19 research outputs found

    Assessing water stress of desert vegetation using remote sensing : the case of the Tamarugo forest in the Atacama Desert (Northern Chile)

    Get PDF
    Water stress assessment of natural vegetation plays a key role in water management of desert ecosystems. It allows scientists and managers to relate water extraction rates to changes in vegetation water condition, and consequently to define safe water extraction rates for maintaining a healthy ecosystem. Previous research has shown that optical remote sensing constitutes a powerful tool for assessing vegetation water stress due to its capability of quantitatively estimating important parameters of vegetation such as leaf area index (LAI), green canopy fraction (GCF), and canopy water content (CWC). However, the estimation of these parameters using remote sensing can be challenging in the case of desert vegetation. Desert plants have to cope with high solar irradiation and limited water. In order to maintain an adequate water balance and to avoid photoinhibition, desert plants have evolved different adaptations. A common one is heliotropism or ‘solar tracking’, an ability of many desert species to move their leaves to avoid facing direct high solar irradiation levels during the day and season. This adaptation (paraheliotropism) can have an important effect on the canopy spectral reflectance measured by satellites as well as on vegetation indices such as the normalized difference vegetation index (NDVI). In this thesis, I propose a remote sensing based approach to assess water stress of desert vegetation, exemplified in the case of the Tamarugo (Prosopis tamarugo Phil) tree in the Atacama Desert (Northern Chile), a ‘solar tracker’ species, which is threatened by groundwater overexploitation. In the first chapter of this thesis (general introduction), I explained the motivation of the PhD project and elaborated four research questions, which are later discussed in chapters 2, 3, 4, and 5. The thesis concluded with chapter 6, where I provide a synthesis of the main results, general conclusions and a final reflection and outlook. In the second chapter, I studied the effects of water stress on Tamarugo plants under laboratory conditions and modelled the light-canopy interaction using the Soil-Leaf-Canopy radiative transfer model. I described for the first time pulvinar movement of Tamarugo and quantified its effects on canopy spectral reflectance with and without stress. I showed that different spectral indices have potential to assess water stress of Tamarugo by means of LAI and CWC. In the third chapter, I measured the effects of pulvinar movements on canopy reflectance for Tamarugos under field conditions and used high spatial resolution images to assess water stress at the tree level. I developed an automated process to first identify single trees and delineate their crowns, and secondly, to estimate LAI and GCF using spectral vegetation indices. These indices (NDVI and chlorophyll red-edge index) were negatively correlated to diurnal values of solar irradiation as a consequence of leaf pulvinar movements. For this reason, higher values of both vegetation indices are expected to occur in the morning and in winter (low solar radiation) than at midday or summer. In the fourth chapter I studied the effects of diurnal pulvinar movements on NDVI time series from the MODIS-Terra satellite (acquired in the morning) and the MODIS-Aqua satellite (acquired at midday) for the period 2003-2012 and the seasonal effects of pulvinar movements on NDVI time series of Landsat images for the period 1998-2012 for Tamarugo areas with and without water stress. NDVI values measured by MODIS-Terra (morning) were higher than the NDVI values measured by MODIS-Aqua (afternoon) and the difference between the two, the ΔNDVImo-mi, showed good potential as water stress indicator. In a similar way, I observed a strong seasonal effect on the Landsat NDVI signal, attributed to pulvinar movements, and the difference between winter and summer, the ΔNDVIW-S, also showed good potential for detecting and quantifying water stress. The ΔNDVImo-mi, the ΔNDVIW-S and the NDVI itself measured systematically in winter time (NDVIW) were negatively correlated with in situ groundwater depth measurements. In chapter five I used a dense NDVI time series of Landsat images for the period 1989-2013, combined with high spatial resolution satellite imagery