22 research outputs found

    Development of a fusion approach selection tool

    Get PDF

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    Spectral feature fusion networks with dual attention for hyperspectral image classification

    Get PDF
    Recent progress in spectral classification is largely attributed to the use of convolutional neural networks (CNN). While a variety of successful architectures have been proposed, they all extract spectral features from various portions of adjacent spectral bands. In this paper, we take a different approach and develop a deep spectral feature fusion method, which extracts both local and interlocal spectral features, capturing thus also the correlations among non-adjacent bands. To our knowledge, this is the first reported deep spectral feature fusion method. Our model is a two-stream architecture, where an intergroup and a groupwise spectral classifiers operate in parallel. The interlocal spectral correlation feature extraction is achieved elegantly, by reshaping the input spectral vectors to form the socalled non-adjacent spectral matrices. We introduce the concept of groupwise band convolution to enable efficient extraction of discriminative local features with multiple kernels adopting to the local spectral content. Another important contribution of this work is a novel dual-channel attention mechanism to identify the most informative spectral features. The model is trained in an end-to-end fashion with a joint loss. Experimental results on real data sets demonstrate excellent performance compared to the current state-of-the-art

    Investigating the groundwater dependence and response to rainfall variability of vegetation in the Touws river and catchment using remote sensing

    Get PDF
    Magister Artium - MAChanges in climate patterns have raised concerns for environmentalists globally and across southern Africa. The changes greatly affect the growth dynamics of vegetation to such an extent that climate elements such as rainfall have become the most important determinant of vegetation growth. In arid and semi-arid environments, vegetation relies on near-surface groundwater as the main source of water. Changes in the environment due to climate can be examined by using remotely sensed data. This approach offers an affordable and easy means of monitoring the impact of climate variability on vegetation growth. This study examined the response of vegetation to rainfall and temperature, and assessed the dependence thereof on groundwater in a climatically variable region of the semi-arid Karoo. The methodology used included sampling plant species in the riparian and non-riparian areas over two plant communities in seven vegetation plots. The Normalised Difference Vegetation Index (NDVI) derived from the Landsat OLI and TM was used to measure vegetation productivity. This was compared with rainfall totals derived from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) and the mean monthly temperature totals. A drought index, (Standardised Precipitation Index – SPI) was an additional analysis to investigate rainfall variability. Object-based Image Analysis (OBIA) and Maximum Likelihood supervised classification approaches together with indicators of groundwater discharge areas (Topographic Wetness Index – TWI, and profile curvature) were used to map vegetation and surface water that depend on groundwater

    Remote Sensing methods for power line corridor surveys

    Get PDF
    AbstractTo secure uninterrupted distribution of electricity, effective monitoring and maintenance of power lines are needed. This literature review article aims to give a wide overview of the possibilities provided by modern remote sensing sensors in power line corridor surveys and to discuss the potential and limitations of different approaches. Monitoring of both power line components and vegetation around them is included. Remotely sensed data sources discussed in the review include synthetic aperture radar (SAR) images, optical satellite and aerial images, thermal images, airborne laser scanner (ALS) data, land-based mobile mapping data, and unmanned aerial vehicle (UAV) data. The review shows that most previous studies have concentrated on the mapping and analysis of network components. In particular, automated extraction of power line conductors has achieved much attention, and promising results have been reported. For example, accuracy levels above 90% have been presented for the extraction of conductors from ALS data or aerial images. However, in many studies datasets have been small and numerical quality analyses have been omitted. Mapping of vegetation near power lines has been a less common research topic than mapping of the components, but several studies have also been carried out in this field, especially using optical aerial and satellite images. Based on the review we conclude that in future research more attention should be given to an integrated use of various data sources to benefit from the various techniques in an optimal way. Knowledge in related fields, such as vegetation monitoring from ALS, SAR and optical image data should be better exploited to develop useful monitoring approaches. Special attention should be given to rapidly developing remote sensing techniques such as UAVs and laser scanning from airborne and land-based platforms. To demonstrate and verify the capabilities of automated monitoring approaches, large tests in various environments and practical monitoring conditions are needed. These should include careful quality analyses and comparisons between different data sources, methods and individual algorithms

