6.2, the minimum assistance could only be reached after 0.77 seconds since the 

initiation of actuating motion. This suggests the need for multiple steps ahead prediction 

(MSAP) and determines the minimum time steps required to be predicted ahead. 

 

Table 6.2  Actuator characteristics (experimentally obtained) 

 
 

This inspired the necessity to further enhance and evolve the FFNN to MSAP. The previous 

FFNN can be considered as an open loop network in the sense that data is only allowed to flow 

forward to generate the prediction value. However, the MSAP would need the prediction to 

feedback to the network for carrying on future prediction.  

 

There are three items need to concern when determining the number of steps ahead for 

prediction, that is, the prediction horizon of network (PH). First, PH should be greater than the 

minimum time required by the actuator to provide the desired assistive motion. This inequality 

can be represented such as 

𝑃𝐻 × 𝑇𝑠𝑡𝑒𝑝 > 𝑇𝑎𝑐𝑡       (6. 20) 

where 𝑇𝑎𝑐𝑡 is the minimum time interval required for the actuator to be able to complete the 

desired raising movement and 𝑇𝑠𝑡𝑒𝑝 stands for the time span of each time step, 0.1 seconds.  
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Second, the prediction must be done before the critical point. The critical point, denoted as 𝑇𝑐𝑟, 

is the time point at which the subject fell back to seatpan if the required assistance is not 

provided. This time point was figured out through examining Unsuccessful movements of the 

subject. From 30 Unsuccessful STS movements, the mean value of 𝑇𝑐𝑟 was obtained at 2.4 

seconds, from the initiation of movement, with standard deviation of 0.3 seconds. Figure 6.13 

shows the GRF curves of a selection of Unsuccessful STS movements from which the critical 

points are pointed out.  

 

 

Figure 6.13 Plot of selected Unsuccessful GRF curves to examine the critical point which indicates 

the instance of falling back to seatpan 

 

Therefore, this inequity is expressed as,  

(𝑃𝐻 + 𝑑𝑀𝑆𝐴𝑃) × 𝑇𝑠𝑡𝑒𝑝 < 𝑇𝑐𝑟 = 2.4     (6. 21) 

where 𝑑𝑀𝑆𝐴𝑃 is the number of input delays taken by MSAP network, which is chosen as 4 

through experimental optimisation, similar to the process with FFNN in Section 6.3 where the 

network responses with different delays were compared.    

 

Third, PH should be set as short as possible as to reduce the error. As Table 6.2 suggests, 

𝑇𝑎𝑐𝑡(70𝑚𝑚) = 0.77𝑠. Therefore the inequity for determining PH can be represented such as, 

𝑇𝑐𝑟

𝑇𝑠𝑡𝑒𝑝
− 𝑑𝑀𝑆𝐴𝑃 > 𝑃𝐻 >

𝑇𝑎𝑐𝑡

𝑇𝑠𝑡𝑒𝑝
      (6. 22) 

where 𝑑𝑀𝑆𝐴𝑃 is the number of input delays taken by MSAP network, which is later configured 
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through experimental optimisation as 4, through experimental optimisation, similar to the 

process with FFNN in Section 6.3. The verdict was proven by the fact the MASP network 

responses with different delays were compared. With the parameters substituted by the actual 

values, (6.22) can be rewritten as 20 > 𝑃𝐻 > 7.7. Thus the ideal value is chosen as 8.  

 

It can also be observed from Table 6.2 that the extension of linear actuator has shown non-

linear characteristics against the measured time. The non-linear factors are characterised by A) 

load at seatpan, in terms of subject’s BW subtracted by GRF, being highly non-linear; B) the 

geometric transfer from actuator extension to displacement of raising motion and C) lesser 

terms like back lashing of the actuator gearbox, the variations at power supply, etc.  

 

However, the relation between actuator extension and measured time can be approximated to 

a linear relation, which can be expressed as 1st order linearisation. 

𝑦𝑛 = 𝛽0 + 𝛽1𝑥𝑛        (6.23) 

where y represents the extension of actuator (in mm), x stands for the measured time (seconds) 

for the actuator to reach the desired position with subject seated on chair (as positive load). 𝑦𝑛̂ 

is the estimated value of y with linear model. 𝛽1 is the slope and 𝛽0 is known as y-intercept. 

Producing such linear estimation requires minimising the sum of the squares of errors (SSE), 

which is known as least squared error (LSE) method.  