and hydrogeological records, to provide a quantitative assessment of the water status of Tamarugo vegetation after 50 years of increasing groundwater extraction. The results showed that the NDVIW and ΔNDVIW-S of the Tamarugo vegetation declined 19% and 51%, respectively, as groundwater depleted (3 meters on average) for the period 1989-2013. Both variables were negatively correlated to groundwater depth both temporally and spatially. About 730.000 Tamarugo trees remained in the study area by 2011, from which 5.2% showed a GCF The main conclusions of this PhD thesis are summarized as follows: Heliotropism or leaf ‘solar tracking’, a common adaptation among desert plants, has an important impact on canopy spectral reflectance. As shown in the case of the Tamarugo trees, widely used vegetation indices such as the NDVI were negatively correlated to solar irradiation (the stimulus for leaf solar tracking), showing a distinct diurnal and seasonal cycle.An early symptom of water stress in paraheliotropic plants (leaves facing away the sun) is the decline of the amplitude of the diurnal and seasonal NDVI cycles. Thus, remote sensing estimations of this amplitude (e.g. the NDVI difference between winter and summer or the difference between midday and morning) can be used to detect and map early water stress of paraheliotropic vegetation.At the tree level, very high spatial resolution images combined with object based image analysis and in-situ data provided accurate estimations of the water status of small desert vegetation features, such as isolated trees. For monitoring purposes, careful consideration of the time during the day and the season at which the images are taken needs to be taken to avoid misleading interpretations.Time series analysis of historical satellite images combined with very high spatial resolution images and hydrogeological records can provide a quantitative spatio-temporal assessment of the effects of long-term groundwater extraction on desert vegetation

    Detecting leaf pulvinar movements on NDVI time series of desert trees: A new approach for water stress detection

    Get PDF
    Heliotropic leaf movement or leaf ‘solar tracking’ occurs for a wide variety of plants, including many desert species and some crops. This has an important effect on the canopy spectral reflectance as measured from satellites. For this reason, monitoring systems based on spectral vegetation indices, such as the normalized difference vegetation index (NDVI), should account for heliotropic movements when evaluating the health condition of such species. In the hyper-arid Atacama Desert, Northern Chile, we studied seasonal and diurnal variations of MODIS and Landsat NDVI time series of plantation stands of the endemic species Prosopis tamarugo Phil., subject to different levels of groundwater depletion. As solar irradiation increased during the day and also during the summer, the paraheliotropic leaves of Tamarugo moved to an erectophile position (parallel to the sun rays) making the NDVI signal to drop. This way, Tamarugo stands with no water stress showed a positive NDVI difference between morning and midday (¿NDVImo-mi) and between winter and summer (¿NDVIW-S). In this paper, we showed that the ¿NDVImo-mi of Tamarugo stands can be detected using MODIS Terra and Aqua images, and the ¿NDVIW-S using Landsat or MODIS Terra images. Because pulvinar movement is triggered by changes in cell turgor, the effects of water stress caused by groundwater depletion can be assessed and monitored using ¿NDVImo-mi and ¿NDVIW-S. For an 11-year time series without rainfall events, Landsat ¿NDVIW-S of Tamarugo stands showed a positive linear relationship with cumulative groundwater depletion. We conclude that both ¿NDVImo-mi and ¿NDVIW-S have potential to detect early water stress of paraheliotropic vegetation

    Mapping Prosopis glandulosa (mesquite) invasion in the arid environment of South African using remote sensing techniques

    Get PDF