    Mapping of multitemporal rice (Oryza sativa L.) growth stages using remote sensing with multi-sensor and machine learning : a thesis dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Earth Science at Massey University, Manawatū, New Zealand

    Get PDF
    Figure 2.1 is adapted and re-used under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.Rice (Oryza Sativa) plays a pivotal role in food security for Asian countries, especially in Indonesia. Due to the increasing pressure of environmental changes, such as land use and climate, rice cultivation areas need to be monitored regularly and spatially to ensure sustainable rice production. Moreover, timely information of rice growth stages (RGS) can lead to more efficient of inputs distribution from water, seed, fertilizer, and pesticide. One of the efficient solutions for regularly mapping the rice crop is using Earth observation satellites. Moreover, the increasing availability of open access satellite images such as Landsat-8, Sentinel-1, and Sentinel-2 provides ample opportunities to map continuous and high-resolution rice growth stages with greater accuracy. The majority of the literature has focused on mapping rice area, cropping patterns and relied mainly on the phenology of vegetation. However, the mapping process of RGS was difficult to assess the accuracy, time-consuming, and depended on only one sensor. In this work, we discuss the use of machine learning algorithms (MLA) for mapping paddy RGS with multiple remote sensing data in near-real-time. The study area was Java Island, which is the primary rice producer in Indonesia. This study has investigated: (1) the mapping of RGS using Landsat-8 imagery and different MLAs, and their rigorous performance was evaluated by conducting a multitemporal analysis; (2) the temporal consistency of predicting RGS using Sentinel-2, MOD13Q1, and Sentinel-1 data; (3) evaluating the correlation of local statistics data and paddy RGS using Sentinel-2, PROBA-V, and Sentinel-1 with MLAs. The ground truth datasets were collected from multi-year web camera data (2014-2016) and three months of the field campaign in different regions of Java (2018). The study considered the RGS in the analysis to be vegetative, reproductive, ripening, bare land, and flooding, and MLAs such as support vector machines (SVMs), random forest (RF), and artificial neural network (ANN) were used. The temporal consistency matrix was used to compare the classification maps within three sensor datasets (Landsat-8 OLI, Sentinel-2, and Sentinel-2, MOD13Q1, Sentinel-1) and in four periods (5, 10, 15, 16 days). Moreover, the result of the RGS map was also compared with monthly data from local statistics within each sub-district using cross-correlation analysis. The result from the analysis shows that SVM with a radial base function outperformed the RF and ANN and proved to be a robust method for small-size datasets (< 1,000 points). Compared to Sentinel-2, Landsat-8 OLI gives less accuracy due to the lack of a red-edge band and larger pixel size (30 x 30 m). Integration of Sentinel-2, MOD13Q1, and Sentinel-1 improved the classification performance and increased the temporal availability of cloud-free maps. The integration of PROBA-V and Sentinel-1 improved the classification accuracy from the Landsat-8 result, consistent with the monthly rice planting area statistics at the sub-district level. The western area of Java has the highest accuracy and consistency since the cropping pattern only relied on rice cultivation. In contrast, less accuracy was noticed in the eastern area because of upland rice cultivation due to limited irrigation facilities and mixed cropping. In addition, the cultivation of shallots to the north of Nganjuk Regency interferes with the model predictions because the cultivation of shallots resembles the vegetative phase due to the water banks. One future research idea is the auto-detection of the cropping index in the complex landscape to be able to use it for mapping RGS on a global scale. Detection of the rice area and RGS using Google Earth Engine (GEE) can be an action plan to disseminate the information quickly on a planetary scale. Our results show that the multitemporal Sentinel-1 combined with RF can detect rice areas with high accuracy (>91%). Similarly, accurate RGS maps can be detected by integrating multiple remote sensing (Sentinel-2, Landsat-8 OLI, and MOD13Q1) data with acceptable accuracy (76.4%), with high temporal frequency and lower cloud interference (every 16 days). Overall, this study shows that remote sensing combined with the machine learning methodology can deliver information on RGS in a timely fashion, which is easy to scale up and consistent both in time and space and matches the local statistics. This thesis is also in line with the existing rice monitoring projects such as Crop Monitor, Crop Watch, AMIS, and Sen4Agri to support disseminating information over a large area. To sum up, the proposed workflow and detailed map provide a more accurate method and information in near real-time for stakeholders, such as governmental agencies against the existing mapping method. This method can be introduced to provide accurate information to rice farmers promptly with sufficient inputs such as irrigation, seeds, and fertilisers for ensuring national food security from the shifting planting time due to climate change

