293 research outputs found

    Development of the EU Green Public Procurement (GPP) Criteria for Data Centres, Server Rooms and Cloud Services

    Get PDF
    The development of the Green Public Procurement (GPP) criteria for Data Centres, Server Rooms and Cloud Services is aimed at helping public authorities to ensure that data centres’ equipment and services are procured in such a way that they deliver environmental improvements that contribute to European policy objectives for energy, climate change and resource efficiency, as well as reducing life cycle costs. Three priority areas of focus are identified as the basis for criteria: 1) ICT System Performance, 2) Mechanical and electrical system performance, 3) Reduction of greenhouse gas (GHG) Emissions. For each area of focus, one or more criteria are provided, accompanied by the background technical rationale and a summary of the stakeholder contributions that support the final version of each criterion. Procurers can apply the criteria and engage tenderers to reduce the life cycle environmental impacts of their activities, focusing on those areas presenting the most improvement opportunities from cost and market perspectives and for which performance can be verified. The identified procurement processes and final green criteria are also described in a separate document, published as a Staff Working Document of the Commission: SWD(2020) 55 final. Together these two documents aim to provide public authorities with orientation on how to effectively integrate these GPP criteria into their procurement processes.JRC.B.5-Circular Economy and Industrial Leadershi

    Cloud-computing strategies for sustainable ICT utilization : a decision-making framework for non-expert Smart Building managers

    Get PDF
    Virtualization of processing power, storage, and networking applications via cloud-computing allows Smart Buildings to operate heavy demand computing resources off-premises. While this approach reduces in-house costs and energy use, recent case-studies have highlighted complexities in decision-making processes associated with implementing the concept of cloud-computing. This complexity is due to the rapid evolution of these technologies without standardization of approach by those organizations offering cloud-computing provision as a commercial concern. This study defines the term Smart Building as an ICT environment where a degree of system integration is accomplished. Non-expert managers are highlighted as key users of the outcomes from this project given the diverse nature of Smart Buildings’ operational objectives. This research evaluates different ICT management methods to effectively support decisions made by non-expert clients to deploy different models of cloud-computing services in their Smart Buildings ICT environments. The objective of this study is to reduce the need for costly 3rd party ICT consultancy providers, so non-experts can focus more on their Smart Buildings’ core competencies rather than the complex, expensive, and energy consuming processes of ICT management. The gap identified by this research represents vulnerability for non-expert managers to make effective decisions regarding cloud-computing cost estimation, deployment assessment, associated power consumption, and management flexibility in their Smart Buildings ICT environments. The project analyses cloud-computing decision-making concepts with reference to different Smart Building ICT attributes. In particular, it focuses on a structured programme of data collection which is achieved through semi-structured interviews, cost simulations and risk-analysis surveys. The main output is a theoretical management framework for non-expert decision-makers across variously-operated Smart Buildings. Furthermore, a decision-support tool is designed to enable non-expert managers to identify the extent of virtualization potential by evaluating different implementation options. This is presented to correlate with contract limitations, security challenges, system integration levels, sustainability, and long-term costs. These requirements are explored in contrast to cloud demand changes observed across specified periods. Dependencies were identified to greatly vary depending on numerous organizational aspects such as performance, size, and workload. The study argues that constructing long-term, sustainable, and cost-efficient strategies for any cloud deployment, depends on the thorough identification of required services off and on-premises. It points out that most of today’s heavy-burdened Smart Buildings are outsourcing these services to costly independent suppliers, which causes unnecessary management complexities, additional cost, and system incompatibility. The main conclusions argue that cloud-computing cost can differ depending on the Smart Building attributes and ICT requirements, and although in most cases cloud services are more convenient and cost effective at the early stages of the deployment and migration process, it can become costly in the future if not planned carefully using cost estimation service patterns. The results of the study can be exploited to enhance core competencies within Smart Buildings in order to maximize growth and attract new business opportunities