    A dissertation submitted to the School of Geography, Archaeology and Environmental Studies, Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science in Environmental Sciences. Johannesburg, March 2016.Mapping Prosopis glandulosa (mesquite) invasion in the arid environment of South Africa using remote sensing techniques Mureriwa, Nyasha Abstract Decades after the first introduction of the Prosopis spp. (mesquite) to South Africa in the late 1800s for its benefits, the invasive nature of the species became apparent as its spread in regions of South Africa resulting in devastating effects to biodiversity, ecosystems and the socio-economic wellbeing of affected regions. Various control and management practices that include biological, physical, chemical and integrated methods have been tested with minimal success as compared to the rapid spread of the species. From previous studies, it has been noted that one of the reasons for the low success rates in mesquite control and management is a lack of sufficient information on the species invasion dynamic in relation to its very similar co-existing species. In order to bridge this gap in knowledge, vegetation species mapping techniques that use remote sensing methods need to be tested for the monitoring, detection and mapping of the species spread. Unlike traditional field survey methods, remote sensing techniques are better at monitoring vegetation as they can cover very large areas and are time-effective and cost-effective. Thus, the aim of this research was to examine the possibility of mapping and spectrally discriminating Prosopis glandulosa from its native co-existing species in semi-arid parts of South Africa using remote sensing methods. The specific objectives of the study were to investigate the spectral separability between Prosopis glandulosa and its co-existing species using field spectral data as well as to upscale the results to different satellites resolutions. Two machine learning algorithms (Random Forest (RF) and Support Vector Machines (SVM)) were also tested in the mapping processes. The first chapter of the study evaluated the spectral discrimination of Prosopis glandulosa from three other species (Acacia karoo, Acacia mellifera and Ziziphus mucronata) in the study area using in-situ spectroscopy in conjunction with the newly developed guided regularized random forest (GRRF) algorithm in identifying key wavelengths for multiclass classification. The GRRF algorithm was used as a method of reducing the problem of high dimensionality associated with hyperspectral data. Results showed that there was an increase in the accuracy of discrimination between the four species when the full set of 1825 wavelengths was used in classification (79.19%) as compared to the classification used by the 11 key wavelengths identified by GRRF (88.59%). Results obtained from the second chapter showed that it is possible to spatially discriminate mesquite from its co-existing acacia species and other general land-cover types at a 2 m resolution with overall accuracies of 86.59% for RF classification and 85.98% for SVM classification. The last part of the study tested the use of the more cost effective SPOT-6 imagery and the RF and SVM algorithms in mapping Prosopis glandulosa invasion and its co-existing indigenous species. The 6 m resolution analysis obtained accuracies of 78.46% for RF and 77.62% for SVM. Overall it was concluded that spatial and spectral discrimination of Prosopis glandulosa from its native co-existing species in semi-arid South Africa was possible with high accuracies through the use of (i) two high resolution, new generation sensors namely, WorldView-2 and SPOT-6; (ii) two robust classification algorithms specifically, RF and SVM and (iii) the newly developed GRRF algorithm for variable selection and reducing the high dimensionality problem associated with hyperspectral data. Some recommendations for future studies include the replication of this study on a larger scale in different invaded areas across the country as well as testing the robustness of the RF and SVM classifiers by making use of other machine learning algorithms and classification methods in species discrimination. Keywords: Prosopis glandulosa, field spectroscopy, cost effectiveness, Guided Regularised Random Forest, Support Vector Machines, Worldview-2, Spot-

    QUANTIFYING GRASSLAND NON-PHOTOSYNTHETIC VEGETATION BIOMASS USING REMOTE SENSING DATA

    Get PDF
