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Abstract 

 

Decades after the first introduction of the Prosopis spp. (mesquite) to South Africa in the late 

1800s for its benefits, the invasive nature of the species became apparent as its spread in regions 

of South Africa resulting in devastating effects to biodiversity, ecosystems and the socio-

economic wellbeing of affected regions. Various control and management practices that include 

biological, physical, chemical and integrated methods have been tested with minimal success as 

compared to the rapid spread of the species. From previous studies, it has been noted that one of 

the reasons for the low success rates in mesquite control and management is a lack of sufficient 

information on the species invasion dynamic in relation to its very similar co-existing species. In 

order to bridge this gap in knowledge, vegetation species mapping techniques that use remote 

sensing methods need to be tested for the monitoring, detection and mapping of the species 

spread. Unlike traditional field survey methods, remote sensing techniques are better at 

monitoring vegetation as they can cover very large areas and are time-effective and cost-

effective. Thus, the aim of this research was to examine the possibility of mapping and spectrally 

discriminating Prosopis glandulosa from its native co-existing species in semi-arid parts of 

South Africa using remote sensing methods.  

The specific objectives of the study were to investigate the spectral separability between 

Prosopis glandulosa and its co-existing species using field spectral data as well as to upscale the 

results to different satellites resolutions. Two machine learning algorithms (Random Forest (RF) 

and Support Vector Machines (SVM)) were also tested in the mapping processes. The first 

chapter of the study evaluated the spectral discrimination of Prosopis glandulosa from three 

other species (Acacia karoo, Acacia mellifera and Ziziphus mucronata) in the study area using 

in-situ spectroscopy in conjunction with the newly developed guided regularized random forest 

(GRRF) algorithm in identifying key wavelengths for multiclass classification. The GRRF 

algorithm was used as a method of reducing the problem of high dimensionality associated with 

hyperspectral data. Results showed that there was an increase in the accuracy of discrimination 

between the four species when the full set of 1825 wavelengths was used in classification 

(79.19%) as compared to the classification used by the 11 key wavelengths identified by GRRF 

(88.59%).   Results obtained from the second chapter showed that it is possible to spatially 

discriminate mesquite from its co-existing acacia species and other general land-cover types at a 
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2 m resolution with overall accuracies of 86.59% for RF classification and 85.98% for SVM 

classification. The last part of the study tested the use of the more cost effective SPOT-6 imagery 

and the RF and SVM algorithms in mapping Prosopis glandulosa invasion and its co-existing 

indigenous species. The 6 m resolution analysis obtained accuracies of 78.46% for RF and 

77.62% for SVM. 

Overall it was concluded that spatial and spectral discrimination of Prosopis glandulosa 

from its native co-existing species in semi-arid South Africa was possible with high accuracies 

through the use of (i) two high resolution, new generation sensors namely, WorldView-2 and 

SPOT-6; (ii) two robust classification algorithms specifically, RF and SVM and (iii) the newly 

developed GRRF algorithm for  variable selection and reducing  the high dimensionality 

problem associated with hyperspectral data.  

Some recommendations for future studies include the replication of this study on a larger 

scale in different invaded areas across the country as well as testing the robustness of the RF and 

SVM classifiers by making use of other machine learning algorithms and classification methods 

in species discrimination. 
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1.1. Background of Prosopis spp. Invasion 

 

Invasive alien species (IAS) is an introduced, alien, exotic, non-indigenous, or non-native 

species, (which  is a species living outside its native distributional range) and  has arrived there 

by human activity, either deliberate or accidental (Groom et al. 2006; Mampholo 2006). 

Accidental introductions occur when species are dispersed by human transport such as airplanes 

and ships into new geographical regions (Itholeng 2007). They establish and spread impacting 

negatively on biodiversity, agriculture, water resources, and human health – these impacts 

therefore have a direct and indirect impact on economic growth and livelihoods (Witt 2010). One 

such introduction is that of the woody plant called Prosopis (mesquite). 

Most introductions of Prosopis were intentional, although there have been accidental 

cross-border introductions between neighbouring counties. Prosopis was introduced for many 

reasons: to provide fodder and shade in the arid areas of South Africa and Australia; for dune 

stabilization, afforestation and fuel wood supply in Sudan; for live fencing in Malawi; initially to 

rehabilitate old quarries and later for afforestation and the provision of fuelwood and fodder in 

Kenya; for fuelwood production and rehabilitating degraded soil in India; for local greening, 

ornamental cultivation and soil stabilization in many Middle Eastern countries; and for 

vegetation trials in Spain (Chikuni et al. 2005; Choge and Chikamai 2004; Elfadl and Luukkanen 

2006; Ghazanfar 1996; Laxén 2007; Pasiecznik et al. 2001; van Klinken et al. 2007; 

Zimmermann 1991). Prosopis was possibly first introduced unintentionally into Botswana, 

Nigeria and Yemen through livestock trading with neighbouring countries (Geesingis et al. 2004; 

Pasiecznik et al. 2001). 

Despite the positive characteristics of the mesquite listed above, over time the tree 

showed to have negative impacts such as: the trees form extensive impenetrable thickets over 

large areas; it overruns grazing land; negatively affects biodiversity (plants within these dense 

infestations no longer provide useful services) and it excessively consumes surface and ground 

water (Pasiecznik 1999). Hence, in 2004 Prosopis was rated in the world’s top 100 least wanted 

species by the Invasive Species Specialist Group of the IUCN. Millions of hectares of rangeland 

have already been invaded, and the process is still occurring in South Africa, Australia and 

coastal Asia (Pasiecznik 1999). Invasion has already occurred in northern Sudan where the Gash 

Delta of the Atbara River has been almost completely taken over by Prosopis glandulosa 
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(Mwangi and Swallow 2008). Thus, Sudan has passed a law to eradicate it (Update 1997). In the 

Awash basin of Ethiopia, it is aggressively invading pastoral areas in the Middle and Upper 

Awash Valley, and Eastern Harerge. It is one of the three top priority invasive species in 

Ethiopia and has been declared a noxious weed.  

Because of its negative effects on ecosystems and land use, environmental management 

policies have been put in place over the years to control mesquite invasion in many countries. 

These include mechanical removal of the plant, felling and herbicide treatment of cut stumps, 

foliar spraying of saplings and burning (Harding 1987; van Klinken et al. 2009). For over fifty 

years, ranchers in south-western USA and Argentina tried a range of techniques to eradicate or 

control Prosopis glandulosa (Pasiecznik 1999). There are high costs associated with its 

eradication and a cost effective program is yet to be found. This effective management requires 

up to date temporal and spatial information about the spatial distribution of mesquite invasion 

and its negative impacts on the ecosystem services (Nie et al. 2012). 

Traditionally, mapping the spatial distribution of vegetation species generally needs 

intensive fieldwork, including visual estimation and identification of species quality and quantity 

all of which are costly and time-consuming and sometimes impossible to accomplish due to poor 

accessibility or large coverage (Hoshino et al. 2012). On the other hand, remote sensing 

techniques offer an economic and effective technique, producing timely and accurate information 

for mapping vegetation species (McGlynn and Okin 2006).  

 

1.2. Statement of the problem 

 

The International Union for the Conservation of Nature (IUCN) declared Prosopis 

glandulosa to be one of the world’s worst invasive species (Bromilow 2010; Henderson 2001; 

Mwangi and Swallow 2005). In the 1800s, six Prosopis species from Central America were 

introduced to the arid parts of South Africa for fodder, fuel and shade (Harding, 1987; Wise et. 

al., 2012). Here they have hybridised and spread rapidly. In the Northern Cape Province, for 

example, Prosopis invasions have increased from 127 821 ha in 1974 to 1 473 953 ha (~ 4% of 

the Province) in 2007, roughly doubling between 2004 and 2007 (Van den Berg et al. 2014; Wise 

et al. 2012b). Invasive alien plants are estimated to occupy at least 10 million hectares of land in 

South Africa with an average annual rate of spread (mainly by animal movement that feed on the 



4 
 

seed of Prosopis) of at least 5% (van Wilgen et al. 2012). It is the deep rooted desert adapted 

shrub Prosopis glandulosa which is a major cause for concern in the arid and semi-arid parts of 

the country, especially the North West, Northern Cape, the Free State, Western Cape and parts of 

the Eastern Cape Province.  In these areas of South Africa, Prosopis invasions are spreading 

rapidly at average annual rates in excess of 15% in upland areas and up to 30% in riparian areas 

(Van den Berg et al. 2014) thereby threatening water supply to groundwater dependent 

communities (Dzikiti et al. 2013a). 

Prosopis invasions also have a variety of negative social, ecological and economic 

impacts. They alter ecosystem services such as water supply, hydrological functioning, grazing 

potential and soil quality (Dzikiti et al. 2013b; Le Maitre et al. 2011; Nie et al. 2012; van 

Klinken et al. 2007). Native biodiversity in many parts of the world has also been negatively 

impacted by invasive Prosopis species (Dean et al. 2002; El-Keblawy and Al-Rawai 2006; Kaur 

et al. 2012; Steenkamp and Chown 1996). 

 

1.3. Research objectives 

 

The main aim of this study is to examine the possibility of discriminating and mapping Prosopis 

glandulosa and its native co-existing species in semi-arid South Africa. 

The specific objectives of this study are as follows: 

1. To investigate the usefulness of in situ spectroscopic data in discriminating Prosopis 

glandulosa from three other co-existing species.  

2. To test the utility of the newly developed guided regularized random forest (GRRF) to 

accurately discriminate amongst Prosopis glandulosa and its co-existing species 

(multiclass classification). 

3. To examine if WorldView-2 imagery and two machine learning algorithms (Random 

Forest (RF) and Support Vector Machines (SVM)) can map Prosopis glandulosa 

invasion and its co-existing species. 

4. To explore the cost-effectiveness of using SPOT-6 imagery to map Prosopis glandulosa 

invasion and its co-existing indigenous species using machine learning algorithms. 
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1.4. Dissertation outline 

 

In order to achieve the objectives of this research, this dissertation is presented in six 

chapters organised as a collection of research papers submitted to international peer reviewed 

journals. The study consists of the introduction (Chapter 1), literature review (Chapter 2), three 

core chapters (Chapter 3, 4 and 5) that form publishable papers of which one (Chapter 3) has 

been published, one is under peer review (Chapter 4) and one is in preparation (Chapter 5). Each 

paper has been written as a stand-alone journal article that can be read individually from the rest 

of the dissertation but drawing to the overall objectives of the study. As a consequence, there is 

some repetition of content between chapters especially in the “Introduction” and “Method” 

sections as well as the introduction (Chapter 1) and literature review (Chapter 2). The final 

chapter of the dissertation is the overall conclusion of the research (Chapter 6). The content of 

the six chapters is: 

Chapter 2 is the detailed literature review that provides information on the ecology of 

Prosopis spp. as well as its introduction history all over the world and specifically in South 

Africa is explored. Additionally, the species’ negative invasion impacts, management and control 

are examined with the gaps in research in the spatial and spectral discrimination of Prosopis 

from its co-existing species being highlighted. 

Chapter 3 contains the spectral discrimination of Prosopis glandulosa and its co-existing 

species using field spectroscopy and machine learning algorithms. This chapter evaluates the 

spectral discrimination of Prosopis glandulosa from its co-existing species by using in-situ 

hyperspectral data, traditional random forest (RF) and the newly developed guided regularized 

random forest algorithm (GRRF). The problem of high dimensionality associated with 

hyperspectral data is reduced by applying the GRRF algorithm to the total wavelengths selected 

by the traditional RF (n =1825) to reduce them to minimum key wavelengths (n = 11). The 

change in overall accuracy is investigated when the two algorithms are applied to the 

hyperspectral data.   

  Chapter 4 investigates the mapping of mesquite and its co-existing species in semi-arid 

South Africa by making use of new generation, high resolution, WorldView-2 imagery together 

with the random forest (RF) and support vector machines (SVM) classifiers. Spatial 
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discrimination at species level is investigated to determine which of the classifiers is more robust 

for monitoring invasive spread of Prosopis glandulosa. 

Chapter 5 assesses the cost-effectiveness of using new generation, high resolution, 

SPOT-6 imagery to map Prosopis glandulosa and its co-existing species. Following on Chapter 

4 that uses expensive WorldView-2 imagery for mapping, this chapter expands the species-level 

spatial discrimination of mesquite by using free SPOT-6 data. The random forest ensemble as 

well as support vector machines are used as classifiers and their overall accuracies are evaluated. 

Finally, Chapter 6 combines the results of each of the individual chapters and provides an 

overall conclusion. Recommendations for future research using remote sensing techniques to 

better monitor mesquite invasion via species-level discrimination are explored. In addition, ways 

to aid in the current management and control methods that have not been as successful as 

initially anticipated in controlling the once beneficial species are investigated. 

Lastly, a single reference list is provided at the end of the dissertation. 
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CHAPTER TWO 
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2.1  Introduction 

 

Invasive alien species (also known as non-indigenous or non-native species) are currently 

a major focus for biological conservationists, governments, farmers, ecologists and 

environmental managers world-wide (Joshi et al. 2004). These biological invasions pose a great 

threat to biodiversity as well as human activities and have been identified as a major non-

climatic driver of global change (Huang and Asner 2009; Shackleton et al. 2014b). Various 

initiatives to control and better manage invasion have been practiced in communities 

internationally to guarantee lasting effects by ensuring that people make informed choices (Lowe 

et al. 2000). For the development of better control strategies, knowledge of the species areal 

extent, location and spread dynamics is imperative (Mack et al. 2000; Robinson et al. 2016; 

Schlesinger et al. 1990). 

Remote sensing offers ways of detecting, monitoring and mapping biological invaders by 

extracting useful information without any physical contact with the invaders (Huang and Asner 

2009; Joshi et al. 2004). These techniques offer more cost effective and timely ways of mapping 

species more accurately as opposed to traditional methods of vegetative mapping that were time 

consuming and difficult to achieve due to large coverage and poor accessibility (Akasheh et al. 

2008; Hoshino et al. 2012; Li and Fox 2012). Table 2.1 below summarises some studies 

conducted on invasive species and the remote sensing methods used. 
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Table 2.1: Comparison of applications of remote sensing on invasive species 

SPECIES COUNTRY TYPE OF 

DATA 

CLASSIFICATION 

METHOD/ 

ALGORITHM 

APPLIED 

ACCURACY AUTHOR 

Water 

hyacinth 

(Eichhornia 

crassipes) 

Uganda, 

Kenya and 

Tanzania 

Landsat, 

IKONOS, 

JERS and 

Radarsat 

Change detection, 

ISODATA 

93% (Albright et al. 

2004) 

Mesquite 

(Prosopis) 

South Africa Landsat, 

NOAA, 

MODIS, 

SPOT-5 

NDVI classification, 

EVI classification 

72% Van den Berg 

et al. (2014) 

Mesquite 

(Prosopis) 

Kenya Landsat Sub-pixel classification 

in ERDAS imagine; 

change detection and 

surveys 

84% 

(surveys) 

Zeila (2011) 

Mesquite 

(Prosopis) 

Australia WorldView-2 Variation between 3 

different band sets 

78.7%; 90.5% 

and 88.1% 

Robinson et al. 

(2016) 

Leafy spurge 

(Euphorbia 

esula L) and 

Spotted 

knapweed 

(Centaurea 

maculosa 

Lam.) 

North 

America 

Hyperspectral 

imagery 

Breiman Cutler 

Classification (BCC) – 

random forest 

Leafy spurge: 

86% 

Spotted 

knapweed: 

84% 

(Lawrence et 

al. 2006) 

Spotted 

knapweed 

(Centaurea 

maculosa 

Lam.) and 

Babysbreath 

(Gypsophila 

paniculata) 

Western 

United States 

Hyperspectral 

imagery - 

AISA 

Spectral Angle Mapper 

algorithm (SAM) at 1, 

2, 3, 4, 5 and 10 degree 

angles 

Spotted 

knapweed: 

57% 

Babysbreath: 

97% 

(Lass et al. 

2009) 

Leafy spurge 

(Euphorbia 

esula L) 

North 

America 

AVIRIS 

imagery; 

ASD 

spectrometer 

Spectral Angle Mapper 

algorithm (SAM) 

74% (Hunt 2009) 
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Prosopis glandulosa Torr. var. torreyana (Honey mesquite) is one of the 44 species of 

the genus Prosopis (Fabaceae family). It is a multistemed acacia-like shrub (Figure 2.1) that can 

grow to about 14 m in height (Henderson 2001) . The tree is comprised of compound dark green 

leaves (with high tannin content); reddish-brown branchlets with axial thorns; and an extensive 

lateral and tap root system (Figure 2.1) that can go as deep as 50 m below the surface to reach 

deep water tables as well as surface water with a lateral root extension of up to 30m (Dzikiti et 

al. 2013b; Hoshino et al. 2012; Matthews and Brand 2004; Pasiecznik et al. 2004; Pasiecznik et 

al. 2001). Additionally, honey mesquite is fast-growing, evergreen and flowers from June to 

November with yellow flowers and produces fruit in the form of hanging pods that are green 

when immature and yellow-purple when mature (Henderson 2001; Masilamani and Vadivelu 

1997). Moreover, the species is highly tolerant of harsh conditions such as low rainfall, high 

temperatures as well as  saline, alkaline and infertile soils making it easily adaptable to semi-arid 

and arid environments (Pasiecznik et al. 2001; Shiferaw et al. 2004; Zimmermann et al. 2006). 

Most importantly, it has been noted that there is a close resemblance between the flower, pod and 

leaf morphology of Prosopis glandulosa, Prosopis velutina (velvet mesquite) and Prosopis 

chilensis (algarroba) due to hybridization as well as a close relation between species which 

makes distinction difficult (Henderson 2001; Pasiecznik et al. 2001).  

 

                    

       (a)                                               (b)                                        (c)                                          (d) 

Figure 2.1: Prosopis glandulosa (a) Tree acacia-like structure (b) Leaves and branchlets  (c) 

Pods and inflorescence  (d) Root system  
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2.2  History of Prosopis and its benefits 

According to Zimmermann (1991), the taxa of Prosopis is native to South and Central 

America as well as the Caribbean. It occurs as either a native or an introduced species in the 

world’s arid and semi-arid regions (Rejmánek and Richardson 2013; Shackleton et al. 2014b). 

