994 research outputs found

    Assessing and Improving Domain Knowledge Representation in DBpedia

    Get PDF
    With the development of knowledge graphs and the billions of triples generated on the Linked Data cloud, it is paramount to ensure the quality of data. In this work, we focus on one of the central hubs of the Linked Data cloud, DBpedia. In particular, we assess the quality of DBpedia for domain knowledge representation. Our results show that DBpedia has still much room for improvement in this regard, especially for the description of concepts and their linkage with the DBpedia ontology. Based on this analysis, we leverage open relation extraction and the information already available on DBpedia to partly correct the issue, by providing novel relations extracted from Wikipedia abstracts and discovering entity types using the dbo:type predicate. Our results show that open relation extraction can indeed help enrich domain knowledge representation in DBpedia

    Assessing and refining mappings to RDF to improve dataset quality

    Get PDF
    RDF dataset quality assessment is currently performed primarily after data is published. However, there is neither a systematic way to incorporate its results into the dataset nor the assessment into the publishing workflow. Adjustments are manually -but rarely- applied. Nevertheless, the root of the violations which often derive from the mappings that specify how the RDF dataset will be generated, is not identified. We suggest an incremental, iterative and uniform validation workflow for RDF datasets stemming originally from (semi-) structured data (e.g., CSV, XML, JSON). In this work, we focus on assessing and improving their mappings. We incorporate (i) a test-driven approach for assessing the mappings instead of the RDF dataset itself, as mappings reflect how the dataset will be formed when generated; and (ii) perform semi-automatic mapping refinements based on the results of the quality assessment. The proposed workflow is applied to diverse cases, e.g., large, crowdsourced datasets such as DBpedia, or newly generated, such as iLastic. Our evaluation indicates the efficiency of our workflow, as it significantly improves the overall quality of an RDF dataset in the observed cases

    Correcting Knowledge Base Assertions

    Get PDF
    The usefulness and usability of knowledge bases (KBs) is often limited by quality issues. One common issue is the presence of erroneous assertions, often caused by lexical or semantic confusion. We study the problem of correcting such assertions, and present a general correction framework which combines lexical matching, semantic embedding, soft constraint mining and semantic consistency checking. The framework is evaluated using DBpedia and an enterprise medical KB

    Ontology-Based Recommendation of Editorial Products

    Get PDF
    Major academic publishers need to be able to analyse their vast catalogue of products and select the best items to be marketed in scientific venues. This is a complex exercise that requires characterising with a high precision the topics of thousands of books and matching them with the interests of the relevant communities. In Springer Nature, this task has been traditionally handled manually by publishing editors. However, the rapid growth in the number of scientific publications and the dynamic nature of the Computer Science landscape has made this solution increasingly inefficient. We have addressed this issue by creating Smart Book Recommender (SBR), an ontology-based recommender system developed by The Open University (OU) in collaboration with Springer Nature, which supports their Computer Science editorial team in selecting the products to market at specific venues. SBR recommends books, journals, and conference proceedings relevant to a conference by taking advantage of a semantically enhanced representation of about 27K editorial products. This is based on the Computer Science Ontology, a very large-scale, automatically generated taxonomy of research areas. SBR also allows users to investigate why a certain publication was suggested by the system. It does so by means of an interactive graph view that displays the topic taxonomy of the recommended editorial product and compares it with the topic-centric characterization of the input conference. An evaluation carried out with seven Springer Nature editors and seven OU researchers has confirmed the effectiveness of the solution

    Linked Data Quality Assessment and its Application to Societal Progress Measurement