    Advanced Concepts for Renewable Energy Supply of Data Centres

    Get PDF
    The rapid increase of cloud computing, high performance computing (HPC) and the vast growth in Internet and Social Media use have aroused the interest in energy consumption and the carbon footprint of Data Centres. Data Centres primarily contain electronic equipment used for data processing (servers), data storage (storage equipment), and communications (network equipment). Collectively, this equipment processes, stores, and transmits digital information and is known as information technology (IT) equipment. Advanced Concepts for Renewable Energy Supply of Data Centres introduces a number of technical solutions for the supply of power and cooling energy into Data Centres with enhanced utilisation of renewable energy sources in order to achieve low energy Data Centres. Because of the high energy density nature of these unique infrastructures, it is essential to implement energy efficiency measures and reduce consumption before introducing any renewable energy source. A holistic approach is used with the objective of integrating many technical solutions such as management of the IT (Information Technology) load, efficient electrical supply to the IT systems, Low-Ex air-conditioning systems, interaction with district heating and cooling networks, re-use of heat, free cooling (air, seawater, groundwater), optimal use of heat and cold storage, electrical storage and integration in smart grids. This book is therefore a catalogue of advanced technical concepts that could be integrated into Data Centres portfolio in order to increase the overall efficiency and the share of renewable energies in power and cooling supply. Based on dynamic energy models implemented in TRNSYS some concepts are deeply evaluated through yearly simulations. The results of the simulation are illustrated with Sankey charts, where the energy flows per year within the subsystems of each concept for a selected scenario are shown, and graphs showing the results of parametric analysis. A set of environmental metrics (as the non-renewable primary energy) and financial metrics (CAPEX and OPEX) as well of energy efficiency metrics like the well-known PUE, are described and used to evaluate the different technical concepts

    IoT-driven scheduling of residential HVAC and virtual bus lanes for energy savings

    Get PDF
    The availability of commodity Internet connection and the decrease in price and form factor of consumer electronics led to the emergence of Internet of Things (IoT), with which our world becomes more connected and instrumented. IoT is a great vehicle for enabling solutions to problems in the connected environment that surrounds us (i.e., smart homes and smart cities). An example is the use of sensors and IoT to address issues related to energy efficiency, the broad area of this dissertation. Our hypothesis is that data processing and decision making need to be carried out at the network edge, specifically as close to the physical system as possible, where data are generated and used, to produce results in real-time and make sure the data is not exposed to privacy and security risks. To this end, we propose to leverage scheduling principles and statistical techniques in the context of two applications, namely aiming to reduce duty cycle of HVAC (Heating, Ventilation, and Air Conditioning) systems in smart homes and to mitigate road congestion in smart cities. The common goal in these two aims is the reduction of energy consumption and the reduction of atmospheric pollution. To achieve our first aim we propose intelligent scheduling of the duty cycles of HVAC systems in residential buildings. Our solution combines linear and polynomial regression enabled estimator that drives the calculations about the amounts of time thermally conditioned air should be supplied to each room. The output from our estimator is fed into our scheduler based on integer linear programming to decrease the duty cycle of the home's HVAC systems. We evaluate the effectiveness and efficiency of our HVAC solution with a dataset collected from several residential houses in the state of Pennsylvania. To achieve the second aim, we propose the concept of virtual bus lanes, that combines on-demand creation of bus lanes with dynamic control of traffic lights. Moreover, we propose to guide drivers through less congested routes using light boards that provide to drivers information in real-time for such routes. Our methods are anchored to priority scheduling, incremental windowed-based aggregation, and shortest path first Dijkstra's algorithm. We evaluate the effectiveness and efficiency of our virtual bus lanes solution with a real dataset from the city of Beijing, China, and a synthetic traffic scenario from the city of Luxembourg

    Advanced Concepts for Renewable Energy Supply of Data Centres

    Get PDF
    The rapid increase of cloud computing, high performance computing (HPC) and the vast growth in Internet and Social Media use have aroused the interest in energy consumption and the carbon footprint of Data Centres. Data Centres primarily contain electronic equipment used for data processing (servers), data storage (storage equipment), and communications (network equipment). Collectively, this equipment processes, stores, and transmits digital information and is known as information technology (IT) equipment. Advanced Concepts for Renewable Energy Supply of Data Centres introduces a number of technical solutions for the supply of power and cooling energy into Data Centres with enhanced utilisation of renewable energy sources in order to achieve low energy Data Centres. Because of the high energy density nature of these unique infrastructures, it is essential to implement energy efficiency measures and reduce consumption before introducing any renewable energy source. A holistic approach is used with the objective of integrating many technical solutions such as management of the IT (Information Technology) load, efficient electrical supply to the IT systems, Low-Ex air-conditioning systems, interaction with district heating and cooling networks, re-use of heat, free cooling (air, seawater, groundwater), optimal use of heat and cold storage, electrical storage and integration in smart grids. This book is therefore a catalogue of advanced technical concepts that could be integrated into Data Centres portfolio in order to increase the overall efficiency and the share of renewable energies in power and cooling supply. Based on dynamic energy models implemented in TRNSYS some concepts are deeply evaluated through yearly simulations. The results of the simulation are illustrated with Sankey charts, where the energy flows per year within the subsystems of each concept for a selected scenario are shown, and graphs showing the results of parametric analysis. A set of environmental metrics (as the non-renewable primary energy) and financial metrics (CAPEX and OPEX) as well of energy efficiency metrics like the well-known PUE, are described and used to evaluate the different technical concepts