From the 1800s, it was introduced to new environments all over the world such as coastal Asia, 

Australia, Hawaii, India, Sudan and Malawi due to problems of deforestation, desertification and 

fuelwood shortages in those areas (Pasiecznik 1999; Shackleton et al. 2014b). The species can 

currently be found as either a native or introduced species in 129 mainland (19 countries in the 

America’s, 40 in Africa, 26 in Asia and 4 in Europe) and island countries and territories (24 

island island/atoll countries in the Pacific, Atlantic and Indian Oceans and Australia as well as 18 

Caribbean islands)(Shackleton et al. 2014b). The characteristic of Prosopis adaptability to harsh 

environments allowed it to fit well into agroforestry systems and serve the purposes of 

controlling soil erosion, afforestation of arid lands, sand dune stabilization as well as improving 

soil fertility (Pasiecznik 1999; Pasiecznik et al. 2001). In South Africa, the plant species was 

introduced from the late 1800s until 1960 to provide benefits such as nectar for honey 

production; utilization of its timber in construction and furniture production; provision of shade 

for livestock due to its wide canopy and use of pods for fodder (Chikuni et al. 2014; 

Zimmermann et al. 2006; Zimmermann and Pasiecznik 2005). Over the years, through a 

combination of flooding events, animal movement and deliberate planting, the mesquite seed has 

spread far and wide across the country and now covers millions of hectares in the Northern Cape, 

Western Cape, North-West and Free State provinces of South Africa (Van den Berg 2010; Wise 

et al. 2012b; Zachariades et al. 2011).  

On a socio-economic scale, many communities now also look to mesquite as a source of 

income. In Malawi for example, Chikuni et al. (2005) noted that about 44% of the people in one 

village relied on products from Prosopis as an income source. Similarly, in India about 70% of 

the villages in the dry regions have their fuel supply dependent on Prosopis (Pasiecznik et al. 

2001). In Kenya, the local economy in some communities has been boosted by US$1.5 million 

per year through the sale of fodder and charcoal (Choge et al. 2012). A company in South Africa 

is utilizing the pods to produce an organic medicine (manna’) to stabilize blood sugar levels in 

humans and is making a profit of about US$100 000 per annum locally. If marketed 

internationally, the profits have a 10-fold potential (Wise et al. 2012a). 
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2.3. Negative Impacts 

Despite all the benefits of Prosopis, studies have shown that it is an invasive species 

worldwide with negative social, economic and environmental impacts (Maundu et al. 2009; 

Mwangi and Swallow 2005; Pasiecznik et al. 2001). Many dynamics of the Prosopis species 

make them successful invaders and these include interspecific hybridization (Zimmermann 

1991), they produce large quantities of seeds that remain viable for decades if not damaged, the 

trees have a rapid growth rate and an ability to coppice after damage, can withstand harsh 

climatic conditions (both high temperatures and low rainfall) and can grow in all soil types 

including alkaline, saline and infertile soils (Felker et al. 1981; Pasiecznik et al. 2001; Shiferaw 

et al. 2004).  

2.3.1 Environmental impacts 

Mesquite has root systems that allow the efficient utilization of both surface and ground 

water (up to 50 m in depth). Classified as phreatophytes the species has the ability to develop 

deep root systems and so can access the saturated zone in the subsurface water in both the dry 

and rainy season which also devastatingly affects other plants growing in the region (Dzikiti et 

al. 2013b; Elfadl and Luukkanen 2006).  

Prosopis also impacts on biodiversity. In sub-Saharan Africa natural vegetation such as 

acacia and other riparian thicket species have been degraded (Hoffman et al. 1999). Acacia 

erioloba stands for instance, in the semi-arid and arid regions of South Africa have reportedly 

died as a direct result of the lowering of the water table by mesquite invasions (Wise et al. 

2012b; Woodborne 2004). There has also been a reduction in the species diversity and richness 

of certain bird species, frugivores, insectivores, raptors and numbers of dung beetles in areas 

where mesquite invasions have occurred (Dean et al. 2002; Dean and Milton 1999; Steenkamp 

and Chown 1996). 

2.3.2 Socio-economic impacts 

Dense and impenetrable thickets are a characteristic of mesquite and this unfavourably 

impacts on human socio-economic activities. Local communities in Kenya, South Africa, Sudan, 

Eritrea, Malawi, Ethiopia and Pakistan for example have noted how these thickets provide refuge 

to thieves thus making communities vulnerable; there is encroachment onto paths, villages, 

homes, water sources, crop- and pastureland; and injuries due to thorns cause tyre punctures and 

animal flesh wounds and sometimes death (Chikuni et al. 2014; Choge and Chikamai 2004; 
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Laxén 2007; Maundu et al. 2009; Mwangi and Swallow 2008). Beneficial native species have 

also been negatively affected in such a way that grazing land for instance is becoming scarce and 

some livestock owners in Kenya, around Lake Baringo, claim that they now have to move 40-

50km away, from where they reside, in search of grazing (Mwangi and Swallow 2008). 

Similarly, in Australia, South Africa and coastal Asia millions of rangeland have been invaded 

and continue to be invaded to this day (Pasiecznik 1999); pastoral areas in the Middle and Upper 

Awash Valley and Eastern Harege areas of the Awash basin are extremely invaded and the Gash 

Delta of the Atbara river of Sudan has been completely invaded by Prosopis (Mwangi and 

Swallow 2008). 

Moreover, a lot of conflict between communities has arisen due to the introduction of Prosopis. 

Loss of land due to invasions forced crop farmers from Chemonke village in Kenya have had to 

seek alternative settlement elsewhere, often resulting in conflict with established communities 

(Mwangi and Swallow 2005); local livestock herders in Mali face the potential of losing their 

land rights and violent conflict over limited natural resources between neighbouring 

communities in Kenya and Ethiopia (Djoudi and Brockhaus 2011; Shackleton et al. 2014b) are 

some of the examples of this conflict impact. 

 Mwangi and Swallow (2008), noted through surveys conducted in the local communities 

around Lake Baringo, Kenya that 85-90% of respondents to a questionnaire favoured complete 

eradication of invasive Prosopis species.  In another Kenyan study by Maundu et al. (2009) in 

the areas of Garissa, Loiyangalani, and Baringo it was found that 64%, 79%, and 67% of 

respondents, respectively, said that life would be better without Prosopis. In Sudan, a law has 

been passed to eradicate the species and over 90% of livestock owners in eastern Sudan regard 

invasive Prosopis as a liability (Update 1997; Zeila 2011). Pastoralists in Ethiopia refer to 

mesquite as the “Devil Tree” and it is one of the country’s three top priority invasive species 

(Awale and Sugule 2006; Mwangi and Swallow 2005). In Australia the taxa of Prosopis is rated 

as one of the 20 worst invasive species and is a declared weed in all of its mainland states 

(Committee 2012). Furthermore, in 2004 the International Union of the Conservation of Nature 

(IUCN) rated mesquite as one of the world’s top 100 most invasive species (Baillie et al. 2004; 

Mwangi and Swallow 2005). In light of these devastating effects of mesquite, it became clear 

that measures of control and management of the species were paramount. 
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2.4. Control and Management of Prosopis spp. 

2.4.1 Control  

A wide range of techniques have been tried and tested for over fifty years world over in 

countries such as south-western USA, Argentina, Australia and South Arica to control or 

eliminate Prosopis (Pasiecznik et al. 2001). 

2.4.1.1. Mechanical control 

This consists of the use of physical methods to remove and damage the invasive plant. 

Methods such as burning, cutting, felling and uprooting the trees have been tried (Geesingis et al. 

2004; Harding 1987). Follow-up actions are necessary however, with this method because felled 

trees often coppice well and seed germination is frequently stimulated by soil disturbance (Van 

den Berg 2010).  

2.4.1.2. Chemical Control 

This involves the application of herbicides on the cut tree stumps so that it can move 

downwards on the stump to prevent regrowth of the tree species. Treatment of cut tree stumps 

with picloram (TordonTM) in diesel was the standard method used for many years. Its use was 

discontinued and replaced by others, however, due to the environmental risks associated with 

this herbicide as well as the high cost. In this method it is important to have the correct dosage, 

application method, application time and follow-up for successful results (Van den Berg 2010; 

van Klinken et al. 2009; Zeila 2011). 

2.4.1.3. Biological control 

This method consists of the use of natural agents to control other natural species in a specific 

way so that the species can still be exploited for its beneficial uses. Agents used operate as a 

supportive measure of other combative measures in place. A few countries are testing this 

method but Australia and South Africa are the two main countries that have investigated this 

approach in great depth. Seed-eating beetles have been used to target the seeds and pods of 

Prosopis and thus decrease seed production and dense thicket formation. In South Africa three 

species of beetles have been introduced and these are Algarobius prosopis (LeConte) in 

1987,  Algarobius bottimeri (Kingsolver) in 1990 and Neltumius arizonensis (Schaeffer) in 1992 

(Coetzer and Hoffmann 1997; Klein et al. 2011; Zimmermann 1991). Algarobius bottimeri and 

Neltumius arizonensis failed to establish (Zimmermann et al. 2006) and in general biological 

control methods have not been very successful in lessening the problem of mesquite (van 
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Klinken et al. 2009).  Additionally, over the past ten years, in Argentina, nine beetle species, four 

moths, one gall midge (within the species section Algorobia, Chilensis, Sericanthae and Pallidae 

and Ruscifoliae) and a flower-bud galler (Asphondylia prosopidis – Cockerel) in the USA have 

been considered (Zachariades et al. 2011).  

2.4.1.4. Indirect and integrated control 

These are methods that help to control the species indirectly so that the species is eventually 

killed and spread reduced.  Examples of these strategies are the use of fire to burn the species all 

the way to the crown as well as the seeds lying on the soil surface. This has been successful in 

controlling some mesquite species (Mampholo 2006). When the species are still seedlings it is 

easier too outcompete them in an area by over-sowing and ploughing the area with beneficial 

plant species in the area such as grass (Van den Berg 2010). 

Most importantly, it has been noted that main spread of Prosopis is due to animal migration 

and droppings containing viable seeds. The digestion process helps germination when expelled 

seeds are deposited in moist nutrient –rich dung. Thus, techniques such as grazing management 

which includes restriction of grazing during and immediately after other control methods have 

been applied and reduction of grazing during seed-drop season (Mampholo 2006; Van den Berg 

2010). 

2.4.1.5. Utilization 

This method involves the use of the mesquite species benefits such as cutting the trees for 

firewood, furniture production, charcoal production (Choge and Chikamai 2004; Pasiecznik et al. 

2006; Shackleton et al. 2014b). 

 

2.4.2 Management 

It should be noted that  the method of control chosen for use by a country is dependant on 

a number of characteristics because each country has different requirements, capabilities and 

needs. Wealth is one of these driving factors. It has been found that poorer countries such as 

Ethiopia and Kenya for example tend to use more of the utilization and mechanical methods as 

far as possible whilst wealthier countries like the Middle-eastern countries that also have isolated 

invasions tend to use chemical and mechanical methods only (Shackleton et al. 2014b).  

No country uses biological control only and although Australia and South Africa are the 

main utilizers of biological control, areas where ‘biological control agents’ are present have been 
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found but are not deliberately used. Egypt (has the seed-feeding beetles—Coleoptera and 

Burchidae), Sudan and Yemen (have the Algarobis prosopis). These have not been introduced 

because of concerns that either the beetles might affect the less invasive Prosopis pallida 

populations which are needed by the local communities (in Yemen for example) (Pasiecznik et 

al. 2006) or the effect of such insects could lead to larger trees and greater pod production 

(Shackleton et al. 2015; Zachariades et al. 2011). In South Africa, the current management 

technique is the integrated approach that combines chemical and mechanical control methods 

along with biological methods through the government-run Working for Water Program 

established in 1995 (van Wilgen et al. 2012; Zachariades et al. 2011). The program has had 

success in reducing impacts and density on a small scale in some areas but the magnitude of 

impacts is still increasing very rapidly with a 35% increase between 1996 and 2008 despite a 

US$42.7 million (R435.5 million) spent on management (van Wilgen et al. 2012).   

Another major factor that determines the management technique used is people’s 

perceptions about the invasive species and these perceptions are shaped  by their day-to-day 

interactions with the species and its effect on their local economies and livelihoods (Binggeli 

2001; Pasiecznik et al. 2001). For example due to an earlier advantage of fuel shortage decrease 

as well as use as a field boundary marker, people in the Rajasthan province of India welcomed 

the introduction of mesquite but changed their perception when their agricultural lands were 

colonised (Mwangi and Swallow 2005). Economic benefit is another reason that shapes people’s 

perceptions. If a species is economically beneficial and its management cost does not exceed the 

benefits, the utilisation of the species will be favoured over its eradication. Other factors that 

influence people’s perceptions are how damaging species is to property, the media’s portrayal of 

the species, the opinion of powerful people in society and whether the species is physically 

appealing (Shackleton et al. 2015). These varying opinions thus make the management of 

Prosopis a contentious issue. 

Generally, these control methods have not been very successful as they are neither cost 

effective nor technically fruitful. In South Africa, with Prosopis invasions estimated to cover 

about 1.8 million hectares and increasing at 8% per annum there is a potential to invade between 

5 to 32 million hectares (Van den Berg 2010; Versfeld et al. 1998). Le Maitre et al. (2011) 

estimated that US$109.1 million (US$1 = c. R7 in March 2011) would be needed to clear the 
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invaded uplands and US$76.6 million to clear invaded floodplains. Clearing costs per hectare 

were estimated to vary from US$13–534 depending on the densities of the infestations. 

In order to successfully come up with management plans that can effectively eradicate 

and or control Prosopis, the dynamics of the processes underlying plant invasions to reduce 

negative impacts whilst maximising benefits and opportunities for management invention are 

necessary (Robinson et al. 2008). This includes a look into the spatial distribution of the invasive 

species. 

 

2.5. Remote sensing and vegetation species mapping  

Traditionally, vegetation species  mapping needs intensive field work that is both time 

consuming and costly and at times unachievable due to poor accessibility (Hoshino et al. 2012; 

Kent and Coker 1994; Lee and Lunetta 1995). Remote sensing, on the other hand, is a technique 

that gathers data regularly about the earth's features without actually being in direct contact with 

those features (Adam and Mutanga 2009). The two main advantages that make remote sensing 

preferable to field-based methods in landcover classification, are that it has repeat coverage 

which allows continuous monitoring, and its digital data can be easily integrated into a 

geographic information system for more analysis which is less costly and less time-consuming 

(Ozesmi and Bauer 2002; Schmidt and Skidmore 2003; Shaikh et al. 2001). Multispectral data 

such as LandsatTM and SPOT imagery have been used to identify general vegetation classes or  

to discriminate broad vegetation communities (Harvey and Hill 2001; Li et al. 2005; May et al. 

1997). Multispectral data have been used but the limitation has been lack of the spectral and 

spatial resolution and mixed pixels and hence low accuracy has been achieved.  On the other 

hand, hyperspectral data often consist of over 100 contiguous bands of 10 nm or less bandwidth. 

These contiguous bands and narrow ranges lead to the possibility of discriminating and mapping 

vegetation species more accurately and precisely than the standard multispectral bands (Borges 

et al. 2007; Schmidt and Skidmore 2003; Ustin et al. 2004). The use hyperspectral data was 

useful but the limitation is that hyperspectral data is very expensive and difficult to process. Then 

new generation advanced multispectral data such as WorldView and RapidEye has been found to 

overcome both these limitations. 
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Remote sensing is one method that has not been fully utilised as a tool in control. In 

Kenya, the invasion of Prosopis impacts the livelihood of dryland communities and the 

ecological integrity of the fragile arid and semi-arid lands (Zeila 2011). Remote sensing and 

Geographical Information System techniques have been employed to investigate the extent of the 

species’ in Garissa County. Since mesquite is evergreen, studies were carried out in Kenya’s 

driest season (September) to make it easier to distinguish mesquite from the surrounding non-

deciduous flora. Studies were carried out in 2000 and 2006 and datasets from the two years was 

then compared. Landsat was used for mapping and a socio-economic survey was done to find out 

from the community the implications and perceptions of the mesquite.  From this study, it was 

realised that pixel resolution used (30 m x 30 m for multispectral bands) has mixed spectra and 

thus raises the mixed pixel problem which dims efficient classification using standard classifiers.  

The study is limited in terms of spectral resolution by using Landsat TM imageries for 

acquisition of scenes mainly due to the implications in acquiring imageries with much higher 

spectral resolutions such as QuickBird. Moreover the study recognizes that there is advancement 

in the techniques for mapping the spread of invasive alien species than the technique used in this 

study (Zeila 2011). 

On the other hand, studies done in Sudan made use of the Normalised Difference Infrared 

Index (NDII). The reason for this was that with near infrared bands, spectral reflectance shows 

mesquite to be healthier growing than other plants and thus easier to map. The study compared 

the spectral reflectance in the infrared of stressed and unstressed canopies (Hoshino et. al., 2012). 

Landsat5 Thematic Mapper was used and made use of bands 4 (near infrared) and band 7 (short-

wave infrared). For comparison, a handheld soil moisture measurement system (Hydrosense) 

was used to accommodate the problem of backscatter. This study showed the high water usage of 

mesquite as the results showed a high foliar water content (Hoshino et al. 2012). This study had 

limitations. There were penetration difficulties into the mesquite trees when using the PALSAR 

L-band for detection. Thus to date additional studies on the estimation of the mesquite biomass 

using the PALSAR L-band microwave data are needed.  Moreover, due to the density of the trees 

in the study area, soil moisture retrieval is a challenging problem because of the complicated 

scattering mechanisms of the mesquite canopy (Hoshino et al. 2012).  

Studies carried out in South Africa for the detection, quantification and monitoring of 

Prosopis invasion in the whole of the Northern Cape made use of Landsat for multi-temporal 
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data and MODIS EVI Imagery (Van den Berg 2010). In this study they were able to predict the 

future possible areas of invasion and highlighted the relationship between habitat and future 

Prosopis invasion although they pointed out that more accurate mapping of the species is still 

required. In addition, they did note that there is a long standing problem of managers and 

ecologist is the differentiation between alien and indigenous vegetation in mixed stands, a 

property that was not catered for in their study. Moreover, with multi-spectral data becoming less 

expensive, the use of these images should be promoted for appropriate sites for better results. It 

was highlighted that due to the availability of imagery from the SPOT series (which has been 

available for use in South Africa since 2008) could be a possible way to continue the change 

analysis detection and monitoring of the spatial dynamics and clearing programs of Prosopis 

invasion (Van den Berg 2010).  

More recently, Robinson et al. (2016) conducted Prosopis studies in the Pilbara Region 

of Australia using WorldView-2 imagery and object-based data analysis to map Prosopis from 

its co-existing eucalypt species and background soil types. With a high spatial resolution of 2m 

for each of the eight WorldView-2 bands, different band-set combinations were used to evaluate 

the best band combination that can differentiate Prosopis (van Klinken et al. 2007). The highest 

accuracy was achieved by not making use of all eight bands but of band-subsets with the dual 

near-infrared bands to be the most informative, followed by the red edge band combinations. 