    Non-photosynthetic vegetation (NPV) refers to vegetation that cannot perform a photosynthetic function. NPV, including standing dead vegetation and surface plant litter, plays a vital role in maintaining ecosystem function through controlling carbon, water and nutrient uptake as well as natural fire frequency and intensity in diverse ecosystems such as forest, savannah, wetland, cropland, and grassland. Due to its ecological importance, NPV has been selected as an indicator of grassland ecosystem health by the Alberta Public Lands Administration in Canada. The ecological importance of NPV has driven considerable research on quantifying NPV biomass with remote sensing approaches in various ecosystems. Although remote images, especially hyperspectral images, have demonstrated potential for use in NPV estimation, there has not been a way to quantify NPV biomass in semiarid grasslands where NPV biomass is affected by green vegetation (PV), bare soil and biological soil crust (BSC). The purpose of this research is to find a solution to quantitatively estimate NPV biomass with remote sensing approaches in semiarid mixed grasslands. Research was conducted in Grasslands National Park (GNP), a parcel of semiarid mixed prairie grassland in southern Saskatchewan, Canada. Multispectral images, including newly operational Landsat 8 Operational Land Imager (OLI) and Sentinel-2A Multi-spectral Instrument (MSIs) images and fine Quad-pol Radarsat-2 images were used for estimating NPV biomass in early, middle, and peak growing seasons via a simple linear regression approach. The results indicate that multispectral Landsat 8 OLI and Sentinel-2A MSIs have potential to quantify NPV biomass in peak and early senescence growing seasons. Radarsat-2 can also provide a solution for NPV biomass estimation. However, the performance of Radarsat-2 images is greatly affected by incidence angle of the image acquisition. This research filled a critical gap in applying remote sensing approaches to quantify NPV biomass in grassland ecosystems. NPV biomass estimates and approaches for estimating NPV biomass will contribute to grassland ecosystem health assessment (EHA) and natural resource (i.e. land, soil, water, plant, and animal) management

    Spatial characterization of vegetation diversity with satellite remote sensing in the khakea-bray transboundary aquifer

    Get PDF
    >Magister Scientiae - MScThere have been increasing calls to monitor Groundwater-Dependent Ecosystems (GDEs) more effectively, since they are biodiversity hotspots that provide several ecosystem services. The accurate monitoring of GDEs is an indispensable under Sustainable Development Goal (SDG) 15, because it promotes the existence of phreatophytes. It is imperative to monitoring GDEs, since their ecological significance (e.g., as biodiversity hotspots) is not well understood in most environments they exist. For example, vegetation diversity in GDEs requires routine monitoring, to conserve their biodiversity status and to preserve the ecosystem services in these environments. Such monitoring requires robust measures and techniques, particularly in arid environments threatened by groundwater over–abstraction, landcover and climate change. Although in–situ methods are reliable, they are challenging to use in extensive transboundary groundwater resources such as the Khakea-Bray Transboundary Aquifer

    UNDERSTANDING THE BIODIVERSITY PATTERNS OF CRYPTOGAMS (BRYOPHYTES AND LICHENS) IN BOREAL FORESTS THROUGH REMOTE SENSING/COMPRENDRE LES PATRONS DE BIODIVERSITÉ DES CRYPTOGAMES (BRYOPHYTES ET LICHENS) DANS LES FORÊTS BORÉALES GRÂCE À LA TÉLÉDÉTECTION

    Get PDF
    Anglais : Cryptogams (bryophytes and lichens) are ubiquitous non-vascular species that contribute significantly to total biodiversity and play an essential ecological role in ecosystem functioning worldwide. Specifically, cryptogams influence water, carbon and nutrient cycles, as well as physical and chemical weathering, and increase stability of soils, preventing their erosion and regulating their temperature and humidity. Cryptogams facilitate ecosystem recovery following disturbances, and provide microhabitats for micro- and macroorganisms, and a food source for invertebrates and herbivores. These species are also reliable and highly sensitive indicators to environmental disturbances and currently face numerous human-induced threats mainly derived from land use and climate change. Despite this, cryptogams are generally neglected in conservation planning mostly due to current knowledge gaps in their diversity, ecology and distribution, which jeopardizes the maintenance of their species and ecological role. New technologies and data sources such as remote sensing (RS) can significantly help to fill these gaps and ultimately improve the representation of cryptogams in systematic conservation planning. The