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“And this is what all concerned with global mental health must work to advance. The 
moral failure of humanity in the past does not mean we must tolerate this failure any 
longer.” 

- Arthur Kleinman (2009). Global mental health: a failure of humanity. Lancet 374, 603-
604. 

 
"Despite the great attention western countries pay to the mind and human consciousness 
in philosophy and the arts, disturbances of mental health remain not only neglected but 
also deeply stigmatised across our societies." 

- Sartorius, N. (2007). Stigma and mental health. Lancet 370, 810-811. 

 

“A key problem is that mental health services in developing nations imitate those in the 
West, where specialists in clinics or hospitals treat patients. This works well when there 
are enough specialists, and importantly, enough hospitals. When both are in short supply, 
more innovative thinking is needed.” 

- Vikram Patel, Mental health in the developing world: time for innovative thinking, 2010 
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ABSTRACT 

 Neurological and developmental disorders (NDDs) impose an enormous burden 

of disease on children throughout the world. Two of the most common are autism 

spectrum disorder (ASD) and epilepsy. ASD has recently been estimated to affect 1 in 68 

children, making it the most common neurodevelopmental disorder in children. Epilepsy 

is also a spectrum disorder that follows a developmental trajectory, with an estimated 

prevalence of 1%, nearly as common as autism. ASD and epilepsy co-occur in 

approximately 30% of individuals with a primary diagnosis of either disorder. Although 

considered to be different disorders, the relatively high comorbidity suggests the 

possibility of common neuropathological mechanisms.  

Early interventions for NDDs lead to better long-term outcomes. But early intervention is 

predicated on early detection. Behavioral measures have thus far proven ineffective in 

detecting autism before about 18 months of age, in part because the behavioral repertoire 

of infants is so limited. Similarly, no methods for detecting emerging epilepsy before 

seizures begin are currently known. Because atypical brain development is likely to 

precede overt behavioral manifestations by months or even years, a critical 
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developmental window for early intervention may be opened by the discovery of brain 

based biomarkers.  

Analysis of brain activity with EEG may be under-utilized for clinical applications, 

especially for neurodevelopment. The hypothesis investigated in this dissertation is that 

new methods of nonlinear signal analysis, together with methods from biomedical 

informatics, can extract information from EEG data that enables detection of atypical 

neurodevelopment.  This is tested using data collected at Boston Children’s Hospital. 

Several results are presented. First, infants with a family history of ASD were found to 

have EEG features that may enable autism to be detected as early as 9 months. Second, 

significant EEG-based differences were found between children with absence epilepsy, 

ASD and control groups using short 30-second EEG segments.  Comparison of control 

groups using different EEG equipment supported the claim that EEG features could be 

computed that were independent of equipment and lab conditions. Finally, the potential 

for this technology to help meet the clinical need for neurodevelopmental screening and 

monitoring in low-income regions of the world is discussed. 
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PREFACE 

The pace of discovery in several fields relevant to the science of brain-behavior 

relationships continues at a remarkable pace. Integration of these discoveries for the 

purpose of finding early biomarkers for deviations from typical developmental 

trajectories offers the promise of new clinically useful assessment tools for 

neuropsychology. Among these advances is a deeper understanding of the brain as a 

complex adaptive system, composed of multiple interacting circuits, and how this 

perspective informs our understanding of the neural correlates of behavior. New 

computational methods derived from complex systems theory are available for 

mathematically interpreting electrophysical time series to find key information about 

brain function. It is becoming increasingly apparent that changes in the brain precede 

observable behavioral correlates by weeks, months or perhaps even years. These new 

methods for analyzing functional brain data from electroencephalography (EEG) can now 

be tested for clinical value. Discovery of brain-based EEG biomarkers of 

neurodevelopmental disorders, including autism and epilepsy, among many other 

neuropsychiatric injuries and disorders that follow a developmental trajectory, may open 

a window of opportunity for intervention that does not exist if diagnosis is based purely 

on behavioral measures.  

This dissertation presents an approach to understanding brain electrophysiology 

based on complex systems theory together with time series analysis methods for 

computing relevant properties of brain system parameters. An important component of 

this methodology involves the use of modern machine learning tools, so-called “big data 
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analytics” to find the subtle and complex mappings from EEG-derived quantitative neural 

function to observed behavioral assessments. With the emerging role of Electronic Health 

Records (EHRs) and biomedical informatics methods for integrating electronic medical 

data into actionable forms for clinical decision support, the methodology described herein 

may provide a way to incorporate clinical neuropsychology into more general integrated 

healthcare that includes brain and mental function on an equal par with “organic” medical 

conditions. More specifically, the brain-derived quantitative biomarkers presented in this 

dissertation are mapped to clinical diagnoses to demonstrate potential diagnostic or risk-

assessment usefulness for early detection of autism and epilepsy. 
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BIOMARKERS FOR NEURODEVELOPMENTAL DISORDERS  

Clinical Neuroscience and Biomarkers 

The study of brain – behavior relationships was born from efforts to correlate 

carefully controlled behavioral observations to specific brain regions (Barr, 2008). Early 

ideas about simple correlations between brain regions and behaviors have given way to 

more refined and complex ideas that involve brain circuits (see, for example, (Bradshaw, 

2001)). The fundamental notion that changes in behavior, whether caused by normal 

development or pathological disease or injury, must correlate to well defined changes in 

the brain is a necessary axiom for clinical neuroscience. When we observe cognitive, 

emotional or motor changes in behavior, it is the brain that has changed in some way, not 

the gall bladder or kidneys. Even though the new approach to classification of mental 

disorders contained in the Research Domain Criteria or RDoC program that the U.S. 

National Institute of Mental Health (NIMH) has been developing emphasizes genetics 

and neuroimaging (Insel, 2014b), it is based on the same basic axiom: how can observed 

or assessed behaviors be correlated to brain function. The clinical goal is to devise ways 

to use easily obtained brain measurements to detect disease or injury and predict 

behavioral outcomes. 

Biomarker discovery in neuropsychiatry is concerned with finding objective 

physiological measurements that are highly correlated with the presence of mental or 

neurological disorders or with specific neuropsychological constructs. However, the role 

of information processing methods for extracting relevant information is easily 
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overlooked. Traditionally, linear statistical methods have been used to analyze clinical 

data. New methods for finding information in data, including data mining, pattern 

recognition and longitudinal trajectory modeling algorithms, have grown rapidly in just 

the past decade. The easy availability of almost limitless computing power in desktop 

computers, together with access to enormous data resources through the Internet, have 

spurred growth in the application to data analytics to many fields of application in 

business, science, economics and engineering. In this dissertation, advanced 

computational methods are applied to a rather old source of functional brain information, 

the electroencephalogram. Digital time series measurements of “brainwaves” can be 

analyzed with relatively new methods for extracting information from time series. These 

methods have been largely developed in the mathematical physics community for 

analyzing complex physical systems. But mapping these complex quantities to behavioral 

constructs or classes of neuropsychiatric disorders is not easily done without the use of 

recent and advanced machine or statistical learning algorithms. These two steps are 

demonstrated in the following chapters. 

The mind is an ever-changing pattern of electromagnetic fields, sustained and 

supported by a biological substrate of neural networks. Brain-behavior relationships, 

therefore, might reasonably look to the electromagnetic fields supported by the brain and 

attempt to correlate their relationship to behavior. The challenge with correlating brain 

electrical activity to behavioral is largely concerned how to quantify electrical fields 

measured at the scalp surface. Even if one accepts the thesis that the mind is most 

fundamentally an electrical phenomenon, electrical fields can only be described by 
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relatively abstract mathematics. Humans can readily picture the meaning of “Broca’s 

area” or the hippocampus, because these are found in well-defined spatial locations in the 

brain. An electromagnetic field that is changing over time is not so easy to picture, yet it 

may contain useful information about how a particular brain region is functioning. The 

mathematics that describes the changing electrical fields of the brain is a relatively new 

branch of physics that goes by several names, including dynamical systems theory, 

complex systems or chaos theory. Fortunately, new statistical algorithms have also 

become available for mapping abstract mathematical quantities to observations.  

Clinical neuroscience may be defined as the application of principles from 

cognitive and behavioral neuroscience to the clinical practice of neurology, psychiatry 

and neuropsychology. It is dependent to some extent upon the technology available for 

measuring and analyzing brain function. If the focus of clinical neuroscience is clinical 

application, then the tools and methods used must be appropriate for clinical use. Thus, 

tools used in research laboratories for studying brain function may not be appropriate for 

use in clinical settings for a number of reasons, including cost, safety and ease of use. 

This is an important point that is easily overlooked in neuroscience research: the needs of 

the laboratory scientist may be different from the clinician.   

New and improving methods for functional measurement of brain activity 

together with ubiquitous mobile access to the global Internet are creating tremendous 

opportunities for studying brain-behavior relationships over developmental trajectories. 

Low cost, medical-grade quality wireless EEG devices are now available. The discovery 



	

	

4	

of new methods for utilizing EEG as a clinical tool in neuropsychology may enable new 

approaches to monitoring functional brain development through the lifespan.  

Neurodevelopmental Disorders  

Technology for inexpensively and easily measuring brain function through the 

lifespan in a clinical setting has only recently advanced to the point where it is feasible to 

consider using in primary care settings. Measurements of brain electrical activity with 

EEG have long been a valuable source of information for neuroscience research, yet this 

rich resource may be under-utilized for clinical applications in neurology and psychiatry 

(Niedermeyer and Lopes da Silva, 2005).  The relatively good temporal resolution and 

direct measurement of potentials produced by neural activity that EEG offers, enables 

nonlinear time series analysis tools to be used to estimate complex neural network 

topological differences. Moreover, as will be discussed in much greater detail throughout 

this dissertation, new methods for analyzing EEG signals, derived from complex systems 

theory and computational methods, are revealing a tremendous amount of information in 

EEG signals that has been overlooked. All other functional brain imaging modalities 

suffer from severe limitations as clinical support tools. Magnetoencephalography (MEG) 

measures essentially the same brain physics as EEG, but is much more expensive and 

difficult to use with infants, children, or people with certain medical or psychological 

conditions, making it much less attractive as a potential clinical screening tool. 

Functional magnetic resonance imaging (fMRI) measures metabolic response via blood 

oxygenation levels in neural regions with a time resolution on the order of seconds, with 
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much finer spatial resolution. fMRI has superior spatial resolution than EEG and can be 

useful for localizing EEG sources (Lachaux et al., 2007). However, as a routine screening 

tool, fMRI suffers from the same drawbacks as MEG. Near infrared spectroscopy (NIRS) 

is an emerging imaging brain imaging method that measures blood oxygenation levels as 

does fMRI, but is inexpensive, safe and easy to use. NIRS images to about 2 cm below 

the skull, so lacks the depth and comprehensive fine spatial resolution of fMRI. Like 

fMRI, the temporal response of NIRS is quite slow, on the order of seconds. This is not a 

limitation of the device, but a reflection of the fundamental physiology that is being 

measured. Neural blood oxygenation does not change as quickly as the neurons 

themselves. For estimates long-range connectivity, diffusion tensor imaging (DTI) is an 

important tool, but again has severe drawbacks as a clinical screening tool. Between-

sensor generalized synchronization calculations with EEG data may enable equivalent 

cortical information to be estimated (Mizuhara et al., 2005).  

Because there is a growing commercial market for EEG devices, even outside of 

healthcare, it is likely that less expensive and higher quality devices will continue to 

become available. Leveraging these advances for diagnosis requires novel algorithms to 

interpret measured electrical activity as the signals produced by an evolved complex 

dynamical neural network. The potential of neuroelectronics to transform the 

measurement of brain structure through the analysis of electrical activity may enable 

methods to unlock the brain’s remarkable plasticity to affect personalized neurological 

therapy, much the same way genomics and bioinformatics are beginning to unlock the 

potential of personalized medicine in the realm of cell biology. Utilizing EEG as a 
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routine clinical tool in primary care opens up the possibility of objectively measuring and 

monitoring brain activity over developmental periods. This will require electronic records 

to store the data and computational methods for comparing patterns in the EEG data that 

are relevant or significantly correlated with behavioral changes that are of clinical or 

developmental interest. 

In this dissertation, we present evidence that patterns of electrical activity 

measured by EEG devices contain information that can detect the presence of 

neurocognitive dysfunction in children.  The approach presented begins with a complex 

system paradigm that defines the relevant parameters that can be computed to serve as 

potential biomarkers. Relatively new nonlinear methods for analyzing time series data are 

presented and described in some detail. We present a theory of the brain as a complex 

dynamical system and argue that complex system parameters may be relevant to 

behavioral phenotypes. Nonlinear algorithms provide the methods for computing the 

complex system features that may be used in a data-driven discovery paradigm to find the 

mapping or correlation between patterns in the computed electrophysiological features 

and behavior-based diagnostic assessments. 

Functional Brain Imaging through the Lifespan with EEG 

The requirements for neuroimaging in carefully controlled scientific research and 

for clinical application have important and fundamental differences. It is becoming 

increasingly clear that many neurological and mental disorders, including what are 

primarily adult brain disorders, follow a developmental trajectory. Some estimates 
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suggest that 75% of all mental disorders have antecedents in childhood (Insel, 2014a). 

Importantly, behavioral changes are manifestations of changes in the brain, often starting 

long before the observable symptoms appear. For example, approximately 80% of the 

dopamine producing cells involved in Parkinson’s Disease must cease to function before 

the characteristic symptoms become clinically apparent (Insel, 2014a). If this is in general 

true of neurodevelopmental disorders, then the most leveraged time for intervention is 

before behavioral symptoms fully emerge, when developmental trajectories might be re-

directed in more typical directions. This approach will require simple methods for 

monitoring brain function and its response to therapy. For routine monitoring of brain 

function through the lifespan, the measurement techniques must low cost, easy to 

administer and fast. At this time, EEG is the only way of measuring brain function that 

comes close to meeting these requirements.  

Data-Driven Discovery in Neuropsychology  

A new approach to discovering complex relationships has arisen with the 

emergence of machine learning methods. Brain-behavior relationships are ideally suited 

to this scientific paradigm because many human behavioral patterns, and particularly 

those that are defined to be pathological, are defined with reference to a population. That 

is, the behavioral traits that define neurological and psychiatric disorders usually require 

reference to a norm that is determined from a population.  

One of the emerging trends in science in the 21st century is an approach to 

scientific discovery based on access to large empirical data sets and the computational 
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methods for searching for and discovering scientifically meaningful patterns in that data. 

Data-driven discovery applies machine learning algorithms to data sets composed of high 

dimensional measurements of large populations to find meaningful clusters of 

subpopulations. This methodology can be applied to discovering mappings or 

correlations between neurophysiological measures of brain function and behavioral 

measures. Thus, machine learning (synonymous with “data mining”, “big data analytics”, 

or “statistical learning”) can be applied to the task of mapping nonlinear features 

computed from EEG signals to behavioral traits. That is, machine learning algorithms a 

powerful tool for discovering brain-behavior relationships. 

Overview of Chapters  

Chapter 2 presents the theoretical neuroscientific foundation for the approach 

taken in this dissertation. As a network of neurons that form a highly organized complex, 

possibly fractal network structure, functional activity of the brain should exhibit the 

properties and characteristics of a complex dynamical system. This has a number of 

implications for how the electrophysical time series produced by neural activity should be 

analyzed. Computational methods for analyzing time series produced by complex 

dynamical systems are relatively recent and are reviewed for their promise in research 

and clinical use for understanding brain- behavior relationships. 

Chapters 3, 4 and 5 comprise the empirical evidence that the approach described 

is both experimentally and clinically useful. We first present results using a single 

measure of complex system dynamics, multiscale entropy, which was first used to 
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analyze cardiac signals (Costa et al., 2005b; Costa et al., 2008). The multiscale 

complexity of electroencephalography (EEG) signals is believed to contain information 

about the architecture of the neural networks in the brain on many scales. Early detection 

of abnormalities in EEG signals may be an early biomarker for developmental cognitive 

disorders. In this chapter, results are presented that test the hypothesis that the multiscale 

entropy (MSE) computed from resting state EEG data can be used as a biomarker of 

normal brain development and distinguish typically developing children from a group of 

infants at high risk for autism spectrum disorder (ASD), defined on the basis of an older 

sibling with ASD. The results indicate that the high risk children exhibit distinct MSE 

values that enable separation of the typically developing controls from the high risk 

infants.  

Chapter 4 looks at an older population of children, approximately ages 5-11 years 

and includes children with absence epilepsy, children with autism, and controls. These 

children were tested in two different settings: the autism subjects and control group were 

recruited to a research study by the Laboratories of Cognitive Neuroscience at Boston 

Children’s Hospital. The absence epilepsy subjects and associated controls had come to 

the Epilepsy Clinic at Boston Children’s Hospital for testing. This study seeks to 

investigate two hypotheses: first, the nonlinear EEG analysis that is being performed in 

this entire dissertation detects real physiological characteristics in the signals, and is not 

significantly affected by the EEG equipment used or the laboratory or clinical setting 

where collected. Secondly, this study is a direct comparison of children with absence 

epilepsy, autism and controls. It is well known that autism and epilepsy commonly occur 



	

	

10	

together, whether the primary diagnosis is autism or epilepsy (Besag, 2009; Spence and 

Schneider, 2009; Tuchman et al., 2010). It is not known whether a common pathology 

underlies both of these disorders, or whether one is causal to the other. A deeper insight 

into the electrophysiological differences between children with each condition may 

illuminate the brain-based commonalities or differences between autism and epilepsy. 

Chapter 5 is a continuation of the study started in chapter 3. Sufficient numbers of 

the high-risk children have reached three years of age and can be given a clinical 

determination of whether or not they are on the autism spectrum. In this study, a broader 

range of nonlinear dynamical system values are computed from the EEG signals using 

Recurrence Plot Analysis (Komalapriya et al., 2008; Marwan et al., 2007b; Webber and 

Marwan, 2015). This chapter investigates the hypothesis that children who are 

developing autism will exhibit a different trajectory of nonlinear EEG values from age 6 

months to 3 years than children who are developing typically. If this is so, then EEG 

analysis may enable a simple brain measurement that predicts a future behavioral 

outcome such as autism. 

Several questions arise from the previous study of infants who develop autism. 

These include whether the nonlinear analysis of EEG signals merely distinguishes a 

typically developing brain from one that has some atypical aspects, or if it actually 

discriminates autism-specific characteristics. Although a reliable and accurate biomarker 

is clinically useful even if it is not known why it works, it is important to consider the 

underlying neurophysiology that might explain more specifically what is different about 



	

	

11	

the brain signals that are associated with various disorders. 

The final chapter brings us full circle. This dissertation began with rather 

theoretical concepts from mathematics, physics and neuroscience, which were then 

applied to laboratory and clinical data to demonstrate the usefulness of EEG analysis for 

clinical neuroscience. The research results are combined with a prescription for how to 

bring together algorithms, databases, and new low-cost, easy to use functional EEG 

devices in a way that introduces the possibility of clinical monitoring of brain 

development through the lifespan. 

There is growing awareness that mental, neurological and substance use (MNS) 

disorders impose an enormous burden of disease on the world’s nations. Low income 

regions of the world bear a large share of the burden due to MNS disorders, including 

both personal suffering and economic consequences. The regions of the world in most 

need of care for MNS disorders have the fewest resources to meet those needs, in terms 

of psychiatrists, psychologists and neurologists. While awareness of the burden of MNS 

disorders is growing, solutions are difficult to find. Innovative thinking that is does not 

imitate Western approaches to psychiatric care, which depend on highly trained 

professionals, is needed. In this final chapter, I propose that the EEG analysis methods 

described and tested in this dissertation create a low cost approach to monitoring brain 

function through the lifespan in primary care settings that can be administered by 

community health workers. More generally, information technology that is available 
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today, including smart phones and the ubiquitous Internet, can be used as powerful tools 

for neuropsychological practice and care. 

Though this dissertation at times delves deeply into chaos and complexity, and 

theories of brain function, the goal of this work is clinical practice: to enable new 

discoveries concerning the brain-behavior relationship to be leveraged to improve brain 

health throughout the world. 

Innovation and Expected Impact  

The general hypothesis tested in this dissertation is that nonlinear EEG features 

computed from relatively short, 30-second segments of data contain information that can 

be used to detect atypical brain development before the emergence of behavioral 

symptoms. Early detection of pathological brain developments that precede overt 

neurological and developmental symptoms is then accomplished by machine learning 

(ML) comparison with the typical developmental trajectory for a range of 

neurodevelopmental disorders, including, but not limited to, autism and epilepsy. Unlike 

most previous approaches to clinical neuroscience, this one depends explicitly on ML 

algorithms to discover the brain (EEG) – phenotype relationship. The approach required 

to collect data to test our hypothesis is also appropriate for implementation in clinical 

practice in low-resource settings because of the availability of low-cost EEG devices that 

are appropriate for community healthcare settings. Informatics methods, including 

nonlinear signal analysis and machine learning algorithms, are necessary to correlate 

EEG measurements to behavioral phenotypes. The neuroinformatics methods developed 
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and presented herein also point the way to saving brain measurement data for tracking 

over the lifespan. 

Accurate biomarkers that can lower the age of detection and be used by primary 

and community health workers will have an important impact on the practice of early 

screening and diagnosis of neurological and developmental disorders that precede 

behavioral or mental disorders in children, especially in resource-limited settings. Earlier 

diagnosis may also open up new opportunities for intervention, with resulting improved 

outcomes.  
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EEG PATTERNS AND COGNITIVE PHENOPTYPES 

Introduction 

 The National Institute of Mental Health’s Strategic Plan calls for the development 

of new ways of classifying psychopathology based on observable behavior and 

neurobiological measures (NIMH, 2008). The goal of this strategy is to discover the 

fundamental “units of behavior” – cognitive phenotypes - that can be reliably measured 

and used not only for classification of psychopathological disease, but also for planning 

therapeutic approaches that target the fundamental neurobiological pathology. In essence, 

this strategy explicitly states that all neuropsychiatric disorders are brain disorders and 

lays out a plan for discovering the brain basis for psychological disorders as characterized 

by cognitive and behavioral phenotypes.  

Two goals are actually stated implicitly in the NIMH strategic plan. One is 

scientific: to discover the brain basis of behavior. The other is clinical and pragmatic: to 

discover neurobiological measures that are useful for diagnosis and planning therapeutic 

strategies. Achieving the clinical goal can be done independently of the scientific goal. 

That is, discovery of clinical biomarkers of developing mental and cognitive disorders 

does not require that a complete understanding of why certain measures are highly 

correlated with specific pathological outcomes to be useful. Medical practice is full of 

examples where a procedure or test “works”, even though the physiological basis is not 

fully understood. For example vagal nerve stimulation was accidently discovered to treat 
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intractable epilepsy and treatment-resistant depression, though little is known about how 

this works (Rong et al., 2012).  

In this chapter, a single neurophysiological measurement modality is considered: 

scalp electrophysiology using electroencephalography or EEG. EEG has long been used 

clinically for confirming the existence of epilepsy, but may contain far more clinically 

useful information for monitoring brain function over the lifespan than has been realized. 

At the most fundamental level, brain function is electrical. The neural network that 

comprises the brain and peripheral nervous system, along with all the specialized cellular 

structures for propagating electrical impulses, is designed to support exquisitely fine 

control over the electrical patterns that determine all thought and behavior. It would not 

be an exaggeration to say that the mind is an ever-changing pattern of electrical fields: 

brain electrical activity is directly related to every thought and behavior. Measurements 

of brain electrical activity may thus in principle contain information about cognitive 

phenotypes, if recurring patterns can be found that correlate with them.  

Complex Dynamical Systems 

The brain is a complex dynamical system. It may appear so, but this is not an 

analogy or a model: the brain is a complex dynamical system by definition. To be more 

complete, the brain is an open complex dynamical system, embedded in a body with 

sensory input from the environment and motor output that enables the brain to sense, 

respond to and act upon its environment. This has important implications for 

understanding the relationship between observed behaviors or cognitive phenotypes and 
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the brain, which is the locus of every behavior, cognitive phenotype and psychopathology 

that can be observed. The brain is also an adaptive evolving complex system, implying 

that it’s dynamical properties can change over long time periods in response to learning 

or development.  

Cognitive phenotypes are Dynamical Entities 

A working definition for a cognitive phenotype used in this book is a discrete 

cognitive or behavioral feature that can be specified with some degree of precision and 

quantitatively measured. The features of interest are those of most relevance for a 

classification of neuropsychiatric illness or the indicators of normal neuropsychological 

functioning. Examples include the language deficiency subtypes associated with autism 

(Charman et al., 2010; Tager-Flusberg and Joseph, 2003), especially response inhibition 

and contingency detection.  

Although cognitive and behavioral phenotypes are described as static entities, 

they are in fact processes - sequences of actions by a person that recur in a recognizably 

repeatable fashion and can thus be reliably measured in some fashion. The Society for the 

Study of Behavioural Phenotype (SSBP), http://www.ssbp.co.uk, has proposed a working 

definition for the phrase behavioral phenotype as “a characteristic pattern of motor, 

cognitive, linguistic and/or social abnormalities which is consistently associated with a 

biological disorder (Fletcher et al., 2007). An important aspect of this definition is that it 

describes a pattern of actions, not a static structure.  
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A cognitive or behavioral phenotype may be analogous to units in spoken 

language. Spoken language is a continuous stream or a trajectory of sound units – 

phonemes - in time. Combinations of phonemes create words, which in defined 

combinations create fundamental units of meaning. Translators know that languages 

cannot be translated word for word, but meaningful units must be conveyed in another 

language. Similarly, cognitive processes and behaviors are continuous processes in time 

that can be observed or assessed by delineating the continuous flow of behavior or 

thought at appropriate points. Identification of fundamental units of behavior requires 

isolation of a particular sequence of movements or thoughts in the context of a particular 

situation. 