SSE = ∑ (𝑦𝑛 − 𝛽0 + 𝛽1𝑥)2
𝑛       (6.24) 

𝛽1 =
∑ (𝑦𝑛−𝑦𝑛̅̅ ̅̅ )(𝑥𝑛−𝑥𝑛̅̅ ̅̅ )𝑛

∑ (𝑥𝑛−𝑥𝑛̅̅ ̅̅ )2𝑛
       (6.25) 

 

The coefficient R evaluates how well the linear estimation will fit the model (Im, 1996), which 

is calculated with Equation (6.17) applied, the 𝑆𝑆𝑟𝑒𝑠 and 𝑆𝑆𝑡𝑜𝑡 are  

𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑦𝑛 − 𝑦𝑛̂)2
𝑛         (6.26) 

𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑦𝑛 − 𝑦𝑛̅̅ ̅)2
𝑛         (6.27) 

 

Based on the regression with LSE method applied, the closest liner regression obtained to 

estimate the actuator characteristics has a 𝛽0  = −6 and 𝛽1 = 1.02. However, in reality the 

extension of actuator should be 0 at time step 0. As shown in Figure 6.14, such actuation time 

regarding to the displacement of raising motion can be simplified as a linear correlation (R= 
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0.998). 

 

 

Figure 6.14 Regression of Extension of actuator respecting to time steps required 

 

This linearised relation confirms the 8-step-ahead prediction valid at any time during the raising 

motion of seatpan, also considered as a proof of robustness of this MSAP model.  

 

The MSA prediction, in fact, is the process of repeating (chaining) one-step-ahead predictor 

with the previously predicted outputs 𝑦̂𝑡−𝑃𝐻+1, ⋯ , 𝑦̂𝑡−1, 𝑦̂𝑡 as inputs to predict the GRF value 

at (𝑡 + 1). 

 

There are 2 options of conducting MSAP. One is to use the prediction output at time 

(𝑡 − 𝑃𝐻 + 1),⋯ , (𝑡 − 1), 𝑡 yielded by 8, (𝑃𝐻 = 8) previously trained FFNN. This network 

can be recognised in a closed-loop form with 8 identical FFNN chained together.  However, 

as shown in Figure 6.18, the transformation between open loop network and closed loop 

network was undertaken directly as the prediction outputs were treated as inputs to predict the 

MSA values onwards. Hence the characteristics of FFNN would be inherited to MSAP, which 

means the error would be accumulated with the prediction into the future.  
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Figure 6.15 The schematic structure of MSAP using multi previously trained FFNNs (Option 1 is 

conducted without regulation process) 

 

In comparison, option 2 provides a regulation process that facilitates the generalisation of this 

MSAP network. It accounts the available GRF series within the period of PH as training data 

to mitigate the accumulation of prediction errors as prediction carried on to future steps, as 

presented in Figure 6.16.  
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Figure 6.16 The schematic structure of MSAP with available GRF sequence within the period of PH 

taken for the regulation process (Option 2) 

 

6.4.2 Discussion 

 

To examine the training and testing results of this MSAP network with the structure shown in 

Figure 6.15, six metrics (measures) were proposed. 

• Prediction accuracy is reviewed by MSE to validate the network performance. The error 

is calculated as each prediction point (that is 8 time steps ahead of the current time step) 

compared against its actual GRF value. This is primarily examined by MSEs of both 

training and testing results to give an overall assessment regardless of the scale of GRF 

values. In addition to MSE, the responses of MSAP on training and testing data were also 

investigated.   

• Error autocorrelation is a measure of criterion to confirm the robustness of MSAP on test 

data. As previously explained, this investigates whether the prediction errors generated by 

MSAP show great autocorrelations with errors yielded at different lags in between. 
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• Regression is also examined as it determines whether the prediction outputs generated 

strong correlations with the actual target GRF measurements. 

• Specifically for the MSA prediction, capability of prediction into the future is equally 

important as it enables the chair robot to proactively predicting the GRF value at multi step 

ahead, which was denoted as capable PH in this study.  

• Generalisation is considered to be another critical measure to investigate how this 

regularised MSAP model can adapt to unfamiliar data. This brings extra challenges to the 

MSAP by feeding completely unfamiliar test data - GRF series of Unsuccessful STS 

movements into the network.  

• Having a variety of data (VD) in the captured GRFs between each STS set gives credit to 

the generalisation of MSAP network from stochastic viewpoints. 