    Harmonized Methods for Assessing Carbon Sequestration in European Forests

    Get PDF
    The MASCAREF (Study under EEC 2152/2003 Forest Focus regulation on developing harmonized methods for assessing carbon sequestration in European forests) project was conducted by a consortium of 10 European institutions coordinated by IFER ¿ Institute of Forest Ecosystem Research, Czech Republic. The overall objective of this project was to contribute to the development of a monitoring scheme for carbon sequestration in forests of the European Union (EU). Specifically, the project aimed at i) strengthening and harmonizing the existing national systems to better meet the requirements of international monitoring and reporting of greenhouse-gas (GHG) emissions and sinks and ii) improving the comparability, transparency and accuracy of the GHG inventory reports of the Land use, land-use change and forestry (LULUCF) sector of the EU Member States, as implemented in the EC Monitoring Mechanism. This project represents a step towards addressing the challenges of GHG inventories and the reporting under the United Nations Framework Convention on Climate Change (UNFCCC) and its Kyoto protocol related to forest land and forest activities. Reflecting the heterogeneity in land use, natural conditions and monitoring data availability, there is a wide variety in greenhouse gas reporting practices within the European Community, which becomes clearly apparent from an overview of the current GHG reporting practices prepared by MASCAREF. The particular tasks of the project were based on available data from regional, national and EU-wide projects and relevant activities that took place over the last decade. The project elaboration was conducted within several major tasks, followed by selected regional case-studies. Firstly, the currently available data and methodological approaches to estimate carbon stock and carbon stock change for emission inventories were analyzed. Secondly, the project conducted an analysis of ICP Forests health monitoring and Forest Focus programs. Similarly, it assessed the potential of utilizing data from the European National Forest Inventories for the purpose of emission inventory under UNFCCC and the Kyoto protocol. Related to this, the JRC AFOLUDATA website on biomass functions and conversion/expansion factors http://afoludata.jrc.ec.europa.eu/index.php/public_area/home) was complemented by adding new factors from the European member states. Also, the methodologies to aggregate the forest carbon stock data based on the National Forest Inventory plots to a 10x10 km grid were explored. Finally, several of the above tasks were elaborated and/or applied in case studies in the selected regions of Europe. The MASCAREF project fulfilled its main objectives and its results should facilitate a further development of monitoring schemes for carbon stock change assessment in forests of the European member states, hopefully leading to an improved GHG reportingJRC.DDG.H.2-Climate chang

    VihreäIT metriikoiden analysointi sekä mittausviitekehyksen luonti Sonera Helsinki Datakeskus (HDC) projektille.