This clarification is important for identifying relationships between cognitive or 

behavioral phenotypes and dynamic processes in the brain. Cognitive activity that 

directly reflects (and is in fact caused by) sequences of electrical firing patterns in the 

brain must be treated as a dynamic process. The relationship is not between static entities, 

but between a well-defined series of observable behaviors or measurable cognitive 

activities, and measurable brain dynamics. 

What is a Complex Dynamical System? 

Dynamical systems theory, sometimes called chaos theory, is a branch of 

mathematical physics that deals with the qualitative and quantitative characterization of 

long-term properties of complex dynamical systems. A complex dynamical system is a 

collection of N components or variables, each described by a single real number value, 
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that are mathematically or physically coupled and whose values change over time. A 

convenient way to represent the values of all components is a single vector in N-

dimensional space, usually written as a “state vector” of real numbers. Discrete 

dynamical systems are analogous entities composed of vectors of discrete (integer) 

values. An example of a state vector is shown: 

       (2.1) 

The state of a complex dynamical system at any given time is represented by the 

value of the state vector, which is an array of n values at each time. The sequence of state 

vectors through time comprises the trajectory of the system. The state space of the system 

is also called the phase space. Isaac Newton carried out the earliest studies of dynamical 

systems when he formulated his fundamental laws of motion. For a physical system such 

as the solar system, composed of 10 component elements (8 planets, the sun and the 

moon - Pluto is no longer considered a planet), the state of the system is given by the 

three-dimensional location of each body and the three dimensional velocity of each body 

at each moment. Thus, the state of the entire 10-body system is completely specified by 

60 real numbers. The phase space for this system is the space of all possible values of 

each of the 60 numbers, which is represented by a 60-dimensional vector. If the position 
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and velocity at every moment could be plotted, these would trace out a trajectory in 60-

dimensional phase space. 

 

Figure 1. A simple trajectory in 3-dimensional phase or state space. Any single point on the line 
represents the state of the system or the state vector of the system, at a given time. 

The principle activity of neurons for information processing is their continually 

changing electrical potential, which is continually oscillating or ‘spiking’, with a spiking 

rate that is believed to be the method used to encode information in single neurons (Kello 

et al., 2012). Thus, the basic quantitative unit of the dynamic brain might be considered 

the spiking rate of each neuron in the brain at any given time is a snapshot of the brain’s 

state at that time. The electrical potential of each neuron could equally be chosen to 

quantify neural state without changing the following argument. More generally, the entire 

brain could be represented as a continuous electrical field. This would complicate the 

mathematical argument here by replacing the discrete dynamical field with a continuous 

field, but the fundamental argument would remain the same. 
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In the most general sense, the trajectory of neural electrical values, whether the 

spiking rate or potential of each neuron must directly reflect all of the movements and 

behaviors that may be observed in a person. A correspondence between patterns in neural 

activity and measureable neuropsychological traits – cognitive phenotypes – exists, 

whether or it can actually be measured in the finest detail or not. Finally, the brain is a 

coupled dynamical system. This means that the future state of any individual neuron 

depends on not only its current state, but also the state of every neuron in the system.  

Complex Systems Designed by Evolutionary Processes  

Much of neuropsychology and biological psychiatry research has been focused on 

localizing brain function. Of course, the brain is spatially organized, but not in as simple 

a way as we would like. While the effort to map specific brain regions with specific 

behavioral and cognitive deficits has been successful and clinically useful for many 

constructs, some higher-level cognitive functions continue to defy localization. For 

example, recent evidence demonstrates that many neurons in higher order brain regions 

such as the prefrontal cortex (PFC) are not organized anatomically. Rather, they are said 

to exhibit mixed selectivity to multiple aspects of cognitive function (Rigotti et al., 2013). 

Another way of stating this is that the brain functions as a complex system. 

Evolutionary or developmental processes in nature construct complex systems. 

The mammalian nervous system is not specified entirely by the genetic code, but is 

evolved in a developmental process that is influenced by sensory input from the 

environment (Lu et al., 2009). An important characteristic of an evolutionary design 
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process is that the dynamics of the resulting complex system cannot be understood from 

the component parts and their interactions alone. The whole is more than the sum of the 

parts, which also imposes a natural scale on the system, below which system functions 

are lost. Some system functions cannot be found in any single component but exist only 

when components are combined in a certain functional configuration, which may not be 

at all apparent from visual inspection of the network topology. However, some 

components may play critical roles in the system and their function is quite clear. In 

general, evolutionary design constructs a (complex) system that may look very different 

from those that an engineer following traditional design principles would concoct  

(Antonsson and Cagan, 2001). Although attempts have been made to view 

neurobiological networks in neat modular packages (Hartwell et al., 1999), many inter-

connections between modules prohibit the black-box modularity that is a hallmark of top-

down engineering design (Antonsson and Cagan, 2001). 

The Brain is a Complex Dynamical System  

The state of the brain considered as a complex system composed of individual 

neurons may be represented succinctly at any time t as an N-dimensional vector: 

Bt = [n1, n2, … nN ], where N ~= 1011     (2.2)  

A single floating point number, ni, roughly in the range of zero to 1000 hertz, represents 

the spiking rate or state of a single neuron. This could be generalized to the polarization 

of the neuron at any time, or even finer detail, and N would simply be larger. The 
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superscript t refers to a specific time t. Each neuron receives input from many other 

neurons, perhaps many thousands, and sends its output to other neurons. The connectivity 

pattern determines what neurons will affect the next state of each neuron. The 

connections between neurons may change due to learning, and chemical influences may 

affect synaptic transmission, changing the effective connectivity. Together, the 

connectivity pattern and various influences that influence neural transmission determine 

the state transition rule that represents how the brain’s state changes through time: 

Bt+1 = F (Bt)  + st     (2.3) 

Here, F is the function that represents how each neuron state will be updated based on the 

current state of every neuron and the connections to other neurons to give the new state 

vector at time t+1.  st represents external sensory inputs, which exert an additional 

influence on the state of sensory neurons. If we assume healthy individual neurons and 

neurotransmitters, then the function F that determines brain function is essentially 

determined by the connectivity pattern amongst the neurons. Although this is a greatly 

simplified model of how a biological brain functions, it is nevertheless a realistic 

representation of how neurons change from one state to the next, and how the whole 

network of neurons advances through time.  

In a general sense, the functioning brain is the state of all 1011 neurons at a given 

time and the trajectory of these neurons through the set of all possible states of the 

neurons (Kello et al., 2012), which is the phase space of the brain. Note that because 

neurons are connected in a highly controlled network, every neuron cannot assume an 
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arbitrary state value at any time. Rather, the state of a neuron is constrained by the state 

of all neurons to which it is connected, with the influence of neighboring neurons 

determined by the synaptic strength and the specific neurotransmitter that mediates the 

connection. These may be either excitatory or inhibitory and this will be represented in 

our mathematical model by the sign on the entries in the state transition function F. 

Phase Trajectories, Attractors and Thought 

The set of all possible brain states is called the phase space of the brain system. In 

our example, the phase space is represented by all points that can be written as 1011 

dimensional vectors Bt, with each entry n1 having values in the physiological range of 

allowable spiking rates (nominally no more than 1000 Hertz). In general, a dynamical 

system does not assume all the points in its phase space. Rather, it moves through the 

phase space on trajectories that fill only a small part of the phase space. Figure 2 

illustrates a trajectory in a 3-dimensional phase space for a function called the Lorentz 

attractor. The phase space is delimited by Cartesian coordinates (x,y,z), where x, y, and z 

are any real numbers. Regardless of what starting point is chosen, the transition rule for 

the Lorentz system is such that the trajectory settles into the butterfly-like pattern within 

the phase space, called the attractor. The blue lines are the trajectory of this system in 

phase space and fully describe how the system behaves under any circumstances. 
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Figure 2. State space plot of Lorentz attractor. For code to regenerate see: 
http://www.node99.org/tutorials/ar/ 

The space that the trajectory occupies is determined by the transition rule F in 

equation (2.2). A very simple neural structure, such as the brain of a flatworm, will have 

a rather limited trajectory in phase space. Indeed, the flatworm has only 312 neurons, so 

it’s phase space is rather limited. The number of different states that such a brain may 

occupy is small relative to a brain made of 1011 neurons. The number of behaviors that 

the organism may exhibit in response to any given stimulus or due to self-generated 

impulses is therefore also rather small, since every behavior must necessarily reflect a 

sequence of neural firing patterns. The size of the state space increases combinatorially as 

the number of neurons, so that 1011 neurons yields an enormous number of possible 

states.  
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If the vectors represented by equations (2.2) and (2.3) were to be plotted 

throughout time in an N–dimensional plot, where N is the number of neurons or length of 

the state vector B, the trajectory would trace out the phase space of the dynamical system. 

In the context of a brain, we might say that each person, each brain, has a unique function 

F that results in a unique dynamical system that traces out its own unique path through 

time. It responds in different ways to different stimuli. Many people, many brains, 

respond to similar stimuli in the essentially the same way. For example, all the neural 

firing patterns – a trajectory through the brain’s state space – that correspond to running 

or chewing, swallowing and digesting food or the saccadic eye movements involved in 

watching a bird fly past are quite similar in most people. If we could trace out the pattern 

of the brain in an N-dimensional plot, the trajectories for each of these cognitive patterns 

that correspond to specific behavioral processes would be very similar in most people. 

Neuropsychology, the study of brain – behavior relationships, would not be possible if 

this was not so. 

If the brain is viewed as a dynamical system, the connectivity pattern between 

neurons is an important determinant of the state transition function, which essentially 

determines how the brain functions. Research suggests that complex mental disorders are 

associated with abnormal brain connectivity that may vary between different regions and 

different scales (Noonan et al., 2009). Estimation of neural connectivity variation or 

differences might be a useful way to detect abnormal brain function as compared to 

normal function. This follows from our simple model: the trajectory that a brain follows 

in state space – dynamical systems language for brain function – is largely determined by 
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network connectivity. If an N-dimensional plot could be made, a generalization of Figure 

2, we might be able to see with our eyes those regions in phase space where normal and 

abnormal brains differ. Differences in specific regions might correspond to differences in 

the way two brains respond to seeing emotion in another person’s face, for example, or in 

how the brain responds to specific stimuli. A brain that is subject to seizure might have a 

region of phase space that looks decidedly unique and different from brains that do not 

easily have seizures. Again, in dynamical systems language, a brain subject to regular 

seizures will have many trajectories that fall into a seizure state. A healthy brain has few 

trajectories that fall into seizure attractors. These include stimuli such as strobe lights or 

hyperventilation. 

A region of phase space into which many trajectories are attracted or move into is 

called, not surprisingly, an attractor. “Attractors are typical patterns of dynamical, 

interdependent behaviors of limited dimensionality and carved out from a much larger 

space of possible patterns and dimensions. These global structural patterns, which emerge 

from interactions among the system’s components through phase space, can be 

characterized as emergent collectives” (Juarrero, 2010). By definition, then, any situation 

or stimulus that evokes a similar cognitive or behavioral response must also result in a 

similar response in the brain; the trajectory of the neural response moves into an attractor 

of the dynamical system, the brain (Pascanu and Jaeger, 2011). For example, if a person 

responds to a variety of life events by developing major depression, the “depression” is a 

kind of attractor – a region of phase space with certain well-defined brain-based 

behaviors that can be detected by behavioral assessments. Similarly, the trajectory of 
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brain states moves into the region of phase space that causes depression behaviors. 

Whenever a person is depressed, parts of their brain are in a specific attractor region of 

phase space that produces depression-related behaviors. 

Measuring Complex Dynamical System Properties from Time Series 

The trajectory of neural brain states at each moment of time is a trajectory through 

phase space and necessarily must directly cause the cognitive states and behaviors at that 

given moment, unless one posits that the brain alone does not cause all actions and 

thoughts. That is, the brain state trajectory in time through phase space corresponds 

directly through some complicated mapping to every thought and behavior at that time, 

even if the state of every neuron is not measureable, certainly by noninvasive means. 

However, it may be possible to mathematically infer certain dynamical properties of the 

attractors in the brain dynamical system from measurements of electrical potentials on the 

surface of the brain or scalp. Developments in dynamical systems theory demonstrate that 

such inferences are in principle possible. 

 

Embedding theorems: Reconstructing CDS from Time Series 

Important theorems in mathematics were proved in the 1980s and 1990s regarding what 

is known as the reconstruction problem. The essence is illustrated in Figure 3. 
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Figure 3. Casdagli’s illustration of how dynamical system properties may be inferred from time 
series measurements (Castagli et al., 1991). 

In his explanation of the diagram in Figure 3, Casdagli states that the “true dynamical 

system f, its states s, and the measurement function h are unobservables, locked in a black 

box”, as shown in the black square in the upper right. This is an accurate description of 

the brain as a dynamical system as well. However, the set of values in a time series x are 

measureable linear combinations of any set of fundamental components of the true 

dynamical system, as represented in the lower left graph of Figure 3. The embedding 

theorems of dynamical systems assert that dynamical properties of the original N-

dimensional system are embedded in the time series x. This property has potentially 

profound implications for EEG analysis. It implies that the scalp measurements of an 

EEG sensor, which are linear combinations of the contribution of many neurons, contain 

information about all neurons in the system. This does not mean that all the information 

about all neurons can be extracted from a finite, discrete time series measurement. 
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Nevertheless, computational methods have been developed by which dynamical 

properties of the unknown dimensions may be reconstructed. The potential usefulness of 

this information for detecting pathological brain activity must be explored experimentally 

to determine its usefulness.  

The embedding theorems have profound implications for electrophysiological 

measurements of groups of neurons using EEGs or other devices. For example, the actual 

spiking-rate states of all the neurons in the brain are not observable or measureable. If 

they were, then an exact representation of the state space of the brain and its moment-by-

moment dynamics could be measured. The reconstruction theorems state that certain 

properties of the unobservable multidimensional state space of the brain as a dynamical 

system can be reconstructed from a one-dimensional time series measurements from EEG 

sensors.  What this implies practically is that the EEG time series contain information 

about the dynamics of the entire brain. Computational methods that implement the 

reconstruction theorems may thus be used to compute values that represent dynamical 

properties of the brain and its attractor states.  

A simple example is shown in Figure 4. The phase trajectory of a nonlinear 

dynamical system, the Rossler equations, is shown, together with its reconstruction from 

a one-dimensional time series. The diagram shows the attractor of the Rossler dynamical 

system in two-dimensional Cartesian space. On the right is a reconstruction of the 

attractor using embedding and reconstruction theorems from a single time series 

measurement of the sum of x and y in the original system. 
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Figure 4. The trajectory mapping out the two-dimensional attractor of the Rossler system is shown 
on the left. On the right is a reconstruction of the attractor from a single one-dimensional time series. 

 

Recurrent Processes, Recurrent Behaviors 

Normal behaviors can only be defined because the way most people respond to 

given situations is somewhat similar. A normal 2-year-old child will respond to a familiar 

face such as a parent or sibling with, usually, an emotional reaction, a smile and perhaps 

attempts to communicate. A child with autism is distinguished from the typical child – 

and similar to other children with autism – by a different response. These recurrent 

behaviors are reflected in the brain as well. In dynamical systems language, the state 

vector of neurons follows a similar trajectory or pattern whenever presented with the 

same stimulus. The trajectory through phase space of an autistic brain is different from a 

typical brain in a way that is also recurrent: autistic behaviors can be identified as such 

because they follow a common, recurring pattern. The problem of finding neural 

correlates of behavior is one of finding current patterns of neural activity that map to 

identifiable behaviors. 
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Recurrence Plot Analysis 

A relatively recent and very general approach to nonlinear signal analysis is based 

on the concept of recurrence plots, introduced by Eckmann in the late 1980’s to 

graphically represent the dynamics of complex systems (Eckmann et al., 1987). Although 

recurrence plots were originally developed as graphical devices, the concurrent growth of 

computers for data analysis and research in nonlinear or chaotic systems enabled 

quantitative statistical analysis of recurrence plots. The methods developed for this 

analysis have been formalized and are collectively referred to as Recurrence Quantitative 

Analysis (Marwan et al., 2007b; Schinkel et al., 2009). Recurrence plot analysis is an 

empirical approach to analyzing time series data and is in principle capable of 

characterizing all of the essential dynamics of a complex system (Webber and Marwan, 

2015).  

Recurrence plot analysis is a useful tool analyzing “real-world, noisy, high 

dimensional data” (Webber and Zbilut, 2005) and is a general empirical approach that 

can detect macroscopic properties of dynamical systems such as entropy and generalized 

synchronization. It has proven to be a powerful tool already in physics, geophysics, 

engineering and biology (Komalapriya et al., 2008; Marwan et al., 2007b). Its use in 

neuroscience as a method for analyzing neurophysiological time series is in the early 

stages. Single-trial ERP detection (Schinkel et al., 2009) and state changes before seizure 

onset (Acharya et al., 2011) are two recent applications.   
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An illustration of a recurrence plot (RP) for several different time series is shown 

in Figure 5. The dynamics of each is revealed by a unique pattern in the RP. Recurrence 

Quantitative Analysis involves computation of features from the RP that are a 

quantitative characterization of the dynamics of the system from which the parameters 

were derived. 

 

 

Figure 5. Characteristic typology of recurrence plots: (A) uniformly distributed noise, (B) periodic, 
(C) drift (logistic map corrupted with a linearly increasing term) and (D) disrupted (Brownian 
motion). From (Marwan, 2012). 

 

Recurrence Quantitative Analysis (RQA) 

The definitions and descriptions of RP parameters given here are derived and 

explained more fully in the literature (Marwan et al., 2007b; Webber and Marwan, 2015). 

Recurrence plot statistics are computed from structures in the recurrence plot, analogous 

to computing object statistics in an image. Statistical analysis of recurrence plots or 

Recurrence Quantitative Analysis (RQA) is in its infancy. Several statistics have been 

found useful for characterizing system dynamics and are discussed below. Other relevant 

statistics remain to be discovered. Significant changes in some RQA values are highly 
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correlated with and useful for detecting state transitions to new dynamical regimes, such 

as chaos-order or chaos-chaos transitions (Marwan, 2007). Other changes in RQA values 

are particularly sensitive to short-time transitions, for instance, those that occur during 

Evoked Response Potential (ERP) experiments (Schinkel et al., 2007, 2009). 

Recurrence rate (RR) is a measure of the density of recurrence points in the RP. 

Specifically, RR is the percentage of recurrent points falling within the specified radius 

parameter. In the limit N → ∞, RR is the probability that a state recurs to its ε-

neighborhood in phase space. RR has been found to be useful for detecting evoked 

response potentials (ERPs) using single trials (Schinkel et al., 2009). RRჼHhas a high value 

for systems whose trajectories often visit the same phase space regions (Marwan et al., 

2007b), implying that RR may be useful for detecting regions of hypersynchronization. 

Diagonal Measures 

Determinism (DET) measures the proportion of recurrent points forming diagonal line 

structures. The name determinism comes from repeating patterns in the system and is an 

indication of its predictability. Regular, deterministic signals, such as sine waves, will 

give very long diagonal lines, while uncorrelated time series, like chaotic processes and 

random numbers, will give short or no diagonal lines.  

The ratio of these first two parameters, DET/RR has been used to discover dynamical 

changes in physiological time series (Webber and Zbilut, 1994). This will be explored 

further below in the context of epileptiform activity. 
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Line max (Lmax) is the length of the longest diagonal line segment in the plot, excluding 

the main diagonal line of identity. This recurrence variable is inversely related to the 

Lyapunov exponent that is frequently used to characterize system dynamics (Eckmann et 

al., 1987; Trulla et al., 1996). Positive Lyapunov exponents gauge the rate at which 

trajectories diverge, and are an indictor of chaos. Thus, smaller Lmax indicates a more 

chaotic (less predictable) signal. Conversely, larger Lmax is an indication of predictable 

signals, which may arise as the result of hypersynchronization of many chaotic oscillators 

to produce a single, high amplitude oscillation. Lmax is the inverse of the divergence 

(DIV), a statistic that is sometimes computed. Div measures the exponential divergence 

of the phase space trajectory. Faster divergence results in shorter diagonal lines. 

The above measures are computed from the length distribution of diagonal lines in the 

recurrence plot which encode the main properties of the system, such as predictability 

and measures of complexity (Marwan et al., 2007b). Vertical lines in the recurrence plot 

are related to the presence of laminar states in the system. In contrast to the measures 

based on diagonal lines, these measures are able to find state transitions in chaotic 

systems, allowing investigation of intermittency, even for rather short and non-stationary 

data series.  
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Vertical Measures 

Laminarity (LAM) represents the occurrence of laminar states in the system without 

describing the length of these laminar phases. LAM will decrease if the recurrence plot 

consists of more single recurrence points than vertical structures (Marwan, 2007). 

Trapping Time (TT) is the average length of vertical line structures. TT is an estimate of 

the time the system will remain in a current state or the length of time that the system is 

“trapped” in a state. It may be related to the length of transient synchronization of 

component oscillators that contribute to a measured EEG channel.     

Other statistics may be derived from recurrence plots, some of which are discussed in 

(Marwan et al., 2007b). By treating the recurrence plots as shown in Figure 5 as images, 

it may be possible to apply image classification algorithms to find new characteristic 

patterns that are associated with distinct time series types or dynamical regimes that have 

not yet been discovered using statistical measures (Daniusis and Vaitkus, 2008; Norman 

et al., 2006) 

From Complex Systems to Cognitive Phenotypes 

Even if the recurrence matrix derived from scalp EEG time series contains all of 

the essential dynamical information about the brain as a complex dynamical system 

(Marwan et al., 2007b), the correlation between complicated numerical data derived from 

the analysis an cognitive or behavioral phenotypes may be subtle and hidden in 

complicated patterns. A data-driven approach is ideally suited to finding clinical 
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correlates of cognitive phenotypes in complicated data derived from EEG time series. No 

a priori model is needed. Instead, very general machine learning algorithms are given 

many examples and are programmed to search for models that best fit the data and 

explain the phenomenon of interest. 

Data-driven Discovery: The Fourth Paradigm 

Near the end of the 20th century and continuing into the 21st century a new 

approach to discovering relationships in complex data has emerged, under a variety of 

names, including data mining, data analytics, machine learning or ‘big data’ analysis. 

This approach to scientific discovery is distinguished from hypothesis-driven data 

analysis by instead letting the data assume a primary role, then using machine learning 

algorithms to find the model or hypothesis that best fits the data. It is particularly 

appropriate for discovering correlations between multisource or complicated sets of data 

and phenomena of interest when there is no foundational theory to enable models or 

hypotheses to be determined in advance and tested.  

To cite one example, the Neonatal Intensive care unit at the Hospital for Sick 

Children (SickKids) in Toronto has created a system for early identification of late-onset 

neonatal sepsis in newborns, a potentially fatal blood infection that occurs in infants. All 

physiological data that is measured, plus environmental variables, family history and 

other medical conditions are all collected continuously, resulting in over 10-million data 

points per infant per day. The predictive analytics enable the presence of infections to be 
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predicted before symptoms are apparent to neonatologists, allowing early intervention 

and better outcomes (McGregor, 2013).  

Data-driven discovery can find correlations and predictive patterns in data that 

cannot be found by any other method. This approach requires a move away from trying to 

understand the deeper cause. Understanding the deeper causes is the goal of scientific 

research. However, for clinical application, statistically significant and reliable predictive 

capabilities from data can be life saving, long before causes are understood. This 

technique is saving lives, even though it is not known what combinations of variables are 

actually determinative. Causation, expressed in traditional medical terms, is not known. 

One might argue that the causal pattern is well known to the algorithm; humans are just 

unable to see the pattern. 

In a philosophical sense, machine algorithm discovery of a model equation that 

describes a natural process is not so different from human discovery of a ‘law’ of physics. 

Newton’s law of motion, for example, that says the acceleration of a body (of constant 

mass) is proportional to the mass of the body and to the applied force is empirically 

derived. Many experiments were done to confirm its veracity under many conditions. 

Albert Einstein and the founders of quantum mechanics showed that Newton’s laws of 

motion were only approximately correct, and that more general laws were actually more 

accurate. What is called a ‘law’ of nature really falsely assumes that we have insight into 

a hidden fundamental nature of the universe, when really all we have are empirical 

observations. This may be controversial, but from a practical viewpoint, a learning 
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algorithm can also discover Newton’s laws of motion from very many empirical 

observations, as was demonstrated by (Schmidt and Lipson, 2009). 

Mapping brain dynamics to cognitive phenotypes 

Recurrence Quantitative Analysis (RQA) can be used to compute a number of 

different nonlinear measures from each of the EEG channels as described above. The 

recurrence plot for each time series derived from the EEG channels contains considerable 

information about brain dynamics, state space trajectories and attractors (Marwan et al., 

2007b). A typical EEG headset uses 19 sensors in a configuration referred to as the 

standard 10 – 20 system (Jasper, 1958). Some newer research grade systems use up to 

256 sensors (Yamazaki et al., 2013). If six RQA values are computed from each of 19 

sensors, the result is 114 numerical values.  Hierarchical methods that use wavelet 

transforms to compute multiresolution time series from each original time series can 

multiply the number of system features by many times.  