 

For the robot chair prototype, the prediction accuracy determines the deficit between chair 

user’s predicted GRF value and his/her personalised GRF value at instances where assistance 

is needed. Hence this guarantees the correct amount of assistance is provided to chair user in 

order to help him overcome STS difficulties. 

   

The 20 available Successful GRF data sets were split into 5-fold data with 16 and 4 sets being 

training and testing data, respectively. The training process of MSAP network was conducted 

using BR on 16 Successful GRF data sets, with best training MSE obtained as 2.32 × 10−4. 

Accordingly, a set of representative response on training data is plotted in Figure 6.17. The red 

dashed line represents the predicted output whereas the blue solid line is the actual target GRF 

curve. Because the first 10 time steps (from 0 to 1 second of the movement) merely contains 

the information of the early stages of STS process, namely, initiation as shown in Figure 4.1. 

It would be meaningless to use this portion of GRF series as the only input of the 8-step-ahead 

predictor. Therefore the response is only investigated on the GRF values predicted from 1.9 to 

3 seconds. As discussed in Section 6.3.1, this portion of series covers the region where subject 

would fell back without proper assistance provided.  
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Figure 6.17 The MSAP response on 5-fold training data 

 

Of the rest 4 Successful STS movements used for testing, one is randomly selected and plotted 

as Figure 6.18. It can be readily observed that the generated errors have enlarged comparing 

against the errors yielded in the training set. The corresponding MSE recorded from 5-fold 

testing data sees a drop to 1.9 × 10−3, compared against the training MSE of 2.3 × 10−4. 

 

 

 Figure 6.18 The MSAP response on 5-fold test data (MSE = 0.0019) 

 

The error autocorrelation of 5-fold test data is plotted as Figure 6.19. From the chart of error 

correlations it can be seen all non-zero errors are observed between the pre-defined thresholds 
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indicating significant errors, which is also recognised as confidence limit. This confirms all 

errors yielded by MSA prediction are independent to each other, hence contributes to the 

robustness of such prediction.  

 

 

Figure 6.19 Autocorrelation of prediction errors of 5-fold test data 

 

The corresponding regression of prediction test result is shown in Figure 6.20, with vertical 

and horizontal axis representing the MSA prediction outputs and actual GRF values, 

respectively. As discussed in Section 6.2.2, a slop of 1 indicates the ideal correlation between 

predicted values and actual GRF values. And the regression coefficient is obtained as 0.91, 

which proves high correlation between GRF values predicted 8 steps ahead and actual GRF 

values measured at the same instances.  
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Figure 6.20 Regression of MSA prediction on 5-fold test data 

 

As to the capable PH, the MSA prediction features an 8-step-ahead forecasting on future GRF 

values. This is greater than 𝑇𝑎𝑐𝑡 (time required by the actuator to generate the minimum level 

of assistance) so that the limitation on actuator side is mitigated. Otherwise chair user will still 

fell back to seated position at critical points without proper assistance applied. 

 

In addition to the above metrics that were used to assess the performance of network on 5-fold 

test data, the test on how MSAP performs on Unsuccessful data has also been carried out. This 

is essential because in reality the MSA predictor has to be able to deal with the scenarios where 

chair user struggles to generate enough GRF that close to his/her personalised one.  

 

Because of the numerous reasons discussed in Chapter 2 that lead to Unsuccessful STS, most 

of the Unsuccessful STS data sets feature inconsistent GRF pattern between each other. 

Therefor it would be unrealistic for the chair robot to learn from the Unsuccessful GRF curves. 

However, the MSAP of chair robot has to be eligible to determine the difference between the 

GRF values of 8-step-ahead and the personalised value at that instance.    
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Figure 6.21 The MSAP response on one set of Unsuccessful STS movement  

 

 

Figure 6.22 The MSAP response on another set of Unsuccessful STS movement  

 

Given the massive difference in GRF patterns of Unsuccessful and Successful STS movements, 

which MSAP network has been trained for, the errors of such unfamiliar test data appear more 

prominent than prediction errors of test Successful data. However, as Figure 6.21 and 6.22 

suggest, from 1.9 to 3 seconds, the predicted GRF values stay underneath the actual ones, which 

means the predictor is still able to observe and react to such deficit on GRF values (compared 

against the subject’s personalised GRF).  