    Get PDF
    In recent years, the Linked Data (LD) paradigm has emerged as a simple mechanism for employing the Web as a medium for data and knowledge integration where both documents and data are linked. Moreover, the semantics and structure of the underlying data are kept intact, making this the Semantic Web. LD essentially entails a set of best practices for publishing and connecting structure data on the Web, which allows publish- ing and exchanging information in an interoperable and reusable fashion. Many different communities on the Internet such as geographic, media, life sciences and government have already adopted these LD principles. This is confirmed by the dramatically growing Linked Data Web, where currently more than 50 billion facts are represented. With the emergence of Web of Linked Data, there are several use cases, which are possible due to the rich and disparate data integrated into one global information space. Linked Data, in these cases, not only assists in building mashups by interlinking heterogeneous and dispersed data from multiple sources but also empowers the uncovering of meaningful and impactful relationships. These discoveries have paved the way for scientists to explore the existing data and uncover meaningful outcomes that they might not have been aware of previously. In all these use cases utilizing LD, one crippling problem is the underlying data quality. Incomplete, inconsistent or inaccurate data affects the end results gravely, thus making them unreliable. Data quality is commonly conceived as fitness for use, be it for a certain application or use case. There are cases when datasets that contain quality problems, are useful for certain applications, thus depending on the use case at hand. Thus, LD consumption has to deal with the problem of getting the data into a state in which it can be exploited for real use cases. The insufficient data quality can be caused either by the LD publication process or is intrinsic to the data source itself. A key challenge is to assess the quality of datasets published on the Web and make this quality information explicit. Assessing data quality is particularly a challenge in LD as the underlying data stems from a set of multiple, autonomous and evolving data sources. Moreover, the dynamic nature of LD makes assessing the quality crucial to measure the accuracy of representing the real-world data. On the document Web, data quality can only be indirectly or vaguely defined, but there is a requirement for more concrete and measurable data quality metrics for LD. Such data quality metrics include correctness of facts wrt. the real-world, adequacy of semantic representation, quality of interlinks, interoperability, timeliness or consistency with regard to implicit information. Even though data quality is an important concept in LD, there are few methodologies proposed to assess the quality of these datasets. Thus, in this thesis, we first unify 18 data quality dimensions and provide a total of 69 metrics for assessment of LD. The first methodology includes the employment of LD experts for the assessment. This assessment is performed with the help of the TripleCheckMate tool, which was developed specifically to assist LD experts for assessing the quality of a dataset, in this case DBpedia. The second methodology is a semi-automatic process, in which the first phase involves the detection of common quality problems by the automatic creation of an extended schema for DBpedia. The second phase involves the manual verification of the generated schema axioms. Thereafter, we employ the wisdom of the crowds i.e. workers for online crowdsourcing platforms such as Amazon Mechanical Turk (MTurk) to assess the quality of DBpedia. We then compare the two approaches (previous assessment by LD experts and assessment by MTurk workers in this study) in order to measure the feasibility of each type of the user-driven data quality assessment methodology. Additionally, we evaluate another semi-automated methodology for LD quality assessment, which also involves human judgement. In this semi-automated methodology, selected metrics are formally defined and implemented as part of a tool, namely R2RLint. The user is not only provided the results of the assessment but also specific entities that cause the errors, which help users understand the quality issues and thus can fix them. Finally, we take into account a domain-specific use case that consumes LD and leverages on data quality. In particular, we identify four LD sources, assess their quality using the R2RLint tool and then utilize them in building the Health Economic Research (HER) Observatory. We show the advantages of this semi-automated assessment over the other types of quality assessment methodologies discussed earlier. The Observatory aims at evaluating the impact of research development on the economic and healthcare performance of each country per year. We illustrate the usefulness of LD in this use case and the importance of quality assessment for any data analysis

    Exploiting Semantics from Widely Available Ontologies to Aid the Model Building Process

    Get PDF
    This dissertation attempts to address the changing needs of data science and analytics: making it easier to produce accurate models opening up opportunities and perspectives for novices to make sense of existing data. This work aims to incorporate semantics of data in addressing classical machine learning problems, which is one way to tame the deluge of data. The increased availability of data and the existence of easy-to-use procedures for regression and classification in commodity software allows anyone to search for correlations amongst a large set of variables with scant regard of their meaning. Consequently, people tend to use data indiscriminately, leading to the practice of data dredging. It is easy to use sophisticated tools to produce specious models, which generalize poorly and may lead to wrong conclusions. Despite much effort having been placed on advancing learning algorithms, current tools do little to shield people from using data in a semantically lax fashion. By examining the entire model building process and supplying semantic information derived from high-level knowledge in the form of an ontology, the machine can assist in exercising discretion to help the model builder avoid the pitfalls of data dredging. This work introduces a metric, called conceptual distance, to incorporate semantic information into the model building process. The conceptual distance is shown to be practically computed from large-scale existing ontologies. This metric is exploited in feature selection to enable a machine to take semantics of features into consideration when choosing them to build a model. Experiments with ontologies and real world datasets show the comparable performance of this metric in selecting a feature subset to the traditional data-driven measurements, in spite of using only labels of features, not the associated measures. Further, a new end-to-end model building process is developed by using the conceptual distance as a guideline to explore an ontological structure and retrieve relevant features automatically, making it convenient for a novice to build a semantically pertinent model. Experiments show that the proposed model building process can help a user to produce a model with performance comparable to that built by a domain expert. This work offers a tool to help the common man battle the hazard of data dredging that comes from the indiscriminate use of data. The tool results in models with improved generalization and easy to interpret, leading to better decisions or implications

    Exploiting Context-Dependent Quality Metadata for Linked Data Source Selection

    Get PDF
    The traditional Web is evolving into the Web of Data which consists of huge collections of structured data over poorly controlled distributed data sources. Live queries are needed to get current information out of this global data space. In live query processing, source selection deserves attention since it allows us to identify the sources which might likely contain the relevant data. The thesis proposes a source selection technique in the context of live query processing on Linked Open Data, which takes into account the context of the request and the quality of data contained in the sources to enhance the relevance (since the context enables a better interpretation of the request) and the quality of the answers (which will be obtained by processing the request on the selected sources). Specifically, the thesis proposes an extension of the QTree indexing structure that had been proposed as a data summary to support source selection based on source content, to take into account quality and contextual information. With reference to a specific case study, the thesis also contributes an approach, relying on the Luzzu framework, to assess the quality of a source with respect to for a given context (according to different quality dimensions). An experimental evaluation of the proposed techniques is also provide

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc
    corecore