Though successful in differentiating average-sized mesquite plants, the study had the limitation 

of only discriminating between only two plant species and background soil (Peerbhay et al. 

2013). Unlike previous studies, this WV-2 imagery has the great potential to develop mesquite 

management responses in stands of 16 square meters and greater in a grass-free matrix over a 

heterogeneously soil type distribution (Robinson et al. 2016). 

No attempt, to my knowledge, has been made to map Prosopis at species level using 

remote sensing in South Africa. Mapping at this level would increase the understanding of the 

invasion dynamic of mesquite as its monitoring in relevance to the indigenous co-existing 

species can be monitored. The high resolution multispectral WorldView-2 data (2 m 

multispectral resolution; 0.46m pan-sharpened resolution) is able to discriminate between the co-

existing species to provide useful information to assist in management and control strategies 

already in place. Additionally, with the availability of free SPOT-6 data (6 m multispectral 

resolution and 1.5 m resolution pan-sharpened), cost-effective mapping of mesquite at species 
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level can also be applied to obtain useful information on invasion. This gap in knowledge has 

provided the basis for this study. 
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CHAPTER THREE 

 

 

Spectral discrimination of Prosopis glandulosa and its co-existing species using field 

spectroscopy and guided regularized random forest. 
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3.1 Abstract  

The invasive taxa of Prosopis is rated in the world’s top-100 unwanted species and lack of 

spatial data about the invasion dynamics has made the current control and monitoring methods 

unsuccessful. This study thus tests the use of in-situ spectroscopy data with a newly developed 

algorithm, guided regularized random forest (GRRF) to spectrally discriminate Prosopis from 

coexisting acacia species (Acacia karoo, Acacia mellifera and Ziziphus mucronata) in arid 

environment of South Africa. Results show that GRRF was able to reduce the high 

dimensionality of the spectroscopy data and select key wavelengths (n = 11) for discriminating 

among the species. These wavelengths are located at 356.3 nm, 468.5 nm, 531.1 nm, 665.2 nm, 

1262.3 nm, 1354.1 nm, 1361.7 nm, 1376.9 nm, 1407.1 nm, 1410.9 nm and 1414.6 nm. The use 

of these selected wavelengths increases the overall classification accuracy from 79.19% and a 

Kappa value of 0.7201 when using all wavelengths to 88.59% and a Kappa of 0.8524 when the 

selected wavelengths were used. Based on our relatively high accuracies and ease of use, it is 

worth considering the GRRF method for reducing the high dimensionality of spectroscopy data. 

However, this assertion should receive considerable additional testing and comparison before it 

is accepted as a substitute for reliable high dimensionality reduction. 

 

Keywords: Prosopis glandulosa; Spectroscopy; Guided Regularized Random Forest; field 

spectroscopy; variable selection  
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3.2.  Introduction 

Taxa of Prosopis (mesquite) cover large areas of the world’s hot arid and semi-arid 

environments as an introduced or native species (Shackleton et al. 2014b). Prosopis is a fast-

growing, drought and salt-resistant plant with remarkable coppicing power (Zeila 2011). It is a 

thorny shrub that can grow to about 5 m in height and is evergreen. It fixes nitrogen and is 

tolerant of arid conditions and saline soils (van Klinken et al. 2007). The spread of the plant is 

caused mostly by the movement and migratory patterns of livestock through droppings (Awale 

and Sugule 2006). Mesquite species and their hybrids became invasive in the arid northern parts 

of South Africa as well as other similar environs of the world because of their adaptability to the 

harsh climatic conditions, vigorous growth, high seed production leading to large seed banks, the 

absence of natural seed feeding insects and efficiency of the seed dispersal mechanism (Lloyd et 

al. 2002). The majority of introductions of mesquite were intentional, but accidental cross-border 

inductions between neighbouring countries have occurred (Shackleton et al. 2014a). It is, for 

example, believed that the plant was introduced inadvertently into Botswana, Nigeria and Yemen 

through livestock trading (Geesingis et al. 2004; Pasiecznik et al. 2001). It was intentionally 

introduced for a number of reasons such as to provide shade and fodder in the arid areas of 

Australia and South Africa (Zimmermann 1991); for sand-dune stabilization, afforestation as 

well as fuelwood supply in Sudan (Ghazanfar 1996); for live fencing in Malawi (Chikuni et al. 

2005); for local greening, ornamental cultivation and soil stabilization in many Middle Eastern 

countries (Ghazanfar 1996);  initially to rehabilitate old quarries and later for afforestation and 

the provision of fuelwood and fodder in Kenya (Choge et al. 2012); for fuelwood production and 

rehabilitating degraded soil in India (Pasiecznik et al. 2001; van Klinken et al. 2007); and for 

vegetation trials in Spain (Elfadl and Luukkanen 2006; Laxén 2007).  

The plants have negative impacts on ecosystems such as formation of extensive 

impenetrable thickets over large areas; loss of biodiversity; encroachment onto grazing land; and 

excessive consumption of surface and ground water (Pasiecznik 1999). Globally, large areas of 

rangeland have already been lost due to invasion of mesquite, and the problem is still occurring 

(Pasiecznik 1999). In South Africa, approximately 1.8 million hectares of land has been invaded 

by the plant and the invasion is increasing at 8% per annum (Le Maitre et al. 2004; Van den Berg 

2010; Versfeld et al. 1998) while over a million hectares has been invaded by the plant in 

Australia with the potential to spread over 70% of Australia’s land area (Osmond 2003). Similar 
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problems have been reported in Kenya (Maundu et al. 2009; Witt 2010), Sudan and Ethiopia 

(Mwangi and Swallow 2005). As a result of such environmental impacts, Prosopis was rated in 

the world’s top 100 least wanted species in 2004 by the Invasive Species Specialist Group of the 

International Union for Conservation of Nature (Baillie et al. 2004). Various methods are used to 

control mesquite invasion in different countries such as South Africa, Sudan, USA, Argentina 

and Ethiopia. These include mechanical removal of the plant, which often involves cutting 

and/or burning of the target plant (Harding 1987; van Klinken et al. 2009); biological control by 

making use of beetles that feed on the plant (Coetzer and Hoffmann 1997; Zimmermann 1991); 

chemical control by treating cut tree stumps with herbicides such as picrolam (Zachariades et al. 

2011) and finally indirect control which involves a combination of methods such as grazing and 

over-sowing of an area with beneficial plant species (Mampholo 2006). Generally, mesquite 

invasion control methods are normally associated with high costs that need to be minimized 

through efficient management. This efficient management requires up-to-date information about 

spatial and temporal distribution of mesquite invasion and its negative impacts on the ecosystem 

services (Nie et al. 2012).  

Traditionally methods of mapping the spatio-temporal distribution of vegetation species 

generally need intensive fieldwork that involves visual observation and identification of species 

quality and quantity. Such methods are relatively expensive, time-consuming and sometimes 

impossible to accomplish due to poor accessibility or large coverage (Hoshino et al. 2012). On 

the other hand, remote sensing methods offer a more efficient and less costly alternative, 

producing timely and accurate information for mapping vegetation species (Zeila 2011). Few 

studies have been applied in this area for investigations such as the mapping of Prosopis density 

in South Africa using Landsat and MODIS EVI images (Van den Berg 2010), discriminating 

between stressed and healthy mesquite canopies using PALSAR L-band data and Normalised 

Difference Infrared Index (NDII) in Sudan (Hoshino et al. 2012) and mapping the extent of 

Prosopis invasion using Landsat imagery in Kenya (Zeila 2011).  However, these studies did not 

assess the plant at the species level due to lack of spectral and spatial resolutions of remotely-

sensed data used. For example, Landsat and PALSAR L-band images have a rather low spatial 

resolution that prevents them from resolving individual plants. In addition, multispectral data 

such as Landsat images suffer from the mixed pixel problem where a pixel value represents a 

combination of objects present within the pixel area. Pixel impurity can be overcome by using 
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hyperspectral data that provides the capability to define surface features with higher spectral and 

spatial resolutions (Barry et al. 2002; Liew et al. 2002). The use of hyperspectral remote sensing 

in mapping vegetation species in different landscapes has been well established (Adam et al. 

2012b; Artigas and Yang 2005; Cho et al. 2008; Fung et al. 1999; Kumar and Skidmore 1998).  

Unfortunately, one of the notable problems in hyperspectral data processing is that in most cases,   

the number of training samples (n) is limited as compared  to the large number of hyperspectral 

spectral bands (p) (Hsu 2007a). This ‘small n large p problem’ has been termed the ‘curse of 

dimensionality’, which leads to the ‘peaking phenomenon’ or ‘Hughes phenomenon’ which 

introduces multi-collinearity in the input data matrix (Hsu 2007b; Melgani and Bruzzone 2004). 

The estimation of statistic class parameters are thus rendered inaccurate and unreliable. 

Furthermore, the computation of such large, collinear data sets becomes time consuming and 

prohibitive in analysis (Bajcsy and Groves 2004; Hsu 2007a; Kavzoglu and Mather 2002).  

In light of this, techniques that reduce the problem of high dimensionality without 

sacrificing significant information are vital. Feature selection is often considered to be a practical 

as well as an important method in processing and analysing hyperspectral data (Borges et al. 

2007; Pal 2005; Shaw and Manolakis 2002). Over the last few years a random forest algorithm 

has been commonly used in hyperspectral remote sensing applications as both a classification 

and feature selection method. A random forest algorithm developed by Breiman (2001) is based 

on unpruned trees and bootstrap samples of the original data to improve the classification and 

regression trees (CART) method by combining a large set of decision trees for the final result. 

Hyperspectral dimensionality reduction has shown to be major successes of random forest 

algorithms in remote sensing applications. However, studies have shown that random forest 

provides an internal measure of variable importance but it does not automatically choose the 

optimal number of variables that yield the best classification accuracy (Adam et al. 2012b). 

Moreover, the random forest method for variable importance measurement shows a bias towards 

correlated predictor (Adjorlolo et al. 2013a; Strobl et al. 2008). Deng and Runger (2012) thus 

proposed a regularization framework that can be applied to random forest (regularized random 

forest) and boosted trees (regularized boosted trees). The regularization framework avoids 

selecting a new feature for splitting the data in a tree node when that feature produces similar 

information to a feature already selected (Deng 2013; Deng and Runger 2012). An added 

advantage is that the framework  builds  one  model  that  may  considerably  reduce  the  
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training  time (Deng and Runger 2012).  A new method that improves on regularized random 

forest is called Guided Regularized Random Forest (GRRF) that  uses  the importance  scores  

from  an  ordinary random  forest  to  guide  the  feature  selection  process (Deng and Runger 

2013). 

The aim of this study was therefore to investigate the possibility of spectral discrimination of 

Prosopis from other co-existing native tree species using in situ spectroscopy. The specific 

objectives of the study were to (a) discriminate the mesquite plant (Prosopis glandulosa) from 

three other species (Acacia karoo, Acacia mellifera and Ziziphus mucronata) in the study area; 

(b) test the utility of the new developed guided regularized random forest in identifying key 

wavelengths that accurately discriminate among the tree species (multiclass classification). 

 

3.3.  Materials and Methods  

3.3.1 Study area 

 The Northern Cape Province is a vast area covering 363 203 km2 which is nearly a third of the 

country’s land area. The province is classified as a dry arid region with fluctuating temperatures 

and varying topographies consisting of six biomes (Mucina and Rutherford 2006). Savanna and 

Desert biomes dominate the northern part while the west is dominated by the Succulent Karoo 

biome. The central part of the province is dominated by the Nama Karoo biome. The study area 

is situated in the north-western part of the province and is about 5 km from the small town of 

Griekwastad and 170 km from the city of Kimberley. The study area (Figure 3.1) covers plains 

with a variety of acacia, such as Buffalo-thorn Jujube (Ziziphus mucronata), Camel Thorn 

(Acacia erioloba), Sweet-thorn Acacia (Acacia karoo) and Black-thorn Acacias (Acacia 

mellifera) and a mixture of grasses such as Kalahari Coach (Stipagrostis amabilis), Giant Stick 

Grass (Aristida meridionalis) and Lehmann’s Lovegrass (Eragrostis lehmanniana) dominating 

the grassy plains (Van den Berg et al. 2014). The main activity in the study area is animal 

farming mainly grazing from cattle and goats. Horses and donkeys are also prevalent in the area 

and are used as a cheaper mode of transportation. These animals ingest the nutritious seed pods 

of mesquite and excrete viable seeds in their droppings, thus helping to spread mesquite over 

shorter distances enabling extremely dense invasions of mesquite.  As long as the seeds are not 
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damaged by chewing, the process of digestion actually helps germination, especially since the 

seeds are deposited in moist, nutrient-rich dung (Zeila 2011). 

 

 

 

Figure 3.1: A true-colour composite WorldView2 image showing the location of the study area 

and some of the field samples presented as green dots.   

 

3.3.2 Identification of mesquite and other co-existing tree species  

The most common tree species associated with mesquite in the area were identified in the 

field in summer of 2015 through field surveys. In total, three main co-existing species associated 

with Prosopis glandulosa have been identified as most common tree species and these are 

Acacia karoo, Acacia mellifera and Ziziphus mucronata. Colour digital photographs of the 

species were taken, as well as the collection of samples from each of the species, including 

mesquite and were sent to the C. E. Moss Herbarium Department at the School of Animal, Plant 

and Environmental Sciences, University of the Witwatersrand to confirm the species 
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identification. Acacia karoo, Acacia mellifera and Ziziphus mucronata are all indigenous plants 

in South Africa. They are spread throughout the country but are most dominant in the North-

West, Limpopo and Northern Cape Provinces of South Africa.  Acacia mellifera which is known 

as Black Thorn in southern Africa usually occurs as a multi-stemmed shrub up to 3 m high and 

sometimes it can grow as a tree to a height of 7 m (Hagos and Smit 2005). The species is well 

adapted to dry and arid environmental conditions and it may grow in a variety of soil types 

ranging from Kalahari sands to heavy and clayey soil (Smit et al. 1999). 

Acacia karoo is known as Sweet thorn and it is widely distributed across different 

habitats of South African region including dry thornveld, river valley scrub, bushveld, woodland, 

grassland, river banks and coastal dunes of South Africa, Namibia, Angola, Botswana, Zambia 

and Zimbabwe (Taylor and Barker 2012). Acacia karoo may grow as a shrub or small to 

medium-sized tree to height of 12 m. It is a pioneer species and has the ability to encroach 

rapidly into grassland grazing areas, and it considered to be the most important woody invader of 

grasslands in South Africa (Taylor and Barker 2012).  

Ziziphus mucronata also known as the Buffalo thorn, is a tropical fruit tree species which 

is native to the Indo-Malaysian region of South-East Asia, southern Africa, China, Australasia 

and the Pacific Islands. It is a spiny, evergreen and fast-growing tree with a spreading crown, 

stipular spines and many drooping branches (Priyanka et al. 2015). The tree may grow to heights 

between 3 m and 12 m. The leaves are readily eaten by camels, cattle and goats (Priyanka et al. 

2015).  

 

3.3.3 Field spectroscopy measurements 

Following the identification of the common tree species associated with mesquite, field 

spectral reflectance measurements were collected at canopy level over four days from 27 to 30 

March 2015 between 10:00 am and 02:00 pm under sunny and cloudless conditions. The spectral 

reflectances were collected from mesquite and the common tree species using the Spectral 

Evolution® RS-3500 Remote Sensing Portable Spectroradiometer Bundle. The Spectroradiometer 

has a wavelength range of 350 to 2500 nm with a spectral resolution 1 nm that is resampled from 

inherent spectral resolutions of 3 nm at 700 nm, 8 nm at 1600 nm and 6 nm at 2100 nm 

(Evolution 2012). Each vegetation plot (6 m x 6 m) of Prosopis and its co-existing species was 

sampled by cutting three to six branches from the top canopy. Piles of the branches from each 

https://en.wikipedia.org/wiki/Shrub
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sample were placed randomly on top of a black thick cardboard and the leaf reflectance was 

immediately measured at a nadir-looking angle at approximately 25cm above the branches (Bian 

et al. 2013). In order to derive representative reflectance spectra for each canopy (Figure 3.2) 

about 15 to 20 measurements were collected from each pile of branches by moving randomly 

over each canopy.  Due to interferences such as change in atmospheric conditions as well as 

irradiance of the sun, a white reference spectral measurement was used every 10 to 20 

measurements on the calibration panel to counterbalance any changes. The spectral 

measurements (15 to 20) from each plot were then averaged to represent the spectral reflectance 

of each vegetation plot (Figure 3.2). In total, 498 vegetation plots were sampled; 133 for 

Prosopis glandulosa, 108 for Acacia karoo, 133 for Acacia mellifera and 124 for Ziziphus 

mucronata (Table 3.1). In addition to the field spectral measurements, metadata giving 

information of general weather conditions, land cover class and coordinates were recorded for 

each point measured by the Spectroradiometer.  

 

Table 3.1: Sample plots of Prosopis glandulosa and its co-existing species.  

 

Species Training samples 

(70%) 

Test samples 

(30%) 

Total samples 

Prosopis glandulosa (PR) 93 40 133 

Acacia karoo (AK) 76 32 108 

Acacia mellifera (AM) 93 40 133 

Ziziphus mucronata (ZM) 87 37 124 

 

 

 

 

 

 

 

 



30 
 

Species  Species Spectra 

Prosopis glandulosa (PR) 

  

Acacia karoo (AK) 

  

Acacia mellifera (AM) 

  

Ziziphus mucronata (ZM) 

  

 

Figure 3.2: Images and spectra of Prosopis glandulosa and its co-existing species. 
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3.3.4 Field spectroscopy data analysis 

Due to noise in the reflectance spectra mainly caused by atmospheric water absorption 

(Zhao et al. 2007), reflectance values of 325 wavelengths from three spectral regions: between 

904.5 – 994.5 nm (100 bands); between 1807.2 – 2027.7 nm (90 bands) and between 2182.4 – 

2503.4 nm (135 bands), were removed from the species spectra. Thus, only 1825 wavelengths 

were used for the spectral analysis. To reduce the ‘curse of dimensionality’ of hyperspectral data, 

traditional random forest (RF) (Breiman 2001)  and the new  guided regularized random forest 

(GRRF) developed by Deng and Runger (2013) were adapted for variable importance 

measurements and feature selection respectively (Figure 3.3). 