 

Meanwhile, it is important to always have randomness in both kinds of testing data because 
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training process of ANN can be biased in a way that weight updates follow the GRF trends 

existing in training data only. The following VD factors will affect the actual measurement of 

GRF data: variations in BW of same subject, changes of physical conditions, randomness in 

seated positions like feet placement, arm positioning and deferent types of imbalance occurred 

in Unsuccessful STS movements.  

 

6.5 Summary 

 

This chapter presented the second stage GRF predictor by reviewing the advantage of NNTS 

handling time series over other conventional techniques in the beginning.    Based on this 

background, a FFNN with optimised structure was firstly developed for its simplicity. Such 

FFNN was generalised through comparative study on ES and BR, with the latter proved to be 

involving less overtraining issues. Three metrics were then established to examine the 

performance of this FFNN on test data.  

 

However, owning to the limitations on the actuator side, the appropriate amount of assistance 

can only be delivered after a period of 𝑇𝑎𝑐𝑡. In order to mitigate this, the ANN based predictor 

has advanced to a MSA predictor. Afterwards, both training and test results have been evaluated 

by the above stated performance metrics. In addition to this, the MSAP was also assessed from 

PH and VD viewpoints. More importantly, the network has undertaken challenges brought by 

Unsuccessful STS data sets, which is configured as completely unfamiliar test data for the 

MSAP. This means the MSAP is eligible to deal with all types of STS movements in reality, 

with Unintended movements being ruled out by the FIS based first stage classifier. Effectively 

implementing this MSA predictor paves the road for the smart chair to be able to assist the 

subject proactively and appropriately whenever he/she struggles during STS process.  

 

 

 



 

159 

CHAPTER 7 CONCLUSIONS AND FUTHER WORK 

 

This chapter presents a summary of how methodologies were implemented to achieve the main 

objectives proposed in the beginning of the thesis, followed by discussions on the limitations 

of the study, and then the further work is outlined for strengthening the way the robot chair 

provides “assistance as needed”.  

 

7.1 Research summary 

 

The main research achievements of this study to human robot interaction in the context of STS 

are in three folds, namely, intention recognition, self-adaptation and assistance prediction.  

 

i). Intention recognition 

The first stage classification described in Chapter 4 identifies human users’ intention of 

standing up through filtering out Unintended movements using the feasible features. In order 

to handle vagueness between intended movements and the Unintended ones, different fuzzy 

logic based approaches were developed and investigated. Fuzzy sets and their membership 

functions, and fuzzy rules and their truth degrees were determined based on experiments. The 

performance of the fuzzy logic based classifiers were compared using two types of test data 

fed in, 2-fold test data and pure test data generated from experimental results. This ensures the 

fuzzy based classifiers will work not only on the data used to determine the fuzzy membership 

functions, but also on the pure data generated for testing. Four crucial evaluation metrics were 

proposed to test the accuracy and robustness required by the STS intention recognition and, 

more important, safety to prevent false actuation of the lifting mechanism when the chair user 

does not hold a STS intention. 

 

ii). Self-adaptation 

The classifiers were then further advanced to suit a multi-user based scenario, where multiple 

subjects of significantly different physics are expected to receive personalised STS assistances. 

However, in STS movements, the most significant features reflecting the difference in 
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biomechanical features were configured as shoe width and (seated) stance width. Accordingly, 

two self-adaptive fuzzy classifications were developed with emphases on the above features. 

Compared against the fuzzy based classifier demonstrated in Chapter 5, the self-adaptive 

classification has its superiority in determining the fuzzy membership functions. This process 

is conducted by effective training instead of merely depending on experimental results and 

understanding towards the system. To validate the effectiveness of self-adaptive fuzzy 

classifications, both 1st and 2nd feature adaptation in either ACLS or MDLS classifier were 

examined, respectively. This generated four combinations, which were laterally compared 

using the proposed performance metrics. Eventually, the 2nd biomechanical feature adaptation 

applied to the MDLS classifier was proved to be more credible over the others. Moreover, 

having this adaptive feature helps advance the 1st stage classifier to its maximum potentials, 

especially when the same subject changes sitting postures to adapt to different environmental 

and physical conditions.  

