311 research outputs found

    A decision support framework for the discrimination of children with controlled epilepsy based on EEG analysis

    Get PDF
    This work was supported in part by the EC-IST project Biopattern, contract no: 508803, by the EC ICT project TUMOR, contract no: 247754, by the University of Malta grant LBA-73-695, by an internal grant from the Technical University of Crete, ELKE# 80037 and by the Academy of Finland, project nos: 113572, 118355, 134767 and 213462.Background: In this work we consider hidden signs (biomarkers) in ongoing EEG activity expressing epileptic tendency, for otherwise normal brain operation. More specifically, this study considers children with controlled epilepsy where only a few seizures without complications were noted before starting medication and who showed no clinical or electrophysiological signs of brain dysfunction. We compare EEG recordings from controlled epileptic children with age-matched control children under two different operations, an eyes closed rest condition and a mathematical task. The aim of this study is to develop reliable techniques for the extraction of biomarkers from EEG that indicate the presence of minor neurophysiological signs in cases where no clinical or significant EEG abnormalities are observed. Methods: We compare two different approaches for localizing activity differences and retrieving relevant information for classifying the two groups. The first approach focuses on power spectrum analysis whereas the second approach analyzes the functional coupling of cortical assemblies using linear synchronization techniques. Results: Differences could be detected during the control (rest) task, but not on the more demanding mathematical task. The spectral markers provide better diagnostic ability than their synchronization counterparts, even though a combination (or fusion) of both is needed for efficient classification of subjects. Conclusions: Based on these differences, the study proposes concrete biomarkers that can be used in a decision support system for clinical validation. Fusion of selected biomarkers in the Theta and Alpha bands resulted in an increase of the classification score up to 80% during the rest condition. No significant discrimination was achieved during the performance of a mathematical subtraction task.peer-reviewe

    Neurotechnology and Psychiatric Biomarkers

    Get PDF

    Residual Deficits Observed In Athletes Following Concussion: Combined Eeg And Cognitive Study

    Get PDF
    The neurocognitive sequelae of a sport-related concussion and its management are poorly defined. Emerging evidence suggests that the residual deficits can persist one year or more following a brain injury. Detecting and quantifying the residual deficits are vital in making a decision about the treatment plan and may prevent further damage. For example, improper return to play (RTP) decisions in sports such as football have proven to be associated with the further chance of recurring injury, long-term neurophysiological impairments, and worsening of brain functional activity. The reliability of traditional cognitive assessment tools is debatable, and thus attention has turned to assessments based on electroencephalogram (EEG) to evaluate subtle post-concussive alterations. In this study, we calculated neurocognitive deficits in two different datasets. One dataset contains a combination of EEG analysis with three standard post-concussive assessment tools. The data for this dataset were collected for all testing modalities from 21 adolescent athletes (seven concussive and fourteen healthy) in three different trials. Another dataset contains post-concussion eyes closed EEG signal for twenty concussed and twenty age-matched controls. For EEG assessment, along with linear frequency-based features, we introduced a set of time-frequency and nonlinear features for the first time to explore post-concussive deficits. In conjunction with traditional frequency band analysis, we also presented a new individual frequency based approach for EEG assessment. A set of linear, time-frequency and nonlinear EEG markers were found to be significantly different in the concussed group compared to their matched peers in the healthy group. Although EEG analysis exhibited discrepancies, none of the cognitive assessment resulted in significant deficits. Therefore, the evidence from the study highlight that our proposed EEG analysis and markers are more efficient at deciphering post-concussion residual neurocognitive deficits and thus has a potential clinical utility of proper concussion assessment and management. Moreover, a number of studies have clearly demonstrated the feasibility of supervised and unsupervised pattern recognition algorithms to classify patients with various health-related issues. Inspired by these studies, we hypothesized that a set of robust features would accurately differentiate concussed athletes from control athletes. To verify it, features such as power spectral, statistical, wavelet, and other nonlinear features were extracted from the EEG signal and were used as an input to various classification algorithms to classify the concussed individuals. Various techniques were applied to classify control and concussed athletes and the performance of the classifiers was compared to ensure the best accuracy. Finally, an automated approach based on meaningful feature detection and efficient classification algorithm were presented to systematically identify concussed athletes from healthy controls with a reasonable accuracy. Thus, the study provides sufficient evidence that the proposed analysis is useful in evaluating the post-concussion deficits and may be incorporated into clinical assessments for a standard evaluation of athletes after a concussion