 

3.3.5 Random forest classifier and variable importance measurement 

Over the last decade, the random forest algorithm (RF) has been increasingly used to 

provide a new means in classifying multispectral and hyperspectral remote sensing data for 

different applications. RF is an ensemble decision trees developed by Breiman (2001) in the field 

of machine learning to improve classification and regression trees (CART). The algorithm 

combines bootstrap sampling to construct a large set of decision trees based on model 

aggregation ideas. Each tree contributes with a single vote for the assignment of the most 

frequent class to the input data. The two sources of randomness include; random inputs and 

random features. The algorithm benefits from the two powerful techniques; bagging and random 

subspace selection (Lin et al. 2011). Firstly, random forest builds many binary decision trees 

(ntree) to enhance the diversity of the classification trees using several bootstrap samples with 

replacement that are drawn from the original observations. Each single decision tree contributes 

with a single vote for the assignment of the most frequent class to the input data. The true 

classification is determined in accordance with the maximum number of votes from the 

collection of trees. The samples that are not in the bootstrap sample are called out-of-bag (OOB) 

sample. The OOB sample (about 30% of the total data) can be used to estimate the 

misclassification error and variable importance. Secondly, at each node, a given number of input 

variables (mtry) are randomly chosen from a random subset of the features. To ensure a lower 

similarity (i.e. diversity) between the individual trees and thus a low-bias, each single tree is 

grown without pruning on the original bootstrap sample (Breiman 2001; Genuer et al. 2010; Lin 

et al. 2011).  To improve the classification accuracy, RF parameters (i.e. mtry and ntree) have to 
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be optimized (Breiman 2001). The default number of trees (ntree) is 500, while the default value 

for the number of variables (mtry) is √P, where P equals the number of predictor variables within 

a dataset (Breiman 2001).  

For this study, a grid-search approach based on the OOB estimate of error was used to find 

the optimal combination for these two parameters (Tian et al. 2009). The grid search value for 

mtry was varied from 1 to 10 for with a single value interval, while the range of the grid search 

value for the ntree parameter was varied from 500 (default value) to 10000 with an interval of 

500 (20 steps). Additionally, random forest provides an internal measure of variable importance 

using three different methods namely, the number of times each variable is selected, the Gini 

importance and the permutation accuracy importance measure (Strobl et al. 2007). In this study 

the Gini importance measure was adopted. The predictive power of each variable is quantified by 

a score (called Gini importance or Gini Contrast), depending on the importance it gained over all 

the trees in the random forest (Breiman 2001). The ensemble does this by using the Gini index 

computed using the following equations 1, 2 and 3. The Gini index at a node 𝜑, denoted 

by 𝐺 (𝜑), is given as: 

                   𝐺 (𝜑) =  ∑ �̂�𝑐
𝑛𝑢𝑚𝑐𝑙𝑎𝑠𝑠
𝑐=1 (1 − �̂�𝑐)                                                                     (1) 

 

Where �̂�𝑐 is the proportion of observations belonging to class c at node 𝜑. The information 

gain of feature 𝑓𝑖  based on Gini index on node 𝜑 is then computed as: 

 

                 𝐼𝐺 (𝑓𝑖,𝜑) =  𝐺 (𝜑) −  𝛼𝐿 𝐺 (𝜑𝐿) −  𝛼𝑅 𝐺 (𝜑𝑅)                                                 (2) 

 

Where 𝜑𝐿 and 𝜑𝑅 denote the left and right child nodes respectively of node 𝜑 in a tree, and 

𝛼𝐿 and 𝛼𝑅 are the proportions of observations in the left and right child nodes respectively. As 

mentioned previously, in an RF model, a random subset of features is chosen at each node and 

the feature with the highest information gain is used for splitting.  

The overall importance score of feature 𝑓𝑖 is given by:  

𝐼𝑆 (𝑓𝑖) =  
∑ 𝐼𝐺 (𝑓𝑖 ,𝜑){𝑠𝑝𝑙𝑖𝑡(𝑓𝑖)}

𝑛𝑡𝑟𝑒𝑒
       

                                                                   (3) 

 {𝑠𝑝𝑙𝑖𝑡(𝑓𝑖)} is the set of all nodes over all trees (𝑛𝑡𝑟𝑒𝑒 ) where 𝑓𝑖 is used for splitting.  
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Basically, variables associated with the OOB sample are randomly permuted and 

classification trees are grown on the modified dataset. The permuted feature was used to predict 

the response and obtain the accuracy. If the wavelength is initially important in the final 

prediction the accuracy will drop significantly after the permutation. Thus, the difference in 

prediction accuracy with and without permuting the feature (wavelength) was used in this study 

to measure the importance of the feature. A key advantage of the random forest variable 

importance is that it not only deals with the impact of each variable individually, but also looks 

at multivariate interactions with other variables (Strobl and Zeileis 2008).  Several approaches 

such as Kursa and Rudnicki (2010) and Diaz-Uriarte and Alvarez de Andres (2006) have built on 

the above measure to identify the relevant set of features. However, they are either 

computationally expensive or do not find non-redundant set of features (Figure 3.4).   

 

3.3.6 Feature selection using guided regularized random forest 

Random forest has been intensively used to reduce the high dimensionality of hyperspectral 

data while returning relatively good accuracy levels (Abdel-Rahman et al. 2012, 2013; Adam et 

al. 2012b; Vincenzi et al. 2011). However,  these studies have shown that although RF provides  

insight  into  the  importance  of  each  variable  in the classification process, it fails to 

automatically select the key number of variables that could yield the lowest error rate  (Adam et 

al. 2012b). To address this shortcoming, a regularization framework that can be applied to 

random forest  (regularized  random  forest)  and  boosted  trees  (regularized  boosted  trees) was 

developed  by Deng and Runger (2013). This regularization framework builds one model that 

reduces training time significantly by avoiding the selection of a new feature for data splitting in 

a tree node when that feature produces similar information to features already selected. This 

method is called the guided regularized random forest (GRRF). GRRF utilizes the raw feature 

importance scores obtained from an initial RF model. The parameters involved in the GRRF 

model are 𝑚𝑡𝑟𝑦, 𝑛𝑡𝑟𝑒𝑒 and 𝜏 which are optimized over a grid search using a 10-fold cross-

validation on the training set. The importance score of a feature in RF is obtained by averaging 

the information gain (based on Gini index) over all nodes across all trees obtained where the 

feature is used to split on. For the purpose of GRRF, the raw importance scores obtained from 

RF are normalized for each feature using equations 4, 5 and 6.  
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               𝑁𝑂𝑅𝑀_𝐼𝑆(𝑓𝑖) = 𝐼𝑆 (𝑓𝑖)/(𝑚𝑎𝑥𝑖=1
𝐹  𝐼𝑆 (𝑓𝑖))                                                            (4) 

 

Also the corresponding information gain is computed as: 

 

                        𝐼𝐺𝐺𝑅𝑅𝐹 (𝑓𝑖 , 𝜑) =  {
𝐼𝐺 (𝑓𝑖 , 𝜑) 𝑓𝑖  ∈  𝐹∗

𝜇𝑖𝐼𝐺 (𝑓𝑖 , 𝜑)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                  (5) 

 

Where 𝐹∗ is the set of indices of features that were used for splitting in previous nodes. For 

root node,  𝐹∗ = ∅.  𝜇𝑖 is an importance co-efficient for feature 𝑓𝑖  calculated as: 

 

                     𝜇𝑖 = (1 − 𝜏) +  𝜏𝐼𝐺𝐺𝑅𝑅𝐹  (𝑓𝑖 , 𝜑)                                                                     (6) 

 

 𝜏 is the regularization constant. When 𝜏 =0, we obtain the same results as from RF. 

  

Similar studies have shown that GRRF is effective in selecting high quality feature subsets 

while maintaining predictive accuracies (Deng and Runger 2013). Interested readers are referred 

to, for example Deng and Runger (2012), Deng and Runger (2013) and Deng (2013) for 

comprehensive description on GRRF theory, principles and mathematical formulation.     

 

3.3.7 Accuracy assessment 

The accuracy of the RF classifier was assessed by using the independent test dataset (30%).  

OOB, which provided an unbiased estimate of the internal RF error, was used to assess the 

misclassification. A confusion matrix was subsequently constructed to compute the overall 

accuracy (OA), user’s accuracy (UA), and producer’s accuracy (PA) as criteria for evaluating the 

generalization ability (accuracy) of the RF classifiers (Mather and Tso 2003). OA is a ratio (%) 

between the number of correctly classified samples and the number of test samples, while UA 

represents the likelihood that a sample belongs to specific class and the classifier accurately 

assigns it such class. PA expresses the probability of a certain class being correctly recognized.   
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Figure 3.3: Flowchart describing the random forest (RF) and guided regularized random forest 

(GRRF) models used in this study. 
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3.4.  Results 

3.4.1 Variables importance measurement and selection 

The ordinary RF classifier was able to determine the importance of each wavelength in 

discriminating between the four species namely, Prosopis glandulosa, Acacia karoo, Acacia 

mellifera and Ziziphus mucronata as shown in Figure 3.4. Based on the mean decrease in Gini 

index, the most important wavelengths are located across the electromagnetic spectrum. For 

example, the wavelengths 343.7 nm and 719.4 nm are the most important wavelengths in the 

visible (400 – 700 nm) and red edge (690 - 720 nm) regions respectfully. Many most important 

wavelengths for discriminating among the species are also found in the near infrared region. 

These are located between 1399.6 and 1407 nm. Figure 3.4 indicates that the top important 

wavelength is located at 1410.9 nm. 

 

 

 

Figure 3.4: The importance of wavelengths as measured by the traditional Random Forest 

using mean decrease in Gini index. The most important variables are those with highest 

mean index. 
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These importance scores from the random forest were used to enable GRRF’s selection of 

subset wavelengths that can better discriminate between the four different species. GRRF was 

able to identify 11 optimal wavelengths that yield lowest OOB error. These optimal wavelengths 

are located at 356.3 nm, 468.5 nm, 531.1 nm, 665.2 nm, 1262.3 nm, 1354.1 nm, 1361.7 nm, 

1376.9 nm, 1407.1 nm, 1410.9 nm and 1414.6 nm (Figure 3.5). These wavelengths were then 

used as input variables for RF classifier model to discriminate between Prosopis and co-existing 

species.  

 

 

 

Figure 3.5: Wavelengths selected by Guided regularized random forest based on the 

importance scores as measured by the traditional Random forest. 

 

3.4.2 Accuracy Assessment 

The best wavelengths selected by GRRF (n=11) were input into random forest classifier. 

The lowest OOB error of 11.41% was obtained using best combination of ntree and mtry. The 

classification model yielded an overall accuracy of 88.59% using the selected wavelengths 

(n=11), compared with an overall accuracy of 79.19% when the total number of wavelengths 

(n=1825) was used (Table 3.2). A comparison between the producer and user accuracies for the 

two datasets is shown in Table 3.3 for each vegetation species. 
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Table 3.2: Confusion matrix showing the overall classification accuracy and kappa statistic for 

discrimination among the four vegetation species; Prosopis glandulosa (PR), Acacia karoo 

(AK), Acacia mellifera (AM), and Ziziphus mucronata (ZM). The error was calculated using 

Out-of-Bag method and the test dataset.  

Class Using 1825 wavelengths Class Using the selected 11 wavelengths 

 AK AM PR ZM Total  AK AM PR ZM Total 

AK 25 2 3 2 32 AK 27 1 2 2 37 

AM 2 34 3 1 40 AM 2 36 2 0 40 

PR 4 3 30 3 40 PR 1 1 36 2 40 

ZM 3 1 4 29 37 ZM 2 0 2 33 37 

Total 34 40 40 35 149 Total 32 38 42 37 149 

OA = 79.19%                                        OA = 88.59% 

Kappa = 0.7201                                      Kappa = 0.8524 

 

Table 3.3: Producer's accuracy (%) and User's accuracy (%) of the four classes (Prosopis 

glandulosa (PR), Acacia karoo (AK), Acacia mellifera (AM), and Ziziphus mucronata (ZM)) 

using all the variables (1825 wavelengths) and the most important variables (11 wavelengths). 

Class Using 1825 wavelengths Class Using 11 wavelengths 

 Producer’s 

accuracy (%) 

User’s 

accuracy (%) 

 Producer’s 

accuracy (%) 

User’s 

accuracy (%) 

AK 73.53 78.13 AK 84.38 84.38 

AM 85.00 85.00 AM 94.74 90.00 

PR 75.00 75.00 PR 85.71 90.00 

ZM 82.86 78.38 ZM 89.19 89.19 
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3.5.  Discussion 

Many studies have demonstrated the importance of spatial data in managing and controlling 

invasive plant species (Amaral et al. 2015; Asner et al. 2008; Shouse et al. 2013). Since the 

1800s, the invasion of the taxa of Prosopis has posed significant threat to species diversity and 

caused substantial socio-economic damages world-wide (Zimmermann 1991). Many plant 

invasion control methods namely biological, chemical and mechanical have been tried and tested 

over the years to reduce the impacts of mesquite with little success as the plant is still spreading 

at a rate of 8% per annum in South Africa (Le Maitre et al. 2004; Van den Berg 2010; Versfeld 

et al. 1998). The lack of the timely and accurate spatial data on the dynamics of the spread has 

been one of the major challenges for control (Wise et al. 2012b). This is due to the complexity of 

the mesquite ecology such as biology, rapid spread and many uncertainties associated with its 

niche colonisation (Shiferaw et al. 2004). This study investigated the potential use of 

hyperspectral data in discriminating mesquite from three co-existing species in an arid 

environment. Results from this study show that mesquite can be accurately discriminated from 

other species in an arid environment of South Africa using hyperspectral data and machine 

learning algorithms.    

The study integrated the traditional random forest and the newly developed guided 

regularized random forest for hyperspectral variable selection in a multiclass classification. The 

traditional RF was used successfully to provide the variable importance measures to guide the 

regularised feature selection process. It was expected to find many wavelengths share similar 

Gini information and score at a node, due to the high autocorrelation between neighbouring 

wavelengths (1 nm interval) (Kumar et al. 2003). However, the GRRF method reduces the high 

dimensionality of the hyperspectral data while ensuring that such dimensionality reduction 

would not cause any loss of important information relevant to the object under study (Adam and 

Mutanga 2009). Many researchers have used the random forest algorithm as a dimensionality 

reduction tool in different hyperspectral remote sensing applications (Abdel-Rahman et al. 2014; 

Adam et al. 2012b; Chan and Paelinckx 2008; Lin et al. 2011; Zhang et al. 2009). However, 

studies have shown drawbacks on the use of random forest as a tool to measure variable 

importance as well as variable selection method (Adam et al. 2013; Adjorlolo et al. 2013b). 

Therefore, in this study we introduced a new developed method which has never been tested 

before in hyperspectral variables selection. This new developed method (GRRF) was able to 
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eliminate the irrelevant and redundant wavelengths and select key wavelengths (n = 11) out of 

1825 wavelength on one iteration with less computational processes. Previous variables selection 

method was based on using varSelRF to build multiple RF models and iterations to add 

feature(s) with the highest importance scores(s) (forward variables selection) or to eliminate 

feature(s) with the least importance scores(s) in a backward variable selection method (Ismail 

and Mutanga 2011; Mansour et al. 2012). Such methods are computationally expensive and are 

not applicable in a large number of features (Deng and Runger 2013). The selected wavelengths 

produced lowest OOB error than the complete feature set (n = 1825 wavelengths). It is also 

notable that the selected wavelengths are distributed across the entire noise free spectrum. This is 

because the regularization in GRRF does not select a new feature for splitting the data in a tree 

node if the new feature is similar in terms of information gain to the one that was already 

selected (Deng and Runger 2012). Such methods allow the  exploration of the rich information 

content in hyperspectral data across the spectrum region rather than selecting only highly 

correlated features with redundant information (Adam et al. 2014). The most important 

wavelengths selected by GRRF were at the visible and red edge (356.3 nm, 468.5 nm, 531.1 nm 

and 665.2 nm) and the short-wave infra-red (1262.3 nm, 1354.1 nm, 1361.7 nm, 1376.9 nm, 

1407.1 nm, 1410.9 nm and 1414.6 nm) regions of the electromagnetic spectrum. The visible 

region of the spectrum is greatly affected by the selective absorption of the photosynthetic 

pigments (Ceccato et al. 2001a). The red edge region is the region in which the effect of 

vegetation biochemical is most relevant (Adjorlolo et al. 2013a). The short-wave infrared 

(SWIR) are affected by water properties associated with vegetation such as leaf area index, 

strong leaf or canopy liquid water absorption and macronutrients (Carter 1994; Ceccato et al. 

2001b; Ghulam et al. 2007).  

The new variable selection method used in this study was first developed and tested by Deng 

and Runger (2013) in a binary classification. The method has also shown a competitive accuracy 

performance in multiclass classification in this study. Following the recommendation of Deng 

and Runger (2013), the selected wavelengths by GRRF (n = 11) were input into RF classifier to 

discriminate between the Prosopis and other species (n = 4). This was due to the fact that the 

trees in GRRF are not designed independently as feature selection and they may therefore have a 

higher variance than RF (Deng and Runger 2013). The wavelengths selected by GRRF (n = 11) 

yielded high classification accuracy in RF classifier compared with the entire wavelengths (n = 
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1825). This was expected due to the fact that the redundant variables in a model-based analysis 

decrease the performance of the classifiers because the noise in the redundant data can cause 

convergence instability of the classification models (Bajcsy and Groves 2004). 

This high overall accuracy achieved in this study shows the potential use of hyperspectral 

remote sensing for mapping Prosopis at species level and therefore provides more detail about 

the spatial dynamics of the Prosopis invasion. Such details are useful for effective management 

of the species (Wise et al. 2012b). Previous attempts of mapping Prosopis were carried out using 

multispectral data such as Landsat and some environmental data to evaluate  the susceptibility of 

certain areas to mesquite invasion (Van den Berg et al. 2014). Such approaches are suitable to 

characterize Prosopis invasion if the plant has large spatial coverage and thus are unable to 

discriminate the species from other vegetation species at fine scales. In contrast, the use of higher 

spatial and spectral resolution data such as the one used in this study has a great potential in 

fighting the invasion of the species, since species-level identification is achieved satisfactorily. 

3.6.  Conclusions  

By considering the results from the study it can be concluded that: 

1. One of the major problems in controlling mesquite has been the presence of mixed 

stands that consist of alien Prosopis mixed and indigenous species. Prosopis glandulosa 

can be accurately detected from its co-existing species namely Acacia karoo (that is also 

structurally similar), Acacia mellifera and Ziziphus mucronata using hyperspectral data. 

Such potential data could provide environmental managers and ecologists insight into 

the development of possible appropriate spatio-temporal management practices to better 

control the invasive spread of mesquite.   

