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ABSTRACT 
 
 

In minimally invasive surgery (MIS), surgeons face several perceptual challenges 

due to the remote interaction with the environment, such as distorted haptic feedback 

through the instruments due to friction produced from the rubber trocar sealing 

mechanisms at the incision site.  As a result, surgeons sometimes unintentionally damage 

healthy tissues during MIS due to excessive force.  Research has demonstrated that useful 

information is available in the haptic array regarding soft tissues, which allows novices to 

successfully perceive the penetration distance remaining until a material will fail based 

on displacement and reactionary forces of simulated tissues using a haptic invariant, 

Distance-to-Break (DTB). Attunement and calibration training was used in the current 

study to investigate whether observers are able to identify material break points in 

nonlinear compliant materials through haptic force application, while ignoring haptic 

stimulation not lawfully related to the properties specifying DTB, including friction.  A 

pretest, feedback, posttest, and transfer-of-training phase design allowed participants to 

probe four virtually simulated materials at varying levels of friction: no friction, low 

friction, and high friction in the first experiment, and pull the simulated tissues in the 

second experiment to investigate if perception of DTB generalizes to other tasks used in 

MIS.  Experiment 1 revealed that sensitivity to DTB can be improved through training, 

even in the presence of friction, and that friction may assist observers to perceive fragile 

tissues that otherwise would be below perceptual threshold.  Experiment 2 revealed that 

attunement and calibration to DTB also transfers to pulling motions.  
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CHAPTER ONE 
 

PERCEIVING SOFT TISSUE BREAK POINTS IN THE PRESENCE OF FRICTION 
 
 

Minimally invasive surgical techniques offer patients the promise of smaller 

incisions, reduced damage to the body, less pain, and shorter recovery times by inserting 

long instruments and an endoscopic camera into small incisions via trocars (Breedveld & 

Wentink, 2001; Bathea et al., 2004). Although traditional open surgeries allow the 

surgeon to directly manipulate internal body organs and tissues through a large opening, 

new technologies have allowed for a rise in minimally invasive surgery (MIS) 

procedures, which require the surgeon to manipulate tissues indirectly through 

laparoscopic tools and view the operation indirectly on a two-dimensional monitor. Due 

to the challenging visual conditions and the unintuitive nature of tool manipulation with 

MIS, a large amount of training is required to develop these skills, which is often 

performed with the use of simulators. In fact, there are more surgical training simulators 

available for laparoscopic training than any other type of medical training task (Coles, 

Meglan, & John, 2011). 

 Research suggests that surgeons sometimes unintentionally damage healthy 

tissues during MIS procedures.  For example, in 60 simulated cholecystectomies 

performed by 60 surgical trainees, use of excessive force was the third most common 

type of error committed, with 187 occurrences recorded during the 60 procedures (Tang, 

Hanna, & Cuschieri, 2005).  All instances of tissue damage were determined to be the 

result of excessive force.  Injuries of bile ducts during a cholecystectomy occur three 

times more often in laparoscopic surgery than in open surgery (Archer, Brown, Smith, 
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Branum, & Hunter, 2001; Traverso, 1999).  Out of approximately 500,000 patients 

receiving a laparoscopic cholecystectomy each year, about 1,500 to 2,000 will experience 

damage to the bile ducts (Hugh, 2002).  A great majority of these damages during 

cholecystectomy are caused by errors in perception, rather than errors in skill, 

knowledge, or judgment, with surgeons injuring unseen bile ducts during dissection or 

deliberately cutting a bile duct when he or she believed it to be something else (Way et 

al., 2003).   

