89 research outputs found

    A Novel Haptic Simulator for Evaluating and Training Salient Force-Based Skills for Laparoscopic Surgery

    Get PDF
    Laparoscopic surgery has evolved from an \u27alternative\u27 surgical technique to currently being considered as a mainstream surgical technique. However, learning this complex technique holds unique challenges to novice surgeons due to their \u27distance\u27 from the surgical site. One of the main challenges in acquiring laparoscopic skills is the acquisition of force-based or haptic skills. The neglect of popular training methods (e.g., the Fundamentals of Laparoscopic Surgery, i.e. FLS, curriculum) in addressing this aspect of skills training has led many medical skills professionals to research new, efficient methods for haptic skills training. The overarching goal of this research was to demonstrate that a set of simple, simulator-based haptic exercises can be developed and used to train users for skilled application of forces with surgical tools. A set of salient or core haptic skills that underlie proficient laparoscopic surgery were identified, based on published time-motion studies. Low-cost, computer-based haptic training simulators were prototyped to simulate each of the identified salient haptic skills. All simulators were tested for construct validity by comparing surgeons\u27 performance on the simulators with the performance of novices with no previous laparoscopic experience. An integrated, \u27core haptic skills\u27 simulator capable of rendering the three validated haptic skills was built. To examine the efficacy of this novel salient haptic skills training simulator, novice participants were tested for training improvements in a detailed study. Results from the study demonstrated that simulator training enabled users to significantly improve force application for all three haptic tasks. Research outcomes from this project could greatly influence surgical skills simulator design, resulting in more efficient training

    FEELING FOR FAILURE: HAPTIC FORCE PERCEPTION OF SOFT TISSUE CONSTRAINTS IN A SIMULATED MINIMALLY INVASIVE SURGERY TASK

    Get PDF
    In minimally invasive surgery (MIS), the ability to accurately interpret haptic information and apply appropriate force magnitudes onto soft tissue is critical for minimizing bodily trauma. Force perception in MIS is a dynamic process in which the surgeon\u27s administration of force onto tissue results in useful perceptual information which guides further haptic interaction and it is hypothesized that the compliant nature of soft tissue during force application provides biomechanical information denoting tissue failure. Specifically, the perceptual relationship between applied force and material deformation rate specifies the distance remaining until structural capacity will fail, or indicates Distance-to-Break (DTB). Two experiments explored the higher-order relationship of DTB in MIS using novice and surgeon observers. Findings revealed that observers could reliably perceive DTB in simulated biological tissues, and that surgeons performed better than novices. Further, through calibration feedback training, sensitivity to DTB can be improved. Implications for optimizing training in MIS are discussed

    The Design of a Haptic Device for Training and Evaluating Surgeon and Novice Laparoscopic Movement Skills

    Get PDF
    As proper levels of force application are necessary to ensure patient safety, and training hours with an expert on live subjects are difficult, enhanced computer-based training is needed to teach the next generation of surgeons. Considering the role of touch in surgery, there is a need for a device capable of discerning the haptic ability of surgical trainees. This need is amplified by minimally invasive surgical techniques where a surgeon\u27s sense of tissue properties comes not directly through their own hands but indirectly through the tools. A haptic device capable of producing a realistic range of forces and motions that can be used to test the ability of users to replicate salient forces in specific maneuvers is proposed. This device also provides the opportunity to use inexpensive haptic trainers to educate surgeons about proper force application. A novel haptic device was designed and built to provide a simplified analogy of the forces and torques felt during free tool motion and constrained pushing, sweep with laparoscopic instruments. The device is realized as a single-degree-of-freedom robotic system controlled using real-time computer hardware and software. The details of the device design and the results of testing the design against the specifications are presented. A significant achievement in the design is the use of a two-camera vision system to sense the user placement of the input device. The capability of the device as a first-order screening tool to distinguish between novices and expert surgeons is described

    A Sensorized Instrument for Minimally Invasive Surgery for the Measurement of Forces during Training and Surgery: Development and Applications