2. The problem of high dimensionality associated with spectroscopy data processing can be 

reduced considerably by making use of the newly developed GRRF method. The new 

GRRF method created high quality feature variables for the traditional RF classifier and 

can thus be seen as a more efficient and effective feature selection tool to reduce high 

dimensionality in spectroscopy data. However, this assertion should receive considerable 

additional testing and comparison with the commonly used variable selection methods 

before it is accepted as a substitute for reliable high dimensionality reduction.    
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3. The wavelengths selected by GRRF showed that the greatest discriminatory power of 

Prosopis from other species across the spectrum regions of mainly visible, red edge and 

short-wave infrared regions. These wavelengths are located at 356.3 nm, 468.5 nm, 

531.1 nm, 665.2 nm, 1262.3 nm, 1354.1 nm, 1361.7 nm, 1376.9 nm, 1407.1 nm, 1410.9 

nm and 1414.6 nm.  

Overall, the results of this study offer the potential of using remote sensing to guide the 

physical, biological and chemical control of Prosopis invasion. The results of this study still 

however need to be tested in different landscapes to establish a good understanding of spectral 

characteristic of Prosopis and other co-existing vegetation at species level. In addition, more 

studies are still needed to upscale these results to airborne or space-borne sensor resolutions to 

determine the optimal spectral and spatial resolutions to detect Prosopis taxa. These studies 

should consider the canopy structures of the species as well as the understorey and soil 

background characteristic.  
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CHAPTER FOUR 

 

Mapping mesquite (Prosopis glandulosa) and its co-existing species using a high resolution 

image 
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4.1. Abstract 

Prosopis glandulosa is one of the 44 species of Prosopis recognized in the world, of 

which 40 are native to the Americas. Both accidental and deliberate introductions of the Prosopis 

(mesquite) species occurred due to their wide range of economic importance have facilitated 

their spread outside their place of origin, making them one of the top 100 worst alien weeds 

according to the International Union for Conservation of Nature (IUCN) ranking. Over the last 

decade, a suite of new-generation multispectral imagery such as the RapidEye, Sentinel and 

WorldView series, with high spatial and spectral resolutions, have emerged. This study 

investigated the ability of the WorldView-2 (WV-2) imagery in mapping the invasion of the 

infamous mesquite and its discrimination from the co-existing indigenous species in the semi-

arid region of the Northern Cape Province of South Africa using the random forest and support 

vector machines as classifiers. Our results showed that the eight band multispectral WV-2 

imagery was able to detect and distinguish Prosopis glandulosa effectively from the three co-

existing indigenous species of acacia with an overall accuracy of 86 % at 2 m spatial resolution. 

The findings of this study provide a new insight for an economically feasible approach using the 

multispectral WV-2 sensor in mapping the encroachment and extent of invasive alien plants with 

similar accuracy as those of hyperspectral imagery.  

 

Key words: Multispectral satellite; Prosopis glandulosa; Invasive species; WorldView 2; 

Algorithm; Classifiers 
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4.2. Introduction 

Invasive plant species are defined as plants that colonize areas outside their natural 

ranges with or without human interference (Shiferaw et al. 2004). The introduction of invasive 

species into new habitats has increasingly been a global phenomenon due to the increase of 

human mobility and the socio-economic dynamics (Shiferaw et al. 2004). Invasive alien species 

can become very aggressive by taking over land for example in their new areas of introduction, if 

the environmental conditions are favourable (Kolar and Lodge 2001). Many studies have shown 

that alien plant invasions impact the structure and function of ecosystems and cause substantial 

changes in the socio-economic well-being in many parts of the world (Shackleton et al. 2014b; 

van Wilgen et al. 2012).   

A very good example of such invasive species is the Prosopis glandulosa var. glandulosa 

J. Torrey, which is one of the 44 recognized species in the genus (Pasiecznik et al. 2004). 

Prosopis is native to North and South America and has been introduced intentionally to different 

countries across the world for different purposes (Mwangi and Swallow 2005). Among these are 

to provide shade and fodder in the arid regions of Australia and South Africa (Zimmermann 

1991); for sand-dune stabilization, afforestation as well as fuelwood supply in Sudan (Ghazanfar 

1996); for livestock fencing in Malawi (Chikuni et al. 2005); for local greening, ornamental 

cultivation and soil stabilization in many Middle Eastern countries (Ghazanfar 1996); for 

rehabilitation of old quarries and later for afforestation and the provision of fuelwood and fodder 

in Kenya (Choge et al. 2012); for fuelwood production and rehabilitating degraded soil in India 

(Pasiecznik et al. 2001; van Klinken et al. 2007); and for vegetation trials in Spain (Elfadl and 

Luukkanen 2006; Laxén 2007). Apart from this, accidental cross-border inductions between 

neighbouring countries have also occurred (Shackleton et al. 2014b). It is, for example, believed 

that the plant was introduced inadvertently into Botswana, Nigeria and Yemen through livestock 

trading (Geesingis et al. 2004; Pasiecznik et al. 2001). 

Despite the positive impacts of Prosopis, the species tends to form dense impenetrable 

thickets associated with unfavourable impacts on human economic activities (Pasiecznik et al. 

2001). For example, Prosopis overruns grazing land; negatively affects biodiversity and 

excessively consumes surface and ground water (Pasiecznik 1999). Numerous taxa of Prosopis 

are rapidly invading many parts of the world and have sucessfully become dominant by 

suppressing the native plant species. The rapid invasion of Prosopis species is intimately 
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associated with the inherent characteristics of the species, such as large seed production, rapid 

growth rates and high efficiency in utilizing both surface and ground water. Many Prosopis 

species are able to tolerate extreme temperatures and low rainfall (Shiferaw et al. 2004), and they 

are not limited by levels of alkaline and saline or infertile soils (Shackleton et al. 2014b). A 

recent comprehensive global review of Prosopis distribution shows that the plant currently 

occurs in at least 129 countries (Shackleton et al. 2014b). High climatic suitability for potential 

invasion of Prosopis is also found in many countries in Europe and Africa (Maundu et al. 2009). 

Therefore, the Prosopis are listed as one of the top most aggressive invasive species in countries 

such as Australia, India, Ethiopia, Sudan and South Africa (Shackleton et al. 2014b). Hence, in 

2004 Prosopis was rated the world’s top 100 least wanted species by the Invasive Species 

Specialist Group of the International Union for Conservation of Nature (IUCN) (Henderson 

2001; Mwangi and Swallow 2005). Studies have shown that the negative impacts associated with 

Prosopis were perceived to exceed benefits (Shackleton et al. 2015). Thus, an effective 

management of intervention to control the existing Prosopis invasion and to mitigate its negative 

impacts is of a paramount necessity.  

Different methods have been implemented over the years to control Prosopis invasion in 

a few countries. These include mechanical removal of the plant, chemical control methods such 

as herbicide treatment of cut stumps, foliar spraying of saplings and burning (Harding 1987; van 

Klinken et al. 2009) and biological control methods using seed-eating beetles to curb the 

Prosopis further spread (Zachariades et al. 2011). These methods however, have not been very 

successful due to the high costs and lack of knowledge on key aspects of Prosopis species such 

as spatial dynamics, scale of the invasion, and reasons of their introduction (Shackleton et al. 

2014b). Only 13% of the countries with a high invasion rate have detailed spatial data on the 

distribution or percent cover of Prosopis. Therefore, up to date temporal and spatial information 

on the spatial distribution of Prosopis glandulosa (mesquite) invasion and its negative impacts 

on the ecosystem services is crucial for effective management (Nie et al. 2012). 

Field based methods for mapping vegetation species are generally costly and time-

consuming and sometimes impossible to accomplish due to poor accessibility or extensive land 

coverage (Hoshino et al. 2012). On the other hand, remote sensing techniques offer an economic 

and effective technique that produces timely and accurate information for mapping vegetation 

species.  
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Both multispectral and hyperspectral data have been used in mapping vegetation species 

in different landscapes (Akasheh et al. 2008; Harvey and Hill 2001; Lawrence et al. 2006; 

Peerbhay et al. 2013; Saatchi et al. 2008). Multispectral data such as Landsat TM and SPOT 

imagery have been used to identify general vegetation classes and communities (Harvey and Hill 

2001; Li et al. 2005). However, the utility of commonly used multispectral data is limited by the 

lack of spectral and spatial resolutions. On the other hand, the acquisition of narrow and 

contiguous spectral channels by hyperspectral sensors allow the detection of vegetation at 

species level, which otherwise would be masked by the broad bands of multispectral sensors 

(Adam et al. 2010; Goetz 2009). Nonetheless, the use of hyperspectral data comes with its own 

limitations in terms of cost, time, availability, processing and high dimensionality of data (Goetz 

2009).  

Over the last decade, a suite of new-generation imagery such as RapidEye, Sentinel series 

and WorldView (WV) series have emerged. These imageries are characterized by high spatial 

and spectral resolutions and therefore, provide more details on land cover mapping. Moreover, 

the development in computer and mathematical sciences have led to more advanced algorithms 

such as random forest, support vector machines and neural networks, which have greatly 

improved the digital image processing (Ham et al. 2005; Kumar et al. 2015; Omer et al. 2015b). 

The aim of this study is therefore to test the use of WorldView-2 imagery and two machine 

learning algorithms, namely, Random Forest (RF) and Support Vector Machines (SVM) in 

mapping Prosopis glandulosa (mesquite) invasion and the co-existing indigenous species in the 

semi-arid region of the Northern Cape Province of South Africa. 

 

4.3. Materials and methods 

4.3.1. Study area 

The study was conducted in the Northern Cape Province of South Africa (Fig. 4.1). The 

province has an area of about 363 203 km2 and constitutes a third of the country’s surface area. It 

is a dry region with extremely fluctuating daily temperatures, varying topographies and is 

comprised of six biomes namely, the Savanna, Desert, Succulent Karoo, Grassland, Fynbos and 

Nama Karoo biomes (Mucina and Rutherford 2006). The study area is situated in the north-

western part of the province and is about 5 km from the small town of Griekwastad and 170 km 

from the city of Kimberley. It covers plains with a variety of acacia such as Acacia erioloba, 
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Acacia karoo and Acacia mellifera. The province also consists of a mixture of grasses such as 

Stipagrostis amabilis, Aristida meridionalis and Eragrostis lehmanniana that dominate the 

grassy plains of the region (Van den Berg et al. 2014). In addition to these land-cover types, 

there is also a range of soil types in the area such as the deep-grey calcareous sands, yellow 

sands and red-yellow apedal soils just to mention a few (Group 1991). 

 

 

Figure 4.1: A true-colour WorldView-2 image showing the location of study area 

 

4.3.2. Image acquisition and pre-processing 

A 2 m spatial resolution WorldView-2 (WV-2) image captured on the 12th of January 

2015 under cloudless conditions was used for this study. Digital Globe partnered with Boeing 

Commercial Launch Services to deliver the WorldView-2 satellite into a sun-synchronous orbit 

on October 8, 2009 as the first high-resolution 8-band multispectral commercial satellite. The 

satellite is capable of collecting up to 1 million square kilometres of 8-band imagery per day at 2 
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m spatial resolution. These eight multispectral bands are: coastal blue (400 to 450 nm), blue (450 

to 510 nm), green (510 to 580 nm), yellow (585 to 625 nm), red (630 to 690 nm), red edge (705 

to 745 nm), NIR1 (770 to 895 nm), and NIR2 (860 to 1040 nm) and a panchromatic band (450 to 

800 nm). The satellite has a 16.4 km swath width and an average of 1.1 days revisit time, and the 

system offers unsurpassed accuracy, agility, capacity and spectral diversity, which is useful in 

mapping vegetation quality and quantity, coastal mapping, environmental monitoring, and 

physical infrastructure delineation (Digital Globe 2010). 

The WV-2 image was ortho-rectified using a geo-referenced high resolution (0.5 m) 

aerial photograph of the study area. The orthorectification was done using 22 ground control 

points and a first-order polynomial transformation technique. An overall root-mean square error 

(RMSE) of 0.21% of a pixel was achieved. A visual assessment was carried out to ensure that the 

WV-2 image was perfectly aligned to the aerial photograph. The fast line-of-sight atmospheric 

analysis of spectral hyper cubes (FLAASH) algorithm was then used to atmospherically correct 

the image as described in the Environment for Visualizing Images (ENVI 5.2) 2014 software 

package.  

 

4.3.3. Defining land-cover classes and reference data collection 

Ground reference data were collected during the period of the 5th to the 8th of February 

2015; this is about three weeks after the WV-2 image acquisition. Initially eight spectral land-

cover classes were generated from the eight bands of WorldView-2 image using the IsoData 

unsupervised classification tool in ENVI 5.2 to identify the common land cover types and to 

guide the field data collection. These classes were then regrouped into six broad classes and 

ground points were randomly generated across the different land cover types, which were used in 

a GPS to navigate to the field sites. Purposive sampling was also adapted when a random point 

was not accessible, or to increase the variation of ground data for Prosopis and other co-existing 

species (Adam and Mutanga 2009). The WV-2 false colour composites and the GPS points were 

used in the field to directly locate and delineate Prosopis and the other land cover type classes. 

The ground reference data was then overlaid on WV-2 image to create regions of interest (ROIs) 

to train and validate the classifiers (Table 4.1) by randomly splitting the ground reference data 

into 70% training and 30% validation data sets (Table 4.1). 
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Table 4.1: Training and validation datasets collected for Prosopis and other land-cover classes   

in the study area. 

Land-cover class Code Training dataset Validation dataset Total 

Prosopis glandulosa PRS 58 25 83 

Acacia mellifera AMF 72 31 103 

Acacia karoo AK 71 30 101 

White calcareous soil WS 69 30 99 

Red apedal sand SS 71 30 101 

Grassland GL 50 21 71 

 

 

4.3.4. Image classification 

4.3.4.1  Random Forest classifier 

Decision learning trees such as classification and regression trees (CART) are commonly 

used for data mining and have been one of the most successful methods for supervised 

classification (Olshen and Stone 1984). To improve the accuracy of CART, Breiman (2001) 

developed an ensemble learning technique called Random Forest (RF) by introducing the idea of 

bagging (bootstrap aggregating) to the decision trees. This involves combining multiple decision 

trees and each tree contributes a single vote for the assignment of the most frequent class to the 

input data. Many binary classification trees (ntree) are built by RF using several bootstrap 

samples with replacements drawn from the original observations. Samples not in this bootstrap 

sample are called out-of-bag (OOB) samples. These OOB samples, which are about a third of the 

total data, can be used to estimate the misclassification error and to measure the importance of 

each variable in the final model (Breiman 2001; Lin et al. 2010). A given number of input 

variables (mtry) at each node were randomly chosen from a random subset of the features and the 

best split was calculated by utilizing only this subset of features. No pruning was performed and 

all trees in the forest are maximally grown trees so as to ensure low bias (Genuer et al. 2010). 

Mtry in this study is defined as the square root of the total number of spectral bands. In order to 
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improve the classification accuracy, RF parameters (i.e. mtry and ntree) have to be optimized 

(Breiman 2001; Mutanga et al. 2012b) and the default number of trees (ntree) is 500, while the 

default value for the number of variables (mtry) is the square root of the total number of spectral 

bands used in the study (Breiman 2001). A 10-fold grid-search approach based on the OOB 

estimate of error was used in this study to find the optimal combination for these two parameters 

with the mtry value being varied from 1 to 5 and the ntree parameter varied from 500 to 10,000. 

The Image RF tool in EnMAP-Box was used to perform the RF classification. 

 

4.3.4.1  Support Vector Machines 

Support vector machines (SVM) is a nonparametric supervised machine learning 

classifier (Cortes and Vapnik 1995a). The algorithm was originally proposed by Vapnik (1979) 

as a binary linear classifier where the distance of each class from the data points in the training 

data to the optimal hyperplane or decision boundary is maximized. This in turn minimizes the 

misclassifications obtained during the training step (Mashao 2003). On the boundaries of the 

hyperplane there are two support hyperplanes that have data points on their edges called support 

vectors and these are the ones that define the optimal hyperplane (Mountrakis et al. 2011). In 

practice it has been found that data of different classes tends to overlap so that a non-linear 

polynomial is applied to improve on this limitation of linear separability and increase 

classification accuracy. SVM optimizes the non-linear algorithm through the use of a number of 

methods with one being the kernel method using the radial basis, which is the most common 

method used on remotely sensed data to date (Huang et al. 2002; Oommen et al. 2008). Two 

parameters are required for tuning in the radial basis method, namely, the cost ‘sigma (C)’, 

defined as a plenty value that is used for adjusting the error of misclassifying instants of the 

training dataset, and the kernel width ‘gamma (γ)’ (Karatzoglou et al. 2006; Waske and 

Benediktsson 2010). Hsu and Lin (2002) have described how studies have shown that when 

considering class size, the one-against-one procedure is more consistent than one-against-all and 

is used to implement multiclass-based SVM model. The Supervised Support Vector Machines 

classification tool in ENVI 5.2 was used to perform the SVM classification. 

 



52 
 

4.3.5. Accuracy assessment 

In order to evaluate the predictive map of Prosopis and the other acacia species 

developed by RF and SVM algorithm classifiers on WorldView-2 imagery, an independent test 

dataset (Table 4.1) was used and confusion matrices were then generated to compare the true 

class with the class assigned by the classifiers by obtaining the overall accuracy, user and 

producer accuracies, and the Kappa statistic (Congalton and Green 2008). The overall, user and 

producer accuracies were calculated using the confusion matrix. The producer’s accuracy shows 

the probability that specific vegetation species and land cover types of an area on the ground is 

classified as such, while the user’s accuracy refers to the probability that a pixel labelled as 

specific vegetation species and land cover types in the map is the actual class. The overall 

accuracy was calculated based on the number of pixels correctly classified divided by the total 

number of pixels. In addition, the kappa coefficient was also calculated to provide a measure of 

the difference between the actual agreement, reference data and the classifier used to perform the 

classification versus the likelihood of agreement between the reference data and a random 

classifier (Congalton and Green 1999). A Kappa coefficient equal or close to 1, indicates strong 

agreement. 

 

4.4. Results 

4.4.1. Tuning of Random Forest parameters 

In order to determine the best input parameters to train the random forest algorithm to 

classify the six land-cover classes, RF parameters were optimized.  The lowest OOB error rate of 

13.5% was produced from the combination of ntree value 500 and mtry value 5 (Figure 4.2). The 

combination of mtry value of 2 and ntree value of 500 produced the highest OOB error rate of 

15.5%. 
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Figure 4.2: Random Forest Optimization of parameters (ntree and mtry) using the 10-fold grid 

search method. The Out-of-Bag sample was used to determine the error rate for all the different 

combinations. 