MIS training and perceptual problems 

Despite documented benefits of using MIS methodologies rather than open 

surgery, surgeons face several perceptual challenges with MIS similar to other 

environments where an operator is controlling or viewing an object remotely.  For 

example, humans struggle to perceive depth and size of objects in virtual or remote 

environments, underestimating egocentric distances (0m – 30m) by as much as 50%  

(Altenhoff et al., 2012; Napieralski et al., 2011; Richardson & Waller, 2005; Thompson 

et al., 2004; Witmer & Kline, 1998).  Tittle, Roesler, and Woods (2002) have termed 

these  difficulties  “the  remote  perception  problem.”    Unlike  open  surgery,  where  a  

surgeon can look directly into the operative scene and see his/her hands and tools 

manipulating the scene, during MIS the surgeon views a monitor, which produces a 

mislocation of the endoscope and prevents the surgeon from being able to simultaneously 

observe his/her hands and the scene.  This difference  between  the  endoscope’s  viewpoint  

and  the  surgeon’s  viewpoint  as if he/she were looking directly into the abdomen produces 

a variety of perceptual challenges that the surgeon must overcome.  Because the 
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instruments rotate around the incision point through a trocar, surgeons must translate a 

mirrored image produced during sweeping, side-to-side motions, which is also magnified 

on the monitor, further contributing to the scaling challenges as experienced in other 

remote environments.  Depending on how far  the  instrument  is  inserted,  the  surgeon’s  

movements may produce a magnified or reduced effect on the instrument tip.  

Additionally, the endoscope is usually controlled by someone other than the surgeon, 

which  can  cause  the  endoscope’s  viewpoint  to  be  different  from  what  the  surgeon’s  

would be if he/she looked down into the abdomen (Breedveld & Wentink, 2001).  In 

addition to viewing a rotated view of the surgery, surgeons are passively viewing the 

scene as the assistant controls the camera, which breaks the perception-action link present 

in regular environments (Tittle et al., 2002; Gomer, Dash, Moore, & Pagano, 2009). 

Haptics: Tactile and Kinesthetic Info 

 Not only does the remote perception problem in MIS procedures make it difficult 

for surgeons to accurately perceive visual information on the monitor, but the 

arrangement  also  creates  distorted  haptic  feedback  through  the  surgeon’s  instruments  

(Den Boer et al., 1999; Van den Dobbelsteen, Schooleman, & Dankelman, 2007).  Just as 

the surgeon cannot directly see the tissues he or she is operating on, organs and tissues 

are touched indirectly and softness is assessed with surgical tools rather than his or her 

hands.  The haptic feedback a surgeon receives in open surgery when directly touching 

soft tissue consists of both tactile information (cutaneous stimulation) and kinesthetic 

information.  When the tissue or organ is touched or squeezed, the sense of touch, or 

tactile information, is perceived via sensory receptors in the finger tips.  Kinesthetic 
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information  is  the  sense  of  one’s  body  position  and  movement,  wielded objects, and 

probed surfaces communicated by receptors in joints, tendons, muscles, and skin (Loomis 

& Lederman, 1986, Pagano & Cabe, 2003; Pagano, Carello & Turvey, 1996; Pagano & 

Donahue, 1999; Perreault & Cao, 2006; Srinivasan & LaMotte, 1995; Turvey, 1996).  

Together,  tactile  and  kinesthetic  information  make  up  a  person’s  haptic  sense.    Though  

both haptic and kinesthetic information both play a role in the surgical task, kinesthesis is 

primarily responsible for providing information about the interactions between the distal 

ends of the tools and the properties of the tissue.  

As surgeons apply force onto body organs and tissues, they can immediately 

obtain useful haptic information based on the compliance of the tissue.  However, 

because tactile information has been shown to be useful when discriminating between 

deformable materials (Srinivasan & LaMotte, 1995), surgeons must alter how they judge 

compliancy of materials with only indirect contact through the tools.  Relying primarily 

on kinesthesis, the amount of tissue displacement or resistance in response to the amount 

of force applied reveals useful property information about the compliancy, or softness, of 

a tissue to the surgeon (Bergman Tiest & Kappers, 2009; Vincentini & Botturi, 2009; 

Srinivasan & LaMotte, 1995).  This compliancy and stiffness information gained from 

force feedback gives information about fragility and may specify motor adjustments 

necessary to avoid damaging materials.  Although vision can offer some clues about 

compliancy as tissue is displaced in response to forces, we know that the visual 

information available in MIS is also distorted by unnatural camera angles, ambiguous 

scaling, and lack of stereoscopic information.  Even if the operation were viewed directly, 
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vision does not provide any information about force being applied or reactionary force 

from the tissue, which is necessary to determine the compliancy of a material.  Vision 

alone does not provide enough information to accurately judge softness or fragility of a 

material (Srinivasan & LaMotte, 1995; Klazky, Lederman, & Matula, 1993; Smyth & 

Waller, 1998). 