Feature extraction is not just a method to enhance machine learning for 

classification and regression. In this context, the features include the computed nonlinear 

parameters from recurrence plot and cross recurrence plot analyses for each electrode. If 

these are arranged in a two-dimensional matrix, with rows for each channel and columns 

for each measure, then the values for each channel can be treated as a group to determine 

the location of channels that are most informative for the particular classification or 

regression task. In this way, the learning algorithm can be used as a discovery tool to 

localize neural activity that differentiates atypical or pathological regions.  
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Figure 6. The upper pathway is not possible at this time, since brain states are hidden and cannot be 
measured directly. The lower, indirect pathway illustrates reconstruction of dynamical features using 
recurrence quantitative analysis. The complicated relationship between patterns in RQ values and 
behavioral or cognitive measures are determined using machine learning methods. 

 

Discussion  

Measurements of brain electrical activity with EEG are a valuable source of 

information for neuroscience research, yet this low cost resource may be under-utilized 

for clinical applications in neurology and psychiatry (Niedermeyer, 2003; Niedermeyer 

and Lopes da Silva, 2005). When the brain is analyzed as a complex dynamical system, 

recently developed methods and theorems from dynamical systems theory become 

applicable and provide powerful new insights into the functional information contained in 
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scalp electrophysiological measurements. Recurrence plot analysis in particular is an 

empirical method for analyzing nonlinear time series that, in principle, contains all of the 

dynamical information about the system that produced the time series. This insight is 

profoundly important for scalp electrophysiology, as it posits that EEG data contains 

functional information about the entire brain. The difficulty is that a relationship between 

the nonlinear time series features and cognitive phenotypes is not readily apparent and 

may not be explainable in current neurophysiological terms. 

The key approach to finding electrophysiological correlates of cognitive 

phenotypes introduced in this chapter is the employment of machine learning methods. 

This approach assumes that complicated patterns and relationships in the recurrence plot 

variables computed from the EEG times series necessarily reflect all cognitive and 

behavioral activity. Brain states control motor and cognitive output. Machine learning 

algorithms can find patterns and complex relationships that may be completely opaque to 

human eyes. However, large datasets may also be required to enable differences in brain 

function that are biomarkers of serious disorders to be distinguished from the normal 

range of variation in brain function and behavior that exists among people.  

Developments in a number of fields over the past decade have created the 

possibility of monitoring brain function through the lifespan, recording this information 

in electronic health records, and monitoring the trajectories for deviations that might 

indicate emerging disorders. Realizing this possibility will require continued research 

into the neurophysics of EEG measurements. In addition, research and implementation of 
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computational methods for extracting this information, storing it in electronic health 

records, and mining large population databases to discover the biomarkers associated 

with psychopathology will also be needed. But the tools for moving this technology from 

the research lab to the bedside are available today. The potential impact of EEG-based 

functional brain monitoring for pathology is great. If successively developed and 

implemented on a large scale, it could radically alter the practice of psychiatry, neurology 

and clinical psychology, with particularly great impact on underserved populations.
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EEG COMPLEXITY AS A BIOMARKER FOR 

AUTISM SPECTRUM DISORDER 

Abstract 

Background: Complex neurodevelopmental disorders may be characterized by subtle brain 

function signatures early in life before behavioral symptoms are apparent. Such endophenotypes 

may be measurable biomarkers for later cognitive impairments. The nonlinear complexity of 

electroencephalography (EEG) signals is believed to contain information about the architecture of 

the neural networks in the brain on many scales.  Early detection of abnormalities in EEG signals 

may be an early biomarker for developmental cognitive disorders. The goal of this paper is to 

demonstrate that the modified multiscale entropy (mMSE) computed on the basis of resting 

state EEG data can be used as a biomarker of normal brain development and distinguish typically 

developing children from a group of infants at high risk for autism spectrum disorder (ASD), 

defined on the basis of an older sibling with ASD. 

Methods: Using mMSE as a feature vector, a multiclass support vector machine algorithm was 

used to classify typically developing and high-risk groups. Classification was computed 

s epa ra t e ly  within each age group from 6 to 24 months. 

Results: Multiscale entropy appears to go through a different developmental trajectory in infants 

at high risk for autism  (HRA) than it does in typically developing controls. Differences appear to 

be greatest at ages 9 to 12 months. Using several machine learning algorithms with mMSE as a 

feature vector, infants were classified with over 80% accuracy into control and HRA groups at 
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age 9 months.  Classification accuracy for boys was close to 100% at age 9 months and 

remains high (70% to 90%) at ages 12 and 18 months.  For girls, classification accuracy was 

highest at age 6 months, but declines thereafter. 

Conclusions: This proof-of-principle study suggests that mMSE computed from resting state EEG 

signals  may be a useful biomarker for early detection  of risk for ASD and abnormalities in 

cognitive development in infants. To our knowledge, this is the first demonstration of an 

information theoretic analysis of EEG data for biomarkers in infants at risk for a complex 

neurodevelopmental disorder. 

Background 

The human brain exhibits a remarkable network organization.  Although sparsely 

connected, each neuron is within a few synaptic connections of any other neuron 

(Buzsáki, 2006). This remarkable connectivity is achieved by a kind of hierarchical 

organization that is not fully understood in the brain, but is ubiquitous in nature, called a 

scale-free network (Barabasi, 2009; Bassett and Bullmore, 2006; Ravasz and Barabasi, 

2003) that changes with development. Complex networks are characterized by dense 

local connectivity and sparser long-range connectivity (Barabasi, 2009) that is fractal or 

self-similar at all scales. Modules or clusters can be identified on multiple scales. A 

comparison of network properties using fMRI showed that children and young-adults' 

brains had similar "small-world" or scale-free organization at the global level, but 

differed significantly in hierarchical organization and interregional connectivity (Supekar 

et al., 2009). White matter fiber tracking has revealed that brain development in children 
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involves changes in both short-range and long-range wiring, with synaptogenesis and 

pruning occurring at both the local (neuronal) level and the systems level (Supekar et al., 

2009). Abnormal network connectivity may be a key to understanding developmental 

disabilities. 

Autism is a complex and heterogeneous developmental disorder that affects the 

developmental trajectory in several key behavioral domains including social, cognitive 

and language. The underlying brain dysfunction that results in the behavioral 

characteristics is not well understood. Complex mental disorders such as autism cannot 

easily be described as associated with underconnectivity or overconnectivity, but may 

involve some form of abnormal connectivity that varies between different regions 

(Noonan et al., 2009). Normal and abnormal connectivity may also change during 

development, so that, for example, a condition may not exist at 3 months, but may 

emerge by 24 months.  A key to understanding neurodevelopmental disorders is the 

relationship between functional brain connectivity and cognitive development (Johnson, 

1993). Measuring functional brain development is difficult both because the brain is a 

complex, hierarchical system and because few methods are available for noninvasive 

measurements of brain function in infants. New nonlinear methods for analyzing brain 

electrical activity measured with scalp electrodes may enable differences in infant brain 

connectivity to be detected. For example, coarse grained entropy synchronization 

between EEG electrodes revealed that synchronization was significantly lower in children 

with autism than in a group of typically developing children (Kulisek et al., 2008), 

supporting the theory that autistic brains exhibit low functional connectivity. In the 
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autistic brain, high local connectivity and low long-range connectivity may develop 

concurrently due to problems with synapse pruning or formation (Belmonte et al., 2004a; 

Belmonte et al., 2004b). Estimation of changes in neural connectivity might be an 

effective diagnostic marker for atypical connectivity development. 

 EEG signals are believed to derive from pyramidal cells aligned in parallel in the 

cerebral cortex and hippocampus (Sörnmo and Laguna, 2005), which act as many 

interacting nonlinear oscillators (Nunez and Srinivasan, 2006). As a consequence of the 

scale-free network organization of neurons, EEG signals carry nonlinear, complex system 

information reflecting the underlying network topology, including transient 

synchronization between frequencies, short and long range correlations and cross-

modulation of amplitudes and frequencies (Gans et al., 2009). The mathematical 

relationship between network structure and time series is a subject of current research and 

may eventually shed further light on the relationship between neural networks and EEG 

signals. 

A great deal of information about interrelationships in the nervous system likely 

remains undiscovered because the linear analysis techniques currently in use fail even to 

detect them (Drongelen, 2007). If brain function and behavior are mirrors of each other, 

as is commonly accepted (Cowan and Kandel, 2001; Hyman, 2007; Kandel, 1998; Singh 

and Rose, 2009), then biomarkers of complex developmental disorders may be hidden in 

complex, nonlinear patterns of EEG data. The dynamics of the brain are inherently 

nonlinear, exhibiting emergent dynamics such as chaotic and transiently synchronized 
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behavior that may be central to understanding the mind-brain relationship (Varela et al., 

2001) or the ‘dynamic core’ (Le Van Quyen, 2003).  Methods for chaotic signal analysis 

originally arose from a need to rigorously describe physical phenomena that exhibited 

what was formerly thought to be purely stochastic behavior, but was then discovered to 

represent complex, aperiodic yet organized behavior, referred to as self-organized 

dynamics (Pikovsky et al., 2001). The analysis of signal complexity on multiple scales 

may reveal information about neural connectivity that is diagnostically useful (Buzsáki, 

2006; Stam, 2005; Varela et al., 2001). 

 One interpretation of biological complexity is that it reflects a system’s ability to 

adapt quickly and function in a changing environment (Costa et al., 2005b). The 

complexity of EEG signals was found in one study to be associated with the ability to 

attend to a task and adapt to new cognitive tasks; a significant difference in complexity 

was found between control subjects and those diagnosed with schizophrenia (Li et al., 

2008b). Schizophrenic patients were found to have lower complexity than controls in 

some EEG channels and significantly higher interhemispheric and intrahemispheric cross 

mutual information values than controls (Na et al., 2002). A study of the correlation 

dimension (another measure of signal complexity) of EEG signals in healthy subjects 

showed an increase with aging, interpreted as an increase in the number of independent 

synchronous networks in the brain (Stam, 2005).  

 Several different methods for computing complex or nonlinear time series 

features have been defined and used successfully to analyze biological signals (Chen et 
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al., 2009; Kuusela et al., 2002). Sample entropy, a measure of time series complexity, 

was significantly higher in certain regions of the right hemisphere in pre-term neonates 

who received skin-to-skin contact than in those who did not, indicating faster brain 

maturation (Scher et al., 2009). Sample entropy has also been used as a marker of brain 

maturation in neonates (de la Cruz et al., 2007) and was found to increase prenatally until 

maturation at about 42 weeks, then decreased after newborns reached full term (Zhang et 

al., 2009).  

 Living systems exhibit a fundamental propensity to move forward in time. This 

property also describes physical systems that are far from an equilibrium state. For 

example, heat moves in only one direction, from hot to cold areas. In thermodynamics, 

this property is related to the requirement that all systems must move in the direction of 

higher entropy. Time irreversibility is a common characteristic of living biosignals. It was 

found to be a characteristic of healthy human heart EKG recordings and was shown to be 

a reliable way to distinguish between actual EKG recordings and model EKG simulations 

(Costa et al., 2008). EKG signals from patients with congestive heart disease were found 

to have lower time irreversibility indices than healthy patients (Costa et al., 2005a). 

Interestingly, time irreversibility of EEG signals has been associated with epileptic 

regions of the brain and this measure has been proposed as a biomarker for seizure foci 

(Gautama et al., 2003). Time irreversibility may be used as a practical test for 

nonlinearity in a time series. 

 This study is a preliminary investigation of the difference in multiscale entropy 
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between two groups of infants between 6 and 24 months of age. The groups include 

typically developing infants and infants who have an older sibling with a confirmed 

diagnosis of ASD and who are thus at higher risk for developing autism. ASD is a 

developmental disorder in which symptoms emerge during the second year of life. 

Behavioral indicators are not evident at 6 months of age (Ozonoff et al., 2010; 

Zwaigenbaum et al., 2005; Zwaigenbaum et al., 2007), however, using a novel 

observational scale to assess ASD characteristics in infants distinguishing characteristics 

were seen at 12 months (Zwaigenbaum et al., 2005). Another study compared behavioral 

measures such as frequency of gaze to faces and shared smiles in infants. Again, group 

differences between those that later developed an ASD and typically developing controls 

were apparent at 12 months, but not at 6 months (Ozonoff et al., 2010). Only one study 

investigated behavioral differences at 9 months: infants at risk for ASD showed distinct 

differences in visual orienting from those with no family history of autism (Elsabbagh et 

al., 2009).  These behavioral observations suggest that important developmental 

differences are occurring in the brains of typically developing infants and those who will 

later develop an ASD. Although there have been no other published studies on brain 

development during the first year of life, one of the most replicated findings, based on 

retrospective review of medical records, is accelerated growth in head circumference (a 

valid and reliable proxy for brain growth), which begins at around 6 – 9 months 

(Courchesne et al., 2003; Courchesne et al., 2007; Elder et al., 2008). If multiscale 

entropy is a measure of functional brain complexity, then it may be a useful marker for 

distinguishing differences in brain activity between at-risk and typical infants.  
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Methods 

Participants 

Data was collected from 79 different infants: 46 at high risk for ASD (hereafter 

referred to as HRA) based on having an older sibling with a confirmed diagnosis of ASD 

and 33 controls, defined on the basis of a typically developing older sibling and no family 

history of neurodevelopmental disorders. Testing sessions included infants from ages 6 to 

24 months, with some participants tested at more than one age. The study participants 

were part of an on-going longitudinal study and visits will be evaluated at regular 

intervals. However, at the time this study was done, most infants had been tested at only 

one or two visits. Each session was therefore treated as an independent set of data. Thus, 

the data from an infant that is tested in five different sessions at 6, 9, 12, 18 and 24 

months were treated as unique data sets. A total of 143 data sessions were collected from 

79 different individuals. The distribution at different ages and risk groups is shown in 

Table 1. The number of infants who were tested at only one age at the time of this study 

is shown in Table 2, as well as the number of infants tested 2, 3, 4 and 5 times. Only one 

infant thus far has been tested at all five ages from 6 to 24 months. For the purposes of 

this study, all visits were treated as independent measurements. No comparison of 

different ages or of growth trajectories between individuals is done. Other characteristics 

recorded include height and head circumference, as shown in Table 1. 
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Age 6 months 9 months 12 months 18 months 24 months 

Group HRA CON HRA CON HRA CON HRA CON HRA CON 

N 14 16 16 12 23 17 15 7 14 9 

Males (59) 6 6 8 4 10 6 8 3 4 4 

Females (84) 8 10 8 8 13 11 7 4 10 5 

Total  (143) 30 28 40 22 23 

DEMOGRAPHIC INFORMATION 

Age (days): mean 

Std dev 

189 

11.7 

185 

8.6 

272 

5.1 

273 

3.6 

366 

9.4 

362 

9.0 

549 

12.4 

541 

6.2 

725 

9.1 

727 

12.4 

Height (in): mean 
Std dev 
p-value 

26.5 

1.9 

26.1 

1.0 

27.8 

0.7 

27.2 

1.6 

29.8 

1.0 

29.5 

1.5 

32.1 

1.7 

32.1 

1.2 

34.1 

1.1 

34.8 

1.2 

0.46 0.18 0.53 0.97 0.24 

Head Circum 
(mm) mean 

Std dev 
p-value 

434 

12.7 

435 

12.2 

459 

13.7 

447 

15.8 

465 

12.5 

466 

18.0 

484 

11.4 

481 

18.8 

492 

16.7 

493 

17.2 

0.93 0.04 0.87 0.61 0.53 

MEAN MULTISCALE ENTROPY OVER CHANNEL GROUPS 

Total MSE mean 
Std dev 
p-value 

2.02 
0.15 

1.93 
0.21 

2.07 
0.20 

2.02 
0.36 

2.05 
0.20 

1.87 
0.35 

2.16 
0.22 

1.97 
0.10 

2.07 
0.14 

1.96 
0.15 

0.17 0.71 0.07 0.01 0.13 

Frontal MSE mean 
Std dev 
p-value 

2.02 
0.15 

1.93 
0.21 

2.12 
0.20 

2.08 
0.36 

2.10 
0.20 

1.94 
0.35 

2.18 
0.22 

2.01 
0.12 

2.08 
0.11 

2.00 
0.13 

0.04 0.39 0.11 0.04 0.21 

Left Frontal mean 
Std dev 
p-value 

1.94 
0.15 

1.81 
0.20 

1.94 
0.20 

1.91 
0.31 

2.01 
0.16 

1.82 
0.32 

2.06 
0.21 

1.91 
0.13 

2.03 
0.13 

1.88 
0.15 

0.05 0.72 0.04 0.07 0.03 

Table 1. Distribution of subjects used in study by age and risk group. Number of male and female 
infants in each group is shown in parentheses. 79 (46 HRA / 33 CON) different infants participated in 
this study; some infants participated in multiple sessions at different ages to make a total of 143 
recording sessions. Also shown are measured demographic variables (age, height, head 
circumference) and average MSE values over three regions: whole head, frontal, left frontal. 
Statistically significant differences between HRA and CON groups are highlighted in boldface. 

The parent Infant Sibling Project study, from which data for this project was taken, was 

approved by the Committee on Clinical Investigations at Children's Hospital Boston 

(X06-08-0374) and Boston University School of Medicine (H-29049). Parental written 
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informed consent was obtained after the experimental procedures had been fully 

explained. 

EEG Data Collection 

 Infants were seated on their mothers’ laps in a dimly lit room while a research 

assistant engaged their attention by blowing bubbles. This procedure was followed to 

limit the amount of head movement made by the infant that would interfere with the 

recording process. Continuous EEG was recorded with a 64-channel Sensor Net System 

(EGI, Inc.). The net is comprised of an elastic tension structure forming a geodesic 

tessellation of the head surface containing carbon fiber electrodes embedded in pedestal 

sponges.  At each vertex is a sensor pedestal housing an Ag/AgCl- coated, carbon-filled 

plastic electrode and sponge containing saline electrolyte. Prior to fitting the sensor net 

over the scalp, the sponges are soaked in electrolyte solution (6cc KCL/liter distilled 

water) in order to facilitate electrical contact between the scalp and the relevant electrode. 

In order to assure the safety and comfort of the infant the salinity of the electrolyte 

solution is the same as tears. In the event that the solution comes into contact with the 

eyes no damage or discomfort will occur.  

 Prior to recording, measurements of channel gains and zeros were taken to 

provide an accurate scaling factor for display of waveform data.  The baby's head was 

measured and marked with a washable wax pencil in order to ensure accurate placement 

of the net, which was then placed over the scalp.  Scalp impedances were checked on-line 

using NetStation (EGI, Inc, Eugene OR), the recording software package that runs this 
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system. EEG data were collected and recorded on-line using NetAmps Amplifiers (EGI, 

Inc, Eugene, OR) and the NetStation software. The data were amplified, filtered (band 

pass 0.1-100.0 Hz), and sampled at a frequency of 250 Hz.  They were digitized with a 

12-bit National Instruments Board (National Instruments Corp., Woburn MA). Typically, 

2 minutes of baseline activity were recorded, but depending on the willingness of the 

infant, recorded periods may be shorter. For this study, continuous sample segments of 20 

seconds were selected from the processed resting state data and used to compute 

multiscale entropy values.  

	
 HRA CON 

	
N	with	1	time	

point		

6 months 2  
 

21 

6  
 

24 
9 months 5 2 

12 months 4 4 
18 months 5 2 
24 months 5 3 

N with 2 time points  16 8 
N with 3 time points  8 5 
N with 4 time points  0 2 
N with 5 time points  1 1 
Total unique infants 46 33 

Total measurements, all visits 82 61 
Table 2.  The distribution of participants with the number of visits/measurements from the same 
child at different ages is shown. Overall, 79 infants participated in the study, resulting in 143 
measurements sessions.  

Modified Multiscale Sample Entropy 

 A multiscale method for computing the entropy of biological signals was 

developed by (Costa et al., 2005b). This approach computes the sample entropy on the 

original time series (or “signal”) and on coarse-scale series that are derived from the 

original signal. Because biological systems must be adaptable across multiple time scales, 

measurements of biological signals are likely to carry information across multiple scales. 
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A multiscale estimation of the information content of EEG signals may reveal more 

information than the entropy of only the original signal.   

 Multiple scale time series are produced from the original signal using a coarse 

graining procedure. The scale 1 series is the original time series. Scale 2 time series is 

obtained by averaging 2 successive values from the original series. Scale 3 is obtained by 

averaging every three original values and so on as shown in equation 3.1.  

   

    (3.1) 

 

 Coarse-grained series up to scale 20 are computed for each of the 64 EEG 

channels. The modified sample entropy (mSE) defined in (Xie et al., 2008) was used to 

compute the entropy of each coarse grain time series. The mSE algorithm uses a 

sigmoidal function to compare vector similarity rather than a Heaviside function with a 

strict cutoff as with the Sample Entropy used for analysis of biological and EKG signals 

in (Costa et al., 2005b; Costa et al., 2008). The practical effect of using the modified 

sample entropy is the computed entropy values are more robust to noise and results are 

more consistent with short time series. In brief, the similarity functions  and  

defined by equations (7) and (9) in (Xie et al., 2008) are computed with m=2 and r=0.15 

for each coarse-grained time series defined in equation 3.1. The modified multiscale 

entropy (mMSE) will then be defined as the series of modified sample entropy values at 
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each of the coarse grain scales from 1 to 20. The mMSE for scale s with finite length time 

series is then approximated by: 

     (3.2) 

The multiscale entropy for several linear, stochastic and nonlinear time series are shown 

in Figure 7, along with representative MSE for EEG signals from EEG data used in this 

study. The purely random white noise signal the completely deterministic logistic 

equation series have similar MSE curves and visually appear indistinguishable. As 

discussed in (Costa et al., 2005b), these are quite distinct from normal physiological 

signals. The EEG signal is the only one of the series in the figure that has an mMSE that 

increases with scale, indicating longer-range correlations in time. Decreasing entropy in 

general indicates that a signal contains information only on the smallest time scales. If 

entropy values across all scales for one time series are higher than for another, then the 

former is considered to be more complex than the latter. Although the mean mMSE value 

can be computed and used for comparing the overall complexity of physiological signals, 

the shape of the curve itself may be important for distinguishing two signals.  

Time Asymmetry and Nonlinearity 

 The time irreversibility index (trev) was computed for different resolutions of the 

EEG time series using the algorithm of (Costa et al., 2008).  The third column of Figure 7 

shows trev for several different linear and nonlinear time series. Of particular note is that 

only the sine wave time series and both random time series have nearly zero 
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irreversibility indices, while the index for the nonlinear logistic series and the 

representative EEG signal are both nonzero on all scales shown.  

 After computing multiple resolutions of the EEG time series as described above, 

an estimate of the time irreversibility for each resolution is computed by noting that a 

symmetric function or time series will have the same number of increments as 

decrements. That is, the number times |xi+1 – xi | > 0 will be approximately the same as 

the number of times |xi+1 – xi | < 0. Thus, an estimate of the time series symmetry (or 

reversibility) was found by summing increments and decrements and dividing by the 

length of the series. A reversible time series will have a value of zero. For a series of 

5000 points, as used in this study, trev > 0.1 is a significant indicator of irreversibility and 

thus of nonlinearity (Schreiber and Schmitz, 1997). This information is used only to 

indicate that nonlinear information is contained in the EEG time series that is not used in 

linear analysis methods, suggesting that the mMSE may contain more diagnostically 

useful information than power spectra analysis alone. 

Classification and Endophenotypes 

 The Orange machine learning package was used for classification calculations 

(Demsar and Zupan, 2004). Several different learning algorithms were compared (support 

vector machine, k nearest neighbors and naïve Bayesian) so as to exclude possible 

overfitting by one method. The significance of the classification results for each method 

was estimated empirically using the permutation approach described in (Golland and 

Fischl, 2003). 
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Figure 7. Characteristics of five different time series are shown. Column 1 shows the time series 
amplitudes. Column two is the multiscale entropy, where the horizontal axis is the coarse graining 
scale, from 1 to 20. Column 3 is the multiscale time asymmetry value. The value of a in the lower 
right corner of the time asymmetry plot is the value of the time asymmetry index summed over scales 
1 to 5. A non-zero time asymmetry value is a sufficient condition for nonlinearity of a time series. 

 To keep the feature set smaller while still capturing the overall shape of the 

mMSE curve, three values (low, high and mean) for each curve were extracted for each 

of 64 channels, creating a feature set of 192 values (3 x 64). A single sample from the 

population is represented by these 192 values. Although some data points are from the 

same infant at different ages, this study should be considered a cross-sectional study in 

that any relationship between data at two different ages is not used for classification. That 
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is, the infants in the 6 month EEG data set are considered to be independent of the set of 

infants used at 9 months, 12 months and so on. 

