1,408 research outputs found

    Assessing water availability in Mediterranean regions affected by water conflicts through MODIS data time series analysis

    Get PDF
    Water scarcity is a widespread problem in arid and semi-arid regions such as the western Mediterranean coastal areas. The irregularity of the precipitation generates frequent droughts that exacerbate the conflicts among agriculture, water supply and water demands for ecosystems maintenance. Besides, global climate models predict that climate change will cause Mediterranean arid and semi-arid regions to shift towards lower rainfall scenarios that may exacerbate water conflicts. The purpose of this study is to find a feasible methodology to assess current and monitor future water demands in order to better allocate limited water resources. The interdependency between a vegetation index (NDVI), land surface temperature (LST), precipitation (current and future), and surface water resources availability in two watersheds in southeastern Spain with serious difficulties in meeting water demands was investigated. MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI and LST products (as proxy of drought), precipitation maps (generated from climate station records) and reservoir storage gauging information were used to compute times series anomalies from 2001 to 2014 and generate regression images and spatial regression models. The temporal relationship between reservoir storage and time series of satellite images allowed the detection of different and contrasting water management practices in the two watersheds. In addition, a comparison of current precipitation rates and future precipitation conditions obtained from global climate models suggests high precipitation reductions, especially in areas that have the potential to contribute significantly to groundwater storage and surface runoff, and are thus critical to reservoir storage. Finally, spatial regression models minimized spatial autocorrelation effects, and their results suggested the great potential of our methodology combining NDVI and LST time series to predict future scenarios of water scarcity.Published versio

    Impacts and social implications of landuse-environment conflicts in a typical Mediterranean watershed

    Get PDF
    In coastal watersheds, services and landuse favour coastal tourism and urbanization, depriving rural upstream of infrastructure and attention. This unbalanced management leads to an intensification of socioeconomic changes that generate a structural heterogeneity of the landscape and a reduction in the livelihoods of the rural population. The incessant dissociation between the objectives of the stakeholders triggers landuse-environment-economy conflicts which threaten to mutate large-scale development programs. Here, we used multi-assessment techniques in a Mediterranean watershed from Morocco to evaluate the effects of landuse change on water, vegetation, and perception of the rural population towards environmental issues. We combined complementary vegetation indexes (NDVI and EVI) to study long-term landuse change and phenological statistical pixel-based trends. We assessed the exposure of rural households to the risk of groundwater pollution through a water analysis supplemented by the calculation of an Integrated Water Quality Index. Later, we contrasted the findings with the results of a social survey with a representative sample of 401 households from 7 villages. We found that rapid coastal linear urbanization has resulted in a 12-fold increase in construction over the past 35 years, to the detriment of natural spaces and the lack of equipment and means in rural areas upstream. We show that the worst water qualities are linked to the negative impact of anthropogenic activities on immediately accessible water points. We observe that rural households are aware of the existence and gravity of environmental issues but act confusedly because of their low education level which generates a weak capacity to understand cause and effect relationships. We anticipate the pressing need to improve the well-being and education of the population and synergistically correct management plans to target the watershed as a consolidated system. Broadly, stakeholders should restore lost territorial harmony and reallocate landuse according to a sustainable environment-socioeconomic vision

    Assessment of the influence of biophysical properties related to fuel conditions on fire severity using remote sensing techniques: a case study on a large fire in NW Spain

    Get PDF
    P. 512-520This study analyses the suitability of remote sensing data from different sources (Landsat 7 ETM+, MODIS and Meteosat) in evaluating the effect of fuel conditions on fire severity, using a megafire (11 891 ha) that occurred in a Mediterranean pine forest ecosystem (NW Spain) between 19 and 22 August 2012. Fire severity was measured via the delta Normalized Burn Ratio index. Fuel conditions were evaluated through biophysical variables of: (i) the Visible Atmospherically Resistant Index and mean actual evapotranspiration, as proxies of potential live fuel amount; and (ii) Land Surface Temperature and water deficit, as proxies of fuel moisture content. Relationships between fuel conditions and fire severity were evaluated using Random Forest models. Biophysical variables explained 40% of the variance. The Visible Atmospherically Resistant Index was the most important predictor, being positively associated with fire severity. Evapotranspiration also positively influenced severity, although its importance was conditioned by the data source. Live fuel amount, rather than fuel moisture content, primarily affected fire severity. Nevertheless, an increase in water deficit and land surface temperature was generally associated with greater fire severity. This study highlights that fuel conditions largely determine fire severity, providing useful information for defining pre-fire actions aimed at reducing fire effects