    Get PDF
    The two objectives of this thesis were to investigate and evaluate the most suitable set of energy efficiency metrics for Sonera Helsinki Data Center (HDC), and to analyze which energy efficient technologies could be implemented and in what order to gain most impact. Sustainable IT is a complex matter, and it has two components. First and the more complex matter is the energy efficiency and energy-proportionality of the IT environment. The second is the use of renewable energy sources. Both of these need to be addressed. This thesis is a theoretical study, and it focuses on energy efficiency. The use of off-site renewables is outside of the scope of this thesis. The main aim of this thesis is to improve energy efficiency through effective metric framework. In the final metric framework, metrics that target renewable energy usage in the data center are included as they are important from CO2 emission reduction perspective. The selection of energy efficient solutions in this thesis are examples from most important data center technology categories, and do not try to cover the whole array of different solutions to improve energy efficiency in a data center. The ontological goal is to present main energy efficiency metrics available in scientific discourse, and also present examples of energy efficient solutions in most energy consuming technology domains inside the data center. Even though some of the concepts are quite abstract, realism is taken into account in every analysis. The epistemology in this thesis is based on scientific articles that include empirical validation and scientific peer review. This forms the origin of the used knowledge and the nature of this knowledge. The findings from this thesis are considered valid and reliable based on the epistemology of scientific articles, and by using the actual planning documents of Sonera HDC. The reasoning in this thesis is done in abstracto, but there are many empirical results that qualify the results also as ´in concreto´. Findings are significant for Sonera HDC but they are also applicable for any general data center project or company seeking energy efficiency in their data centers.Lopputyöllä on kaksi päätavoitetta. Ensimmäinen tavoite on löytää sopivin mittausviitekehys energiatehokkuuden osoittamiseksi Sonera Helsinki Datakeskukselle (HDC). Toisena tavoitteena on analysoida, mitä energiatehokkaita ratkaisuja tulisi implementoida ja missä järjestyksessä, saavuttaakseen mahdollisimman ison vaikutuksen. Vihreä IT on monimutkainen asia ja samalla siihen liittyy kaksi eri komponenttia. Ensimmäisenä komponenttina, ja merkityksellisempänä sekä monimutkaisempana, on energiatehokkuus ja energian kulutuksen mukautuvuus suhteessa työkuormaan. Toinen komponentti vihreän IT:n osalta on uusiutuvien energialähteiden käyttäminen. Molemmat komponentit on huomioitava. Lopputyö on teoreettinen tutkimus. Lopputyön ontologinen tavoite on esittää keskeisimmät energiatehokkuusmittarit, jotka ovat saatavilla tieteellisessä keskustelussa, ja esittää myös esimerkkejä energiatehokkaista ratkaisuista teknologia-alueisiin, jotka kuluttavat eniten energiaa data keskuksissa. Vaikka osa esitetyistä ratkaisuista on melko abstraktissa todellisuudessa, realismi on pyritty ottamaan huomioon arvioita tehdessä. Epistemologisesti tämä lopputyö perustuu tieteellisiin artikkeleihin, joissa on tehty empiiristä validointia ja tiedeyhteisön vertaisarviointia tiedon totuusarvosta. Kirjoittaja pyrkii välttämään oman arvomaailman ja subjektiivisen näkemyksen tuomista analyysiin pyrkimällä enemmänkin arvioimaan ratkaisuja perustuen päätavoitteeseen, joka on sekä lisätä energiatehokkuutta että vähentää CO2 -päästöjä datakeskuksessa. Lopputyön löydökset todetaan valideiksi ja luotettaviksi, koska ne perustuvat tieteellisten artikkeleiden epistemologiaan ja siihen, että arvioinnin pohjana on käytetty todellisia Sonera HDC -projektin suunnitteludokumentteja. Päätelmät ja analyysit ovat abstrahoituja, mutta perustuvat empiirisiin tuloksiin, jotka koskevat käytännön tekemistä sekä valintoja. Löydökset ovat merkittäviä Sonera HDC -projektin kannalta, ja myös muille datakeskuksille, jotka haluavat toimia kestävän kehityksen pohjalta

    Building the knowledge base for environmental action and sustainability

    Get PDF

    An Investigation on Benefit-Cost Analysis of Greenhouse Structures in Antalya

    Get PDF
    Significant population increase across the world, loss of cultivable land and increasing demand for food put pressure on agriculture. To meet the demand, greenhouses are built, which are, light structures with transparent cladding material in order to provide controlled microclimatic environment proper for plant production. Conceptually, greenhouses are similar with manufacturing buildings where a controlled environment for manufacturing and production have been provided and proper spaces for standardized production processes have been enabled. Parallel with the trends in the world, particularly in southern regions, greenhouse structures have been increasingly constructed and operated in Turkey. A significant number of greenhouses are located at Antalya. The satellite images demonstrated that for over last three decades, there has been a continuous invasion of greenhouses on all cultivable land. There are various researches and attempts for the improvement of greenhouse design and for increasing food production by decreasing required energy consumption. However, the majority of greenhouses in Turkey are very rudimentary structures where capital required for investment is low, but maintenance requirements are high when compared with new generation greenhouse structures. In this research paper, life-long capital requirements for construction and operation of greenhouse buildings in Antalya has been investigated by using benefit-cost analysis study

    Knowledge Capturing in Design Briefing Process for Requirement Elicitation and Validation

    Get PDF
    Knowledge capturing and reusing are major processes of knowledge management that deal with the elicitation of valuable knowledge via some techniques and methods for use in actual and further studies, projects, services, or products. The construction industry, as well, adopts and uses some of these concepts to improve various construction processes and stages. From pre-design to building delivery knowledge management principles and briefing frameworks have been implemented across project stakeholders: client, design teams, construction teams, consultants, and facility management teams. At pre-design and design stages, understanding the client’s needs and users’ knowledge are crucial for identifying and articulating the expected requirements and objectives. Due to underperforming results and missed goals and objectives, many projects finish with highly dissatisfied clients and loss of contracts for some organizations. Knowledge capturing has beneficial effects via its principles and methods on requirement elicitation and validation at the briefing stage between user, client and designer. This paper presents the importance and usage of knowledge capturing and reusing in briefing process at pre-design and design stages especially the involvement of client and user, and explores the techniques and technologies that are usable in briefing process for requirement elicitation
    corecore