Results 

Multiscale entropy and time irreversibility characteristics of five different time 

series are shown in Figure 8. The example time series amplitudes are shown in the first 

column. The second column displays plots of the multiscale entropy, where the horizontal 

axis is the coarse graining scale, from 1 to 20. White noise shows a characteristic decline 

in entropy with temporal scale, indicating loss of correlation between longer time 

intervals. Note that the deterministic, but chaotic, logistic equation has an entropy profile 

similar to white noise, suggesting that signal characteristics that appear as noise may in 

fact contain significant dynamical information about the system.  The physiological 

(EEG) time series has a unique entropy curve that increases with temporal scale, similar 

to the cardiac signals observed in EKG readings (Costa et al., 2008; Norris et al., 2008).  
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Figure 8. Time asymmetry index for normal controls and high-risk groups is shown. The index was 
averaged over all infants in the group and age category. If time asymmetry varied randomly at 
channel locations, the fluctuations would average out. The persistence of time asymmetry values 
different from zero indicates nonlinearity in the signal.  

The third column of Figure 7 is the multiscale time asymmetry value. The value of 

a in the lower right corner of the time asymmetry plot is the value of the time asymmetry 

index summed over scales 1 to 5. A non-zero time asymmetry value is a sufficient 



	

	

59	

condition for nonlinearity of a time series. Although white noise and the logistic curve 

have similar entropy profiles, the time asymmetry index distinguishes the nonlinear, 

chaotic signal from noise. The EEG signal shown here clearly contains nonlinear 

characteristics, based on the nonlinear time asymmetry index.  

Using all of the EEG data, time asymmetry was first calculated to determine the 

degree of nonlinearity present in the signals. Figure 8 shows the time asymmetry index 

for all 64 channels of the resting state EEG for control and high-risk groups by age. The 

value of the time asymmetry index in the scalp plot is determined by averaging the index 

value over all members of that age and risk group. Since the value may take on positive 

or negative values, and will be near zero for time-reversible signal, the persistence of the 

nonzero values in this plot is an indicator of signal nonlinearity. The multiscale entropy 

and trev values have independent physiological meaning (Costa et al., 2008). Since 

apparent differences exist between controls and the high-risk group at all ages for both 

MSE and trev, these two quantities together may provide a more sensitive biomarker for 

developmental age and atypical development. However, in this study only the multiscale 

complexity is used to classify the high risk group. 
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Figure 9. Multiscale entropy (MSE) is computed for each of 64 channels and for each of the risk 
groups and averaged over the sample population to produce the MSE plots for ages 6 to 24 months.  

 In order to make some general comparisons of EEG complexity between risk 

groups and different ages, mMSE curves were averaged over all members of sub-groups 

by both age and risk group. Figure 9 shows that the HRA group has a consistently lower 

mean complexity over all channels across all scales and at all ages. The group average 

mMSE value versus age is shown for infants in each of the two risk groups in Figure 10. 

The bold black line is the mean MSE value averaged over all 64 EEG channels. Left and 
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right laterality were determined by averaging all left-side and all right-side channels 

separately. Similarly, mMSE values for four left-frontal and four right-frontal channels 

were averaged and plotted versus age. Note that the data in Figure 10 is treated as if 

drawn from a cross-sectional study, as described previously. Mean values, standard 

deviations and statistical significance (p-values from t-test) for the channel averages are 

given in Table 3. Differences between group averages are significant at 18 months for 

overall mean mMSE, the differences are significant for the left frontal region at all except 

9 months. Of note is that significant differences are not found at 9 months for any of the 

three MSE averages in Table 1, although head circumference is significantly different 

only at 9 months. As discussed below, when all mMSE data is considered without 

averaging (that is, mMSE curves, at each channel), machine learning algorithms find the 

greatest classification accuracy at 9 months. Although it appears in Figure 10 that the 

most prominent difference between the normal and HRA groups is the change in mMSE 

from 9 to 12 months, significance levels were not computed for changes in this study 

because measurements at each age use different populations of infants.  

 Several features are immediately apparent. A general asymmetry in mMSE is seen 

in both control and high-risk groups, although this appears to decline from 12 to 18 

months as the left and right hemisphere and frontal curves come closer together at 18 

months. EEG complexity changes with age, but not uniformly. In the controls, the overall 

EEG complexity, shown by the solid black line, increases from 6 to 9 months then 

decreases slightly from 9 to 12 months before increasing again from 12 to 18 months. 

Left and right channels and the right frontal channels all follow this same pattern, though 
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left and right hemisphere complexity is not symmetric. The left frontal channels follow a 

different pattern, increasing strongly until 12 months then declining after that. The 

complexity curves for the high-risk group follow a similar pattern, but the overall 

complexity is lower and the increases and decreases are much more exaggerated. Perhaps 

even more distinct is the left frontal curve in the high-risk group. It follows the same 

pattern as all other regions, unlike the left frontal curve in the controls. 

 
Figure 10. The change in mean MSE over all channels is shown for each age. Averaging over all 
channels reveals that in general MSE is higher in the normal controls than in the high risk group, but 
regional differences cannot be seen. Numerical data, including statistical significance of group 
differences, is contained in Table 5.  
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Figure 11. MSE in each EEG channel averaged over all infants in the control or high-risk group at 
each age. 

Since the complexity changes seem to vary with EEG channel, a better picture of 

complexity development with age and between risk groups can be seen in a scalp plot. 

Figure 11 shows the mean mMSE value for all EEG channels by risk group and age. The 

complexity values here are computed by averaging the mMSE over all coarse grain scales 

for that channel as in Figure 8. Complexity variation with age and between risk groups is 

immediately apparent. One or two channels of the left frontal region appear to increase in 

complexity continuously with age in the controls, as does the right parietal/occipital 
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region. The entropy in the high-risk group is lower than in the control group overall. 

Although the pattern of complexity change from 6 to 9 months appears similar in both 

groups, the high-risk group shows a marked decline in overall complexity from 9 to 12 

months.  

Height, head circumference and (exact) age in days at the time of testing are 

included in Table 5. Group means, standard deviations and significance levels are shown. 

The only significant group difference in these variables is in head circumference at 9 

months – the HRA group has a larger mean head circumference than the typically 

developing controls. 

Statistical averages can sometimes obscure meaningful information in complex 

and highly varying time series. The scalp plots shown in Figure 11 reveal differences 

between risk groups and ages, but may not use all the information available in the mMSE 

calculations. For example, the complete mMSE curves on 20 resolutions or scales are 

shown in Figure 12 for individual 9-month old infants; 12.a is an infant from the control 

group and 12.b is for an infant from the high-risk group. Curves are grouped by brain 

region, with 64 curves in all. The purpose of these graphs is simply to illustrate that the 

shape of the mMSE curves can vary between channels and individuals in distinct ways 

and this will not be seen in average values. We note that the low spatial scale entropy in 

the frontal region of the infant from the control group is especially high while this feature 

is lacking in the infant from the high risk group. Although differences between these two 

examples are apparent, it may be quite difficult to compare 64 mMSE curves for a large  
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a.  

b.  

Figure 12. MSE curves for all 64 channels, grouped by brain region. a. 9-month normal control 
infant. b. 9-month high-risk infant. Higher low-spatial-region (corresponding to high frequency) 
entropy in the frontal region is one distinct difference in the normal controls. 

number of subjects in each group and determine the differences. In order to use all 64 x 

20 or 1280 multiscale entropy values for each subject, a multiclass support vector 
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machine (SVM) algorithm was used to perform supervised classification of the control 

and HRA groups. 	

a. Males and Females 
Age	(months)	 6	 9	 12	 18	 24	
	

Accuracy	
(p-value)	

knn	 0.67	
(0.06)	

0.77	
(0.02)	

0.53	
(0.38)	

0.72	
(0.12)	

0.53	
(0.47)	

SVM	 0.63	
(0.16)	

0.77	
(0.00)	

0.53	
(0.71)	

0.65	
(0.56)	

0.55	
(0.64)	

Bayes	 0.70	
(0.05)	

0.72	
(0.03)	

0.68	
(0.06)	

0.80	
(0.04)	

0.57	
(0.33)	

 
b. Males only 

Age	(months)	 6	 9	 12	 18	 24	
	

Accuracy	
(p-value)	

knn	 0.40	
(0.64)	

0.90	
(0.00)	

0.70	
(0.16)	

0.90	
(0.03)	

-	

SVM	 0.30	
(0.42)	

1.00	
(0.00)	

0.75	
(0.12)	

0.75	
(0.81)	

-	

Bayes	 0.35	
(0.58)	

0.75	
(0.10)	

0.75	
(0.09)	

0.90	
(0.05)	

-	

 
c. Females only 

Age	(months)	 6	 9	 12	 18	 24	
	

Accuracy	
(p-value)	

knn	 0.80	
(0.03)	

0.60	
(0.20)	

0.48	
(0.58)	

0.35	
(0.88)	

0.40	
(0.89)	

SVM	 0.80	
(0.02)	

0.40	
(0.54)	

0.35	
(0.97)	

0.55	
(0.78)	

0.75	
(0.53)	

Bayes	 0.75	
(0.07)	

0.65	
(0.19)	

0.47	
(0.54)	

0.45	
(0.73)	

0.50	
(0.92)	

Table 3.  Supervised learning classification using three different methods: k nearest neighbors (knn), 
Support Vector Machine (SVM), and Naïve Bayes classification. 10-fold cross validation was run 
using the computed MSE values on 64 channels for each subject within each age group. P-values 
were estimated empirically using a permutation of class labels approach, as described in the text. A. 
males and females together; b. males only; c. females only. Too few 24-month old boys were available 
for cross validation. 

 Using a 10-fold cross validation, subjects were classified into either control or high-

risk groups using three different learning algorithms as described previously. Since the 

complexity of all channels is changing rapidly from 6 months to 24 months, classification 

within age groups was done rather than comparing the two groups using infants across 

the entire age spectrum. Machine classification calculations were done for boys and girls 
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together at each age as well as separately. The results of these simulations are shown in 

Table 3. Classification by age and gender are shown with accuracy and significance 

estimates for three different machine learning algorithms: k-nearest neighbors (kNN), 

support vector machine (SVM) and naïve Bayesian classifier (Bayes).  

 The significance of the classification accuracy was assessed empirically using the 

permutation strategy described in (Golland and Fischl, 2003). This approach is common 

for estimating the significance of learning algorithms when the number of features greatly 

exceeds the number of training examples. If the class labels are randomly permutated, a 

new classification accuracy can be computed using 10-fold cross validation, to serve as a 

baseline. For this study, 100 random permutations were run with a 10-fold cross 

validation for each machine classification calculation. The p-value was determined by 

counting the number of random classifications for which the accuracy was equal to or 

higher than the accuracy for the true labels. 

 Using p=0.05 as a significance cutoff, HRA and control groups can be classified 

at 9 months for boys and girls together and for boys separately with accuracies of nearly 

80% and well over 90%, respectively. For boys considered alone, the classification 

accuracy remains relatively high at 9, 12 and 18 months, though the result at 12 months is 

not statistically significant. For girls, separation of the two groups is most accurate and 

significant at 6 months, possibly indicating a gender difference in developmental 

trajectories. These results suggest that a familial endophenotype may be present at around 

9 months that enables HRA infants to be distinguished from normal controls. The 
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differences seem to decline after 9 months, especially in girls, with some evidence that it 

may persist in boys until 18 months (Table 3.b). Since approximately 60% of the HRA 

infants are expected to not be diagnosed with an ASD (20% will likely be diagnosed with 

another disorder, although not an ASD; (Zwaigenbaum et al., 2007), this is not surprising. 

Increasing heterogeneity in rates of development and behavioral characteristics of the 

high risk group with age may be partly responsible for the drop in accuracy. Further study 

and subclassification with future data will be needed to explore gender differences in 

brain development using entropy calculations.  

In order to determine if the significant group differences in mean head 

circumference were predictors of individual class status, two additional calculations were 

done. First, head circumference was added as one more feature to the MSE values. The 

prediction calculations were repeated. The predictive accuracy of the classifiers was 

unchanged from the results obtained with MSE alone. This might have been because the 

changed MSE values were a direct reflection of head size differences in some way, so 

classification was done with head circumference alone. Somewhat surprisingly, 

classification accuracy was not significant and nearly random. When examining the 

group values, it appears that the rather large individual variability within each group 

accounts for this. We conclude that head circumference does not contribute to 

classification accuracy at any of the ages tested. 
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Discussion 

The primary goal of this study was to explore whether measures of EEG 

complexity might reveal functional endophenotypes of ASD and thus be potential 

biomarkers for risk of ASD at very early ages before the onset of clear behavioral 

symptoms.  Our findings show significant promise for the specific measure of multiscale 

entropy that was used to compare high and low risk infants between the ages of 6 and 24 

months. Differences in mean mMSE over the entire scalp and especially in the left frontal 

region were significant at most ages measured, except at 9 months. The trajectory of the 

curves between 6 and 12 months in figure 10 appear to be as informative as information 

at any specific age. This result makes the relative high accuracy at 9 months of the 

machine classification using all of the mMSE curves as feature vectors particularly 

notable. This is a period of important changes in brain function that are foundational for 

the emergence of higher level social and communicative skills that are at the heart of 

ASD. A number of major cognitive milestones typically occur beginning at around the 

age 9 months and perhaps earlier in girls. These include, for example the development of 

the ability to perceive intentional actions by others (Behne et al., 2005), as well as loss of 

the ability to perceive speech sound distinctions in non-native languages (Rivera-Gaxiola 

et al., 2005) and loss of the ability to discriminate individual monkey faces (Pascalis et 

al., 2002).  These latter developments are especially significant because they reveal how 

socially-grounded experiences influence changes in the neurocognitive mechanisms that 

underlie speech and face processing.  Thus, (Marcus and Nelson, 2001) argued that 

infants mold their face processing system based on the visual experiences they encounter 
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just as their speech processing skills are molded to their native language (Kuhl, 2000, 

2007).  This model assumes a narrowing of the social-perceptual window through which 

language and faces are processed which, in turn, results in an increase in cortical 

specialization.  In a prospective study, (Ozonoff et al., 2010) found that social 

communicative behaviors in infants that later developed ASD declined dramatically 

between 6 and 18 months when compared to typically developing infants.  

We hypothesize the following developmental sequence may explain the data in 

Table 3. At six months no significant behavioral differences have been noted between 

typically developing infants and those who develop autism in prospective studies 

(Ozonoff et al, 2010; Zwaigenbaum et al., 2005). Thus few differences are expected in 

electrophysiological data at 6 months, as is seen in Figure 10 and Table 3. However, if 

girls are considered separately, differences in mMSE appear to be significant at 6 months. 

If the multiscale entropy calculations from the EEG signals are indeed a biomarker for 

endophenotypes of autism familial traits, then by 9 months of age, many infants in the 

high-risk group will display unique characteristics in their MSE profiles that enable them 

to be distinguished from the controls. Those in the high-risk group who do not have 

multiple risk factors and later develop normally, would not be expected to exhibit 

abnormalities in their mMSE profiles throughout the developmental period. These will 

account for the HRA infants in our study who are classified similarly to our typical 

controls. This hypothesis will be tested when sufficient numbers of infants in the HRA 

group have reached 2 to 3 years of age and a diagnosis of ASD or typically developing 

can be made. 
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Developmental abnormalities from 6 to 12 months are particularly distinct in the 

two groups (low and high risk for ASD), allowing the groups to be classified quite 

accurately, although some overlap between the HRA and control groups should be 

expected at all ages. From 12 to 24 months, the distinction between the two groups 

declines. This likely reflects the trend for some fraction of high-risk infants to develop 

toward more typical cognitive and behavioral function even though they may carry 

endophenotypes that share common complexity profiles at an earlier age with other high-

risk infants who will later develop an ASD diagnosis.  

 Rather than analyzing entropy at single age points, using a trajectory of entropy 

values from 6 to 24 months might be more informative. Although EEG complexity has 

been shown in several studies to increase with age (Janjarasjitt et al., 2008; Lippe et al., 

2009; Zhang et al., 2009), the increase is neither monotonic nor uniform across different 

brain regions. The abnormalities in brain development that lead to autistic characteristics 

may not be immediately apparent by inspecting relevant brain activity, even if the data 

contain diagnostically significant information. For example, a recent study of the 

relationship between cortical thickness and intelligence found no correlation between 

absolute cortical thickness at any particular age and intelligence. However, a specific 

pattern of developmental changes in cortical thickness was highly correlated with 

intelligence (Shaw et al., 2006). 

 One of the characteristics of the high-risk group is heterogeneity: this group 

includes infants who will go on to develop an autism spectrum disorder and those who 
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are within the normal range genetically, developmentally and behaviorally, as well as 

those in-between who carry mild autistic-like traits. Further study with this cohort as they 

grow and develop will enable this hypothesis to be tested. Rather than binary 

classification into typical controls and heterogeneous high-risk groups, classification by 

actual behavioral assessments will allow a more accurate test of the efficacy of using the 

mMSE to measure brain function.   

Conclusions 

Abnormal brain connectivity either locally, regionally, or both may be a root 

cause of a number of behavioral disorders, including ASD (Belmonte et al., 2004a) and 

changes in local complexity is believed to be related to brain connectivity (Sakkalis et al., 

2008). Local neural network connectivity undergoes rapid change during early 

development and this may be reflected in the multiscale entropy of EEG signals, which is 

one measure of signal complexity that has been associated with health and disease (Costa 

et al., 2005b). A number of recent studies have demonstrated a link between brain 

connectivity and complexity and EEG signal complexity may provide valuable 

information about the neural correlates of cognitive processes (Sauseng and Klimesch, 

2008). Early markers for neurological or mental disorders, particularly those with 

developmental etiologies, may be the growth trajectories of complexity, as measured by 

multiscale entropy curves. The results shown in this paper suggest that infants from 

families with a history of ASD have quite different EEG complexity patterns from 6 to 24 

months of age that may be indicators of a functional endophenotype associated with ASD 
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risk. Differences between mean mMSE averaged over all channels or in frontal regions in 

the two groups are significant at all ages except 9 months. Machine classification based 

on mMSE curves in each channel as a feature set is able to determine group membership, 

particularly at 9 months of age. The classification accuracy decreases after 12 months, 

possibly due to the influence of normal brain development and the development of 

normal characteristics in many of the high risk subjects. Classification accuracy for boys 

alone appears to still be significant and relatively high at 18 months. More data about the 

future outcome of the HRA infants and the computation of additional features, such as 

laterality of entropy, together with behavioral and cognitive assessments as the cohort of 

subjects in this study grow, may enable the high risk population to be sub-classified more 

accurately. Future longitudinal analysis of data from this cohort will allow growth 

trajectories to be compared, as well as the future outcome of the high risk children. 

Deeper understanding of the relationship between these neurophysiological processes and 

cognitive function may yield a new window into the mind and provide a clinically useful 

psychiatric biomarker using complexity analysis of EEG data. 
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CHAPTER FOUR: MULTISCALE EEG ANALYSIS: BIOMARKERS FOR 

AUTISM AND ABSENCE EPILEPSY 

Abstract 

Background: Autism spectrum disorders (ASD) and epilepsy co-occur in approximately 

30% of individuals with a primary diagnosis of either disorder. As many as 60% of 

people with an ASD may exhibit epileptiform activity, even when active epilepsy is not 

present. Although autism and epilepsy are considered to be different disorders, the 

relatively high comorbidity suggests the possibility of common neuropathological 

mechanisms. Both are believed to be neural connectivity disorders. We posit that atypical 

neural connectivity patterns may be a common, and related, cause for both. Recent 

research in network theory has shown a relationship between network structure and 

nonlinear signal features, thus providing a link between EEG measurements and neural 

network structure.  Our hypothesis is that the EEG signal features, as computed with 

multiscale recurrence quantitative analysis (RQA), reveals similarities and differences 

between ASD and absence epilepsy. Specifically, the epileptic brain should exhibit lower 

chaos than controls, allowing pathological synchronization that results in seizures.   

Methods:  Data from 92 children were examined retrospectively in this study, collected 

from two different projects. Twenty-four (24) patients with absence epilepsy and 26 

controls were collected from the Boston Children’s Hospital (BCH) Epilepsy Center. 

Eighteen (18) children with a clinical diagnosis of autism and 23 controls were chosen 

from the Laboratories of Cognitive Neuroscience (LCN) at BCH. Thirty-second segments 
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of baseline, resting state EEG without visible spikes or abnormalities were selected from 

all subjects. RQA values were computed for each of 19 EEG channels in the standard 10-

20 configuration. Support Vector Machine (SVM) algorithms were used in a cross 

validation study to determine the classification accuracy using RQA values as features.  

Results: Significant differences were found between absence and control groups, ASD 

and control groups, and between absence and ASD groups. No significant differences 

were found between the two control groups. Classification algorithms were able to 

distinguish 3 groups (absence, ASD, control) with high (> 90%) accuracy. Importantly, 

the machine learning algorithms were not able to classify the two control groups, 

suggesting that the RQA values were related to characteristics of the EEG data itself, and 

not to differences in laboratories or equipment. While RQA values from absence cases 

differed from controls in all scalp locations, absence and ASD cases had the most 

significant differences in left temporal and right parietal regions. In most scalp regions, 

ASD values were intermediate between the control values and absence values. 

Conclusions: Significant differences were found in the nonlinear RQA values computed 

from alert, resting state EEG segments from children with absence epilepsy, ASD and 

controls. Controls had highest measures of chaos, with absence cases exhibiting the 

lowest values. These values may be useful as screening biomarkers for emerging absence 

epilepsy or ASD. The finding that ASD values were intermediate between absence cases 

and controls suggests a common pathological continuum in neural network structures. 
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Background 

Autism spectrum disorder (ASD) and epilepsy are common neurodevelopmental 

disorders that account for a significant proportion of child and adult neurologic burden of 

disease (Tuchman et al., 2013). Although autism and epilepsy are considered to be 

different disorders, these two spectrum disorders co-occur frequently. Approximately 

30% of individuals with a primary diagnosis of ASD have active epilepsy (Besag, 2009; 

Tuchman et al., 2010), with reports ranging from of 5% to 46% (Spence and Schneider, 

2009). Up to one-third of children with a primary diagnosis of epilepsy may also meet the 

criteria for a diagnosis of autism (Clarke et al., 2005).  Together, co-occurrence rates of 

epileptic seizures and autism symptoms are found at prevalence rates ranging from 20% 

(Tuchman and Cuccaro, 2011) to 30% (Parmeggiani et al., 2010; Tuchman et al., 2010).  

ASD constitutes a heterogeneous developmental syndrome that is usually 

characterized by a triad of impairments that affect social interaction, communication 

skills, and a restricted range of interests and activities (Harstad et al., 2015; Volkmar and 

McPartland, 2014). Behavioral signs of ASD tend to become observable after 18 to 24 

months, in some cases marked by significant regression after typical development. ASD 

is not a single disorder, but rather a spectrum of various subtypes with different (largely 

unknown) causes and developmental trajectories, including several common comorbid 

conditions such as epilepsy. The most recent figures indicate 1 in 68 children now born 

the US will develop an ASD diagnosis (Baio, 2014). Evidence suggests a similar 

prevalence of ASD and related disorders throughout the world, although the lack of 
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evidence from the majority of the world's population suggests a critical need for further 

research and capacity building in low- and middle-income countries (Elsabbagh et al., 

2012a).  

Epilepsy is also a heterogeneous disease classification that is characterized by an 

enduring predisposition to generate epileptic seizures, evidenced by at least two 

unprovoked seizures occurring at least 24 hours apart, and by the neurobiological, 

cognitive, psychological, and social consequences of this condition (Fisher et al., 2014). 

Epilepsy in the US occurs in approximately 0.6% in children and 1% in adults for all 

epilepsies (Kobau et al., 2012). Childhood absence epilepsy is a subtype of generalized 

idiopathic epilepsy. The hallmark of an absence seizure is an abrupt loss of 

consciousness, usually without motor impairment that may last a few seconds to half a 

minute (Glauser et al., 2010). Both epileptiform discharges and seizures are a 

manifestation of absence epilepsy. 

A link between epileptiform discharges and developmental disorders, particularly 

language disorders, has been found even when ‘subclinical’ discharges without epilepsy 

are found (Deonna and Roulet, 2006). Even in the absence of epilepsy, reports of 

epileptiform activity in electroencephalograms (EEGs) in up to 60% of children with 

autism have been reported (Spence and Schneider, 2009). The incidence of epileptiform 

abnormalities was positively correlated with the severity of autistic symptoms may be 

associated with higher likelihood of epileptiform abnormalities (Mulligan and Trauner, 

2013).  
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Complex spectrum disorders such as autism and epilepsy are associated with 

atypical neural connectivity on many scales (Noonan et al., 2009). Evidence for disrupted 

cortical connectivity in autism continues to accumulate (Kana et al., 2011), with 

excessive local connectivity within neural assemblies and deficits in long-range 

connectivity between functional brain regions. This model is thought to be consistent 

with observed impairments in autism, such as reduced motor coordination and 

visuoperceptual abnormalities (Belmonte et al., 2004a). Similarly, atypical neural 

network dynamics is likely to be fundamental to the etiology of epilepsy (Kramer and 

Cash, 2012). Patients with mesial temporal lobe epilepsy (mTLE), for example, were 

found to have altered brain network properties, along with smaller degree of connectivity. 

The authors suggest that the observed alterations “may be used to define tentative disease 

markers” (Liao et al., 2010).  

Increasingly detailed neural imaging studies reveal that abnormal neural 

connectivity is implicated in many mental and neurological disorders (Takahashi, 2013). 