contribution of RS to cryptogam biodiversity assessments can be particularly valuable in vast and largely unknown regions such as boreal forests, where these species and their habitats face increasing human-induced threats. The general objective of this thesis is to elucidate the role that RS can play in the evaluation and generation of information on cryptogam biodiversity in a boreal context. The study region is located in the Canadian boreal forest, within the Eeyou-Istchee James Bay region in Northern Quebec. As specific objectives, Chapter II aims to predict and map diversity (species richness) patterns of i) total bryophytes, and ii) bryophyte guilds (mosses, liverworts and sphagna) using RS data; Chapter III focusses on producing predictive models of rare bryophyte species using RS-derived predictors in an Ensembles of Small Models (ESMs) framework; and Chapter IV is intended to describe and model the lichen alpha diversity (species richness) and beta diversity (species turnover) components parallelly using two set of RS-derived variables (Red and NIR; EVI2) from two sensors (Wordlview-3, WV3; Sentinel-2, S2) at different high spatial resolutions (1.2m; 10m), and ii) to identify which habitat types represent lichen biodiversity hotspots. The Random Forest algorithm used in Chapter II allowed us to develop spatially explicit models and to generate predictive cartography at 30m resolution of total bryophyte, moss, liverwort and sphagna richness. These models explained a significant fraction of the variation in total bryophyte and guild level richness, both in the calibration (42 to 52%) and validation sets (38 to 48%), and consistently identified vegetation (mainly NDVI) and climatic variables (temperature, precipitation, and freeze-thaw events) as the most important predictors for all bryophyte groups modeled. Guild-level models identified differences in important factors determining the richness of each of the guilds and thus in their predicted richness patterns, which provide valuable information for management and conservation strategies for bryophytes. The RS-based ESMs developed in Chapter III built from Random Forest and Maxent techniques using predictors related to topography (TPI) and vegetation (EVI2, NDWI1, Vegetation Continuous fields, and PALSAR HVHH) yielded poor to excellent prediction accuracy (AUC > 0.5) for 38 of the 52 modeled species despite their low number of occurrences ( 0.8 for 19 species. The actual presences of the 38 species modeled better than random (AUC ≤ 0.5) were accurately predicted, as supported by the high sensitivity values obtained that ranged from 0.8 to 1 with an average of 0.959 ± 0.063. The distribution of these 38 species and the richness patterns both for total rare bryophytes and rare species at the guild level were mapped at 30m resolution. Chapter III also revealed a spatial concordance between rare (present chapter) and overall bryophyte richness patterns (Chapter II) in different regions of the study area, which has important implications for conservation planning. In Chapter IV, a total of 116 lichen species were identified. While high lichen richness was generally found across our plots (36.5 ± 9 species), those richer in microhabitats often harbored more species (R2 = 0.22) regardless of the habitat type. Differences in species composition were identified among plots (25.6% explained by PCoA) and habitat types (PERMANOVA R2 = 0.35), both being supported by differences in microhabitat composition (Mantel r = 0.22 and PERMANOVA R2 = 0.29, respectively). Rocky outcrops and undisturbed coniferous forests represented the main lichen biodiversity hotspots, while other habitat types were also important for maintaining overall biodiversity. Red and NIR variables were effective for modeling alpha and beta diversity at both resolutions, while EVI2, either from WV3 or S2, was only informative for assessing beta diversity. Poisson models explained up to 32% of the variation in lichen richness. Generalized dissimilarity models described well the relationship between beta diversity and spectral dissimilarity (R2 from 0.25 to 0.30), except for the S2 EVI2 model (R2 = 0.07), confirming that more spectrally and thus environmentally different areas tend to harbor different lichen communities. While WV3 often outperformed the S2 sensor, the latter still provides a powerful tool for the study of lichens and their conservation. This thesis demonstrated