    Vegetation water use based on a thermal and optical remote sensing model in the mediterranean region of Doñana

    Get PDF
    Terrestrial evapotranspiration (ET) is a central process in the climate system, is a major component in the terrestrial water budget, and is responsible for the distribution of water and energy on land surfaces especially in arid and semiarid areas. In order to inform water management decisions especially in scarce water environments, it is important to assess ET vegetation use by differentiating irrigated socio-economic areas and natural ecosystems. The global remote sensing ET product MOD16 has proven to underestimate ET in semiarid regions where ET is very sensitive to soil moisture. The objective of this research was to test whether a modified version of the remote sensing ET model PT-JPL, proven to perform well in drylands at Eddy Covariance flux sites using the land surface temperature as a proxy to the surface moisture status (PT-JPL-thermal), could be up-scaled at regional levels introducing also a new formulation for net radiation from various MODIS products. We applied three methods to track the spatial and temporal characteristics of ET in the World Heritage UNESCO Doñana region: (i) a locally calibrated hydrological model (WATEN), (ii) the PT-JPL-thermal, and (iii) the global remote sensing ET product MOD16. The PT-JPL-thermal showed strong agreement with the WATEN ET in-situ calibrated estimates (ρ = 0.78, ρ1month-lag = 0.94) even though the MOD16 product did not (ρ = 0.48). The PT-JPL-thermal approach has proven to be a robust remote sensing model for detecting ET at a regional level in Mediterranean environments and it requires only air temperature and incoming solar radiation from climatic databases apart from freely available satellite products

    Desertification

    Get PDF
    IPCC SPECIAL REPORT ON CLIMATE CHANGE AND LAND (SRCCL) Chapter 3: Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystem

    Google earth engine as multi-sensor open-source tool for supporting the preservation of archaeological areas: The case study of flood and fire mapping in metaponto, italy

    Get PDF
    In recent years, the impact of Climate change, anthropogenic and natural hazards (such as earthquakes, landslides, floods, tsunamis, fires) has dramatically increased and adversely affected modern and past human buildings including outstanding cultural properties and UNESCO heritage sites. Research about protection/monitoring of cultural heritage is crucial to preserve our cultural properties and (with them also) our history and identity. This paper is focused on the use of the open-source Google Earth Engine tool herein used to analyze flood and fire events which affected the area of Metaponto (southern Italy), near the homonymous Greek-Roman archaeological site. The use of the Google Earth Engine has allowed the supervised and unsupervised classification of areas affected by flooding (2013–2020) and fire (2017) in the past years, obtaining remarkable results and useful information for setting up strategies to mitigate damage and support the preservation of areas and landscape rich in cultural and natural heritage

    The global wildland–urban interface

    Get PDF
    The wildland–urban interface (WUI) is where buildings and wildland vegetation meet or intermingle1,2. It is where human–environmental conflicts and risks can be concentrated, including the loss of houses and lives to wildfire, habitat loss and fragmentation and the spread of zoonotic diseases3. However, a global analysis of the WUI has been lacking. Here, we present a global map of the 2020 WUI at 10 m resolution using a globally consistent and validated approach based on remote sensing-derived datasets of building area4 and wildland vegetation5. We show that the WUI is a global phenomenon, identify many previously undocumented WUI hotspots and highlight the wide range of population density, land cover types and biomass levels in different parts of the global WUI. The WUI covers only 4.7% of the land surface but is home to nearly half its population (3.5 billion). The WUI is especially widespread in Europe (15% of the land area) and the temperate broadleaf and mixed forests biome (18%). Of all people living near 2003–2020 wildfires (0.4 billion), two thirds have their home in the WUI, most of them in Africa (150 million). Given that wildfire activity is predicted to increase because of climate change in many regions6, there is a need to understand housing growth and vegetation patterns as drivers of WUI change
    • 

    corecore