In particular, autism spectrum disorders (ASD, or simply ‘autism’) and the epilepsies (or 

‘epilepsy’) have both been described as neural connectivity disorders (autism: (Assaf et 

al., 2010; Belmonte et al., 2004a; Minshew and Keller, 2010; Sato et al., 2015); epilepsy: 

(Coben and Mohammad-Rezazadeh, 2015; Douw et al., 2010; Englot et al., 2015; Gong 

et al., 2014; Liao et al., 2010)). By this it is meant that the behavioral characteristics that 

define autism and the unprovoked seizures of epilepsy are caused by characteristic 

differences in neural structure from typical neural network topology.  
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Autism and epilepsy have also been described as dynamical disorders. Epilepsy 

has been described as a dynamical disease (Lopes da Silva et al., 2003; Milton, 2010; 

Osorio et al., 2010). Using dynamical models of neural networks, computational 

modelers attempt to understand the relationship between the structure of the nervous 

system and the dynamic abnormalities generated by epileptic neural populations (Milton, 

2010). Similarly, autism has been analyzed from the perspective of complex dynamical 

systems (Bosl et al., 2011; Catarino et al., 2011; Megremi, 2014; Perez Velazquez and 

Galan, 2013; Sato et al., 2015). 

The two concepts, neural connectivity and neural dynamics, are related. The 

neural networks that make up the brain appear to exhibit a very peculiar kind of structure 

or topology, a hierarchical, fractal network connectivity pattern. This complex network 

forms the structural substrate for distributed interactions among specialized brain systems 

(Hagmann et al., 2008). Studies of complex networks reveal that they can exhibit a kind 

of “spatial chaos” in which network properties can change drastically with small changes 

to key network connections, analogous to the sensitive dependence of chaotic time series 

on initial conditions (Motter and Albert, 2012). The clinical implication is that computing 

dynamical features of the brain from EEG time series may be used to infer atypical neural 

connectivity that is associated with either epilepsy or autism. 

The remarkable realization that is emerging is that features of brain electrical 

signals that can be computed from scalp EEG measurements contain information about 

the underlying neural network topology (Donges et al., 2012; Gao et al., 2009; Gao and 



	

	

80	

Jin, 2009; Li et al., 2008a; Zanin et al., 2012). Although neural network topology cannot 

be measured directly, the electrical time series produced by networks of neurons and 

measured by EEG sensors exhibit complex dynamics, contains information about the 

network (Donges et al., 2012; Marwan et al., 2002; Mocenni et al., 2010; Schinkel et al., 

2009). Periodic series and noisy series have been found to convert into regular and 

random networks, respectively, while chaotic time series produce networks with 

hierarchical, fractal or scale-free structures (Gao and Jin, 2009). Furthermore, different 

aspects of the dynamics of a time series are associated with topological indices of the 

network. Quantitative features derived from EEG time series can be used to distinguish 

different dynamical regimes (Gao and Jin, 2009). The implications for neural 

connectivity disorders such as autism and epilepsy are that EEG analysis can reveal 

neural network pathologies that are related to functional and behavioral symptoms 

associated with the disorders. We explore this possibility in this paper. We hypothesize 

that aberrations in neural network topology are fundamental causes of autism and 

epilepsy, and any commonalities in network topology will be reflected in common 

nonlinear EEG features.		
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Figure 13. Neural dynamics produces scalp electrical fields that contain information about the neural 
structure that produces the electrical fields. Left image: Simulated pyramidal neural network, from 
(Cuntz et al., 2010). 

Since both ASD and epilepsy fundamentally involve neural connectivity 

abnormalities, similar topological abnormalities may be a common source of symptoms 

of both disorders. The electrical signals produced by neural networks are believed to 

contain information about network structure (Raghavendra et al., 2009; Stam, 2005; 

Zavaglia et al., 2008) that can be analyzed using novel analysis methods from nonlinear 

systems theory, including chaotic signal processing (Fuchs et al., 2007; Janjarasjitt et al., 

2008). Thus a comparison of EEG features that carry information about network 

dynamics may reveal fundamental similarities or differences between autistic and 

epileptic brain function. 

This paper presents two primary results, both resulting from a relatively new 

nonlinear signal analysis method called recurrence quantitative analysis (RQA). First, we 

demonstrate that RQA analysis of 30-second EEG segments can be used to distinguish 

children with absence epilepsy or ASD from typical controls and from each other. 
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Secondly, the comparison of similarities and differences in the analysis of the ASD and 

absence patients suggests similarities and differences in the neural structures that underlie 

each disorder. These results suggest a potential use for EEG in clinical settings as an 

early screening tool and method for monitoring therapeutic progress. 

Methods 

Participants 

Study setting: This study was performed in two different settings within Boston 

Children’s Hospital. Epilepsy patients and a contrast group were seen in a tertiary 

reference epilepsy unit at the Division of Epilepsy and Clinical Neurophysiology, 

Department of Neurology, Boston Children’s Hospital. Autism patients were recruited for 

a research study in the Developmental Medicine department at Boston Children’s 

Hospital. 

Study design: We performed a quantitative retrospective study to evaluate the use of 

multiscale nonlinear features derived from RQA analysis of EEG segments as biomarkers 

for absence epilepsy and autism spectrum disorders. 

Ethical approval: The Institutional Review Board at Boston Children’s Hospital granted 

approval for this study. Given its retrospective nature, the need to obtain individual 

informed consents was waived. 
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Patients: Subjects for this study were drawn from two different settings: the BCH 

Epilepsy Center and the Laboratories for Cognitive Neuroscience (LCN) under the 

direction of Charles A. Nelson in the Developmental Medicine Division at BCH. 

The main demographic features of all subjects are summarized in Table 4. 

Twenty-four absence cases and18 ASD cases are included, along with and 49 controls 

from both labs: 24 from the BCH Epilepsy Clinic and 23 controls from the Laboratories 

of Cognitive Neuroscience. 

Parameter 

BCH Epilepsy Clinic Lab Cog Neuro (LCN) 

Absence 
N=26 

Control 1 
N=24 

ASD 
N=18 

Control 2 
N=23 

Mean age in 
years (std dev) 8.6  (1.7) 7.74 (4.3) 8.8 (1.9) 8.6 (1.4) 

Gender 
(male/female) 13/13 9/15 16/2 21/2 

 
Table 4. Numbers and demographic features of the study population. 

BCH Epilepsy clinic: A database of patients undergoing routine electroencephalograms 

(EEG) performed at the BCH Epilepsy center was reviewed retrospectively and two 

populations of subjects were identified: patients with typical absence seizures (abs) and 

patients that underwent an EEG for different reasons but were eventually determined to 

not have epilepsy (contrast group). All subjects selected from the Epilepsy Center met the 

following inclusion criteria: 1) normal neuropsychological development, and 2) no other 

EEG abnormalities than those consistent with generalized absence epilepsy. Diagnosis 

was confirmed by documented seizures on EEG, and the diagnosis of typical absence 
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seizures was confirmed after careful evaluation of the clinical and EEG features by at 

least one board-certified clinical neurophysiologist.    

The epilepsy contrast group met the following criteria: 1) at least one EEG study 

because of the clinical suspicion of seizures, 2) normal routine EEG study after visual 

inspection, 3) very low-risk of a diagnosis of epilepsy after a thorough electro-clinical 

evaluation. Causes for performing an EEG study in controls included daydreaming, 

syncope, night terrors or sleepwalking.  

EEG segments of 30 seconds duration each were selected from EEG sample files. 

EEG data was sampled at 200 Hz for all Epilepsy Center subjects. From the absence 

cases, an experienced neurologist used visual review to select 30-second samples 

containing no spikes or evidence of epileptiform activity.   Similarly, 30-second segments 

were selected from the contrast group after visual review. All EEG samples collected in 

the Epilepsy Center were from awake subjects that were normal on visual analysis. For 

all subjects, segments of equal length were collected on 19 channels located according to 

the standard 10-20 system, as shown in Figure 14. 

LCN Autism Study Subjects: The autism study group of participants included 18 children 

with an autism spectrum disorder (ASD) (mean age = 9.0 years; SD = 1.7; 16 males, 2 

females) and 23 typically developing children (mean age = 8.6 years; SD = 1.4; 12 males, 

11 females). Participants were recruited from a list of families who had expressed interest 

in research participation. ASD diagnosis was confirmed by clinical diagnosis as reported 

by the parent and/or by meeting criteria on the Autism Diagnostic Observation Schedule 
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(ADOS) in a research setting conducted within the past year. Written informed assent 

was obtained from each participant and one of their parents, and verbal assent was 

confirmed from each participant prior to the experiment. 

All LCN electrophysiological recording was completed in an electrically and 

sound-shielded testing room with low lighting. Children were seated on a chair 

approximately 60 centimeters in front of the experimental monitor. Continuous baseline 

EEG was recorded before children were presented with images or other stimuli. Only 

baseline data was used in this study. 

Data Analysis, Feature Selection and Classification 

Continuous EEG was recorded using a high density 128-channel Geodesic Sensor 

Net (Electrical Geodesics Inc., Eugene, OR) and referenced to vertex (Cz). The electrical 

signal was amplified with a 0.1 to 100 Hz band-pass, digitized at 500Hz, and stored on a 

computer disk. The data were analyzed offline by using NetStation 4.4.1 analysis 

software (Electrical Geodesics Inc., Eugene OR). EEG data were digitally filtered using a 

30hz low-pass elliptical filter. After using an artifact detection tool standard to the 

NetStation software package to exclude segments with eye saccades and blinks, the 

remaining segments were visually scanned by an experimenter blind to study group. For 

comparison to the subjects examined in the BCH Epilepsy Center, only 19 channels were 

selected from the sensor net, corresponding to the positions shown in figure 4.1. 
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Figure 14. The standard 10-20 montage (Jasper, 1958). The 19 scalp locations shown here were used 
for all subjects in the Epilepsy Center. In LCN, these channels were selected from a larger montage 
of 128 sensors. 

EEG signal analysis: Each of the EEG samples was processed in an identical manner by 

the following steps. Thirty-second segments were selected from EEG data for each 

subject. Average referencing was computed and used for all EEG time series. 

Recurrence quantitative analysis (RQA) values were computed for all of the 

scales derived from each EEG channel. Software for computing recurrence plot statistics 

is publicly available from a web site (Marwan, 2012). Seven of the most commonly used 

recurrence plot values used in the analysis (RR, DET, LAM, L_max, L_mean, L_entr and 

TT) are discussed below. Multiscale sample entropy was also computed and included in 

this set of EEG signal features and is denoted by SampE. The methods used for 

computing multiscale sample entropy are discussed in a previous paper (Bosl et al., 

2011). Thus, eight features or values were computed for each EEG sensor time series. 

A more complete discussion of RQA analysis may be found in the literature 

(Marwan et al., 2007b; Webber and Zbilut, 2005). Multiscale time series were derived 
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from the original EEG signals using the multiscaling procedure described in (Costa et al., 

2005). RQA values were computed on all scales 1 to 32 for each subject at each EEG 

electrode. Examples of multiscale curves are shown in Figure 15.  As a simple way to 

characterize the multiscale curve, the mean value of the multiscale curve was computed. 

Thus, the set of features computed for each subject consists of 8 values at each of 19 

channels or 152 features. 

Feature selection and classification was performed using a recursive feature 

elimination algorithm that uses a support vector machine (SVM) method as described in 

(Guyon et al., 2002). The algorithm used is rfecv in the Python open source machine 

learning package scikit-learn (www.scikit-learn.org). The initial feature set includes the 

mean value of the multiscale curves from all channels and all RQA values, as shown in 

the graphs in Figures 16-23.  

Results 

Multiscale RQA Plots 

Multiscale RQA plots were computed for each of the 19 sensor locations in the 

standard 10-20 configuration shown in Figure 14. The multiscale time series were 

derived from the original EEG segments using the averaging method described in (Costa 

et al., 2005b). We note as before that for scales that are powers of 2 (1, 2, 4, 8, 16 and 32) 

the averaging scheme presented is identical to the Haar wavelet transform. Multiscale 

curves were computed for the following RQA values: RR, DET, LAM, L_entr, L_mean, 
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L_max and TT. In addition, the modified multiscale sample entropy (SampE) used in 

(Bosl et al., 2011) was also computed. Collectively, these are referred to as ‘signal 

features’ or simply features hereafter. Examples of the multiscale curves at Fp1 and Fp2 

for the DET measure are shown in Figure 15. Multiscale curves for all of the signal 

features at a selection of the 19 sensor locations are shown at the end of this chapter. We 

note that the two control groups are visually quite similar for every location and feature, 

while curves for the absence and ASD are distinctly different in many of the sensor 

locations and signal features. 

 

Figure 15. Multiscale curves are shown for L_max values at Fp1 and Fp2. P-values for the significance of group 
differences are derived from the median value over all scales. 

 

Multiscale feature comparisons 

Each multiscale curve can easily be viewed as a single object. Although methods 

for comparing curves based on mean value, slope and various shape parameters is 

possible, we chose in this study to use the mean value of the multiscale curve to represent 

the entire curve for simple comparisons between curves. Using the mean values only 
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resulted in many group differences that met the strict Bonferroni-corrected criterion of p 

< 10-4, derived by dividing the commonly used significance cutoff of 0.05 by 19*8 (19 

sensors, 8 features) and rounding down to the nearest power of 10. Significant group 

differences between absence and control subjects, ASD and controls, and absence versus 

ASD groups were found.  

Classification 
Most significant sensors  

(Strict Bonferroni corrected 
significance level of 10-4 used) 

Most significant features 

Absence vs. 
controls All except F7, C3, Cz, T8 

RR, DET, LAM, L_max, SampE   

 

ASD vs. 
controls Fp1, Fp2, T7, P8, O1, O2 RR, DET, LAM, L_max, L_ent, 

SampE   

Absence vs. 
ASD Fz, Cz, Pz, C3, C4, P3, P4, O1 L_max 

Control 1 vs. 
Control 2  No significant differences No significant differences 

 
Table 5. The significance of group differences was computed using the two-tailed t-test for each 
sensor location and each signal feature. 

An important first result found was that the two control groups were 

indistinguishable. They did not have any significant differences at any sensor location for 

any signal feature. Furthermore, it was found in classification calculations, discussed 

further below, that classification methods could not distinguish between control groups.  

When the absence and ASD groups were compared to each control group separately, the 

results were the same: either absence or ASD groups could be classified with high 

accuracy when compared to either control group. For this reason, the control groups were 

combined for all other group comparisons.  
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Absence versus controls   

  RR DET LAM L_max L_mean L_entr TT SampE 

Frontal 

Fp1 -12 -10 -8 -27  -14  -18 
Fp2 -9 -8 -6 -17  -12  -11 
F7        -4 
F3    -7    -4 
F4    -9     
F8 -8 -7 -6 -9  -10  -11 

Central 

Fz    -5  -6  -15 
Cz        -6 
Pz    -5  -5  -10 
C3         
C4         

Temporal T7 -5 -7 -7 -18  -10  -16 
T8         

Parietal 

P7    -7  -6  -10 
P3    -7    -5 
P4         
P8  -5 -5 -11  -9  -15 

Occipital O1 -5 -7 -6 -13  -11   
O2 -5 -8 -7 -15  -11   

Table 6. Log base 10 P-values for absence epilepsy versus controls. Numbers in the table are 
exponents of 10. Thus, -12 indicates p < 10-12. Only entries that are less than 10-4 are filled, 
illustrating where the most significant group differences are found. Yellow highlights are sensor 
locations that have significant differences from controls for 4 or more features. 

The absence group differed significantly from the control at most sensor locations 

across the scalp for one or more signal features when comparing the mean value of the 

curve across all scales. We note again that the EEG segments were from inter-ictal cases 

and did not exhibit epileptiform activity.  L_max and SampE were the most significantly 

different, as shown in Table 6. Of the eight features, only two (L_mean and TT) did not 

meet the significance criterion of p<10-4 at any location for any feature using mean 

values. We note that if slope is considered, then group mean slopes for some sensor 

locations for L_mean and TT are significantly different.  

Differences in signal features between absence and control subjects are distributed 
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across the scalp, with L_max and SampE differing most consistently. Of note, the 

greatest differences between absence and control groups were found in the orbitofrontal 

(Fp1, Fp2), right dorsolateral (F8), occipital (O1, O2) and left temporal (T7) regions. 

ASD versus controls 

The ASD group also differed significantly from the control groups. Similar signal 

features were significant as to the absence-control comparison, but scalp locations were 

not as widely distributed. Table 7 reveals that the most significant differences were at 

scalp locations in the orbitofrontal (Fp1, Fp2), left temporal (T7) and occipital (O1, O2) 

regions. 

  RR       DET LAM L_max L_mean L_ent TT SampE 

Frontal 

Fp1 -13 -13 -13 -21  -12  -17 
Fp2 -11 -8 -6 -13  -9  -9 
F7         
F3         
F4         
F8 -6 -5 -4   -7  -6 

Central 

Fz        -7 
Cz         
Pz         
C3         
C4         

Temporal T7 -6 -9 -6 -11  -8  -12 
T8         

Parietal 

P7         
P3         
P4         
P8    -5  -5  -7 

Occipital O1 -5 -6 -6   -6  -10 
O2 -4 -8 -8 -6  -6  -12 

Table 7. Log base 10 P-values for ASD versus controls. Numbers in the table are exponents of 10. 
Thus, -12 indicates p < 10-12. Only entries that are less than 10-4 are filled, illustrating where the most 
significant group differences are found. ASD subjects differ from controls particularly in 
orbitofrontal (Fp1, Fp2), left temporal (T7) and occipital (O1, O2) regions. 
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Absence versus ASD 

Although the absence and ASD groups differed from controls in similar locations, when 

compared to each other the only significant group differences were found in the L_max 

features in central locations. Table 8 illustrates this. 

  RR DET LAM L_max L_mean L_ent TT SampE 

Frontal 

Fp1         
Fp2         
F7         
F3         
F4         
F8         

Central 

Fz    -5     
Cz    -5     
Pz    -5     
C3    -4     
C4    -5     

Temporal T7         
T8         

Parietal 

P7         
P3    -5     
P4    -5     
P8         

Occipital O1    -5     
O2         

Table 8. Log base 10 P-values for absence versus ASD subjects. Numbers in the table are exponents 
of 10, as in previous tables.  

The absence and ASD groups differed from each other primarily in central regions. One 

interpretation of this is that absence features differ from controls in most scalp regions 

whereas ASD atypicalities are focused in orbitofrontal, left temporal and occipital 

regions. 

For all group comparisons, and for the feature ranking calculations discussed 

below, L_max is the most useful feature for differentiating the absence, ASD and control 

groups. Thus, group mean multiscale values for L_max are shown in Table 9 for each 
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sensor location and each group. The red values are those that are significantly different 

from the control values. The yellow highlighted values are those that differ significantly  

Region Sensor 
location 

L_max 
p-value for 
abs-ASD 

difference 

 
L_max value 

 
Abs ASD Con 

Frontal 

Fp1  234 278 715 
Fp2  227 274 648 
F7  285 419 409 
F3  431 576 642 
F4  402 577 636 
F8  288 433 574 

Central 

Fz 10-5 521 693 687 
Cz 10-5 520 672 632 
Pz 10-5 458 613 643 
C3 10-4 491 652 577 
C4 10-5 460 645 609 

Temporal T7  309 458 716 
T8  297 420 406 

Parietal 

P7  356 495 610 
P3 10-5 438 611 635 
P4 10-5 431 605 466 
P8  364 463 661 

Occipital O1 10-5 324 495 633 
O2  327 479 658 

 
Table 9. This table highlights where the most significant group differences are found between 
absence, ASD and control groups. Yellow shading indicates locations where absence and ASD groups 
differ significantly. Red numbers differ significantly from controls. 

between absence and ASD groups. L_max is lowest in the absence group at every 

location. L_max values for the ASD group are intermediate between absence and controls 

at most locations, though higher than the controls at F7, Fz, Cz, C3, C4, T8, and P4. With 

the exception of T8, these are also the locations where absence and ASD groups differ 

most significantly. 

In summary, the above results reveal three important results: 
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(1) The two control groups are indistinguishable on the basis of the signal features 

discussed in this paper, even though they were measured in different settings using 

different EEG equipment. 

(2) The absence and ASD groups each differ significantly from the control groups in 

many sensor locations and for 5 of the 8 signal features. 

(3) Absence and ASD groups differ significantly from each other primarily in centrally 

located regions on the L_max feature. 

Machine learning classification 

The real value of the signal features derived and discussed above is revealed if they can 

be used as features for machine learning classification algorithms. A recursive feature 

elimination algorithm was used to rank the features and a standard Support Vector 

Machine (SVM) classifier was then used to classify each of the groups when compared to 

controls, as well as to compare the control groups to each other. A 10-fold cross 

validation procedure was used. The feature elimination and SVM algorithms used are the 

rfecv method in the python scikit-learn package (http://scikit-learn.org). Table 10 shows 

results for the classification calculations. 
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Classification 
Classification Empirical 

p-value 

Highest 
ranked 
features Accuracy Sensitivity Specificity 

Absence versus 
controls 1.00 1.00 1.00 < 0.01 L_max, 

TT 

ASD versus 
controls 0.97 1.00 0.94 < 0.01 L_max, 

TT 

Absence versus 
ASD 0.75 -- -- < 0.01 L_max 

Control 1 versus 
Control 2 No significant differences, groups cannot be classified. 

Table 10. Classification results for pairs of groups. Empirical p-values are computed using the 
method of shuffled labels as described in (Golland and Fischl, 2003). One hundred trials were used 
for empirical p-values.  

The empirical p-values were computed using the method of shuffled labels as 

described in (Golland and Fischl, 2003). One hundred trials were used for empirical p-

values. The mean and standard deviation of accuracy values using shuffled labels were 

less than 0.01 in all cases. That is, in 100 trials with shuffled labels, the cross validation 

accuracy never equals or exceeds that obtained when correct labels are used. 

Although it would seem that the highest ranked features would be those are 

statistically the most different in two groups, for classification this may not be the case. 

The reason is that a variable such as TT, though not statistically different in any pair of 

groups, may introduce an added, independent dimension to another variable such as 

L_max. Together they may distinguish group members more clearly than either alone.  

The highest ranked features for classification are those that are found to contribute the 

most information to the classifier. 
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In summary, the absence and ASD groups can be classified from either or both 

control groups with nearly perfect accuracy. Although there is some overlap between the 

absence and ASD groups, the classification accuracy of 75% is significantly better than 

chance, as demonstrated by the shuffled label test used to compute the empirical p-value. 

 

Discussion 

The goal of this study was to determine if the nonlinear dynamical measures 

computed from short EEG segments using multiscale recurrence plot analysis would 

reveal similarities in signal features between children with ASD (with no evidence of 

seizures) and children with absence epilepsy. Further, we tested the hypothesis that RQA 

analysis would enable classification of children with epilepsy or autism from controls and 

from each other. A secondary aim was to compare control groups from two different 

settings using different EEG equipment as a test of the robustness of this approach.  

Three general findings resulted. First, we found highly significant differences in 

the multiscale RQA (mRQA) curves between absence, ASD and control groups. Machine 

learning classifiers were able to distinguish absence and ASD groups from controls with 

nearly 100% accuracy. Secondly, the two control groups were indistinguishable using 

mRQA values. Not only were there no significant control group differences in any of the 

values or scalp locations, but also machine learning algorithms were unable to distinguish 

the two control groups using any combination of the mRQA features. This is an 

important finding, because learning algorithms can find differences that may be due to 
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factors unrelated to those of interest, such as equipment differences. Finally, the most 

significant spatial locations that differentiated the absence and ASD groups from controls 

and from each other may give some insight into the neuronal dynamics that characterize 

these conditions. We discuss each of these findings in more depth below. 

Comparison of Control Groups 

Our initial expectation was that the control groups would be significantly different 

from each other on at least some measures, since we thought that differences in 

laboratory versus clinical settings and the different EEG equipment would introduce 

systematic differences in the multiscale RQA values. This was not the case. The two 

control groups had indistinguishable RQA values at every sensor location and for every 

dynamical variable. Furthermore, in a 10-fold cross validation scheme, machine learning 

classifiers were unable to differentiate the two control groups with accuracy better than 

random chance (50%). This was in stark contrast to the nearly perfect classification 

accuracy when either absence or ASD groups were classified with either or both control 

groups.  

Detection of absence epilepsy and ASD 

Cognitive processes are the result of transient synchronization of local and 

distributed neuronal assemblies (Rapp et al., 2015). Neuronal oscillations must balance 

the need for transient synchronization and the pathological, runaway hyper-

synchronization that results in an epileptic seizure. The Lyapunov exponent is a measure 
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of the amount of ‘chaos’ a time series exhibits. The more chaotic a signal is, the higher 

the Lyapunov exponent is, the more quickly it diverges from an initial trajectory when 

slightly perturbed.  Because of their greater propensity to diverge from an initial starting 

point, chaotic signals can entrain and synchronize only transiently before diverging from 

each other. Lower chaos is generally an indication of an unhealthy physiological 

condition (Costa et al., 2005b). 

Absence epilepsy subjects revealed significantly different values at nearly all 

scalp locations in some of the mRQA values, and particularly L_max. L_max is related to 

the largest Lyapunov exponent of a time series. Smaller L_max indicates less chaotic 

signals that may synchronize for longer periods, increasing the probability of 

hypersynchronization over larger neuronal assemblies. Thus, lower L_max is consistent 

with the absence epilepsy group. 