the ability for RS at medium and high spatial resolutions to characterize the habitat of inconspicuous cryptogam species, to capture diverse meaningful ecological features shaping their distribution, and thus to better understand and/or predict their biodiversity patterns. RS-based modeling frameworks proved to be informative even when the available baseline information on cryptogam biodiversity was limited. By identifying environmental drivers of cryptogam biodiversity that can guide specific management actions, and by providing predictive mapping of their spatial patterns at high level of detail across the landscape, this work unequivocally highlighted the high potential of RS technology for conservation purposes of cryptogams. This thesis thus represents a very important step to achieve the inclusion of these inconspicuous and generally overlooked species into systematic conservation planning. Français : Les cryptogames (bryophytes et lichens) sont des espèces non vasculaires omniprésentes qui contribuent de manière significative à la biodiversité et jouent un rôle écologique essentiel dans le fonctionnement des écosystèmes à l'échelle mondiale. Plus précisément, les cryptogames influencent les cycles de l'eau, du carbone et des nutriments, ainsi que l'altération physique et chimique des roches, et augmentent la stabilité des sols, empêchant leur érosion et régulant leur température et humidité. Les cryptogames facilitent le rétablissement des écosystèmes après des perturbations et fournissent des microhabitats pour des micro- et macro-organismes, ainsi qu'une source de nourriture pour des invertébrés et herbivores. Ces espèces sont également sont des indicateurs fiables mais très sensibles aux perturbations environnementales et sont actuellement confrontées à de nombreuses menaces d'origine humaine principalement dérivées de l'utilisation des terres et du changement climatique. Malgré cela, les cryptogames sont généralement négligés dans la planification de la conservation, principalement en raison des lacunes actuelles dans les connaissances sur leur diversité, écologie et distribution, ce qui met en péril le maintien de leur espèces et rôle écologique. Les nouvelles technologies et sources de données telles que la télédétection peuvent contribuer de manière significative à combler ces lacunes et, en fin de compte, à améliorer la représentation des cryptogames dans la planification systématique de la conservation. La contribution de la télédétection aux évaluations de la biodiversité des cryptogames peut être particulièrement précieuse dans des régions vastes et largement inconnues telles que les forêts boréales, où ces espèces et leurs habitats sont confrontés à des menaces croissantes d'origine humaine. L'objectif général de cette thèse est d'élucider le rôle que peut jouer la télédétection dans l'évaluation et la génération d'informations sur la biodiversité des cryptogames en contexte boréal. La région d'étude est située dans la forêt boréale canadienne, dans la région d'Eeyou-Istchee Baie-James dans le Nord du Québec. En tant qu'objectifs spécifiques, le chapitre II vise à prédire et à cartographier les patrons de diversité (richesse en espèces) i) des bryophytes totaux et ii) des guildes de bryophytes (mousses, hépatiques et sphaignes) à l'aide de données de télédétection; le chapitre III se concentre sur la production de modèles prédictifs d'espèces de bryophytes rares à l'aide de prédicteurs dérivés de la télédétection dans un cadre d'ensembles de petits modèles; et le chapitre IV est destiné à décrire et modéliser les composantes alpha (richesse des espèces) et beta (changements de composition de la communauté) de la biodiversité des lichens en utilisant en parallèle deux ensembles de variables dérivées de la télédétection (Red et NIR; EVI2) à partir de deux capteurs (Wordlview-3 , WV3 ; Sentinel-2, S2) à différentes résolutions spatiales élevées (1,2 m ; 10m), et ii) à identifier les types d'habitats qui représentent les points chauds de la biodiversité des lichens. L'algorithme Random Forest utilisé dans le chapitre II nous a permis de développer des modèles spatialement explicites et de générer une cartographie prédictive à 30m de résolution de la richesse totale en bryophytes, mousses, hépatiques et sphaignes. Ces modèles expliquent une fraction importante de la variation de la richesse totale en bryophytes et au niveau de la guilde, à la fois dans les ensembles