 

iii). Assistance prediction  

To the provision of delivery the “assistance-as-needed”, the ANN based prediction on GRF 

time series data was developed. The determinants of the network structure were experimentally 

obtained. The corresponding training techniques were also optimised according to various 

performance metrics. BR was found to be more suitable for the network. It avoids overtraining 

and encourages network generalisation. Afterwards, to validate the prediction results, MSE, 

error autocorrelations and regressions were examined. The aim of obtaining the personalised 

capable STS curve was realised through effective training. The assistance predictor was then 

extended to perform MSA prediction, considering the imperfection of the actuator. The 

improved predictor is competent of forecasting a couple of steps ahead, according to the time 

required by the actuator to complete the assistive motion. Apart from the three performance 

metrics, generalisation of the MSAP network was examined by feeding completely unfamiliar 

test data - GRF series captured in Unsuccessful STS movements.  

 

It can be concluded that the above three folds, in conjunction with the development of chair 

structure as well as the sensing footmat, have encapsulated the main contributions, in regard to 
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the aim and objectives of this study.  

 

7.2 Thesis contributions and publications 

7.2.1 Research contributions  

 

The transferability of the above contributions towards other HRI researches is promising. The 

self-adaptive fuzzy based classifier can be adopted in human motion or posture recognitions 

with uncertainties introduced by 1). multiple users, 2). same subject at different physiological 

or environmental conditions. Through effective training, the self-adaptive classifier developed 

in this study successfully coped with the uncertainties that caused by different body types as 

well as sitting postures.  

 

The MSA assistance prediction developed in this research promotes an actuation compensatory 

mechanism that may be adopted by other studies on rehabilitation and exoskeleton applications. 

It takes the imperfection of the actuators into account where the amount of time required by 

the actuator to complete the desired motion is not negligible. However, this was ignored by 

some previous researches (e.g. Kiguchi & Hayashi 2012; Reza, 2014). The subject users’ 

features measured by sensory systems, such as force, orientation and posture, may have had 

changed by the time actuator completes its motion. Therefore, the prediction into the future 

needs to be carried out with how the subject responses to the actuation incorporated in the 

training process.  

 

The innovative parts of the study are summarised as below: 

• A comprehensive literature review has been conducted to understand the background 

of STS problems and the health implications confronted by the elderly. Related work on 

biomechanics of STS problems further explains the weakness in physiologic and 

psychologic that causing the problem. A summary on commercial assistive devices has 

verified the potential problems may incur that will be detrimental to the elderly. Meanwhile, 

in-depth review on chair-based experimental prototypes has proofed the possibility of  

developing a robot chair that is able to provide “assistive-as-needed”. Based on the above 

findings, two survey papers have been published (Conference: Lu et al, 2013 August) and 



 

162 

(Journal: Lu et al, 2013). Apart from the background acknowledgement, the former focuses 

on the experiment layouts and how did the related work tackle the STS problems in general. 

The published journal paper has an emphasis on chair-based sensing techniques with 

analysis on whether they are feasible in the robot chair scenario. A taxonomy of sensors 

has been presented and compared, which also sets bench markings for the robot chair when 

it comes to extracting important STS features.  

• In terms of hardware development, an innovative quad-pivot mechanism in Chapter 3 

provides tilting and lifting motions simultaneously through the seatpan. This not only 

reduces the number of actuators but also reduces the complexity of the control of the 

assistive motion. The developed sensing footmat combines the functionality of a force 

plate (Munro et al, 1998; Yamada & Demura, 2009; Jamwal et al, 2014) and complex 

sensing matrix (Tan et al, 2001; Yokota, 2009), referring to the related work demonstrated 

in Chapter 2. It is capable of measuring GRF as well as the pressure patterns, albeit a rather 

cost-effective solution compared against the one used by (Tan et al, 2001). The complexity 

of pressure patterns can be exploited to capture the lateral shift (LS) of COP in Chapter 

4 and derive shoe width (Section 5.2) as well as stance width (Section 5.3). The 

development of chair mechanics as well as sensing footmat is highlighted in the published 

paper (Lu and Li, 2014).  

• When developing the 1st stage STS classifier, efforts have been made to figure out essential 

features that bring possibility to intention recognition. Preliminary tests showed solely 

relying on GRF data would not distinguish the Unintended movements from Intended STS 

movements. Therefore LS was extracted to capture the change in COP over time that 

contributes to recognise the chair users’ STS intentions. The LS was applied to three fuzzy 

logic based classifiers in three configurations, point-wise LS, ACLS and MDLS, 

correspondingly. The fuzzy sets and membership functions were manually defined with 

regard to the experimental results, with the target features located in distinguishable 

regions for different STS intentions.  