As shown in Table 9, the absence group has lower L_max values than the controls 

at every sensor location. The ASD group is mixed: at some locations it has a higher 

L_max value than controls, though all but one are statistically insignificant group 

differences. At several key locations (Fp1, Fp2, T7, P8, O1, O2) the L_max values of the 

ASD group are significantly lower than controls. 

Note that, consistent with larger L_max values, the absence subjects have much 

larger average trapping time (TT) values, though the variability of TT values is greater, 

hence group differences are less significant. Larger TT values indicate that the time series 

remain in a similar state for longer periods (the time they are ‘trapped’ in a state is 
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longer), which is consistent with lower chaotic activity. This might be interpreted as 

creating a greater probability of massive entrainment and hypersynchronization. 

For DET and LAM features, visual inspection of Figures 17 and 18 reveals that 

the slope over all scales seems to be significantly different between controls and cases, 

whether absence or ASD. Similarly for other features, shape appears visually to be 

important for differentiating groups, beyond the mean value of the curves. The shape of 

the multiscale curves is an indication of differences in signal activity over many scales 

(or frequencies), which may reflect functional differences in local and distributed 

neuronal assemblies in the absence, ASD and control groups. 

Scalp Location of Most Significant Features 

The ASD group differed significantly from controls for most features at Fp1, Fp2, 

T7, P8, O1, O2, as noted previously. At these locations, the L_max values for ASD were 

midway between the absence and control values, as for many other features (see Figures 

16-23). This finding suggests that a common pathology may be involved that results in 

lesser or different symptom manifestations in ASD when compared to absence epilepsy 

cases. 

Interestingly the ASD and absence groups differed from each other in 

centrotemporal sensor locations only. At most locations where significant differences 

were noted between ASD and controls, the ASD values were midway between the 

absence and control values. A seizure represents a brain state that has a high degree of 
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periodicity and loss of complexity. Since seizures may involve a synchronization process 

that entrains multiple frequency bands leading to large amplitude, highly periodic and 

low complexity activity, we speculate that the propensity to have seizures is represented 

by multiresolution dynamics. In biological systems, a lower level of chaotic dynamics is 

often associated with pathological conditions (Catarino et al., 2011; Costa et al., 2005a; 

Goldberger, 1997; Takahashi et al., 2010; Zhang et al., 2009). Although the complete 

neurophysiological implications of recurrence plot analysis for physiological signals have 

not been extensively explored in the literature, some general meaning can be derived.  

Occipital spikes may be common in children with neurodevelopmental disorders, 

particularly as age-dependent benign epilepsies. They appear to be more common in 

children with autism or autistic regression and possible seizures. The effects of the 

epileptiform discharge on cognitive functioning may result from extension into temporal 

and parietal lobes, rather than occipital disturbances per se (Nass et al., 1998). From a 

physics perspective, spiking activity represents sufficiently long local synchronization to 

create a visual peak. Increased synchronization may be revealed by lower L_max values, 

as discussed previously, even when spikes are not visually present in the EEG record. We 

note that the occipital regions had consistently lower L_max values and significant 

differences from controls in both absence and ASD groups. 

Feature Selection and Classification 

Classification results shown in Table 10 were derived from 10-fold cross 

validation calculations. Feature ranking and selection were done using a recursive feature 
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selection algorithm as implemented in the widely used, open source scikit-learn package 

(Abraham et al., 2014). Recursive feature selection is used with a Support Vector 

Machine (SVC) classifier algorithm to recursively remove features that have low scores 

as SVC support vectors and build a model based on remaining features.  

The feature selection method not only enables efficient selection of features for 

the classification process, but also gives an indication of where the most important group 

or class differences are found in combinations of data values. In the classification 

calculations shown in Table 10, two important points stand out. First, both absence and 

ASD groups can easily be distinguished from the controls with nearly perfect accuracy. 

The absence and ASD groups cannot be classified quite as well, with an accuracy of 

75%, perhaps suggesting a common pathology and fundamental similarities in neural 

network structures.  

Confounding Factors and Further Study 

The absence data and controls need to be interpreted in the clinical setting from 

which data was acquired. Several confounding factors require further study. The control 

subjects from the BCH Epilepsy Clinic used in this study may have a variety of 

neurological disturbances that have not fully emerged. They presented in the clinic 

initially because of some neurological concerns, though none was known to have a 

diagnosis of epilepsy or autism spectrum disorder. A larger set of subjects, including 

controls without neurological impairments and children with confirmed ASD or absence 

epilepsy, will be essential for determining the features that are most useful for detecting 
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the presence of absence epilepsy, ASD, or other disorders and distinguishing them 

reliably from normal EEGs or other neurological conditions. Importantly, the controls 

derived from the Laboratories of Cognitive Neuroscience were carefully screened for any 

known history of neurological or mental disorders. The statistical equivalence of the two 

control groups found in our analysis gives greater confidence in the appropriateness of 

both control groups.  

The gender distribution between in the four groups differed. Control group 1 was 

38% male, while control group 2 was 91% male. The statistical similarity of these two 

groups on nearly all measures used suggests that gender was not a significant factor in 

our analysis. The Absence group was 50% male while the ASD group was 89% male. 

Because the balance of male/female differed in the two control groups, and the results of 

our analysis are the same regardless of which control group was used, also suggests that 

gender was not a significant factor. Nevertheless, further studies of gender differences 

with larger study groups may be useful for gaining further insights. Early studies of EEG 

complexity differences in children at risk for developing autism based on family history 

did suggest gender differences (Bosl et al., 2011).  

For this initial study, patients with absence epilepsy were selected because they 

represent a common diagnosis in the epilepsy population, are relatively easy to 

characterize clinically and electroencephalographically, and constitute one of the most 

homogeneous groups of patients with epilepsy. Additionally, there are no clear structural 

brain abnormalities on structural MRI imaging, and there is no EEG slowing which may 
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confound results in other epilepsies or seizure types. Whether these findings will be 

applicable to other patients with different types of epilepsy will require additional data 

sets with patients who have clearly identified epilepsy syndromes. We hypothesize that if 

mRQA analysis is detecting the dynamics of an epileptic brain, then different epilepsies 

will reveal different spatial distributions than those seen for absence patients, and they 

should distinguish the different epilepsies.  

Multiscale Decomposition 

Synchronization of relatively local neuronal assemblies involves high frequency 

neuronal oscillations that are analogous to the lower scales in a multiscale decomposition. 

Higher scales are representative of slower frequencies that are involved in distributed cell 

assemblies that may span the cortex. Accumulating evidence suggests that information 

and processing is integrated across these multiple spatial and temporal scales, and that a 

hierarchy of mutually-interacting oscillations would be well-positioned to regulate this 

multi-scale integration (Rapp et al., 2015). This would suggest that more information 

from the multiscale curves, such as slope and shape parameters, might differentiate the 

absence, autism and control groups even more completely than the mean value of the 

curve over scales alone. Children with tuberous sclerosis complex (TSC) commonly 

manifest seizures and ASD characteristics. Significant differences in the high-frequency 

spectral content of EEG have been observed in children with TSC when compared to 

typically developing children (Stamoulis et al., 2015). This population of children may 

provide another means for testing the results found in this study. 
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Conclusions 

Our results demonstrate that EEG complexity, as measured by RQA analysis, may 

contain sufficient information to detect epilepsy, autism and possibly a variety of 

neurodevelopmental disorders (as represented by the control group) and distinguish 

children with these disorders from typically developing children. The signal feature that 

is most highly ranked in the epileptigenicity determination, Lmax, is related to the 

Lyapunov exponent, which may be related to how easily neural oscillators can 

synchronize, which is related to epileptiform or spiking activity and to seizures. The 

similar scores on the autism group and contrast group, and significantly different from the 

typically developing group, suggests that this measure is associated with neurological 

impairment of some form. Our results suggest that the computed RQA values are related 

to fundamental differences in the EEG neural generators and are independent of the EEG 

equipment used and the laboratory or clinical conditions under which the data are 

collected. This has important implications for the clinical use of EEG analysis as a 

biomarker for neurological impairments. 
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Figure 16. Recurrence rate (RR) values for four groups: Absence epilepsy (AE), ASD, control 1 (C1) 
and control 2 (C2) are shown at ten different sensor locations. 
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Figure 17. Determinism (DET) values for four groups: Absence epilepsy (AE), ASD, control 1 (C1) 
and control 2 (C2) are shown at ten different sensor locations. 
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Figure 18. Laminarity (LAM) values for four groups: Absence epilepsy (AE), ASD, control 1 (C1) 
and control 2 (C2) are shown at ten different sensor locations. 
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Figure 19. Maximum (diagonal) line length (L_max) values for four groups: Absence epilepsy (AE), 
ASD, control 1 (C1) and control 2 (C2) are shown at ten different sensor locations. 
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Figure 20. Mean (diagonal) line length (L_mean) values for four groups: Absence epilepsy (AE), 
ASD, control 1 (C1) and control 2 (C2) are shown at ten different sensor locations. 
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Figure 21. Entropy of diagonal lines (L_entr) values for four groups: Absence epilepsy (AE), ASD, 
control 1 (C1) and control 2 (C2) are shown at ten different sensor locations. 
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Figure 22. Transit time (TT) values for four groups: Absence epilepsy (AE), ASD, control 1 (C1) and 
control 2 (C2) are shown at ten different sensor locations. 

	



	

	

112	

	
Figure 23. Sample entropy (SampE) values for four groups: Absence epilepsy (AE), ASD, control 1 
(C1) and control 2 (C2) are shown at ten different sensor locations. 
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CHAPTER FIVE: EARLY AUTISM DETECTION WITH EEG BIOMARKERS 

AND INFORMATICS ANALYSIS  

Abstract 

Background: The prevalence of autism in the United States continues to increase, with 

the CDC recently estimating that 1 in 68 children born today will develop an autism 

spectrum disorder. Autism imposes an enormous burden on children in developing 

countries as well. Finding biomarkers for early screening and risk assessment that can be 

integrated into primary care practice are high priorities for high and low-income 

countries. EEG is a relatively low cost brain measurement tool that is being increasingly 

explored as a potential clinical tool for monitoring atypical brain development associated 

with autism. In this study, we use an expanded set of complex system measures to follow 

up on a previous study in which we use nonlinear analysis and modern analytics to find 

biomarkers for autism in a population of high-risk infants. 

Objective: The goal of this study is to test the hypothesis that EEG complexity, derived 

from nonlinear time series analysis based on multiscale recurrence plot analysis, will 

reveal significant differences between typically developing controls and high risk 

children that are later diagnosed with an autism spectrum disorder (ASD). Furthermore, 

EEG-derived complexity will enable quantitative estimates of ASD severity by predicting 

ADOS test scores up to 15 months in advance. This is a follow-up study to the earlier 

proof-of-principle study discussed in the previous chapter that examined a single 

complexity measure, multiscale entropy (MSE), as a biomarker for autism. 
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Methods: Recurrence plot analysis is an empirical approach to analyzing time series data 

and is in principle capable of characterizing all of the essential dynamics of a complex 

system from real-world, noisy, high dimensional data. We used this method to compute 

complexity values from EEG measurements from high-risk infants at 6, 9, 12 and 18 

months. Machine learning algorithms were then used to predict a 36-month outcome of 

autism at each of these ages. Additionally, a quantitative severity score was computed 

from the EEG complexity and used to estimate an ADOS score in the high-risk siblings 

who were not determined to be on the autism spectrum, but may exhibit the broader 

autism phenotype. 

Results: Using a cross-validation paradigm, prediction of the 36-month outcome was 

poor using 6-month EEG measurements, but was nearly 100% accurate at 9, 12 and 18 

months. Predictions of autism severity, as measured by the ADOS test, were significantly 

correlated with the actual ADOS scores, and exhibited similar variability in typically 

developing, high-risk siblings who were not diagnosed with autism, and children who 

later developed an autism diagnosis. 

Conclusions: The complexity of EEG signals, computed from children 9 to 18 months 

using multiscale recurrence plot analysis, may be a clinically useful biomarker for autism 

spectrum disorders and for the broader autism phenotype in high risk children.  

Background 

A recently released report by the US Centers for Disease Control (CDC) 

estimated that the prevalence of autism spectrum disorders (ASDs) in the United States is 

1 in 68, a significant increase over an estimate two years ago of 1 in 88 (Baio, 2014). In 
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testimony before the United States Committee on Foreign Affairs entitled “Global 

Perspectives on Autism – A Growing Public Health Crisis”, Andy Shih, Vice President of 

Public Affairs for Autism Speaks, stated that some form of autism now affects about 1 

percent of the world’s population, “a prevalence that is higher than AIDS, diabetes and 

cancer combined” (Shih, 2011). While the causes for the changing prevalence numbers 

may be debated, it is clear that ASDs impose a large disease burden on individuals, 

families and society in both rich and poor regions throughout the world.  

Autism is a disorder that is defined clinically by the presence of a triad of 

behavioral traits that generally do not appear before 24 to 36 months of age. Because 

autism is behaviorally and not biologically defined, a formal diagnosis of ASD cannot 

reliably be made until a child is 2 years old or older (Turner 2007, Sutera 2007). As a 

result, intervention efforts miss a critical window for earlier diagnosis, prevention and 

treatment. There is increasing evidence that the behavioral symptoms that define autism 

may be manifestations of earlier abnormalities in neurodevelopment that span multiple 

domains (Insel, 2014a). This has fueled the search for early neural correlates or biological 

indicators of ASD that could identify ASD in the prodromal phase, although varying 

developmental trajectories in infants at high risk for ASD cause heterogeneous outcomes 

that make this a difficult endeavor.  

Research from infant siblings indicates that ASD manifests in one of three 

prodromal patterns: early onset (i.e. around the first birthday), late onset (i.e. after the 

first birthday) or a regressive pattern (a period of normal development followed by a loss 
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of previously acquired skills). At age 14 months, about half of the children with ASD 

who were followed from an early age showed no difference from typically developing 

infants in social behavior such as shared positive affect and initiation of joint attention. 

Such late-onset cases were “essentially indistinguishable from those without ASD on the 

social and communication skills” (Yirmiya, 2010). 

 Other studies show that some children with ASD develop typically over the first 

two years but then regress in communication and social domains. Furthermore, there is 

undeniable overlap between normal and abnormal early development: some children who 

are in fact typical may exhibit delays in language and social behavior, whereas some 

children at risk for ASD may exhibit some proficiency in language and social behavior 

during early development. (Pierce 2009, Zwaigenbaum 2005, 2007, 2009). The diversity 

of presentations of ASD make early differential diagnosis difficult even for specialists, 

and particularly so in primary care settings which may be the only contact that many 

children have with their medical system. 

Need for Biomarkers in Primary Care 

Discovery of relatively easy to implement early screening biomarkers for ASD 

that can be integrated into primary care practice for routine screening is considered a high 

priority in pediatric care. The American Academy of Pediatrics Bright Futures practice 

guide outlines an approach to address developmental and mental health care for children 

of all ages and in particular screening tests starting as early as 12 months. Delivering the 

full range of services recommended in the guide requires considerable time from multiple 
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specialized clinicians, which are not easily implemented in routine primary care settings. 

Such services are generally not available to underserved populations, nor are such levels 

of service affordable by low-income populations even when in principle available, 

resulting in large disparities. For example, compared with parents of white children with 

ASD, parents of Latino children with ASD were 1.5 times as likely to report difficulties 

getting needed referrals, twice as likely not to have a usual source of care, and almost 

three times more likely to have unmet routine healthcare needs (Parish et al., 2012).  

The 2012 IACC Strategic Plan Update cited the innovative use of EEG data in our 

previous study as a potential biomarker and quantifier of ASD risk in the first year, 

suggesting that this may be a promising approach to very early identification of ASD in 

at-risk populations ((IACC), December 2012). In that study, a cohort of infants at high 

risk for developing autism based on having an older sibling with autism, was compared to 

typically developing controls (Bosl et al., 2011). As ASDs have a prevalence of slightly 

less that 1% in the general population, the prospective study of the evolution of ASD 

from birth to diagnosis in a population-based sample would be prohibitively expensive. 

Therefore, prospective studies have been confined to high-risk groups. The baby sibling 

design is based on the increased risk of mothers of children with autism having a second 

child who will develop an ASD. Initially the increased risk was estimated to be about 5% 

to 10%. However, prospective studies have shown the incidence to be closer to 18% 

(Ozonoff 2011). 

We previously showed that multiscale entropy, a particular nonlinear feature 
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computed from resting state EEG signals, was a useful feature for distinguishing high risk 

siblings from typically developing controls and thus might be a useful biomarker for 

early detection of ASD risk (Bosl et al., 2011). However, the eventual outcome of the 

high risk infants was not known at that time. The infants studied in our previous report 

have passed 36 months of age and were given a formal evaluation by a licensed clinician 

for the presence of ASD. 

Continuation of Pilot Study 

This present study is intended as a follow-up to our previous multiscale entropy 

study discussed in chapter 3. The primary goal of this work has a clinical focus and is 

motivated by a neurodevelopmental perspective: our objective is to discovery clinically 

useful biomarkers for ASD within easily measured EEG segments. Our focus on EEG as 

a tool for functional brain measurements is partly motivated by work in underserved 

populations throughout the world, where screening tools for early detection of ASD and 

other developmental disorders could have a major impact, but must be low cost and 

easily integrated into primary or community care practice to be useful (Bakare et al., 

2012; Collins et al., 2011). As mentioned earlier, brain developments are likely to 

precede behavioral manifestations, thus measuring brain electrical activity may reveal 

deviations from a typical trajectory months or years before the behavioral manifestations 

become apparent. If ASD symptoms are a manifestation of an atypical developmental 

process, then a relatively simple method for monitoring neurodevelopmental trajectories 

may open a window for intervention that will otherwise be missed. Early detection may 
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also enable new preventive interventions to be explored and may provide a way to 

monitor the effects of therapeutic interventions.  

In Chapter 3, a single measure of signal complexity called multiscale entropy was 

computed for each EEG signal. A very general approach to nonlinear signal analysis 

called recurrence quantitative analysis (RQA) is now being used to analyze complex 

dynamical systems. RQA is an empirical approach to analyzing time series data and is in 

principle capable of characterizing all of the essential dynamics of a complex system and 

is useful for analyzing “real-world, noisy, high dimensional data” (Webber and Zbilut, 

2005). It has proven to be a powerful tool already in physics, geophysics, engineering and 

biology (Komalapriya et al., 2008; Marwan et al., 2007b). Its use in neuroscience is just 

beginning. It may be capable of detecting significant state changes in brain function that 

are associated with chronic neurological and mental dysfunction. 

Thus, the multiscale RQA values used in this paper are a generalization of the 

multiscale entropy method used in the earlier study to characterize brain activity through 

EEG analysis. We refer to the multidimensional RQA variables that are computed for 

each EEG signal collectively as simply the EEG “complexity”. The goal of this study and 

the cohort of infant siblings are identical to our previous study: to use complex systems 

analysis to find clinically useful early biomarkers of brain activity that indicate a future 

diagnosis of autism. 
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Methods 

Participants 

Data were collected from 97 different infants: 46 at high risk for ASD based on 

having an older sibling with a confirmed diagnosis of ASD and 33 controls. All study 

subjects came from monolingual, English speaking households (English spoken ≥80% of 

the time). Infants who had an older sibling with ASD (not due to a known genetic 

disorder such as fragile X syndrome or tuberous sclerosis) were designated high risk 

(hra). The older siblings all received an expert clinical community diagnosis that was 

confirmed by study personnel using the Social Communication Questionnaire (SCQ; 

Rutter et al., 2004) or the Autism Diagnostic Observation Schedule- Generic (ADOS-G; 

Lord et al., 2000) for siblings older than 48 months.  

Low-risk control infants had at least one typically developing older sibling and no 

known first-degree relatives with ASD or neurodevelopmental disorders, based on a 

detailed screening interview. The study participants were part of an on-going longitudinal 

study and for this analysis visits were evaluated at regular intervals. A total of 190 lab 

encounters were collected from 97 different individuals. The distribution at different ages 

and risk groups is shown in Table 11. For the purposes of this study, all visits were 

treated as independent encounters. Thus, the data from an infant that is tested in five 

different sessions at 6, 9, 12, 18 and 24 months were treated as unique data sets.  

The larger Infant Sibling Project study, from which data for this project was 

taken, was approved by the Committee on Clinical Investigations at Children's Hospital 
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Boston (X06-08-0374) and Boston University School of Medicine (H-29049). Parental 

written informed consent was obtained after the experimental procedures had been fully 

explained. 

Age con-typ hra-typ asd 

6 23 18 5 

9 17 22 6 

12 18 21 9 

18 7 14 4 

24 10 14 2 

Total visits 75 89 26 

Table 11. Distribution of visits by age for typically developing controls (con-typ), high risk siblings 
that were determined to be typically developing at a 36 month evaluation (hra-typ), and high risk 
siblings or controls that were determined to have an autism spectrum disorder at 36 months (asd). 
These three groups are independent. 

Clinical Evaluation at 36 Months 

If a subject meets the cutoff criteria for ASD on the ADOS (total score greater 

than 7), then a video of the child during ADOS testing session is sent to a licensed 

clinical psychologist for review. In addition to watching the ADOS testing session, the 

psychologist is given scores from the Mullen Scales of Early Learning (Measure of 

cognitive ability, language and motor development) to assess any further delays in 

development.  If needed, the psychologist will also watch the Mullen test session to 

determine if the concerning behaviors observed in the ADOS are consistent across tasks.   

The child must meet the minimum criterion on the ADOS and have a clinical 

judgment of ASD to be considered ASD positive. The clinician makes a determination if 
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the child should be grouped as ASD positive or typically developing. Non-spectrum 

developmental disorders may also be noted, but such children were excluded from this 

study. If the clinician sends back the clinical judgment of ASD positive, it also includes a 

sub-category of ASD possible, ASD probable or ASD definite.  All of these 

determinations are considered ASD positive in this study.  

EEG Data Collection 

 Infants were seated on their mothers’ laps in a dimly lit room while a research 

assistant engaged their attention by blowing bubbles. This procedure was followed to 

limit the amount of head movement made by the infant that would interfere with the 

recording process. Continuous EEG was recorded with a 64-channel Sensor Net System 

(EGI, Inc.). The net is comprised of an elastic tension structure forming a geodesic 

tessellation of the head surface containing carbon fiber electrodes embedded in pedestal 

sponges.  At each vertex is a sensor pedestal housing an Ag/AgCl- coated, carbon-filled 

plastic electrode and sponge containing saline electrolyte. Prior to fitting the sensor net 

over the scalp, the sponges are soaked in electrolyte solution (6cc KCL/liter distilled 

water) in order to facilitate electrical contact between the scalp and the relevant electrode. 

In order to assure the safety and comfort of the infant the salinity of the electrolyte 

solution is the same as tears. In the event that the solution comes into contact with the 

eyes no damage or discomfort will occur.  

 Prior to recording, measurements of channel gains and zeros were taken to 

provide an accurate scaling factor for display of waveform data.  The baby's head was 
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measured and marked with a washable wax pencil in order to ensure accurate placement 

of the net, which was then placed over the scalp.  Scalp impedances were checked on-line 

using NetStation (EGI, Inc, Eugene OR), the recording software package that runs this 

system. EEG data were collected and recorded on-line using NetAmps Amplifiers (EGI, 

Inc, Eugene, OR) and the NetStation software. The data were amplified, filtered (band 

pass 0.1-100.0 Hz), and sampled at a frequency of 250 Hz.  They were digitized with a 

12-bit National Instruments Board (National Instruments Corp., Woburn MA). Typically, 

2 minutes of baseline activity were recorded, but depending on the willingness of the 

infant, recorded periods may have been shorter. For this study, continuous sample 

segments of 30 seconds were selected from the processed resting state data and used to 

compute multiscale entropy values.     

 Data were initially taken in this study with 64 channel nets, then later with 128 

channel nets. In order to compare data taken from both nets, and looking forward to 

future studies comparing these results with children from the Boston Children’s Hospital 

neurology clinics where standard 19 channel systems are used, a decision was made to 

use only 19 sensors or channels from the common 10-20 scalp locations, as shown 

previously in Figure 14. Data from sensors at these locations were the only data used for 

this study. An additional 8 “channels” were constructed by subtracting left-right pairs, 

element by element in the time series. The purpose was to include laterality differences as 

features. For example, subtracting the raw time series F7 from F8 created the new F7-F8 

difference channel. 
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Recurrence Quantitative Analysis 

A brief discussion of some of the most commonly used recurrence quantitative 

analysis variables is given here. A more complete and mathematical discussion of 

recurrence plot variables that can be computed is given in (Marwan et al., 2007a). We 

note that RQA was initially developed in the context of physical system, thus much of the 

terminology reflects physical systems. For example, ‘laminarity’ is a term that has 

physical meaning for fluid flow and is commonly used to distinguish turbulent flow from 

smooth or laminar flow. The meaning of these terms in the context of neural systems will 

require future research. 

 

RQA Variable Symbol Description 

Recurrence rate RR 
The probability that a system state recurs in a finite time. RR has 
been found useful for detecting evoked response potentials (ERPs) 
using single trials (Schinkel et al., 2009).  

Determinism DET 

DET comes from repeating patterns in the system and is an 
indication of its predictability. Regular, deterministic signals, such as 
sine waves, will have higher DET values, while uncorrelated time 
series, such as chaotic processes and random numbers, will cause 
low DET. 