 

 

4.4.2. Performance of Random Forest and Support Vector Machines in land-cover 

classification 

The RF and SVM classifiers were able to provide the spatial distribution of Prosopis and 

other vegetation species (Figure 4.3). From both classifiers, it is clear that the most common 

vegetation species are Acacia mellifera and Prosopis glandulosa. The Prosopis glandulosa 

species are dominant in low land, while Acacia mellifera are dominant in the high land.  Figure 

4.3 also shows that clear ecotones exist between the vegetation species.  

  



54 
 

 

Figure 4.3: Land Use and Land Cover classification using Random Forest (a) and Support 

Vector Machines (b) classification algorithms. 

 

The RF also provided a variable importance measurement to indicate the role of each 

band in the classification process. The most important bands are those with the highest mean 

decrease in accuracy, which in this classification were allocated at the red, yellow and blue bands 

(Figure 4.4). We further evaluated the utility of each band in mapping particular land-cover 

types, the red and blue bands were most important bands for classifying Prosopis glandulosa and 

other species (Figure 4.5). Likewise, areas covered in vegetation mainly fall in the red and near 

infrared and coastal regions of WorldView-2, while the non-vegetated areas mainly containing 

sandy soil and white soil lie in the green and yellow and blue bands. 
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Figure 4.4: Variable importance of the WorldView-2 bands in classification for the entire 

vegetation species and other land-cover classes. 

 

 

Figure 4.5: The relationship between each individual land-cover class and the importance of the 

WorldView-2 bands. The highest mean decrease in accuracy shows the most important band. 
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4.4.3. Accuracy assessment 

The independent test dataset was used to evaluate the prediction performance of both RF 

(Table 4.2) and SVM (Table 4.3) as classifiers. The RF classifier produced an overall accuracy 

of 86.59% with a Kappa value of 0.84. From the user’s accuracies it can be noted that generally 

all land-cover classes achieved a user’s accuracy of over 90%. Spectral confusion was noted 

between Acacia karoo (AK) and Acacia mellifera (AMF) and therefore resulted in lower user 

accuracies of 76% and 65.71%, respectively. The random forest classifier also generated less 

than 90% for the producer’s accuracy for other land cover types and lower for the producer’s 

accuracy Acacia karoo (63.33%) and Acacia mellifera (76.67%) (Table 4.2). Conversely, the 

SVM classifier generated a slightly lower overall accuracy of 85.98% with a Kappa value of 

0.83. Similar to the RF classifier, the SVM classifier also produced user accuracies of lower than 

90%, or 72% and 64.86% for Acacia karoo and Acacia mellifera, respectively (Table 4.3). 

Likewise, these two classes had the relatively lower producer’s accuracies and had the most 

spectral confusion.  

Table 4.2: Confusion matrix using Random Forest classifier for Acacia karoo (AK), Acacia 

mellifera (AMF), grassland (GL) Prosopis glandulosa (PRS), red apedal soil (SS) and white 

calcareous sands (WS). The overall accuracy (OA); user’s accuracy (UA); and producer’s 

accuracy (PA) were developed on the test dataset using the EnMAP-Box ImageRF Accuracy 

Assessment tool. 

 Class Using Random Forest 

 AK AMF GL PRS SS WS Total UA% PA% 

AK 19 5 1 0 0 0 25 76.00 63.33 

AMF 10 23 1 0 1 0 35 65.71 76.67 

GL 0 0 19 0 1 0 20 95.00 90.48 

PRS 1 0 0 24 0 0 25 96.00 100.00 

SS 0 2 0 0 28 0 30 93.33 93.33 

WS 0 0 0 0 0 29 29 100.00 100.00 

Total 30 30 21 24 30 29 164  

OA = 86.59%; Kappa = 0.84 
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Table 4.3: Confusion matrix using the Support Vector Machines classifier for Acacia karoo 

(AK), Acacia mellifera (AMF), grassland (GL) Prosopis glandulosa (PRS), red apedal soil (SS) 

and white calcareous sands (WS). The overall accuracy (OA); user’s accuracy (UA); and 

producer’s accuracy (PA) were developed on the test dataset using the ENVI-5.2 Confusion 

Matrix Workflow. 

 

Class 
Using Support Vector Machines 

AK AMF GL PRS SS WS Total UA% PA% 

AK 18 5 2 0 0 0 25 72.00 60.00 

AMF 11 24 0 0 2 0 37 64.86 80.00 

GL 0 0 19 0 1 0 20 95.00 90.48 

PRS 1 0 0 24 0 0 25 96.00 100.00 

SS 0 1 0 0 27 0 28 96.43 90.00 

WS 0 0 0 0 0 29 29 100.00 100.00 

Total 30 30 21 24 30 29 164  

OA = 85.98%; Kappa = 0.83 

 

Table 4.4 shows the area under each Prosopis and other classes obtained by RF and SVM 

classification algorithms. The comparable areas obtained by the two algorithms also confirm the 

similar performance of the two algorithms. The study area is dominated by grassland and bare 

soil.  
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Table 4.4: Area for each vegetation species and other land cover class obtained by Support 

Vector Machines and Random Forest classifiers. 

Land-cover class Random Forest 

Area (ha-1) 

% Support Vector 

Machines Area (ha-1) 

% 

Acacia karoo 443.9 9.3 467.0 9.7 

Acacia mellifera 417.1 8.7 435.9 9.0 

Grassland 2 657.0 55.4 2630.0 54.5 

Prosopis glandulosa 104.9 2.2 108.9 2.3 

Red Apedal sand 685.3 14.3 687.4 14.2 

White Calcareous soil 486.4 10.1 495.4 10.3 

 

4.5. Discussion 

The rapid spread of the Prosopis species has caused considerable negative impacts to 

biodiversity and ecosystems across different landscapes. To better understand the status and to 

support researchers and decision makers to develop effective management for this problem, it is 

essential to obtain reliable and accurate information about the spatial distribution and the level of 

invasive species dynamism into the native eco-community. With developing technologies, 

remote sensing methods are increasingly being employed for monitoring a range of remotely 

detectable properties of invasive plant species, and there is now a growing demand to test the 

ability of different remotely sensed data in mapping and monitoring invasion status of alien 

plants accurately across a range of scales. The availability of high resolution satellite data 

provides a great potential to achieve better performance and results in studies of such alien 

plants.  

The main objective of this study was to investigate the performance of the new high 

spatial resolution WorldView-2 sensor in the detection and mapping of Prosopis glandulosa and 

other co-existing species in the arid environment of the Northern Cape Province of South Africa. 

Random forest and support vector machines were used as classifiers and results demonstrated 
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that the Prosopis glandulosa can be detected and distinguished accurately from the co-existing 

three indigenous acacia species.   

The relatively high overall and individual classification accuracy obtained in this study 

demonstrates the capability of the high spatial and spectral resolutions of the WorldView-2 

sensor to detect Prosopis and its co-existing species. Previous studies on mapping Prosopis were 

not able to discriminate it from the native background shrubs and trees using aerial photography 

(Robinson et al. 2008; van Klinken et al. 2007) and Landsat (Van den Berg et al. 2014) due to 

the lack of fine spatial and spectral resolution. While remote sensing has considerable potential 

to provide information on spatial and temporal dynamics of the invasive plant species, there are 

many uncertainties with maps of invasive species obtained from commonly used medium-spatial 

and spectral resolutions such as Landsat and SPOT (Van den Berg et al. 2014). This study 

however, indicates that the eight-band multispectral sensor of WV-2 is suitable to provide 

species maps with an overall accuracy of 86% at 2 m spatial resolution for Prosopis and other 

co- existing plant species in the arid environment of the site under study. Such high accuracies in 

mapping vegetation species have been largely restricted to hyperspectral platforms that have 

higher spatial and spectral resolutions (Artigas and Yang 2005; Belluco et al. 2006; Lawrence et 

al. 2006). However, the associated problems with the use of hyperspectral sensors such as high 

cost and high dimensionality or redundancy of data exist. The new generation multispectral 

sensors, the WV-2, can save money and time, while providing a high level of accuracy in 

mapping and monitoring of invasive alien plant species. Our results are also comparable to those 

found from a recent study where the ability of the WV2 satellite sensor was used to detect the 

invasive shrub mesquite in the north-west Pilbara region of Australia (Robinson et al. 2016). 

Since RF and SVM algorithms were run using equivalent training and test data points in 

the present study, the ability of the RF and SVM classifiers to detect and discriminate Prosopis 

from other co-existing indigenous plant species were investigated, and both of them yielded 

comparable overall accuracies. RF achieved higher classification accuracy than SVM by about 

1%. The performance similarity of the two classifiers was, however, not a surprise and it agrees 

with results of other studies from the literature, where hyperspectral data were used (Abdel-

Rahman et al. 2014; Waske et al. 2010) and multispectral (Pal 2005; Priyanka et al. 2015; Taylor 

and Barker 2012).  
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The relatively high accuracies achieved by RF and SVM were expected. This is due to 

the fact that the combination of tree classifiers in RF is such that each classifier depends on the 

values of a random vector sampled independently (Breiman 2001). These random vectors have 

the same distribution for all classifiers in the forest, and each tree casts a unit vote for the most 

popular class input (Breiman 2001). This distribution and casting makes RF algorithms more 

robust to noise and outliers (Abdel-Rahman et al. 2014). SVM, on the other hand, is a known 

versatile classification algorithm that constructs models based on small data instances (support 

vectors) from different classes (Abedi et al. 2012; Mountrakis et al. 2011; Vapnik 1995). The 

classification error can therefore be considerably minimized by using a nonlinear kernel function 

to perform SVM classification. A nonlinear kernel is an efficient method to solve inseparability 

problems that may be found in the mapping of the vegetation species. The classification error is 

minimised by increasing the margin between data points and the hyperplane (Abedi et al. 2012; 

Cortes and Vapnik 1995a; Mountrakis et al. 2011; Vapnik 1995; Yu et al. 2012). A radial basis 

(non-linear) kernel function was used in this study because it solves the inseparability issues that 

could be associated with vegetation species mapping (Mountrakis et al. 2011). 

  The high spatial and spectral resolutions of the WV-2 dataset allowed us to detect small 

invaded areas of four square meters. Such high resolutions may support the early detection and 

eradication program and therefore eliminate any new invasion, minimizing the long-term 

damages and/or the control costs (Hunt 2009). Figure 4.3 clearly indicates that Prosopis showed 

a strong preference for riparian and floodplains as reflected by a higher rate of initial 

colonisation by patches and increase in canopy cover (Figure 4.3). Many previous studies have 

also shown that in the semi-arid and arid rangelands Prosopis species are frequently found in a 

flood zone and soils that have good moisture retention capacity (Lowe et al. 2000; Robinson et 

al. 2008; Zachariades et al. 2011). Unfortunately, these are the only areas characterised by year-

round water supply in the arid region of the province and therefore, the local communities 

depend on these sites for farming and animal production. Thus, the invasion of the Prosopis in 

the only cultivable lands of the province (Northern Cape Province) results in socio-economic and 

ecological havoc such as destruction in biodiversity and potential grazing or rangelands (Hagos 

and Smit 2005; Lowe et al. 2000). The red apedal soil has a high density of Acacia mellifera, but 

low grass cover. It is therefore, unlikely for grazing animals to spend long time in these areas and 

consequently the spread of Prosopis seeds is low in these sites.  
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Both the RF and SVM models showed that the current Prosopis distribution covers about 

3% of the study area. However, their extent of invasion especially in the riparian zones is 

expected to increase by ~ 27.5% annually (Lowe et al. 2000; Smit et al. 1999). Goats and horses 

are considered to be responsible for the rapid spread of the Prosopis within its native range from 

riparian zones into uplands.  

 

4.6. Conclusion 

Prosopis species are among the most widespread and damaging invasive woody plants in 

the Northern Cape of South Africa and there is much potential for the species to spread further. 

The negative impacts on the environment and the livelihood of the local communities are 

escalating rapidly and there is an urgent need for more effective management approaches to 

drastically reduce adverse impacts and enhance benefits. However, there are still critical gaps in 

our knowledge of its spatial distribution and the dynamic invasion impacts on the ecosystem. 

This study obtained relatively high accuracies in mapping Prosopis and therefore 

provides reliable spatial information on the extent and the dynamic of Prosopis invasion as well 

as a number of other land cover classes. Results in this study provide new insights on the 

performance of WorldView-2 imagery in mapping vegetation cover at species level. This would 

help environmental managers to focus their existing monitoring and control efforts on areas of 

priority. Such monitoring efforts allow rapid assessment and proactive adoption of the most 

appropriate intervention in the control of the invasive alien plants. 
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CHAPTER FIVE 

 

Cost effective approach for mapping Prosopis invasion in arid South Africa 
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5.1. Abstract 

 This study evaluates the use of SPOT-6 imagery in conjunction with two machine 

learning classifiers, namely Random Forest (RF) and Support Vector Machines (SVM) to map 

Prosopis glandulosa, its co-existing acacia species and other land-cover types in an arid South 

African environment. Prosopis glandulosa is one of the 44 species of Prosopis which are rated 

the world’s top-100 unwanted species by the International Union of Conservation and Nature 

(IUCN). This highly invasive species has been difficult to control using physical, chemical and 

biological methods because of insufficient knowledge of the species dynamic and lack of spatial 

data. Results show that it is possible to distinguish Prosopis glandulosa from its co-existing 

species of Acacia karoo and Acacia mellifera as well as three other general land cover types 

(grassland, red apedal soils and white calcareous sands). Classification using RF obtained a 

higher overall accuracy of 78.46% with a Kappa value of 0.7524. SVM classification on the 

other hand obtained a lower classification accuracy of 77.62% with a Kappa value of 0.7428. 

The high accuracies obtained from the use of the new-generation SPOT-6 sensor and two 

advanced classification algorithms show the potential to map the invasive species spread on a 

large scale. This data is useful to aid the current control methods so as to assist farmers, 

environmental managers and other affected parties to monitor and plan against future invasion. 

 

Keywords: SPOT 6, Prosopis glandulosa, Random Forest, Support Vector Machines, cost 

effectiveness 
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5.2 Introduction 

  Prosopis glandulosa is one of the 44 species of Prosopis (Pasiecznik et al. 2004) that is 

native to North and South America. It was introduced intentionally to different countries across 

the world for purposes such as to provide shade and fodder in the arid areas of Australia and 

South Africa; for sand-dune stabilization, afforestation as well as fuelwood supply in Sudan and 

for local greening, ornamental cultivation and soil stabilization in many Middle Eastern countries 

(Chikuni et al. 2005; Ghazanfar 1996; Mwangi and Swallow 2005; Zimmermann 1991). Despite 

these useful  characteristics, over the years the species was shown to have negative impacts such 

as forming dense impenetrable thickets associated with unfavourable impacts on human 

economic activities by overrunning grazing land  (Pasiecznik et al. 2001); negatively affecting 

biodiversity and excessively consumes surface and ground water (Pasiecznik 1999). Studies have 

shown that the negative impacts  associated with Prosopis were perceived to exceed benefits and 

consequently, an effective management of intervention to control the existing Prosopis invasion 

and to reduce its negative impacts is extremely important (Shackleton et al. 2015)..  

Methods that include mechanical techniques such as burning and the removal of the 

plant; chemical control methods such as herbicide treatment of cut stumps and foliar spraying of 

saplings and burning (Harding 1987; van Klinken et al. 2009); and biological control using seed-

eating beetles have been tested (Zachariades et al. 2011) in different countries all over the World. 

Unfortunately, these measures have not been as successful as intended due to the high costs and 

lack of knowledge on key aspects of Prosopis species such as spatial dynamic, scale of the 

invasion and its benefits. Therefore, as described by Nie et al. (2012) up to date temporal and 

spatial information on the distribution of mesquite invasion and its negative impacts on the 

ecosystem services is crucial for effective management. Remote sensing methods and field 

surveys are the two common methods of obtaining this kind of information. 

Remote sensing techniques offer an economic and cost-effective technique that produces 

timely and accurate information for mapping vegetation species. Cost-effectiveness mainly 

depends on the overall accuracy of the thematic map generated. The main costs are associated 

with remotely sensed data can be grouped as field-based costs, set-up costs, image acquisition 

costs and data analysis costs (both field data and imagery processing) (Mumby et al. 1999) of 

these, field survey costs are usually higher than any of the other costs due to accessibility and 

file:///C:/Users/Nyashie/Documents/THESIS/SPOT%206%20Chapter%2025.01.16.docx%23_ENREF_50
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time taken to collect the data (Hoshino et al. 2012). The most cost effective satellite for carrying 

out vegetative mapping depends on the size and how detailed the thematic map needs to be.  

Multispectral and hyperspectral data have been used in mapping vegetation species in 

different landscapes (Akasheh et al. 2008; Harvey and Hill 2001; Lawrence et al. 2006; Peerbhay 

et al. 2013; Saatchi et al. 2008). It has been noted that the utility of commonly used multispectral 

data such as Landsat and SPOT has been limited by the lack of spectral and spatial resolutions. 

(Harvey and Hill 2001; Li et al. 2005). Conversely, data acquisition via the narrow bands of 

hyperspectral sensors allows the detection of vegetation at species level which would otherwise 

be masked by the broad bands of multispectral sensors (Adam et al. 2010; Goetz 2009). It should 

be noted however that the use of hyperspectral data has its own limitations such as cost, time, 

availability, processing and the inherent high dimensionality of the data (Goetz 2009).  

As a compromise between the multispectral and hyperspectral imagery benefits and 

limitations, a suite of new-generation imagery such as RapidEye, Sentinel series and World-

View series have emerged over the last decade and provide more detail on land cover mapping 

due to their high spatial and spectral resolutions (Cho et al. 2012; Schuster et al. 2012).  The 

SPOT-6 and 7 twin satellites, a focus of this study are also part of this new generation of 

satellites. Numerous reasons led to the selection of SPOT-6 imagery for this particular study. 

Firstly, in South Africa the use of SPOT data is advantageous because it is free due to an 

agreement that stands between the South African National Space Agency (SANSA) and the 

Airbus Defence and Space (ADS) since November 2013 (sansa.org 2014). This new Spot Data 

Direct Receiving Station Supply, Reception and Distribution (DRS) Agreement is a continuation 

of the 2006 Spot Image Data Reception and Distribution Agreement that had allowed acquisition 

of SPOT 1-5 data. The entire 1 221 000 square kilometres of South Africa is covered bi-annually 

(3 months for each coverage) for a seamless country mosaic (sansa.org 2014; Web 2015). This 

frequency in monitoring of invasive species makes data acquisition using remote sensing 

methods cost-effective (Kokaly et al. 2003a; Müllerová et al. 2013). Furthermore, SPOT-6 

imagery consists of four multispectral bands at 6 m resolution, and a panchromatic band at 1m 

resolution. This allows pan-sharpening of images obtained to an even higher 1.5 m resolution 

which makes the species-level discrimination between (Prosopis) mesquite and other acacia a 

possibility (Pohl and Van Genderen 1998). Lastly, similar research carried out using higher 

resolution (2 m) WorldView-2 imagery (Chapter 4) identified that the most important bands for 
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mapping Prosopis glandulosa are the bands that intersect with the SPOT-6 multispectral bands 

of red, blue, green and NIR. This substantiates the possible ability of SPOT 6 to map Prosopis 

spp. at species level. 