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing

    Single image super resolution for spatial enhancement of hyperspectral remote sensing imagery

    Get PDF
    Hyperspectral Imaging (HSI) has emerged as a powerful tool for capturing detailed spectral information across various applications, such as remote sensing, medical imaging, and material identification. However, the limited spatial resolution of acquired HSI data poses a challenge due to hardware and acquisition constraints. Enhancing the spatial resolution of HSI is crucial for improving image processing tasks, such as object detection and classification. This research focuses on utilizing Single Image Super Resolution (SISR) techniques to enhance HSI, addressing four key challenges: the efficiency of 3D Deep Convolutional Neural Networks (3D-DCNNs) in HSI enhancement, minimizing spectral distortions, tackling data scarcity, and improving state-of-the-art performance. The thesis establishes a solid theoretical foundation and conducts an in-depth literature review to identify trends, gaps, and future directions in the field of HSI enhancement. Four chapters present novel research targeting each of the aforementioned challenges. All experiments are performed using publicly available datasets, and the results are evaluated both qualitatively and quantitatively using various commonly used metrics. The findings of this research contribute to the development of a novel 3D-CNN architecture known as 3D Super Resolution CNN 333 (3D-SRCNN333). This architecture demonstrates the capability to enhance HSI with minimal spectral distortions while maintaining acceptable computational cost and training time. Furthermore, a Bayesian-optimized hybrid spectral spatial loss function is devised to improve the spatial quality and minimize spectral distortions, combining the best characteristics of both domains. Addressing the challenge of data scarcity, this thesis conducts a thorough study on Data Augmentation techniques and their impact on the spectral signature of HSI. A new Data Augmentation technique called CutMixBlur is proposed, and various combinations of Data Augmentation techniques are evaluated to address the data scarcity challenge, leading to notable enhancements in performance. Lastly, the 3D-SRCNN333 architecture is extended to the frequency domain and wavelet domain to explore their advantages over the spatial domain. The experiments reveal promising results with the 3D Complex Residual SRCNN (3D-CRSRCNN), surpassing the performance of 3D-SRCNN333. The findings presented in this thesis have been published in reputable conferences and journals, indicating their contribution to the field of HSI enhancement. Overall, this thesis provides valuable insights into the field of HSI-SISR, offering a thorough understanding of the advancements, challenges, and potential applications. The developed algorithms and methodologies contribute to the broader goal of improving the spatial resolution and spectral fidelity of HSI, paving the way for further advancements in scientific research and practical implementations.Hyperspectral Imaging (HSI) has emerged as a powerful tool for capturing detailed spectral information across various applications, such as remote sensing, medical imaging, and material identification. However, the limited spatial resolution of acquired HSI data poses a challenge due to hardware and acquisition constraints. Enhancing the spatial resolution of HSI is crucial for improving image processing tasks, such as object detection and classification. This research focuses on utilizing Single Image Super Resolution (SISR) techniques to enhance HSI, addressing four key challenges: the efficiency of 3D Deep Convolutional Neural Networks (3D-DCNNs) in HSI enhancement, minimizing spectral distortions, tackling data scarcity, and improving state-of-the-art performance. The thesis establishes a solid theoretical foundation and conducts an in-depth literature review to identify trends, gaps, and future directions in the field of HSI enhancement. Four chapters present novel research targeting each of the aforementioned challenges. All experiments are performed using publicly available datasets, and the results are evaluated both qualitatively and quantitatively using various commonly used metrics. The findings of this research contribute to the development of a novel 3D-CNN architecture known as 3D Super Resolution CNN 333 (3D-SRCNN333). This architecture demonstrates the capability to enhance HSI with minimal spectral distortions while maintaining acceptable computational cost and training time. Furthermore, a Bayesian-optimized hybrid spectral spatial loss function is devised to improve the spatial quality and minimize spectral distortions, combining the best characteristics of both domains. Addressing the challenge of data scarcity, this thesis conducts a thorough study on Data Augmentation techniques and their impact on the spectral signature of HSI. A new Data Augmentation technique called CutMixBlur is proposed, and various combinations of Data Augmentation techniques are evaluated to address the data scarcity challenge, leading to notable enhancements in performance. Lastly, the 3D-SRCNN333 architecture is extended to the frequency domain and wavelet domain to explore their advantages over the spatial domain. The experiments reveal promising results with the 3D Complex Residual SRCNN (3D-CRSRCNN), surpassing the performance of 3D-SRCNN333. The findings presented in this thesis have been published in reputable conferences and journals, indicating their contribution to the field of HSI enhancement. Overall, this thesis provides valuable insights into the field of HSI-SISR, offering a thorough understanding of the advancements, challenges, and potential applications. The developed algorithms and methodologies contribute to the broader goal of improving the spatial resolution and spectral fidelity of HSI, paving the way for further advancements in scientific research and practical implementations