Laminarity LAM 

Laminarity represents the frequency of occurrence of laminar states 
in the system without describing the length of these laminar phases. 
More frequent appearance of laminar states may relate to more 
frequent “seeds” for synchronized dynamics (Hirata and Aihara, 
2011), which may be related to epileptiform spiking on an EEG 
trace. 

Max line 
length L_max 

Lmax and related measures Vmax and Wmax are related to the 
largest Lyapunov exponent of a chaotic signal, which is a dynamic 
complexity measure that describes the divergence of trajectories 
starting at nearby initial states, (Gomez and Hornero, 2010). Lower 
values are typically associated with pathological conditions 
(Goldberger, 1997; Peng et al., 2009).   
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Entropy 
derived from 
diagonal lines 

L_entr These are three measures of entropy derived from the diagonal, 
vertical and horizontal lines of the recurrence plot, respectively. 
They are related to, but not identical to, other measures of entropy, 
such as the sample entropy used in our previous study (Bosl et al., 
2011) 

Entropy of 
vertical lines V_entr 

Entropy of 
horizontal lines W_entr 

Trapping time TT 

Trapping time is an estimate of the time that a system will remain in 
a given state - “trapped” state. Thus, lower TT values may be an 
indication of more frequent transitions between dynamical states and 
less system stability.   

Table 12. Recurrence Quantitative Analysis variables and their interpretation. 

Classification 

 The Orange machine learning package was used for classification calculations 

(Demsar and Zupan, 2004). Several different learning algorithms were compared: support 

vector machine (svm), k nearest neighbors (knn) and naïve Bayesian (bayes) so as to 

exclude possible overfitting by one method.  

Significance Testing 

 The significance of the classification results for each method was estimated 

empirically using the permutation approach described in (Golland and Fischl, 2003). 

These are reported as ‘empirical p-values’ along with classification accuracy results. The 

basic idea for estimating empirical p-values is to randomly shuffle the diagnostic labels 

and then proceed to do the cross validation in the usual manner. This shuffling and re-

classification is done many times. For the estimates below, one hundred random trials 

were done. Each time the random accuracy from the cross validation equals or exceeds 

that obtained from the true classification, the p-value is incremented by one. The final p-
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value is obtained by divided the summed value by the total number of trials. 

Feature Selection 

Feature selection was performed using a simple ranking algorithm initially 

developed for high dimensional data sets, such as gene expression arrays (Haury et al., 

2011; Zhou and Wang, 2007). The initial feature set consists of the 8 computed RQA 

values shown in table 2. These are used to compute multiscale RQA values, using the 

same multiscaling algorithm used to compute multiscale entropy (Bosl et al., 2011). 

Multiscale RQA values are computed for each of the 19 sensor locations plus 8 left-right 

difference values for a total of 27 sensors. The multiscale values for each sensor location 

constitute a multiscale curve. Only the area under the curve, mean value and the initial 

value are used. Thus, the entire initial feature set consists of 8*27*3 or 648 features. For 

classification calculations, the 10 highest-ranking features are selected using the simple 

ranking algorithm referenced above (Haury et al., 2011; Zhou and Wang, 2007). This is 

in accordance with a common practice of using feature sets that are not larger than about 

10% of the sample population size. Larger feature sets start to degrade accuracy due to 

the relatively small population sizes relative to the feature set. Feature sets with fewer 

than 10 features also show decreasing classification accuracy as important information 

may be missed when too few features are used. 
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Results 

The infants in this study belong to one of three groups, based on the 36 month clinical 

outcome and family history, as described in the methods section: (1) asd: those 

determined to be on the ASD spectrum, (2) hra-typ: siblings at high-risk who are 

determined to not be on the ASD spectrum, and (3) typ: controls who are determined to 

be typically developing. Note that those in the hra-typ group may not be considered 

typically developing in all of the three primary autism diagnostic categories – they do not 

meet the threshold for an ASD diagnosis. Initial classification calculations use the two 

end-point groups, asd and typ in cross validation paradigm. These two groups are then 

used as the training set for a classifier that is then used to classify and score the 

intermediate hra-typ group members. The groups are summarized in table 13. 

 

Group Label Family history 36 month clinical assessment 
typ None; control group Typically developing 

hra-typ Sibling with ASD 
Do not meet criteria for ASD 

diagnosis – may exhibit broader 
autism phenotype 

asd Sibling with ASD ASD diagnosis 

Table 13. The high risk siblings were divided into two groups: those that had a 36-month diagnosis of 
ASD (asd) and those that did not meet the threshold for an ASD diagnosis (hra-typ).  

 
Binary classification with controls and ASD outcomes 

A prediction of the 36 month binary outcome, asd or typ, was computed using a 

leave-one-out cross validation. The cross validation used multiscale RQA values 

computed from the unfiltered EEG, as described in the methods section above. Results 
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are shown in table 3. The age in column one is the age at which the resting state EEG was 

taken and used to predict the 36 month outcome. Several different classification methods 

were used to test for consistency.  

In summary, significant classification accuracies of greater than 90%, with 

similarly high sensitivity and specificity, were obtained using multiscale RQA features at 

9, 12, and 18 months of age, but not at 6 months. We note that the empirical p-values are 

exactly 0.0 after 100 trial classifications with shuffled labels, for every method at ages 9 

to 18, demonstrating that the classification accuracy was unlikely to be due to chance 

alone. Sensitivity with the SVM method was 100% at 9, 12, and 18 months. 

 

Age N asd 
/ typ Method Acc Sens Spec 

Randomized labels 
test p-value 
(100 trials) 

6 5 / 23 

knn 0.86 0.2 1.0 0.25 

bayes 0.82 0.60 0.87 0.04 

svm 0.78 0.00 0.96 1.0 

9 6 / 17 
knn 0.90 0.67 1.0 0.00 

bayes 0.90 1.0 0.88 0.00 

svm 1.0 1.0 1.0 0.00 

12 9 / 18 
knn 0.89 0.78 0.94 0.00 

bayes 0.82 0.89 0.78 0.00 

svm 0.96 1.0 0.94 0.00 

18 4 / 7 
knn 1.0 1.0 1.0 0.00 

bayes 0.88 0.75 1.0 0.00 

svm 1.0 1.0 1.0 0.00 

 
Table 14.  Predictive classification of 36-month outcome based on clinical diagnosis. The age 
represents the age at which EEG analysis was done with classification based on 36 month outcome.  
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For clarity, we summarize the results of Table 14 by noting that using the SVM 

method, sensitivity for ASD is 100% at 9, 12, and 18 months, with corresponding 

specificity also 100% at 9 and 18 months and 94% at 12 months. Complexity differences 

between these two groups are clear, as will be shown graphically in the following figures. 

Quantitative Estimate of Severity and Predicted ADOS Scores 

The svm method computes a hyperplane that divides the training set into classes 

that are maximally separated by some measure. This allows a quantitative estimate of 

how close or far each member of a test set is from the plane. A detailed discussion of a 

severity score or predicted ADOS severity score is derived from the SVM algorithm is 

given in Appendix A. In general, the EEG complexity is used to predict an ADOS 

severity score using the SVM algorithm. As discussed earlier, EEG complexity refers to 

the multidimensional RQA values that quantify the complexity of the EEG time series 

segment. We do not try to reduce this complexity measure to a single dimension that can 

easily be correlated to a specific neural function or characteristic. 

In the following, the training phase of the classification is always performed using 

only the two end groups, typ and asd. This is to avoid possible confusion that may be 

created if the hra-typ group is used, since children in this intermediate group may exhibit 

the broader autism phenotype but still be diagnosed as typically developing.  

In our first experimental calculation, an SVM classifier was trained using all typ 

and asd subjects from 6 to 24 months, with leave-one-out cross validation calculation. 
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The score for each subject in the test or predictive part of the cross validation was 

computed by the method described in Appendix A. This will be referred to as the 

predicted ADOS score in the following.  

Scores for the intermediate group consisting of typically developing children from 

the high risk group, denoted ‘hra-typ’, were then computed using the asd and typically 

developing controls as the training set. Thus, none of the hra siblings were included in the 

training set. Normalized mean scores for each group are shown in figure 15. This 

suggests that the multiscale RQA features contain quantitative group information about 

autism severity. The group difference in scores between typically developing controls and 

typically developing high-risk siblings is statistically significant, suggesting that the 

broader autism phenotype may be detected in the RQA analysis of EEG signals. 
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Figure 15. The training set used to generate this plot consisted of all typically developing controls 
(con / typ) and the high-risk infant siblings that had a positive clinical diagnosis of autism spectrum 
disorder at 36 months (hra / asd). The test set consisted of all high-risk infant siblings that were 
determined to be typically developing at 36 months (hra / typ). Scores represent the distance from the 
classification hyper plane learned by the SVM algorithm from the training set. P-value for con/typ 
versus hra/typ = 7.8e-12. 

Quantitative Prediction of ADOS Scores in Individuals 

Next, rather than computing group means, prediction of ADOS severity scores is 

attempted using the approach described in appendix A for individuals by age. The 

method involves computing the distance of each subject from the separating plane in the 

SVM classifier. It is thus an estimate of the distance of a subject from the furthest 

endpoints in the typ and asd groups, with distance measured in the feature space. Actual 

ADOS severity scores are plotted alongside predicted ADOS scores. Two ADOS scores 

were available in this study for each infant: one at 18 months and one at 24 months. In 
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general, these scores are consistent. However, because not all scores were available for 

infants at both ages, and to account for observer variability, the 18 and 24 month ADOS 

scores were averaged to obtain the actual scores plotted here. 

The predicted severity scores are computed from the SVM classification model by 

age. The training set for classification consists of all subjects for which EEG data is 

available at a given age (6, 9, 12, and 18 months). The SVM algorithm enables 

calculation of a normalized score from 0.0 to 1.0 between the two groups. In this case, the 

two groups are infants from the control group that are later determined to be typically 

developing at 36 months (typ), and infants from the high risk group that are later 

determined to be on the autism spectrum (asd). In the leave-one-out cross validation, the 

SVM algorithm computes a score for the test subject between 0.0 (the typ endpoint) and 

1.0 (the asd endpoint). Scores above 0.5 are classed as asd, otherwise typ. The score for 

each test subject is saved. Using the entire training set, each of the subjects in the high 

risk group that was determined to be typically developing (hra-typ) was also scored. The 

normalized scores were multiplied by 14, the highest ADOS severity score among our 

population, to give a “EEG-derived severity score”.  

 

Age of EEG 
data (months) 

Pearson correlation: ADOS 
score and predicted score 

Significance 

6 0.15 (none) 0.32 
9 0.66 (strong) 0.80e-7 

12 0.35 (moderate) 0.016 
18 0.60 (strong) 0.0014 

Table 16. Correlation between ADOS severity scores (18 month and 24 month average) and EEG-
derived severity score based on typ-asd classification model. 
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As Table 16 illustrates, the correlation between EEG-derived severity scores and the 

actual ADOS summary scores are moderate to strong, and highly significant, for 

predictions made using EEG measurements at 9, 12, and 18 months. The 6-month EEG 

predicted scores are not correlated with actual ADOS scores, consistent with previously 

discussed inability to predict the 36-month outcome from 6-month EEG data.  

The plots in Figure 25 show individual EEG-derived severity and ADOS scores 

graphically.  Using 6-month EEG data, all subjects have similar EEG-derived severity 

scores (shown as Xs) that are close to the typ scores, with relatively low scatter, which 

does not reflect the actual ADOS scores (shown as solid dots). 

 
Figure 25. Predicted ADOS scores (Xs) determined from 6-month EEG data from each of the 3 
groups are plotted along with actual ADOS scores (solid circles). Solid (actual scores) and dashed 
(predicted scores) lines show the mean score for that group. Predicted ADOS scores at 6 months are 
all similar to controls. 
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The situation changes when 9-month and later EEG data is used, as found previously for 

classification. The EEG-derived severity scores of the each of the groups (typ, hra-typ 

and asd) are correlated with the actual ADOS scores, and the variability of the actual 

assessed ADOS scores is mirrored by the predicted scores. 

 
Figure 26. Predicted ADOS scores (Xs) determined from 9-month EEG data from each of the 3 
groups are plotted along with actual ADOS scores (solid circles). Solid (actual scores) and dashed 
(predicted scores) lines show the mean score for that group. 
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Figure 27. Predicted ADOS scores (Xs) determined from 12-month EEG data from each of the 3 
groups are plotted along with actual ADOS scores (solid circles). Solid (actual scores) and dashed 
(predicted scores) lines show the mean score for that group. 
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Figure 28. Predicted ADOS scores (Xs) determined from 18-month EEG data from each of the 3 
groups are plotted along with actual ADOS scores (solid circles). Solid (actual scores) and dashed 
(predicted scores) lines show the mean score for that group. 

As the age of the EEG data used for predicting the ADOS scores increases, the 

predicted and actual ADOS scores, and the variability of scores within each group, 

become closer. When ADOS scores are predicted with 12 month and 18 month EEGs, the 

difference within each group between predicted and actual becomes statistically 

insignificant. 
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Discussion 

Importance of Biomarkers 

Discovering methods for very early detection of autism spectrum disorders is a 

priority research area for a number of organizations throughout the world (Gokcen et al., 

2014; Happe et al., 2006; Smith, 2011). The growing prevalence of ASD in the US is 

widely advertised and deeply concerning. Less well known is the enormous burden that 

ASD imposes on children in economically disadvantaged regions of the world. While 

striking progress has been made in preventing deaths among children under 5 years of 

age, neurodevelopmental disorders, and particularly autism, are now emerging as major 

public health challenges. Though the causes of autism are likely diverse, it is becoming 

increasing clear that significant adversity early in life can cause disruptions to the 

developing brain and lead to a higher risk of cognitive, social and neurological disorders 

(Abubakar et al., 2008; Abubakar et al., 2009; Bakare et al., 2012; Mung'ala-Odera and 

Newton, 2007). In regions of the world where malaria is still a major concern in young 

children, cerebral malaria is a major risk factor for neurodevelopmental impairment in 

young children (Boivin et al.; Carter et al., 2005; Carter et al., 2003; Kihara et al., 2006).  

Methods that can be used widely for early detection of ASD in primary and care 

settings is a high priority for identifying those that need services as early as possible 

(Brito et al., 2010). However, autism presents several diagnostic problems. First, the 

behaviors by which it is currently defined do not appear until long after the brain 

developments that lead to those behaviors have occurred. Thus, the most leveraged time 



	

	

138	

for intervention is lost with behavior-based screening tools. Secondly, the behaviors that 

characterize autism spectrum disorders are diverse. Evidence continues to mount 

suggesting that autism-like characteristics are distributed throughout the population 

(Gokcen et al., 2014; Happe et al., 2006). An additional complication arises from the 

paucity of early screening instruments that are valid in cultures outside of mainstream 

North American and European communities – including large and diverse immigrant 

populations within these regions. Discovery of biologically-based biomarkers for mental 

and cognitive disorders is a driving force behind the National Institutes of Health 

Research Domain Criteria (RDoC) program (Insel et al., 2010; Morris and Cuthbert, 

2012; Sanislow et al., 2010).  

Recently, performance-based measures such as atypical eye contact (Bedford et 

al., 2012; Paul et al., 2011; Wagner et al., 2012), unusual vocalization (Paul et al., 2011), 

or fixation on geometric patterns (Pierce et al., 2011) have highlighted the many potential 

early markers of ASD risk. Many brain recording (ERP) and imaging techniques such as 

DTI (Elsabbagh et al., 2012b; Elsabbagh et al., 2012c) and sleep fMRI (Pierce et al., 

2011) are very expensive, time consuming and not appropriate for infants, but have 

shown great promise to identify brain correlates of prodromal ASD. Recent advances in 

the technology of EEG monitoring (wireless infants caps) now allow the introduction of 

these measures into primary care clinical settings.  

An accurate biomarker that can lower the age of diagnosis will have tremendous 

impact on the practice of early screening and diagnosis. Furthermore, if reliable methods 
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can be developed to lower the age of diagnosis, and if insight is gained into the biological 

mechanisms that underlie the disorder, it may be possible to develop intervention 

strategies that can be implemented during the first year of life. The methods developed in 

this project will further introduce the possibility of monitoring the effectiveness of 

personalized interventions. This is the motivating goal and primary aim of this research: 

to find clinically useful, objective, biologically-based biomarkers for the early detection 

of autism. Understanding the neurobiological explanation for precisely why these 

biomarkers are effective is an important, but secondary goal.  

Study Population 

A prospective study of the association between very early biomarkers and later 

outcome is the ideal approach to the development of an evidence-based screening 

program. Nevertheless, a small, carefully selected population such as the infant sibling 

population used for this study has several limitations. The diversity of autism 

characteristics leaves open the question of whether the results shown here are detecting 

autism-specific characteristics, or if a broader atypical neurodevelopmental pattern is 

being detected. Our population is from an English-speaking, Boston-based population. It 

is yet to be determined if the brain electrophysiological patterns discovered here are also 

predictive of autism behaviors in other cultures. The ASD cases used in this study have a 

strong genetic component, based on the sibling design used. ASD is likely to have many 

diverse causes and risk factors, including as-yet unknown, complex genetics, nutritional, 

environmental and social factors. Although the results presented here are promising, 
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much larger and more diverse populations must be studied before the clinical 

applicability of this approach to EEG analysis can be determined. 

Complexity and ‘Big data’ Analytics 

Unlike most approaches to the cognitive neuroscience of autism, this approach 

used in this study depends explicitly on a model-free or machine learning paradigm to 

discover the brain (EEG) – phenotype relationship. This approach, recently dubbed the 

“fourth paradigm” of scientific research (Hey et al., 2009) depends on the use of machine 

learning algorithms to find patterns or regions of high dimensional data sets that are 

significantly correlated with phenomena of interest. Fundamentally, it is no different 

from the earliest experimental science, which collects data and human eyes look for 

relevant patterns. The only difference is that human eyes (or mind) cannot see relevant 

patterns that involve hundreds of variables.  

Our hypothesis is that the “complexity” of EEG signals, with complexity defined 

by a general nonlinear time series analysis approach referred to as recurrence quantitative 

analysis, contains information about brain function that is significantly correlated with a 

future diagnosis of ASD. Our results support this hypothesis. The finding that a more 

complicated measure of brain function, rather than a single variable or biological 

parameter, is consistent with the view of autism as an “an emergent disorder that is 

characterized by the loss of social communication skills in the period between 9 and 24 

months … defined on the basis of alterations in the developmental trajectories across 

multiple domains” (Tager-Flusberg, 2010). 
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We suggest that our approach differs from a traditional single-variable hypothesis driven 

approach only in that the variables of interest that characterize the EEG complexity are 

higher dimensional. Nevertheless, the hypothesis is straightforward: the dynamical 

complexity of the brain in children in whom autistic characteristics are developing 

follows a different trajectory than in typically developing children. The complexity is 

measured by computing recurrence quantitative analysis, a proven technique for 

quantifying complex system characteristics. Because it is difficult for humans to visualize 

in more than 3 dimensions, we employ a machine learning technique, SVM, to find the 

plane that distinguishes ASD from typically developing phenotype. 

The finding that high risk siblings that later develop an ASD diagnosis is 

consistent with other recent findings with high risk siblings. Behavioral symptoms were 

not apparent at 7 months in one study, but emerged by 14 months (Elsabbagh et al.). A 

distinct temperament profile that included increased negative affect and reduced tendency 

for physical contact (“cuddliness”) was found to be detectable by 14 months, but not at 7 

months (Clifford et al., 2012). Ozonoff found that some infants who developed ASD at 3 

years did not exhibit any deficits in social or communication behaviors compared to 

typically developing infants at 6 months of age (Ozonoff et al., 2010). Using a study 

sample drawn from the same population of infants as this study, significant group 

differences in the development of lateralized ERP response to speech were found 

between 6 and 12 months in the control and high risk sibling groups (Seery et al.), which 

supports further the hypothesis that brain developments associated with a later diagnosis 

of autism are occurring in this age range. It is possible that all of these prodromal 
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behavioral patterns are preceded by neural correlates that are changing before 12 months.   

The high accuracy of the cross validation predictions, and the significance level 

determined by the empirical p-value calculations suggests that the complexity measure 

employed in this study reflects real differences in the brains of children who are 

developing autism. Nevertheless, describing precisely what those differences are in 

neurobiological concepts may prove difficult. The brain is a complex system, and in 

many respects functions as a system rather than as a collection of independent, localized 

components. As suggested previously, ASD is an emergent disorder involving multiple 

domains. Further research in the biophysics of neural computation and in analysis of 

complex system time series is needed to bring scientific clarity. Nevertheless, the clinical 

utility of these findings is quite clear, even in the absence of complete neuroscientific 

explanation. 

 The results presented in this study may represent a lower bound on the predictive 

accuracy obtained. The feature selection method used was chosen for its simplicity and 

reports in the bioinformatics literature that it is effective for many applications (Haury et 

al., 2011; Zhou and Wang, 2007). However, if the highest ranked features contain similar 

information, then it may be that different combinations of features contain more 

information about the developing brain. Feature selection will require further research. 

Broader Autism Phenotype and Predicted Severity 

 Siblings who do not develop ASD are more likely to share some of the 

characteristic features, usually at a less severe level, of the ASD phenotype (Happe et al., 
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2006). Reviews of the broader autism phenotype may be found in (Ozonoff et al., 2014; 

Pickles et al., 2013). Research suggests that features of autism are not restricted to 

individuals diagnosed with autism spectrum disorders (ASDs), and that there is 

pronounced variation within the general population relating to ASD traits, which reflect 

similar (though less severe) social-cognitive and emotional features to those observed in 

ASDs (Gokcen et al., 2014). Cognitive tests in another study revealed similarities 

between children with autism and typically developing siblings on standard intelligence 

tests, suggesting that the common cognitive profile could be an intermediate phenotype 

of this syndrome (Gizzonio et al., 2014). Studies of older children have found that 

siblings and parents are more likely to show mild impairments in language (Lindgren et 

al., 2009; Ruser et al., 2007), non-verbal communication (Ruser et al., 2007), theory of 

mind (Baron-Cohen and Hammer, 1997; Dawson et al., 2005) and face processing 

compared to controls (Dawson et al., 2005).   

 The prediction of symptom severity or predicted ADOS score presented in this 

paper may be useful not only as a means for gauging the severity of future symptoms, but 

may be useful for detecting the broader autism phenotype. We note that the method used 

for predicting severity scores used in this study did not depend on ADOS scores at all. 

Rather, the two end groups, typ and asd, were used to train a classifier, which was then 

used to compute the distance of each of the intermediate hra-typ members from the 

endpoints. The average value and standard deviation of the computed hra-typ values was 

remarkably close and correlated with the actual range of ADOS values in this group. 

Additional research with much larger datasets will be needed to confirm the usefulness of 
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this predicted severity score. 

Comorbid Conditions 

Children with ASD exhibit a number of clinically significant difficulties in many 

neurodevelopmental domains ((Jones et al., 2013), including attention (Leitner, 2014; 

Swanson and Siller, 2014), mood (Matson and Williams, 2014), learning and cognitive 

function (Gizzonio et al., 2014), and other life skills . 

It cannot be determined from these results if the EEG analysis method employed here is 

detecting autism-specific characteristics of brain development, or a general 

neurodevelopmental deviation from a typical trajectory. Much larger population sizes 

with data and subjects from widely distributed clinics with a population of children will 

be necessary to test whether different atypical developmental problems. 

Conclusions 

The results presented in this paper are consistent with and greatly extend our previous 

study with this cohort of infants. Analyzing EEG signals as time series from a complex 

dynamical system shows that a 36-month outcome of ASD or typically developing can be 

predicted at 9, 12 and 18 months with high accuracy (at or close to 100% in all three 

cases) for infants in families with a history of ASD. No prediction is possible at 6 months 

using this approach. 

Perhaps even more importantly, it appears that EEG complexity, as determined using 
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multiscale RQA, enables a severity score for ASD symptoms to be predicted. Both the 

typical controls and the high risk siblings groups exhibit computed severity scores that 

have similar means and distributions to the actual ADOS scores. 

Before the approach presented in this study will be useful as an early screening tool for 

ASD, larger and more diverse populations of subjects will need to be tested to determine 

if ASD-specific characteristics are being detected, or if a general neuropathology that 

deviates from typical is detected. 

The nonlinear signal analysis method presented here for computing features from EEG 

segments contains information that enables statistically significant predictions of a 36 

month clinical diagnosis of autism by 9 months of age, but not at 6 months. Whether this 

is because differences at 6 months are not present, or they are subtler and require much 

larger datasets to tease out remains to be determined. 

We present these results as a potentially useful tool for risk assessment, leaving the much 

more difficult scientific question about why the dynamical information extracted by 

recurrence plot analysis appears to effectively map electrophysiology to developing 

behavioral and cognitive phenotypes. Larger studies using clinical populations of 

children should be performed with the methods described in this paper in order to 

determine as quickly as possible if this might be clinically useful for early risk screening. 