    Get PDF
    The reduced access conditions present in Minimally Invasive Surgery (MIS) affect the feel of interaction forces between the instruments and the tissue being treated. This loss of haptic information compromises the safety of the procedure and must be overcome through training. Haptics in MIS is the subject of extensive research, focused on establishing force feedback mechanisms and developing appropriate sensors. This latter task is complicated by the need to place the sensors as close as possible to the instrument tip, as the measurement of forces outside of the patient\u27s body does not represent the true tool--tissue interaction. Many force sensors have been proposed, but none are yet available for surgery. The objectives of this thesis were to develop a set of instruments capable of measuring tool--tissue force information in MIS, and to evaluate the usefulness of force information during surgery and for training and skills assessment. To address these objectives, a set of laparoscopic instruments was developed that can measure instrument position and tool--tissue interaction forces in multiple degrees of freedom. Different design iterations and the work performed towards the development of a sterilizable instrument are presented. Several experiments were performed using these instruments to establish the usefulness of force information in surgery and training. The results showed that the combination of force and position information can be used in the development of realistic tissue models or haptic interfaces specifically designed for MIS. This information is also valuable in order to create tactile maps to assist in the identification of areas of different stiffness. The real-time measurement of forces allows visual force feedback to be presented to the surgeon. When applied to training scenarios, the results show that experience level correlates better with force-based metrics than those currently used in training simulators. The proposed metrics can be automatically computed, are completely objective, and measure important aspects of performance. The primary contribution of this thesis is the design and development of highly versatile instruments capable of measuring force and position during surgery. A second contribution establishes the importance and usefulness of force data during skills assessment, training and surgery

    The Role of Simulation Fidelity in Laparoscopic Surgical Training

    Full text link

    Development and Validation of a Hybrid Virtual/Physical Nuss Procedure Surgical Trainer

    Get PDF
    With continuous advancements and adoption of minimally invasive surgery, proficiency with nontrivial surgical skills involved is becoming a greater concern. Consequently, the use of surgical simulation has been increasingly embraced by many for training and skill transfer purposes. Some systems utilize haptic feedback within a high-fidelity anatomically-correct virtual environment whereas others use manikins, synthetic components, or box trainers to mimic primary components of a corresponding procedure. Surgical simulation development for some minimally invasive procedures is still, however, suboptimal or otherwise embryonic. This is true for the Nuss procedure, which is a minimally invasive surgery for correcting pectus excavatum (PE) – a congenital chest wall deformity. This work aims to address this gap by exploring the challenges of developing both a purely virtual and a purely physical simulation platform of the Nuss procedure and their implications in a training context. This work then describes the development of a hybrid mixed-reality system that integrates virtual and physical constituents as well as an augmentation of the haptic interface, to carry out a reproduction of the primary steps of the Nuss procedure and satisfy clinically relevant prerequisites for its training platform. Furthermore, this work carries out a user study to investigate the system’s face, content, and construct validity to establish its faithfulness as a training platform

    Perceiving Soft Tissue Break Points in the Presence of Friction

    Get PDF
    In minimally invasive surgery (MIS), surgeons face several perceptual challenges due to the remote interaction with the environment, such as distorted haptic feedback through the instruments due to friction produced from the rubber trocar sealing mechanisms at the incision site. As a result, surgeons sometimes unintentionally damage healthy tissues during MIS due to excessive force. Research has demonstrated that useful information is available in the haptic array regarding soft tissues, which allows novices to successfully perceive the penetration distance remaining until a material will fail based on displacement and reactionary forces of simulated tissues using a haptic invariant, Distance-to-Break (DTB). Attunement and calibration training was used in the current study to investigate whether observers are able to identify material break points in nonlinear compliant materials through haptic force application, while ignoring haptic stimulation not lawfully related to the properties specifying DTB, including friction. A pretest, feedback, posttest, and transfer-of-training phase design allowed participants to probe four virtually simulated materials at varying levels of friction: no friction, low friction, and high friction in the first experiment, and pull the simulated tissues in the second experiment to investigate if perception of DTB generalizes to other tasks used in MIS. Experiment 1 revealed that sensitivity to DTB can be improved through training, even in the presence of friction, and that friction may assist observers to perceive fragile tissues that otherwise would be below perceptual threshold. Experiment 2 revealed that attunement and calibration to DTB also transfers to pulling motions
    • …
    corecore