de calibration (42 à 52 %) et de validation (38 à 48 %), et identifient systématiquement la végétation (principalement NDVI) et les variables climatiques (température , précipitations et événements de gel-dégel) comme les prédicteurs les plus importants pour tous les groupes de bryophytes modélisés. Les modèles au niveau de la guilde ont identifié des différences dans des facteurs importants déterminant la richesse de chacune des guildes et donc dans leurs modèles de richesse prédits, qui fournissent des informations précieuses pour les stratégies de gestion et de conservation des bryophytes. Les ensembles de petits modèles basés sur la télédétection développés au chapitre III construits à partir des techniques Random Forest et Maxent en utilisant des prédicteurs liés à la topographie (TPI) et à la végétation (EVI2, NDWI1, Vegetation Continuous fields et PALSAR HVHH) ont donné une précision de prédiction de faible à excellente (AUC > 0.5) pour 38 des 52 espèces modélisées malgré leur faible nombre d'occurrences ( 0.8 pour 19 espèces. Les présences réelles des 38 espèces modélisées mieux que aléatoires (AUC ≤ 0.5) ont été prédites avec précision, comme en témoignent les valeurs de sensibilité élevées obtenues allant de 0.8 à 1 avec une moyenne de 0.959 ± 0.063. La distribution de ces 38 espèces et les patrons de richesse à la fois pour les bryophytes rares totales et les espèces rares au niveau de la guilde ont été cartographiés à une résolution de 30m. Le chapitre III a également révélé une concordance spatiale entre les patrons de richesse en bryophytes rares (chapitre présent) et totaux (chapitre II) dans différentes régions de la zone d'étude, ce qui a des implications importantes pour la planification de la conservation. Au chapitre IV, un total de 116 espèces de lichens ont été identifiées. Alors qu'une grande richesse en lichens était généralement observée dans nos parcelles (36.5 ± 9 espèces), celles plus riches en microhabitats abritaient souvent plus d'espèces (R2 = 0.22) quel que soit le type d'habitat. Des différences dans la composition des espèces ont été identifiées entre les parcelles (25.6 % expliquées par la PCoA) et les types d'habitats (PERMANOVA R2 = 0.35), tous deux étayés par des différences dans la composition des microhabitats (Mantel r = 0.22 et PERMANOVA R2 = 0.29, respectivement). Les affleurements rocheux et les forêts de conifères non perturbées représentaient les principaux points chauds de la biodiversité des lichens, tandis que d'autres types d'habitats étaient également importants pour le maintien de la biodiversité totale Les variables Red et NIR étaient efficaces pour modéliser la diversité alpha et bêta aux deux résolutions, tandis que EVI2, soit de WV3 ou S2, n'était informatif que pour évaluer la diversité bêta. Les modèles de Poisson expliquaient jusqu'à 32% de la variation de la richesse en lichens. Les modèles de dissimilarité généralisée décrivaient bien la relation entre la diversité bêta et la dissimilarité spectrale (R2 de 0.25 à 0.30), sauf pour le modèle S2 EVI2 (R2 = 0.07), confirmant que des zones plus spectralement et donc environnementales différentes ont tendance à abriter différentes communautés de lichens. Alors que WV3 a souvent surpassé le capteur S2, ce dernier fournit toujours un outil puissant pour l'étude des lichens et leur conservation. Cette thèse a démontré la capacité de la télédétection à moyenne et haute résolution spatiale à caractériser l'habitat d'espèces cryptogames discrètes, à capturer diverses caractéristiques écologiques significatives façonnant leur distribution, et ainsi à mieux comprendre et/ou prédire leurs patrons de biodiversité. Les cadres de modélisation basés sur la télédétection se sont avérés informatifs même lorsque les informations de base disponibles sur la biodiversité des cryptogames étaient limitées. En identifiant les facteurs environnementaux de la biodiversité des cryptogames qui peuvent guider des actions de gestion spécifiques et en fournissant une cartographie prédictive de leurs patrons spatiaux à un niveau de détail élevé à travers le paysage, ce travail a mis en évidence sans équivoque le potentiel élevé de la technologie de télédétection à des fins de conservation des cryptogames. Cette thèse représente donc une étape très importante pour parvenir à l'inclusion de ces espèces discrètes et généralement négligées dans la planification systématique de la conservation
    corecore