• To achieve the multi-user self-adaptive classification, the system needs to react differently 

according to the chair users’ biomechanical features. However, due to the limited sensory 

configurations it was difficult to distinguish the users with different body types through 
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height or length of thighs, which are often captured by inferred camera or motion sensory 

in related work (e.g. Kamnik & Bajd, 2004; Randeniya et al, 2008; Taslim Reza, 2014). 

This research configured two feasible features that can be acquired by the sensing footmat, 

width of shoes and width of stance, as input data for the self-adaptive classifier. This 

facilitates the adaptations in the sense of handling the uncertainties introduced by different 

users. Afterwards, it was confirmed the width of stance has more significance of 

uncertainties over the other feature in the context of intention recognition for STS transfer. 

 

7.2.2 A list of publications  

 

Lu, H., Li, D., Oyekan, J., & Maple, C. (2013, August). A survey on assistive chair and related 

integrated sensing techniques. In Manipulation, Manufacturing and Measurement on the 

Nanoscale (3M-NANO), 2013 International Conference on (pp. 129-134). IEEE. 

 

Lu, H., Li, D., Oyekan, J., & Maple, C. (2013). Integrated Sensing Techniques for Assistive 

Chairs: A Survey towards Sit-to-Stand Problems. In International Journal of Intelligent 

Mechatronics and Robotics (IJIMR), 3(4), 58-70. 

 

Lu, H., & Li, D. (2014, July). The development of a smart chair to assist sit-to-stand 

transferring process. In Control (CONTROL), 2014 UKACC International Conference on (pp. 

714-719). IEEE. 

 

 

7.3 Limitations 

7.3.1 The limited capacity of the sensory data 

 

As demonstrated in Chapter 4, the random movements (changing postures, grasping objects) 

suggesting Unintended STS movements were only captured through the sensing footmat. 

Having a sensor fusion system will enhance the intention recognition (robustness) and provide 

more system redundancy. Because the shifting position of the upper HAT would be better 

perceived from the pressure sensor placed underneath the buttock. Besides, instead of solely 
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depending on the GRF readouts from the footmat, the force captured at the seatpan may add 

additional channels to the ANN predictor. The pressure sensor under the buttock can either be 

in flexible form or a forceplate. A sensing seatpan similar to the study conducted by (Tan et al, 

2001) can be developed when budget is not an issue. However, when using the forceplate, it is 

preferably to have at least two components, left and right, to capture the shift of COG of the 

subject.   

 

7.3.2 The quickness of actuation 

 

Although the linear actuator installed in the robot chair fulfils the requirements on system cost, 

feed force and stroke length, the feed velocity is rather slow. To attenuate this problem, efforts 

have been made when developing MSAP predictor in Chapter 6, where the predictor is capable 

of predicting several steps ahead. This can be seen as a compensatory mechanism because the 

less feed velocity the linear actuator is able to deliver, the more time steps are required to be 

predicted to the future.  

However, to the provision of “assistance-as-needed”, the actuation needs to keep up the 

quickness of STS motion. This is particularly important to the encouragement of functional 

regain as when the elderly user attempts to speed up STS motion, he/she could still expect to 

receive the assistance if it is required.   

 

7.4 Future extension 

 

7.4.1 3D Biomechanical model based chair design 

 

A 3D biomechanical model regarding actual STS movements is in demand, especially for those 

performed by elderly who struggle in STS transfers. Because of the lack of such 3D 

biomechanical models, the event times used in this study were statistical data. The actual STS 

model of elderly might be mitigating the need of point of assistance introduced in Chapter 6, 

where the point of failure was considered with related work and assumptions. Also, having a 

dynamic model of the elderly subject performing Unsuccessful STS movements will help better 

discover the actual need to fulfil the achievement of “assistance-as-needed”. As the elderly 
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often face lower limbs strength issues accompanied with postural control difficulties, with the 

relationship between the both very hard to simulate.  

  

A complete 3D biomechanical model for STS, the future work shall be more focusing on the 

range of assistive motion, which was determined merely from the related work and preliminary 

experiments (on actuation durations in different cases). Based on the robot chair configurations, 

a specific 3D biomechanical STS model targeting on physiologically weaker elderly will be 

established. This could be achieved by additional sensory channels, such as pressure sensors 

placed at seatpan and armrests. Meanwhile, vision system can be introduced at this stage to 

capture the entire body motion during the STS transfer. Compared to the STS data used in this 

study, a more realistic 3D could help better understand when the elderly users experience STS 

difficulties and how they response to the assistive motion.      