In land-cover mapping, image classification succeeds image acquisition. The results 

obtained from classification are believed to be dependent on factors such as test sample 

collection, image data available, pre-processing of data (feature extraction and selection), 

training sample selection, validation methods post-processing techniques and the classification 

scheme (Gong and Howarth 1990). For supervised image classification via pixel-based methods, 

conventional classifiers such as Maximum Likelihood classifier (MLC) have been used in remote 

sensing for many years with successful results of high accuracies (Li et al. 2014). However, this 

method has the disadvantages of  being very dependent on the quality of the training data and 

classification outputs cannot be improved by including expert knowledge to the imagery 

(Srivastava et al. 2012). The development in computer and mathematical sciences in the past 10 

years has led to more advanced algorithms such as random forest (RF), support vector machines 

(SVM), classification and regression trees and artificial neural networks (ANN), which has 

enhanced digital image processing (Ham et al. 2005; Kumar et al. 2015; Omer et al. 2015a; 

Petropoulos et al. 2012). Ability to handle unbalanced datasets as well as to synthesize regression 

and having insensitivity to over-training are some of the superior image-processing abilities that 

have ranked RF and SVM classifiers considerably higher than the other advanced algorithms 

(Breiman 2001; Li et al. 2014). 

Consequently, the aims of this study are to test the use of SPOT-6 imagery as a cost 

effective method of vegetative mapping as well as to evaluate the robustness of Random Forest 

(RF) and Support Vector Machines (SVM) as machine learning algorithms in mapping Prosopis 

glandulosa (mesquite) invasion and its co-existing indigenous species in the semi-arid region of 

the Northern Cape Province of South Africa. 
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5.3. Materials and methods 

5.3.1 Study area 

The study area shown in Figure 5.1 below is located in the Northern Cape Province of 

South Africa (Figure 5.1). This Province covers about 363 203 km2 and is an arid region that 

takes up nearly a third of South Africa’s land area. It is a dry region that is heterogeneous with 

fluctuating temperatures, varying topographies and comprises of six biomes namely, the 

Savanna, Desert, Succulent Karoo, Grassland, Fynbos and Nama Karoo biomes (Mucina and 

Rutherford 2006). The study area is situated in the north-western part of the province and is 

about 5km from the small town of Griekwastad and 170km from the city of Kimberley. It covers 

plains with a variety of acacia, such as Acacia erioloba, Acacia karoo and Acacia mellifera. It 

also consists of a mixture of grasses such as Stipagrostis amabilis, Aristida meridionalis and 

Eragrostis lehmanniana that dominate the grassy plains (Van den Berg et al. 2014). In addition 

to these land-cover types there is also a range of soil types in the area such as the deep-grey 

calcareous sands, yellow sands and red-yellow apedal soils just to mention a few (Group 1991). 

 

Figure 5.1: A true-colour composite SPOT-6 image showing the location of study area. 
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5.3.2 Image acquisition and pre-processing 

A SPOT 6 image captured on the 24th of July 2015 under cloudless conditions was used 

for this study. This is a new generation optical satellite launched by Airbus Defence and Space 

(DS) on 9 September 2012. SPOT 6 has a large swath capacity of 60 km at nadir that enables a 6 

million square kilometre daily acquisition at 1.5 m spatial resolution of 4-band imagery. The 

panchromatic band has the spatial resolution of 1.5 m and ranges from 450–745 nm. It has 4 

multispectral bands with a spatial resolution of 6 m and are: Red (625-695nm), Green (530-590 

nm), Blue (450-520 nm), and NIR (760-890 nm). There is a 1 to 3-day revisit time. Due to the 

high spatial and temporal resolutions the satellite offers an even wider range of remote sensing 

applications in agriculture, deforestation, environmental monitoring, mining and coastal 

surveillance (DefenceWeb 2015). 

The SPOT-6 image was acquired ortho-rectified and geo-referenced in WGS84 UTM 

zone 34S from the South African Space Agency (SANSA). The Fast Line-of-sight Atmospheric 

Analysis of Spectral Hypercubes (FLAASH) algorithm was then used to atmospherically correct 

the image as described in the Environment for Visualizing Images (ENVI 5.2) 2014 software 

package.  

 

5.3.3 Defining land-cover classes and reference data collection 

A week after the SPOT-6 image acquisition and pre-processing ground reference data 

was collected from the 1st to the 4th of August 2015. Unsupervised classification was carried out 

on the four band SPOT-6 image using the IsoData unsupervised classification tool in ENVI 5.2 

so as to identify the most common land-cover types. This process initially identified nine main 

classes which were then regrouped into six broad classes and various ground points were 

randomly generated across the different land cover types. Random points were input into a GPS 

to navigate to the field sites. Whenever a random point was not accessible or as an attempt to 

increase the variation of ground data for Prosopis and other co-existing species, purposive 

sampling was adopted (Adam and Mutanga 2009). The SPOT-6 false colour composites and the 

GPS points were used in the field to directly locate and delineate Prosopis and the other land 

cover type classes. Regions of interest were then created by overlaying the ground reference data 

over the SPOT-6 image so as to train and test the classifiers (Table 5.1) by randomly splitting the 

ground reference data into 70% training and 30% test data sets (Table 5.1). 
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Table 5.1: Training and validation datasets collected for Prosopis and other land-cover classes   

in study area 

Land-cover class Code Training dataset Test dataset Total 

Prosopis glandulosa PRS 58 25 83 

Acacia mellifera AMF 72 31 103 

Acacia karoo AK 71 30 101 

White calcareous soil WS 68 29 97 

Red apedal sand SS 71 30 101 

Grassland GL 49 21 70 

 

5.3.4 Image classification 

5.3.4.1  Random Forest classifier 

Breiman (2001) developed an ensemble learning technique called Random Forest (RF) 

by introducing the idea of bootstrap aggregating (‘bagging’) to decision trees. In RF, multiple 

decision trees are combined and each tree contributes by a single vote towards the plural vote of 

the class assignment of the input data. From the original observations several bootstrap samples 

are drawn with replacement and many binary classification trees (ntree) are built. Any samples 

not in this bootstrap sample are called out-of-bag (OOB) samples which are usually about a third 

of the total data and can be used to estimate the misclassification error and to measure the 

importance of each variable in the final model (Breiman 2001; Lin et al. 2010). A given number 

of input variables at each node (mtry) are randomly chosen from a random subset of the features 

and the best split is calculated by utilizing only this subset of features. By definition mtry is the 

square root of the total number of spectral bands in the study. To ensure low bias, pruning is not 

performed and all trees in the forest are maximally grown (Genuer et al. 2010).  

Moreover, in order to improve the classification accuracy, RF parameters (i.e. mtry and 

ntree) have to be optimized (Breiman 2001; Mutanga et al. 2012a). A 10-fold grid-search 

approach based on the OOB estimate of error was used in this study to find the optimal 

combination for these two parameters with the mtry value being varied from 1 to 5 and the ntree 

parameter varied from 500 to 10,000. By default  ntree is 500, while the default value for mtry is 

the square root of the total number of spectral bands used in the study (Breiman 2001). The 

ImageRF tool in EnMAP-Box as well as R were used to perform the RF classification. 
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5.3.4.2  Support Vector Machines 

Originally proposed by Vapnik in 1979, support vector machines (SVM) are defined as a 

nonparametric binary linear classifier where the distance of each class from the training data 

points to the optimal hyperplane or decision boundary is maximized (Cortes and Vapnik 1995a). 

Misclassifications obtained during the training step are thus minimised (Anthony et al. 2007). On 

the boundaries of the hyperplane are two support hyperplanes that have data points on their 

edges called support vectors and these are the ones that define the optimal hyperplane 

(Mountrakis et al. 2011). A drawback has been found in practice when using this linear approach 

of hyperplanes, which is that data of different classes tends to overlap. Therefore, to improve on 

this linear-separability limitation and increase classification accuracy, a non-linear polynomial is 

applied. This non-linear algorithm is optimised by using a number of different methods. To date, 

for remotely sensed data, the most commonly used method is the kernel method via the radial 

basis (Huang et al. 2002; Oommen et al. 2008). Two parameters are required for tuning in the 

radial basis method, namely, the cost ‘sigma (C)’, defined as a plenty value that is used for 

adjusting the error of misclassifying instants of the training data set, and the kernel width 

‘gamma (γ)’ (Karatzoglou et al. 2006; Waske and Benediktsson 2010). Hsu and Lin (2002) have 

described how studies have shown that when considering class size, the one-against-one 

procedure is more consistent than one-against-all and is used to implement multiclass-based 

SVM model. The Supervised Support Vector Machines classification tool in ENVI 5.2 was used 

to perform the SVM classification. 

 

5.3.5 Accuracy assessment 

An independent test data set (Table 5.1) was used to assess the classification maps for 

Prosopis and its co-existing species developed by RF and SVM algorithms on SPOT-6 imagery. 

Confusion matrices were then generated to compare the true class with the class assigned by the 

classifiers by obtaining the overall accuracy, user and producer accuracies, and the kappa 

statistic (Congalton and Green 2008). The overall accuracy calculation is established by dividing 

the number of pixels correctly classified by the total number of pixels; the producer’s accuracy 

shows the probability that specific vegetation species and land cover types of an area on the 

ground is correctly classified; while the user’s accuracy refers to the probability that a pixel 

labelled as specific vegetation species and land cover type in the map is the actual class. 
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Moreover, the Kappa coefficient, which is defined as a measure of the difference between the 

actual agreement between reference data and the classifier used to perform the classification 

versus the likelihood of agreement between the reference data and a random classifier was also 

calculated (Congalton and Green 1999). If the Kappa coefficient is equal or close to 1, then there 

is strong agreement between the two. 

 

5.4. Results 

5.4.1 Tuning of Random Forest parameters 

RF parameters were optimized so as to determine the best input parameters to train the 

algorithm to classify the six land-cover classes.  The lowest OOB error rate of 25.5% was 

produced from the combination of ntree value 3000 and mtry value 3 (Figure 5.2). The 

combination of mtry value of 2 and ntree value of 8500 produced the highest OOB error rate of 

27.5%. 
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Figure 5.2: Random Forest Optimization of parameters (ntree and mtry) using the 10-fold grid 

search method. The Out-of-Bag (OOB) sample was used to determine the error rate for all the 

different combinations. 

 

5.4.2 Tuning of SVM parameters 

SVM parameters for classification via a radial basis kernel function were optimized to 

define the best input parameters to train the algorithm to classify the six land-cover classes. 

Using a 10-fold cross validation, the lowest error was produced from the combination of gamma 

(γ) value of 0.1 and cost (C) value of 100 (Figure 5.3).  
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Figure 5.3: Support Vector Machines optimization of parameters (C and γ) using the 10-fold 

grid search method. The Out-of-Bag (OOB) sample was used to determine the error rate for all 

the different combinations. 

 

5.4.3 Performance of RF and SVM in land-cover classification 

The RF and SVM classifiers were able to classify the spatial distribution of Prosopis 

glandulosa and other vegetation species (Figure 5.4). Clear ecotones that exist between the 

vegetation species are shown in both classification images. For the Random Forest classification 

image, Prosopis glandulosa, grassland and Acacia mellifera are the most dominant species. 

Grassland and Prosopis glandulosa mainly occupying the lowlands whilst Acacia mellifera 

occupies the high lands. The Support Vector Machines classification has three dominant classes, 

namely, grassland, red apedal soils and Acacia mellifera. The higher lands are mainly occupied 

by Acacia mellifera and red apedal soils whilst grassland occupy the lower lands. 
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Figure 5.4: Classifications of SPOT-6 image: (a) Random Forest classification (b) Support 

Vector Machines classification 

 

The role of each band in the random forest classification was provided by the inherent variable 

importance measurement of the classifier. The most important bands are those with the highest 

mean decrease in accuracy (Figure 5.5) which in this classification are allocated at the red and 

blue bands (Figure 5.6). Moreover, the effectiveness of each band in mapping the different land-

cover types is investigated.  Prosopis glandulosa and other species are best classified by the red 

and blue bands (Figure 5.6 and 5.7). Vegetated areas, namely those covered by Prosopis 

glandulosa, grassland, Acacia karoo and Acacia mellifera mainly fall in the red and blue regions 

of SPOT-6 while the non-vegetated areas mainly containing red apedal soil and white calcareous 

sand fall in the red and near-infrared bands (Figure 5.7). 
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Figure 5.5: Ranking of band importance of SPOT-6 bands using Random Forest. The most 

important band has the highest mean decrease in accuracy. 

 

 

Figure 5.6: Variable importance of the SPOT-6 bands in classification for entire vegetation 

species and other land-cover classes. 
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Figure 5.7: The relationship between each individual land-cover class and the importance of the 

SPOT-6 bands. The highest mean decrease in accuracy shows the most important band. 

 

5.4.4 Accuracy assessment 

The performance of both the RF and SVM as classifiers was assessed by using the test 

dataset (Table 5.1). The RF classifier produced an overall accuracy of 78.46% with a Kappa 

value of 0.7524 (Table 5.2). Spectral confusion was noted between Acacia karoo (AK) and 

Prosopis glandulosa (PRS) and therefore the lowest user accuracy for Prosopis glandulosa of 

48.15% and a low producer’s accuracy of 54.17% whilst Acacia karoo obtained a user’s 

accuracy of 72.00% and a producer’s accuracy of 60.00% (Table 5.2). The class separation of the 

six land-cover types (Figure 5.8) shows how there is a great overlap between classes and the 

main classes that are noticeably separable are Prosopis glandulosa and Acacia mellifera and 

white calcareous sands.  
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Table 5.2: Confusion matrix using Random Forest classifier for Prosopis glandulosa (PRS), 

Acacia karoo (AK), Acacia mellifera (AMF), grassland (GL), red apedal soil (SS) and white 

calcareous sands (WS). The overall accuracy (OA); user’s accuracy (UA); and producer’s 

accuracy (PA) were developed on the test dataset using the EnMAP-Box ImageRF Accuracy 

Assessment tool. 

 Class Using Random Forest 

 AK AMF GL PRS SS WS Total UA% PA% 

AK 18 1 0 4 0 2 25 72.00 60.00 

AMF 1 27 2 1 3 0 34 79.41 90.00 

GL 0 0 11 4 0 5 19 55.00 52.38 

PRS 8 1 1 13 2 2 27 48.15 54.17 

SS 0 1 0 1 25 0 27 92.59 83.33 

WS 3 0 7 1 0 20 31 64.52 68.97 

Total 30 30 20 24 30 29 163  

OA = 78.46%; Kappa = 0.7524 
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Figure 5.8: Class separation using Random Forest classification for Prosopis glandulosa (PRS) 

Acacia karoo (AK), Acacia mellifera (AMF), grassland (GL), red apedal soil (SS) and white 

calcareous sands (WS). 

 

Unlike with RF, the SVM classifier generated a slightly lower overall accuracy of 77.62% with a 

Kappa value of 0.7428 (Table 5.3). In the same way as the RF classifier, due to spectral 

confusion, the SVM classifier obtained lower user accuracies for Acacia karoo (70.00%) and 

Prosopis glandulosa (72.73%) and producer’s accuracies of 70.00% and 66.67% respectively 

(Table 5.3) The class separation shown in Figure 5.9 further substantiates the major confusion 

occurring almost species in this classification method. Prosopis glandulosa and Acacia karoo are 

greatly confused with almost every other class (Figure 5.9) and thus have the lowest user and 

producer accuracies (Table 5.3). 
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Table 5.3: Confusion matrix using the Support Vector Machines classifier for Prosopis 

glandulosa (PRS), Acacia karoo (AK), Acacia mellifera (AMF), grassland (GL), red apedal soil 

(SS) and white calcareous sands (WS).  The overall accuracy (OA); user’s accuracy (UA); and 

producer’s accuracy (PA) were developed on the test dataset using the ENVI-5.2 Confusion 

Matrix Workflow. 

Class Using Support Vector Machines 

 AK AMF GL PRS SS WS Total UA% PA% 

AK 21 1 1 3 0 4 30 70.00 70.00 

AMF 0 28 1 1 2 0 32 87.50 93.33 

GL 1 0 15 2 0 2 20 75.00 71.43 

PRS 3 0 1 16 1 1 22 72.73 66.67 

SS 1 1 0 1 27 0 30 90.00 90.00 

WS 4 0 3 1 0 22 30 73.33 75.86 

Total 30 30 21 24 30 29 164  

OA = 77.62%; Kappa = 0.7428  
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Figure 5.9: Class separation using Support Vector Machine classification for Prosopis 

glandulosa (PRS), Acacia karoo (AK), Acacia mellifera (AMF), grassland (GL), red apedal soil 

(SS) and white calcareous sands (WS). 

 

5.5. Discussion 

The taxa of Prosopis has proven to be an invasive species world-wide (Zimmermann 

1991). It has negative effects socio-economically as well as posing a threat on biodiversity since 

its accidental and intentional introduction began in the 1800s (Van den Berg 2010; Zeila 2011). 

Invasion control approaches that include biological, physical and chemical methods have been 

tried and tested with little success over the years (Zachariades et al. 2011). One of the reasons for 

this has been the lack of timely spatial data as well as lack of knowledge into the dynamic of 

mesquite invasion (Le Maitre et al. 2011; Wise et al. 2012b). This study explored the 

performance of the new-generation SPOT-6 spectral sensor to map Prosopis glandulosa, other 

co-existing species and land-cover types. The study area is located in an arid environment thus 

there is low species diversity which makes species structure easier to distinguish. Results show 

that Prosopis glandulosa was accurately detected from its co-existing acacia species when 

Random Forest and Support Vector Machines classifications were used.  
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Both classifiers achieved high accuracies with RF obtaining a slightly higher accuracy of 

78.46% as opposed to SVM’s accuracy of 77.62% (Table 5.2 and 5.3). The support vector 

machines classifier (Cortes and Vapnik 1995b; Vapnik 1995) constructs models based on the 

separation of data points from an optimal hyperplane. In order to minimise the classification 

error the margin between the hyperplane and data points is increased (Cortes and Vapnik 1995a; 

Yu et al. 2012). For this study a non-linear (radial-basis) kernel function is used with the 

optimisation of two parameters (the cost ‘sigma (C)’ and the kernel width ‘gamma (γ)’) because 

it solves inseparability issues that could be associated with LULC classes (Karatzoglou et al. 