Simultaneously, carefully designed theoretical studies are needed to elucidate more fully 

the meaning of the complexity measurements found by RQA analysis that appears to 

detect emerging autistic characteristics. 
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ADDRESSING THE GLOBAL BURDEN OF NEURODEVELOPMENTAL 

DISORDERS (NDDS) USING NEUROTECHNOLOGY 

  
The Global Burden of MNS Disorders 

Mental, neurological, and substance use (MNS) disorders, or simply “mental 

disorders” impose the largest burden of all chronic disease classes in the world (Collins et 

al., 2011; Idro et al., 2010; Prince et al., 2007). Though long overlooked as healthcare 

priorities globally, mental disorders are an enormous economic burden on nations, 

particularly low income nations, where the lack of capacity to deal with the problem 

leads to personal suffering for patients, which also affects caregivers, families and 

communities. Yet, the burden may still be underestimated because current measures fail 

to take into account the connectedness of mind and body. Many chronic medical 

conditions have comorbid mental and cognitive conditions, leading to poor outcomes. 

Similarly, mental conditions can cause a number of poor health outcomes, creating a 

range of serious chronic diseases that require medical care. As the World Health 

Organization (WHO) constitution states: "Health is a state of complete physical, mental 

and social well-being and not merely the absence of disease or infirmity." Thus, there is 

no health without mental health. 
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Social and Economic Burden 

Mental disorders not only affect the well being of individuals, but also their 

families, communities and societies. Mental disorders do not respect income or social 

conditions: mental illness accounts for a larger proportion of disability in high-income 

countries than any other group of illnesses. For example, an estimated 25% of adults in 

the United States reported having a mental illness in the previous year (Reeves et al., 

2011). The economic burden imposed by these disorders, in high and low income nations 

alike, includes loss of gainful employment, with the attendant loss of family income; the 

requirement for care giving, with further potential loss of wages; the cost of medicines; 

and the need for other medical and social services. These costs are particularly 

devastating for poor populations (WHO, 2008). Unfortunately, economic burden leads to 

a huge loss of resources that could have been saved, which is unfortunately rarely 

considered in developing countries.  

A functioning mental healthcare system also helps to reduce poverty (WHO, 

2008). Homelessness and incarceration in prisons are common occurrences for people 

with mental health conditions, which exacerbate their marginalization and 

precariousness. Rates of mental illness among the homeless can be greater than 50% 

(Fazel et al., 2008) and studies reveal that more than one third of the prison population 

have mental health conditions (Kleinman, 2009). People with mental health conditions 

often lack educational and employment opportunities. Not surprisingly, severe mental 

illness is associated with unemployment rates up to 90%, the highest rates of all 



	

	

148	

disabilities (WHO, 2008). Moreover, mental health conditions in a single individual can 

lead entire families into poverty and thus hinder economic development (Chisholm et al., 

2007a). 

Effects of War and Conflict on Mental Health 

War, armed conflict and terrorist attacks introduce a significant cause of mental 

health burden in many parts of the world. A particularly high burden is borne by low-

income regions, where indirect effects of conflict greatly exacerbate the damage. Armed 

conflict causes widespread injury and illness that contribute to a breakdown of health 

services just when they are most needed.  

The mental health effects of war may be greatest burden among children, who 

then suffer with disability resulting from depression, anxiety symptoms, psychoactive 

substance use problems, malnutrition and failure to thrive in younger children and other 

consequences for a lifetime, especially in Africa. Displacement from homes, loss of 

family, destruction of schools and social structures important for psychosocial 

development may all be consequences of war and contributors to the damage to young 

minds. Higher rates of mental health problems, such as PTSD and depression, have been 

documented among child soldiers. These are further influenced by post-conflict risk and 

protective factors (Betancourt et al., 2010). A strong association between maternal 

symptoms of depression, anxiety and PTSD and symptoms of PTSD in their children was 

found in a Middle Eastern region afflicted by conflict (Feldman and Vengrober, 2011).  
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In addition to the direct effects of war on mental health, recent evidence suggests 

that an epigenetic intergenerational transfer of the effects of mental stress from parents to 

offspring (Devakumar et al., 2014). Interestingly, stress levels caused by psychological 

trauma in mothers can affect their unborn babies similarly to under-nutrition, possibly 

mediated by changes in the hypothalamic-pituitary-adrenal (HPA) axis (Holsboer, 2000). 

While the ultimate solution to trauma-induced mental disorders is the cessation of 

conflict, the creation of low cost approaches to early detection may help to alleviate some 

of the impact and reduce long-term burdens by enabling early interventions.   

Moral Imperative: A Failure of Humanity 

Mental healthcare is more than just a public health issue and economic burden it 

represents a moral failure. The current state of care for mental health patients in the 

world, in both rich and poor regions of the world, has been called a failure of humanity 

(Kleinman, 2009). The lives of people with mental disorders, particularly in resource 

poor societies, are deprived of basic human rights. As Kleinman (2009) eloquently 

argues,  “the widespread stigma of mental illness”, which prevails in countries as 

disparate as China, India, Kenya, Romania, Egypt, as well as selectively in the United 

States, “marks individuals with severe psychiatric disorders as virtually non-human. 

None of the world's major religions—no matter how strong is its message of support on 

behalf of the most marginal and vulnerable sufferers—has been able to break this cycle of 

misery. Nor have modern anti-stigma campaigns and mental health laws.” Although 

greater awareness of mental disorders as treatable, medical conditions has led to 
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improvements in care some countries and some situations, widespread stigma, racial 

disparities and misunderstanding prevail. The conditions under which people with mental 

disorders live in both rich and poor regions continue to be deplorable. In addition to 

restrictions on the right to work and to education they live in unhygienic and inhuman 

conditions, suffer physical and sexual abuse, neglect, and harmful and degrading 

treatment practices in health facilities. They are often denied civil and political rights and 

the right to participate in normal public life (WHO, 2008). 

Mental health affects progress towards the achievement of several Millennium 

Development Goals, such as promotion of gender equality and empowerment of women, 

reduction of child mortality, improvement of maternal health, and reversal of the spread 

of HIV/AIDS” (Prince et al., 2007). For this reason the next iteration of the MDGs will 

take mental health into more specific consideration. 

Barriers to Treatment: The Need for Innovative Solutions 

 Despite growing awareness of the personal, social and moral burden of mental 

disorders globally, solutions are not easily found. While effective interventions are 

known for many of the most prevalent mental disorders, a large proportion of people with 

such problems do not receive treatment and care (Rebello et al., 2014). A large multi-

country survey supported by WHO showed that 35–50% of serious cases in developed 

countries and 76–85% in less-developed countries had received no treatment in the 

previous 12 months. A review of the world literature found treatment gaps to be 32% for 

schizophrenia, 56% for depression, and as much as 78% for alcohol use disorders. Many 
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population-based studies have shown that more than 95% of people with epilepsy in 

many resource-poor regions do not receive adequate treatment (WHO, 2008). These 

numbers are strikingly high, particularly when known interventions exist that could 

enable many of these people to manage their health and greatly reduce the impact of the 

disorder. 

 The gap in mental health services between what is already known about treating 

these disorders, and the number of people who actually receive care, is quite large and 

cannot be resolved by extending current approaches that have been primarily developed 

in western countries. It will be essential to adapt known treatments and therapeutic 

approaches to local cultures and empirically document their effectiveness (Becker and 

Kleinman, 2012). Integration of mental health services into existing healthcare systems, 

using available healthcare workers, with a view to provision of holistic health care 

through the lifespan, will be required. Three specific barriers are often identified that 

must be overcome for this goal to be realized. These are described here, and then the 

potential for information technology to overcome these barriers is presented. 

 Perhaps the greatest barrier to development of mental health services has been the 

lack of attention to mental health as a serious public health issue among national leaders. 

This impacts financing available for mental health care. Governments have allocated 

relatively small amounts for mental health within their health budgets, and interest among 

NGOs and philanthropic organizations is lacking (Saraceno et al., 2007). Epidemiological 

data to inform policy makers is a first step to motivating governments – and empowering 
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reluctant leaders - to reallocate resources to accomplish the changes needed to improve 

mental health services. Importantly, epidemiological data, presented publicly and widely, 

may also be an antidote to the widespread stigma associated with mental disorders. 

Indeed, it has been found that mental health professionals and family members contribute 

to continuing stigma as much as anyone in society (Gray, 2002).  

 Another barrier concerns the organization of mental health services. The western 

approach concentrates mental health resources, and professionals, in large institutions, 

usually near big cities. These resources are generally inaccessible to rural populations. 

Those that are able to access these facilities are often isolated from their families and 

communities, are more expensive than community-based services, and are associated 

with inhumane conditions and increase stigma (Saraceno et al., 2007). Integration of 

mental health services effectively with primary and community care services is an 

important goal for overcoming the urban institutional model of mental healthcare. In 

many countries, the systems that provide primary health care are overburdened with high 

patient loads and lack of supplies. Moving mental health services to primary care settings 

is of course limited by the limited training of primary care providers in mental health care 

(Saraceno et al., 2007).  

 The lack of specialists with advanced training in behavioral health is often cited as 

the primary barrier to better mental healthcare in many regions of the world, including 

low- and high-income countries. A lack of trained personnel or lack of access to 

psychiatric and neurological services can prevent attention to the enormous burden of 



	

	

153	

mental disorders on many levels, tying together all of the barriers discussed. Capacity 

building with low-cost, easy to use screening and diagnostic tools is of paramount 

importance for overcoming all of these barriers (Bakare et al., 2012).  

 Innovative use of information technology can help to build capacity and overcome 

all of these barriers to expanding high quality mental healthcare among underserved 

populations. Before discussing the technology itself, a brief review of mental disorders as 

developmental brain disorders is given. This provides a foundation for considering 

mental disorders in the context of comprehensive, life-course management of general 

health and well being in community and primary care settings. 

Mental Disorders are Developmental Brain Disorders 

Recognizing that mental disorders are brain disorders will go a long way toward 

removing the stigma associated with these conditions. This perspective also makes the 

integration of mental healthcare into primary care settings seem obvious. Most mental 

disorders follow a predictable developmental trajectory over time. The symptoms that 

define the disorder emerge over time, exhibiting neurodevelopmental etiologies. Half of 

all mental and neurological disorders of adulthood may have antecedents in childhood 

and 75% emerge before age 25 (Insel, 2014a). Changes in brain function must necessarily 

precede observed changes in behavior or the emergence of symptoms of mental 

disorders. This follows logically from the simple fact that the brain is the seat of all 

human thought and action. It is becoming increasingly evident that the brain is quite 

robust at preserving normal function. For example, 50% to 70% of dopaminergic neurons 
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in the substantia nigra – the part of the brain involved in Parkinson’s Disease, must be 

destroyed before symptoms of Parkinson’s Disease begin to become observable (Cheng 

et al., 2010). If this principle holds generally for most or all mental disorders, then clearly 

the most leveraged opportunity for invention to prevent or reduce the severity of these 

diseases, in terms of both personal suffering and economic impact, is childhood. 

Managing chronic disorders to achieve a normal quality of life necessarily requires that 

care be moved into distributed community and primary care settings. 

Large amounts of money are spent on high-end brain research with expensive and 

complex equipment, with the promise of a future breakthrough that may cure specific 

mental disorders. The “cruel paradox” is that “while we chase the receding holy grail of 

future basic science breakthrough, we are shamefully neglecting the needs of patients 

who are suffering right now” (Frances, 2014). 

Innovative adaptation of existing technology can enable mental disorders to be 

managed in a life course approach to healthcare in primary care settings. Many mental 

disorders, if detected early and treated as chronic disorders, can be managed, allowing a 

reasonably normal quality of life with existing treatments. There is unfortunately a lag in 

the applications and implementation of existing interventions that can improve people’s 

lives today. We do not need to wait for a breakthrough discovery to produce a “magic 

pill” to realize such a promise. 
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Information Technology for Improving Mental Healthcare 

Table 17 lists the primary barriers to improved mental healthcare in underserved 

populations along with information technologies that may be particularly useful for 

overcoming these. Examples of these uses are given and described further in the text 

below. These examples have either been developed as pilot demonstration projects or 

student class projects, if at all, and are presented in part to inspire new translational 

research projects to scale up these ideas into working clinical implementations. 

Barriers  Technology Examples 

Lack of trained health 

workers  

Community screening apps 

Mobile EEG-based 

screening 

TQQ implemented in Sana 

mobile app 

Portable EEG with app 

connected to OpenMRS 

Organization of services 

Electronic Health Record 

(EHR) 

Electronic and online 

training materials 

Connecting screening 

surveys to OpenMRS 

Use of online instructional 

materials to train 

community workers.  

Lack of information at State 

and policy making level 

SMS survey 

 

MIT/USF Spring 2014 

Global Health Informatics 

Project: Autism in East 
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Africa  

Public attitudes, stigma 
SMS messaging, social 

media 

MIT/USF Spring 2014 

Global Health Informatics 

Project: Autism in East 

Africa  

Table 17. Existing information technology and how each may be used to overcome major barriers to 
better and more widely available mental healthcare services. (OpenMRS = electronic open medical 
record system (www.openmrs.org). 

 

Mobile Apps for Task Shifting 

The single largest barrier to scaling up efficacious treatments for mental disorders 

is the enormous scarcity and inequality in the distribution of skilled human resources in 

low-resource settings. In many countries the scarcity of human resources and training is 

simply overwhelming. Delivery of mental healthcare traditionally requires specialists that 

simply are not available to deliver core services in many regions of the world (Kakuma et 

al., 2011). Three levels of mental health workers are typically identified: specialists, 

including psychiatrists, neurologists, psychiatric nurses, psychologists, and occupational 

therapists; non-specialist professionals, which includes physicians, pediatricians, nurses; 

and other professionals, which may include teachers, social workers and community 

health officers. While many professionals, such as teachers and community health 

officers, may be available, few have the training necessary to assess patients adequately. 

One approach to overcoming this shortage involves task shifting, which refers to 

the strategy of rational redistribution of tasks among available caregivers. The concept 
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involves highly trained healthcare specialists sharing specific tasks with health workers 

having less training and fewer qualifications in order to make more efficient use of the 

available human resources (Patel, 2012).  

 Technology can play a critical role in task shifting. “Transferrable technology” is a 

term that was introduced by (Holtzman et al., 1987) to describe technologies that can be 

effectively devolved from highly trained professionals to those with a lesser level of 

training (Nell, 2000). This concept is similar to task shifting, but focuses on the clinical 

task being performed rather than the persons carrying out the task. An example of how 

technology might be used for task shifting in mental healthcare can be illustrated with the 

Ten Questions Questionnaire (TQQ), a set of questions developed to rapidly screen 

children living in resource-poor countries, aged 2-9, for the most common moderate to 

severe neurodevelopmental disorders (Mung'ala-Odera et al., 2004). The TQQ can be 

used to compare the epidemiology of neurodevelopmental disorders in different parts of 

the world and to screen for moderately/severely impaired children in resource-poor 

countries. The low positive predictive values mean that other assessments are required for 

confirmation. The TQQ was augmented with 13 additional questions for detecting autism 

spectrum disorders (ASD) in Ugandan children. The 23-question screening tool (23Q) 

was found to be modestly successful in identifying a subgroup of children at especially 

high risk for developing autism spectrum disorders (Kakooza-Mwesige et al., 2014).  

 An example of transferrable technology for mental health screening among 

pediatric populations is illustrated in Figure 29. One of the TQQ questions is shown in 
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the figure in both English and Kiswahili spoken in Kenya. The questions were 

implemented in the Sana Android framework, which can collect data on a mobile device 

and upload the data to a medical database. Sana apps are designed to send data to an 

OpenMRS electronic medical record system (www.openmrs.org), but others can also be 

implemented. With a small amount of training time, community workers can be trained to 

ask questions from an electronic form and type in the answers, which are then saved on 

the phone and uploaded to the internet when network connectivity becomes available. 

Remote computers can analyze and score the answers, followed by automatic feedback to 

the health worker. Additionally, epidemiological data becomes available as the 

population data accumulates. Because the questions in the survey can be controlled and 

updated remotely, it also becomes possible to adjust questions as needed. For example, 

additional questions could be added to the TQQ, such as the questions that are found in 

the 23Q, and immediately made available to all community health workers using that 

app. This enables lightly trained community workers to use the latest tools that are 

continually evaluated and updated in a central location by more specialized experts. This 

prototype awaits full implementation and field testing. 
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a.  b.  

Figure 29. Mobile apps created with the Sana framework (www.sanamobile.org) by Bosl (unpublished) 
are illustrated here. One of the questions from the Ten Questions Questionnaire used to screen 
children for major neurodevelopmental disorders is shown here in both English (a) and Kiswahili 
(b). 

 The need for mental health specialists, particularly psychiatrists and neurologists, 

will continue even if task shifting is implemented extensively. Using mobile technology 

will enable the expertise of a few specialists to be transferred to many community 

workers.  

Portable EEG Diagnostics 

 A mobile system for collection of clinical and EEG data has been designed to 

support the initial assessment of neurological problems (Insuasty et al., 2014). The 

system demonstrates the possibility to collect data in a community clinic setting, upload 

data to a remote server where it may be reviewed by a specialized health professional 
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(medical doctor, specialist nurse, for example). Apart from the capacity to complete a 

standard medical assessment survey such us the TQQ, the system allows the capture of 

EEG signals by connecting a portable EEG device through Bluetooth. The information 

collected is stored in the mobile device and automatically sent (if an Internet connection 

is available) to the Medical Health Record application (OpenMRS) in order to be 

assessed by a specialist. The management functionality of the survey and its 

synchronization with OpenMRS are supported by the Sana platform. For the management 

of EEG signals, an Android application called NeuroSana was developed, as shown in 

Figure 30. Three principles guided the development of the system: openness, low cost, 

interoperability, which are important attributes for technology deployment in low income 

nations. The hardware and software were mainly supported by open source platforms and 

interoperability standards, e.g., Bluetooth, XML and the European Data Format (EDF) 

which is a simple and flexible format for the management of multichannel biological and 

physical signals such us electroencephalograms or electrocardiograms. 

 

Figure 30. Shown here are an EEG device, mobile phone with hardware to capture EEG signal, and 
example signal display using the NeuroSana software described in (Insuasty et al., 2014). 
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SMS (text) Messaging for Public Education on Autism 

Autism Spectrum Disorder (ASD) is a complex lifelong neurodevelopmental 

disorder, which is characterized by impaired social communication, impairment of 

language and abnormal behaviors. It has profound influence on the social functioning of 

the affected person and their family. It’s impact is quite large due to its growing 

prevalence: “67 million people, (approx. 1 percent) of the world’s population are affected 

by Autism Spectrum Disorder, a prevalence that is higher than AIDS, cancer and diabetes 

combined” (Smith, 2011). 

Misinformed perceptions of ASD and its causes are aggravated in most African 

countries by many factors, including all of the barriers previously discussed. In many 

countries this dearth of knowledge and support is compounded by lack of a specific term 

to describe ASD. In cultures that are gregarious, there is often little tolerance for people 

who are unable to engage socially. Such perceptions are hard to shift, especially when 

children with ASD are frequently seen as blighted or bewitched – as a consequence of 

their parents’ wrongdoing. 

A pilot project was designed and tested by a group in the MIT Global Health 

Informatics program and led by William Bosl in the Spring of 2014 to evaluate the 

effectiveness of using SMS (text) messaging as a tool for participatory surveillance to 

measure public understanding of autism and related disorders in Kenya. 
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The project was intended as a pilot study of a larger goal to engage a Kenyan 

edutainment television program, Makutano Junction (MJ), with a viewership of 11 

million in East Africa. The goal is to have MJ profile an autism storyline within a 

broadcast series. Questionnaires will be embedded in MJ’s established SMS and leaflet 

information service to measure the impact such a storyline has had on knowledge, 

attitudes and claimed practices towards those affected by ASD. 

Using a commercially available SMS messaging service called Textit 

(http://textit.in) and mobile, bidirectional communications, a survey was designed and 

tested on a small population of students. The survey is designed to evaluate the 

effectiveness of targeted programming and the use of SMS technology as a methodology 

for participatory surveillance. SMS messaging is intended be used to support public 

information delivered through broadcasts by sending targeted messages to survey 

respondents. 

TextIt is a platform for visually building SMS applications and sending text 

messages through a simple Android phone as a small-scale aggregator. For scaling up to 

very large populations, the TextIt application will be converted to the SMS aggregation 

facilities of Mediae Company for Education and Development. Figure 31 illustrates one 

of the survey questions that are sent via SMS. Responses from respondents are 

automatically accumulated by the Textit system and basic statistical analysis results are 

made available. More involved analytics can be run on large population data after the 

pilot stage when large data sets are collected. 
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Figure 31. SMS messaging used for epidemiological surveys and for broad information campaigns to 
educate the public and reduce stigma.  

The findings from these impact assessments will be useful in planning future 

Makutano Junction shows to address related issues concerning mental health. Given that 

these findings will be representative of a cross-section of the community from three 

countries within East Africa, they will provide key insights on how to challenge stigma, 

reduce the isolation of those affected by ASD, and implement best practices for long-term 

support. Importantly, successful execution of this project on a large scale will provide 

information on mental health, and a means for collecting on-going data, that can be used 

by policy makers for planning and allocating resources for ASD and other mental health 

services. 



	

	

164	

 

Figure 32. Data flow design used for creating the pilot SMS survey to measure the effectiveness of an 
autism educational campaign on the public’s knowledge of autism. 

Electronic Health Records (EHRs) 

An important emerging theme in mental healthcare is the need to incorporate a 

life-course approach to the treatment of mental disorders, recognizing their 

developmental course and the need to monitor the course over time (Collins et al., 2011). 

This life-course approach requires that mental healthcare be integrated into routine 

primary care, which also opens up the possibility of early detection and intervention 

using a community and peer counseling care approach. Because of the need for primary 

care health workers to implement such integration, tools for task shifting are needed. 

Furthermore, some kind of electronic record must be kept for each patient that includes 

an objective assessment of the relevant associated symptoms, which then enables the 
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effectiveness of treatments to be monitored. An alternative is OpenMRS, an open-source, 

robust EHR platform that is supported by a global network of developers that has been 

used in over forty countries in the world (Fraser et al., 2012).  

Electronic screening tools are needed in primary care settings to initially identify 

a behavioral health risk or condition, and are used in behavioral health settings to track 

patient’s progress and outcomes. Integrated care requires the use of standard behavioral 

health screening and assessment tools, delivery of treatments, and evaluations of progress 

across care settings. Participants in a roundtable meeting in the U.S. Office for the 

National Coordinator for Health Information stressed the need for clinical decision 

support tools related to behavioral health (RTI_International, 2012). This need is 

especially acute in low resource settings for task shifting. However, a search of the 

literature found no examples of actual implementation of EHRs in low resource settings 

specifically for screening and monitoring of mental health conditions. This is an area ripe 

for pilot and demonstration projects. 

Steps to Adoption in Low Resource Settings 

 Several questions must be answered at the level of local or national health 

ministries when considering the cost of scaling up mental health services in low income 

regions. A recent study assessed the resource needs and costs associated with scaling up a 

package of essential interventions for mental health care over 10 years. The core package 

for this project comprised pharmacological and psychosocial treatments of three mental 

disorders – schizophrenia, bipolar disorders, and depression – and brief interventions for 
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one risk factor – hazardous alcohol use. The results suggested that the extra cost of 

scaling up mental health services over 10 years to provide extensive coverage of the core 

package should be feasible in absolute terms, although challenging (Chisholm et al., 

2007b). Estimates were approximately US$2 per person per year in low-income countries 

and $3-4 in lower middle-income countries, which were considered to be modest 

compared to the requirements for scaling-up of services for other major contributors to 

the global burden of disease (Chisholm et al., 2007a). 

Studies that have attempted to estimate costs have been done, but appear to not 

yet take into account innovative uses of technology for task shifting, early detection, or 

life-course monitoring and treatment. While such estimates are difficult to make before 

the technology has been implemented, we suggest that economic estimates that attempt to 

incorporate the impact of innovative uses of technology, as described in this paper, might 

help to spur government investment in new technology development for this task. 

Integrated mental healthcare is feasible using emerging health informatics because the 

innovations needed for such integration into other health care platforms “are consistent 

with many efforts to strengthen the capacity of primary care systems to address multiple 

health priorities more broadly” (Patel et al., 2013) 

Conclusions 

Mental disorders impose a significant disease burden on rich and poor nations of 

the world alike. The burden extends well beyond the suffering of the patients, affecting 

caregivers, families and communities. It can be a cause of poverty, and poverty 
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exacerbates mental disease by limiting access to therapeutic interventions that are known 

to be effective. Perhaps most compelling of all, the current state of mental healthcare 

globally has been called a moral failure of humanity due to the atrocious conditions under 

which many people with mental disorders are forced to endure. 

Innovative adaptation of existing technology can enable cost-effective diagnosis 

and management of mental disorders in primary and community care settings. Many 

mental disorders, if detected early and treated as chronic disorders, can be managed, 

allowing a reasonably normal quality of life with existing treatments. The single largest 

barrier to mental healthcare in resource-poor settings is the enormous scarcity and 

inequality of skilled human resources in low-resource settings. One approach to 

overcoming this shortage involves task shifting, which refers to the strategy of rational 

redistribution of tasks among available caregivers. Information technology is an 

important enabler of task shifting. Several examples were presented in this chapter 

showing how mobile devices, including phones and EEGs, together with the growing 

universal accessibility of the Internet and cloud-based database resources, are being 

developed to meet the need for better mental healthcare globally. It is hoped that this 

chapter will provide some guidance and inspiration to health technology students and 

research groups to engage with mental health providers to create new tools to meet this 

enormous challenge. 
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