 

7.4.2 Enhancing classifications with multiple sensing channels  

 

The robot chair may be able to collect richer data about the users’ movement from other force/ 

pressure sensing channels to support the classification. The analysis of the data may lead to the 

discovery of new and more reliable patterns apart from the lateral shift of COP. The sensors 

include those placed on seatpan (cushion), seatback and armrests. The approaches with sensors 

imbedded in seatpan for a different purpose was presented by Tanimoto (1998), Tan, et al, 

(2001) and Yokota (2009), sensors on both seatpan and cushion can be seen in Forlizzi et al. 

(2005), Xu et al (2012) and Schrempf, et al (2011) for the modification of office chairs. 

 

7.4.3 Adaptive control with gain scheduling control scheme 

 

Since this research essentially focuses on the intention recognition and personalised GRF 

prediction, the development of effective autonomous control of the lifting mechanism needs to 

be carried out. Adaptive control with gain scheduling control scheme is considered as 

competent solution to the problem given the lack of access to both biomechanical and 

mathematic model towards the dynamics of STS transfers performed by different users. As an 

extension of the neural fuzzy hybrid system implemented in self-adaptive classifier developed 
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in Chapter 5, the biomechanical uncertainties brought by different users need to be handled. 

Moreover, the parameters of the dynamic model of the plant will change unpredictably in time. 

Because the assistive motion delivered by the actuator is not a transient process, which means 

how the chair user responses to the assistive motion will also affect the “assistance-as-needed”. 

As previously explained in Chapter 2, the related work conducted by Hussein et al (2014), 

ANFIS-PID applied FES control, offered possibilities of realising this problem. The work has 

successfully controlled the FES parameters using knee trajectories as input measurements, 

which incorporates high level of uncertainties and environmental complexity.           

 

A possible hybrid control scheme could be: once the STS intention is confirmed, the gain 

scheduling serves the function as a coarse controller, which assigns the lifting motion when the 

deficits between the measured STS features and the desired ones are significant. This is 

performed in open-loop form as the effective of the coarse control is not measured and feedback. 

Afterwards, adaptive ANFIS control takes over the fine-tuning control dealing with the 

dynamic variations introduced by i). actuator characteristics under various circumstances, ii). 

different postures, physiological conditions of the same user, and iii). differences in 

biomechanical features given by multiple users. Thus further research will be needed to 

establish the desired relationship between environment measurements (extractable STS 

performance features) and controller parameters. In addition to the studied GRF values, the 

longitudinal shift of COP could also be used as inputs for this adaptive control with gain 

scheduling control scheme. 

 

7.4.4 More accurate GRF prediction with deep learning 

 

Further research will be needed to incorporate deep learning in the GRF prediction. Deep 

learning is multi-layers ANN based. Each layer extracts features from the output of the previous 

layer. But features produced at one layer are more generic than the ones of the previous layer. 

In the developed ANN-based predictor, one hidden layer was employed to deal with the time 

series of GRF data. The prediction is not perfect when the subject uses a significantly different 

pace at the seat-off event. This is also known as time temporal distortions, where the segments 

of time series are shifted in time scale. It might be worth to try multi-layer ANNs to train each 
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layer separately with unsupervised learning and then the entire network with supervised 

learning, which is also called fine-tuning in deep learning. With deep learning, the ANNs can 

also create training data on their own. This might be a solution to the confined capability of 

sensory device and the limitation of insufficient data from subjects in regard to STS movements.  

  

7.4.5 Embedded system implementation 

 

An embedded system will also be proposed with the help of Printed circuit board. Instead of 

having a PC aside that computes intention recognition and assistance prediction, the work will 

be generated within the robot chair assembly. The complete HRI is going to be executed by a 

PCB that integrated in the robot chair for a compact design. However, the computational speed, 

especially for the training process in the self-adaptive classifier, needs to improve.  

 

One step further, the logged data that implies the usage of lower limbs motor functions shall 

be collected as clinical data. This may be achieved in either offline or online manners to keep 

the health advisor updated. For instance, if a degeneration in STS performance (reduced GRF 

or STS speed) was perceived, it needs to be verified to what significant level it could be 

concluded as a functional decline or influence to the upcoming STS transfers.   
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