2006; Mountrakis et al. 2011). As a classifier, SVM has the advantage of having more flexibility 

to be used for specific data sets and to choose specific data set parameters as well as kernel 

methods. Conversely,  the random forest classifier (Breiman 2001) is better at dealing with 

outliers and noise associated with classification algorithms because it works on the basis of each 

tree contributing towards a plural vote of the most popular class input in a random sample. It also 

only uses two parameters (ntree and mtry) which make the classifier a lot easier to use once 

optimized.  

Another advantage of using the RF classifier is its inherent ability to provide the 

importance of each of the four SPOT-6 bands to map each of the six land-cover types in the arid 

environment (Figure 5.5, 5.6 and 5.7). The most important band for the overall classification is 

the red band (Figure 5.5 and 5.6). The most important bands for classifying vegetative species 

Acacia karoo, Acacia mellifera, Prosopis glandulosa and grassland are the red and blue bands 

(Figure 5.7). The biochemical make-up of vegetation is greatly affected by these bands (Hansen 

and Schjoerring 2003; Kokaly et al. 2003a) – chlorophyll content, leaf area index and structure 

as well as canopy structure greatly affect photosynthesis and thus are dependent on this visible 

region of the electromagnetic spectrum (400 -700 nm) where the red and blue bands are located 

(Adjorlolo et al. 2012; Ceccato et al. 2001b; Ghulam et al. 2007).  

Unlike other multispectral sensors such as Landsat that have the limitation of mixed 

pixels, the new-generation sensors of SPOT-6 reduce this limitation and have a higher accuracy 

when it comes to the discrimination of similar species due to their higher resolution (6 m for 

SPOT versus 30 m for Landsat) (Lu and Weng 2007; Mutanga and Skidmore 2004). 

It should be noted that calculation errors were obtained for both RF and SVM due to the 

high spectral variation in the heterogeneous environment when using pixel-based landscape 
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classification (Duro et al. 2012). No post-classification processing was carried out on the RF and 

SVM images to smooth the results. Performing this action may improve accuracy of results 

substantially. Moreover, as seen in other similar studies, misclassifications produced in this study 

can be attributed to mainly the high spectral variation within the associated indigenous land 

cover classes (namely Acacia karoo and Acacia mellifera) as well as the high spatial resolution 

of the SPOT-6 image. In addition, the misclassification error associated with remotely sensed 

data obtained from multispectral sensors is reduced by the inherent variable importance feature 

of the random forest algorithm (Congalton and Green 2008). 

5.6. Conclusion 

The research conducted in this study set to assess the utility of the advanced classification 

algorithms RF and SVM on a new-generation SPOT-6 image to delineate invasive Prosopis 

glandulosa from its co-existing species and other land-cover types in semi-arid South Africa. 

Support Vector Machines classification outperformed Random Forest classification as it was 

more flexible for parameter and kernel function selection for data sets that are as specific as this 

one. With only two parameters to optimize, RF provided variable importance ranking for each of 

the SPOT-6 four bands as well as land-cover type classification. Due to the images high 

resolution and the high spectral variation of land-cover types, misclassifications were noted for 

this study as in similar studies. The results provide valuable information on mesquite invasion, 

change in farm productivity, ecosystem balance and the potential areas of future invasion. Such 

free data can be used by farmers and environmental managers to evaluate the extent and dynamic 

of Prosopis invasion at a larger scale than would be possible with the use of more expensive 

imagery such as WorldView-2 or GeoEye (costs ranging from USD$16 – 25 per square 

kilometer) for example. This has been one of the main reasons why few farmers and 

environmental managers opt to not use remote sensing as an aid to the control and management 

methods already in place. 

However, more studies have to be carried out to collect more datasets containing test and 

training samples of high quality to evaluate the performance of the RF and SVM algorithms on 

similar environments. Spectral-based analysis of Prosopis and its co-existing species is another 

aspect that has not yet been assessed in this current study that could potentially increase the 

accuracy of training the samples. Moreover, other classification methods that are object-based as 
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opposed to pixel-based should be explored to compare the accuracy of the classifications. These 

aspects will be considered for future research. 
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6.1. Introduction 

 

For this research, the invasive species called Prosopis glandulosa (mesquite) was 

investigated with the focus on mapping it in arid areas of South Africa. Prosopis glandulosa was 

rated one of the World’s top 100 worst invasive alien species in 2004 by the International Union 

of Conservation of Nature (IUCN)(Baillie et al. 2004). Mesquite is one of the 44 species of 

Prosopis that were originally introduced to 129 countries and islands intentionally and 

accidentally for benefits such as providing fodder, timber for furniture production and firewood 

(thus a source of income for some communities), stabilizing sand dunes, providing shade to 

livestock and curbing desertification (Pasiecznik 1999; Shackleton et al. 2014b). Over time, 

however, as with other invasive species, its spread has shown to have negative impacts on 

ecosystems and biodiversity so that there are reductions in the populations of other species as 

they are unable to compete; and human socio-economical practices such as overtaking grazing 

land, community boundaries, and overtaking farmland (Mwangi and Swallow 2005; Pasiecznik 

et al. 2001; Zimmermann and Pasiecznik 2005). In order to control this species, various methods 

involving biological, chemical, physical and integrated approaches have been tried and tested 

with little success when compared to the rapid spread and regeneration of the species (Geesingis 

et al. 2004; Mwangi and Swallow 2008; Pasiecznik et al. 2006; Shackleton et al. 2014b; Wise et 

al. 2012a; Zachariades et al. 2011). One of the reasons why control and management techniques 

have not been as successful as they should be, is that the species exists with very structurally 

similar co-existing species and there is lack of knowledge on the species invasion dynamic in 

relation to its co-existing species. The monitoring, detection and mapping of the invasive 

mesquite has been highlighted as a vital means to overcoming this gap in knowledge.  

Consequently, remote sensing applications at different scales have been employed for this 

study. Both spectral and spatial analysis were conducted and evaluated to provide an overview of 

the extent of invasion and possible recommendations to enhance the control and management 

measures already in place. The aim of this research was to examine the possibility of mapping 

and spectrally discriminating Prosopis glandulosa from its native co-existing species in semi-

arid South Africa. The specific objectives of the study were: (i) to investigate the usefulness of in 

situ spectroscopic data in discriminating Prosopis glandulosa from three other co-existing 

species (ii) to test the utility of the newly developed guided regularized random forest (GRRF) to 



86 
 

accurately discriminate amongst mesquite and its co-existing species (multiclass classification) 

(iii) to examine if WorldView-2 imagery and two machine learning algorithms (RF and SVM) 

can map Prosopis glandulosa invasion and its co-existing species (iv) to explore the possibility 

of using SPOT-6 imagery to map mesquite invasion and its co-existing indigenous species using 

machine learning algorithms. The sections below evaluate each objective. 

 

6.2. Investigating the usefulness of in situ spectroscopic data in discriminating 

Prosopis glandulosa from three other co-existing species. 

 

Objective two of the study aimed to examine the possibility of spectrally discriminating 

Prosopis glandulosa from its native co-existing species. Field spectroscopy was applied by using 

the Spectral Evolution® RS-3500 Remote Sensing Portable Spectroradiometer Bundle to collect 

reflectance measurements from four vegetative species namely, Prosopis glandulosa, Acacia 

karoo, Acacia mellifera and Ziziphus mucronata. Each species spectra produced a distinctly 

different signature which made it easier to distinguish between the similar species (Figure 3.2). 

The random forest algorithm was then applied to the hyperspectral data obtained in the field to 

spectrally discriminate between the species and provide variable importance. From the total 2150 

wavelengths of the spectral range between 350 nm to 2500 nm of the Spectroradiometer only 

1825 wavelengths were used for analysis after removing noisy wavelengths from the spectra. 

The traditional RF classifier provided the measure of the importance of each wavelength across 

the 1825 wavelengths in discriminating between the four different vegetative species (Figure 

3.4). A high overall accuracy level of 79.19% and a Kappa value of 0.7201 was achieved (Table 

3.2). Inherently, hyperspectral data has the problem of high dimensionality which occurs when 

the number of training samples (n) is limited as compared to the large number of hyperspectral 

spectral bands (p) (Hsu 2007a). This has been shown through studies to be greatly reduced by 

using the RF classifier whilst retaining good accuracy levels (Abdel-Rahman et al. 2012, 2013; 

Adam et al. 2012a; Vincenzi et al. 2011).  
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6.3. Testing the utility of the newly developed guided regularized random forest 

(GRRF) to accurately discriminate amongst mesquite and its co-existing 

species (multiclass classification). 

 

This objective was achieved as a continuation of objective two. A newly developed 

algorithm called guided regularized random forest (GRRF) that would reduce high 

dimensionality even further and increase the accuracy of the traditional random forest by 

identifying the key number of variables that could yield the lowest error rate was employed 

(Adam et al. 2012a). From the 1825 wavelengths used by the RF classifier to identify the most 

important wavelengths, 11 wavelengths were identified as key wavelengths by applying the 

GRRF algorithm and eliminating irrelevant and redundant wavelengths (Figure 3.5). These key 

wavelengths were identified to lie in three main regions of the electromagnetic spectrum: the 

visible region greatly affects absorption of photosynthetic pigments of vegetation (Ceccato et al. 

2001b); the red edge region greatly affects the biochemical make-up of the vegetative species 

(Adjorlolo et al. 2013a) and; the short-wave-infrared region which affect the water properties 

associated with vegetation such as leaf area index, water absorption and macronutrient 

absorption (Carter 1994; Ceccato et al. 2001b; Ghulam et al. 2007). GRRF greatly increased the 

overall accuracy of data classification to 88.59% and a Kappa value of 0.8524 (Table 3.2).  

These results showed how the newly developed GRRF algorithm was a robust method for 

reducing high dimensionality and could be used to improve results of species discrimination 

between spectrally similar species. 

 

6.4. Examining if WorldView-2 imagery and two machine learning algorithms 

(RF and SVM) can map Prosopis glandulosa invasion and its co-existing 

species. 

 

The first approach of the study was to map Prosopis glandulosa from its co-existing 

acacia species and other land cover types using high resolution new-generation WorldView-2 

imagery. Two advanced classification algorithms were applied to the image namely Random 

Forest (Breiman 2001) and Support Vector Machines (Cortes and Vapnik 1995a).  An overall 

classification of 86.59% with a Kappa value of 0.84 (Table 4.2) was found using the random 
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forest classifier, whilst the support vector machines classification obtained on overall value of 

85.98% and a Kappa of 0.83 (Table 4.3). These high accuracies show how the advanced 

algorithms are robust methods for classification and species discrimination. The random forest 

classifier also provided a measure of variable importance in terms of the WorldView-2 bands 

(Figure 4.4 and Figure 4.5) which in this case were the red, blue, yellow and coastal bands of the 

visible region of the electromagnetic spectrum that are vital to the biochemical make-up of 

vegetative species (Adjorlolo et al. 2012; Ceccato et al. 2001b; Kokaly et al. 2003a). Differences 

in plant characteristics along these selected bands of the WV-2 sensors helped to successfully 

discriminate Prosopis glandulosa from its co-existing Acacia karoo and Acacia mellifera as well 

as other general land-cover types. 

 

6.5. Exploring the cost-effectiveness of using SPOT-6 imagery to map mesquite 

invasion and its co-existing indigenous species using machine learning 

algorithms. 

 

It has been noted that obtaining high resolution remote sensing data such as WorldView-

2 imagery (2 m) is expensive (with costs ranging between USD$16 – 25 per square kilometre) 

for most farmers and other environmental organisations and thus not often applied to obtain 

useful information to enhance control measures. Free satellite data is preferred for remote 

sensing methods. However, when it comes to vegetation discrimination at species level for a 

species like Prosopis, higher spatial and spectral resolution is needed than is provided by freely 

available sensors such as Landsat (30 m) (Foody et al. 2005; Robinson et al. 2016). The need for 

a cost-effective way of mapping and monitoring the invasion of Prosopis at a higher resolution 

provided the necessity for the last chapter of this study. New-generation high resolution SPOT-6 

(6 m) data was utilised as it is freely available in South Africa according to an agreement signed 

in November 2013 between the South African National Space Agency and the Airbus Defence 

and Space (Web 2015). Similar classification using advanced random forest and support vector 

machines algorithms as in the WorldView-2 imagery was applied. Variable importance 

measurement of the random forest classifier showed that the red band followed by the blue band 

(Figure 5.6 and Figure 5.7) were the most important bands for mapping and discriminating 

amongst the species of Prosopis glandulosa, Acacia karoo and Acacia mellifera. These bands of 
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SPOT-6 greatly affect the biochemical make-up of vegetation which include chlorophyll content, 

leaf area index and canopy structure (Hansen and Schjoerring 2003; Kokaly et al. 2003b). Image 

classification of the imagery using random forest yielded an overall accuracy of 78.46% with a 

Kappa value of 0.7524 (Table 5.2). Support vector machines classification on the other hand 

yielded an overall accuracy of 77.62% and a Kappa value of 0.7428 (Table 5.3). These 

accuracies are slightly lower than the ones obtained from the WorldView-2 image (86.59% for 

RF and 85.98% for SVM). This is mainly due to a much lower spatial resolution of SPOT-6 as 

compared to WV-2 which thus means an increase in spectral confusion amongst the species 

(Figure 5.8 and Figure 5.9). This thus increases the classification error of the two classifiers. 

Despite this, however, the classification accuracies are still high enough to provide useful 

information on the mapping and monitoring of mesquite invasion on an even larger scale than 

would be possible with the costly and higher-resolution methods.  

 

6.6. Recommendations for future studies 

 

A few recommendations for future studies have been identified from this study as discussed 

below: 

 It is recommended that these studies have to be replicated using similar techniques and 

data as follows: (i) over larger areas in the country (ii) in other similarly invaded semi-

arid and arid areas (iii) in invaded areas under different climatic condition. This will help 

establish Prosopis invasion on a country-scale as well as test the accuracy and 

reproducibility of these methods. 

 Research into the increased utilisation of Prosopis glandulosa for its benefits is needed as 

this could be an added approach to the management and reduction of its spread. Kenya 

for example is in the process of establishing the utilisation of mesquite’s biomass as a 

source of fuel for power plants and this in turn also creates jobs for community members 

(Shackleton et al. 2015). 

 According to Kohavi et al. (1997), no single machine learning algorithm is superior in all 

applications, thus for future studies in order to test the RF and SVM classifier’s 

robustness, other methods should also be tested such as artificial neural networks or 
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variable band set combination methods that have been used in previous invasive species 

discrimination. 

 More research needs to be conducted on the dynamics of the spread of mesquite by 

considering the impacts of the environmental variables on the invasion such soil analysis 

studies, favourable habitats, its biology and effectiveness of control practices already in 

place. 

 Testing the use of remote sensing data to estimate the biomass in order to establish an 

integrative method for controlling cost (physical control) and benefits.    

 Object-based classification methods need to be considered for future study on a 

comparative method to the pixel-based classification methods used in this research. 

 

6.7. Conclusion 

 

The aim of this study was to examine the possibility of mapping and spectrally 

discriminating Prosopis glandulosa from its native co-existing species in semi-arid South Africa. 

The results from the research conducted showed that it is possible to spatially and spectrally 

discriminate Prosopis glandulosa from its co-existing species. This final conclusion is justified 

based on the following: 

1. New-generation multispectral WorldView-2 and SPOT-6 data were able to accurately 

discriminate between Prosopis glandulosa and its co-existing acacia trees namely, Acacia 

karoo, Acacia mellifera and other general land cover types. 

2. The random forest (RF) classification algorithm has proven to have great potential in 

accurately discriminating Prosopis glandulosa from its co-existing species. In more 

detail, (i) it provided high classification accuracies as shown by the accuracy of 86.59% 

with a Kappa value of 0.84 (Table 4.2) for the WorldView-2 study and 78.46% with a 

Kappa value of 0.75 (Table 5.8) for the SPOT-6 study. (ii) RF was a good predictor of 

variable importance by predicting the exact bands in the WV-2 sensor that accurately 

discriminated Prosopis glandulosa from its co-existing species (Figure 4.4 and Figure 

4.5) which were identified as the red, blue, yellow and coastal bands. Similarly, the red 

and blue bands of the SPOT-6 sensor (Figure 5.5, Figure 5.6 and 5.7) were identified as 
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most important in accurately discriminating Prosopis glandulosa from its co-existing 

species. 

3. The support vector machines (SVM) classification algorithm also has great potential in 

accurately discriminating Prosopis glandulosa from its co-existing species. More 

specifically, (i) SVM classification yielded high accuracies of 85.98% and a Kappa of 

0.83 (Table 3) for the WV-2 study and 77.62% and a Kappa value of 0.7428 (Table 5.3) 

for the SPOT-6 study. 

4. The RF ensemble can reduce the problem of high dimensionality associated with 

hyperspectral data by selecting the most optimal bands in a hyperspectral dataset to 

improve accuracy of classification. With n=1825, the high accuracy achieved for 

classification was 79.19% and a Kappa value of 0.7201 (Table 3.2). 

5. The newly developed guided regularized random forest algorithm (GRRF) is an even 

more effective method of reducing high dimensionality associated with hyperspectral 

data. It uses the variables of importance identified by the traditional RF ensemble and 

removes all the redundant and irrelevant wavelengths so that only the key wavelengths 

for accurate discrimination are used for analysis. GRRF greatly increased the overall 

accuracy of data classification with n=11 identified as key wavelengths. Overall accuracy 

increased to 88.59% and a Kappa value of 0.8524 (Table 3.2) from 79.19% and a Kappa 

value of 0.7201 (Table 3.2) in traditional RF. 

6. Overall accuracy obtained using spectral discrimination and GRRF was higher (88.59%) 

than the accuracies of the imagery data in which WV-2 obtained 86.59% and the SPOT-6 

data obtained 79.70%. This can be explained by the difference in the numbers of species 

identified in each study as well as the spectral resolutions. The spectral discrimination 

data obtained showed the difference between four different tree species (Prosopis 

glandulosa, Acacia karoo, Acacia mellifera and Ziziphus mucronata) whilst the WV-2 

and SPOT-6 data discriminated amongst only three species (Prosopis glandulosa, Acacia 

karoo and Acacia mellifera). With fewer species identified there is a higher chance of 

pixel-mixing between species in the high resolution multispectral data so that the 

accuracies obtained are slightly lower than the hyperspectral data. 
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