    Accurate detection of spontaneous seizures using a generalized linear model with external validation

    Get PDF
    Objective Seizure detection is a major facet of electroencephalography (EEG) analysis in neurocritical care, epilepsy diagnosis and management, and the instantiation of novel therapies such as closed-loop stimulation or optogenetic control of seizures. It is also of increased importance in high-throughput, robust, and reproducible pre-clinical research. However, seizure detectors are not widely relied upon in either clinical or research settings due to limited validation. In this study, we create a high-performance seizure-detection approach, validated in multiple data sets, with the intention that such a system could be available to users for multiple purposes. Methods We introduce a generalized linear model trained on 141 EEG signal features for classification of seizures in continuous EEG for two data sets. In the first (Focal Epilepsy) data set consisting of 16 rats with focal epilepsy, we collected 1012 spontaneous seizures over 3 months of 24/7 recording. We trained a generalized linear model on the 141 features representing 20 feature classes, including univariate and multivariate, linear and nonlinear, time, and frequency domains. We tested performance on multiple hold-out test data sets. We then used the trained model in a second (Multifocal Epilepsy) data set consisting of 96 rats with 2883 spontaneous multifocal seizures. Results From the Focal Epilepsy data set, we built a pooled classifier with an Area Under the Receiver Operating Characteristic (AUROC) of 0.995 and leave-one-out classifiers with an AUROC of 0.962. We validated our method within the independently constructed Multifocal Epilepsy data set, resulting in a pooled AUROC of 0.963. We separately validated a model trained exclusively on the Focal Epilepsy data set and tested on the held-out Multifocal Epilepsy data set with an AUROC of 0.890. Latency to detection was under 5 seconds for over 80% of seizures and under 12 seconds for over 99% of seizures. Significance This method achieves the highest performance published for seizure detection on multiple independent data sets. This method of seizure detection can be applied to automated EEG analysis pipelines as well as closed loop interventional approaches, and can be especially useful in the setting of research using animals in which there is an increased need for standardization and high-throughput analysis of large number of seizures

    Graph analysis of functional brain networks: practical issues in translational neuroscience

    Full text link
    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires a know-how of all the methodological steps of the processing pipeline that manipulates the input brain signals and extract the functional network properties. On the other hand, a knowledge of the neural phenomenon under study is required to perform physiological-relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes

    Informatics for EEG biomarker discovery in clinical neuroscience

    Get PDF
    Neurological and developmental disorders (NDDs) impose an enormous burden of disease on children throughout the world. Two of the most common are autism spectrum disorder (ASD) and epilepsy. ASD has recently been estimated to affect 1 in 68 children, making it the most common neurodevelopmental disorder in children. Epilepsy is also a spectrum disorder that follows a developmental trajectory, with an estimated prevalence of 1%, nearly as common as autism. ASD and epilepsy co-occur in approximately 30% of individuals with a primary diagnosis of either disorder. Although considered to be different disorders, the relatively high comorbidity suggests the possibility of common neuropathological mechanisms. Early interventions for NDDs lead to better long-term outcomes. But early intervention is predicated on early detection. Behavioral measures have thus far proven ineffective in detecting autism before about 18 months of age, in part because the behavioral repertoire of infants is so limited. Similarly, no methods for detecting emerging epilepsy before seizures begin are currently known. Because atypical brain development is likely to precede overt behavioral manifestations by months or even years, a critical developmental window for early intervention may be opened by the discovery of brain based biomarkers. Analysis of brain activity with EEG may be under-utilized for clinical applications, especially for neurodevelopment. The hypothesis investigated in this dissertation is that new methods of nonlinear signal analysis, together with methods from biomedical informatics, can extract information from EEG data that enables detection of atypical neurodevelopment. This is tested using data collected at Boston Children’s Hospital. Several results are presented. First, infants with a family history of ASD were found to have EEG features that may enable autism to be detected as early as 9 months. Second, significant EEG-based differences were found between children with absence epilepsy, ASD and control groups using short 30-second EEG segments. Comparison of control groups using different EEG equipment supported the claim that EEG features could be computed that were independent of equipment and lab conditions. Finally, the potential for this technology to help meet the clinical need for neurodevelopmental screening and monitoring in low-income regions of the world is discussed
    corecore