    The Use of Remote Sensing for Coral Reef Mapping in Support of Integrated Coastal Zone Management: A Case Study in the NW Red Sea - Volume I

    Get PDF
    Worldwide, coral reefs are rapidly degrading due to the combined negative effects of human activities and global change. Even though the Red Sea is a very suitable natural environment for coral reef growth, their status also has rapidly deteriorated since the 1970s. Coral reefs are especially affected in the NW Red Sea, primarily due to coastal development projects supporting the booming tourism industry. Integrated coastal zone management (ICZM), therefore, is urgently needed to protect the coral reefs and conserve these valuable natural resources for future generations. Effective ICZM necessitates sound baseline information concerning the current status of the coral reefs and the actual human activities taking place, as well as a tool to monitor changes in both elements. Fulfilling these requirements using in situ observations alone is both time- and labour-intensive and, therefore, often financially too demanding, especially for developing countries. Here, remote sensing may bring the solution as it synoptically collects data over large areas in a cost-efficient way. This work has proven the usefulness of passive, optical remote sensing from spaceborne platforms to collect and monitor the required data and support an effective ICZM. Based on Landsat 7 ETM+ and QuickBird data, accurate information has been collected on the bathymetric structure of the coral reef seabed, its geomorphological zonation, and the distribution of the main marine coastal habitats. The possibility to monitor changes in these elements as well as in the coastal development has also been confirmed. These remote sensing derived products have subsequently been analysed and integrated with auxiliary datasets in a GIS to develop valuable decision-support products such as a risk assessment map and a multi-use marine protected area zoning plan. To support ICZM, remote sensing is best integrated in a multi-level sampling approach in which detailed in situ observations are complemented with more broad-scale, regional information derived from remote sensing data analysis. As such, information-based decisions can be made, augmenting the success of the ICZM. This not only counts for the specific study area but is likely necessary for the sustainable development of coral reef coastal zones worldwide
    corecore