 It is important that surgeons are trained to pick on useful haptic information in 

this new environment. Evidence suggests that haptic feedback does improve performance 

in both MIS tasks and basic laparoscopic training tasks, particularly when pushing or 

pulling (Chmarra, Dankelman, van den Dobbelsteen, & Jansen, 2008).  When performing 

a dissection task robotically without force feedback, gynecologic residents participants 

applied 50% more force than with force feedback and committed three times the number 

of injury-causing errors (Wagner, Stylopoulos, & Howe, 2002).  Particularly, research 

demonstrates that receiving haptic feedback in a virtual training environment may be 

especially critical during early training phases for psychomotor skill acquisition (Ström et 

al., 2006).  Due to the indirect contact with the tissue, future surgeons have to learn about 

force feedback before they can safely conduct actual surgery.  For example, during 

surgery the operator may perceive forces 0.2-4.5 times the force generated. Realistic 

simulators with haptic feedback are thought to lead to better overall performance, faster 

learning, and high transfer of skill to operating on actual tissue (van der Meijden, & 

Schijven, 2009).  Some warn that learning tasks in VR without realistic haptic feedback 

may result in negative learning effects when these tasks are completed on actual tissue, 

where appropriate application of force plays an important role in surgical performance 
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(Chmarra et al., 2008; Srinivasan & LaMotte, 1995).  Despite extensive training, 

typically developing expert eye-hand coordination skills, no haptic skills training in 

detecting tissue break point or force perception is required. 

Direct Perception and the Haptic Array 

 Similar to the well-studied lawful relationships available in the optic array of 

looming and time-to-contact (Lee, 1976; Hecht & Savelsbergh, 2004), research has also 

demonstrated that information is available in the haptic array of soft tissues that specifies 

to a surgeon when a tissue will break (Long et al., 2014).   As surgeons apply a given 

amount of force to a soft tissue, the resulting displacement grows less and less as they 

probe deeper, indicating that the tissue is becomingly increasingly stiff and that it may 

soon break. This changing compliancy in human tissue is often the result of a lawful, 

biomechanical relationship (Brouwer et al., 2001; Carter, Frank, Davies, McLean, & 

Cuscheri, 2001; Fung, 1993; Rosen, Brown, De, Sinanan, & Hannaford, 2008; Yamada, 

1970) – one which surgeons may be able to attune to in order to perceive how much 

farther they can probe before breaking the tissue. If trained to accurately interpret these 

lawful relationships, surgeons should better understand the structural capacity of human 

tissues, allowing them to apply more appropriate forces and reduce trauma or breakage of 

healthy tissues.  

Based on research and theories of J. Gibson (1950, 1966, 1979), many have 

studied ways in which the human perceptual system is able to attune to information 

available in an ambient stimulus array (Long, et al., 2014; Cabe & Pittenger, 1992; Cabe, 

2011), particularly in the optic array (Gibson 1966, 1979; Lee, 1976; Bingham & Pagano, 



 7 

1998).  According to Gibson (1966, 1979), information in the optic/haptic array that 

follows the laws of physics reveals invariants to an observer, which can be used to guide 

actions.  For example, looming  of  an  object  in  the  environment  on  an  observer’s  retina  

can be perceived through information in the light.  As the distance between the object and 

the observer decreases, the rate of expansion specifies to the observer the time until one 

will make contact with the object, known as time-to-contact (TTC).  Lee (1976) 

demonstrated that TTC provides actionable information to an observer, based on the 

relationship between the distance between the object and the observer (area on the retina) 

and velocity (rate of change on the retina), which he labeled tau (see Figure 1).  For 

example, as an observer approaches a stop sign, the sign subtends a larger and larger 

amount of space in the visual field.  As the area of the sign increases on the retina, the 

observer perceives the distance between themselves and the sign to decrease.  This 

relative rate of expansion of the sign is expressed as: 

Relative Rate of Expansion = ΔArea/ΔTime 
                 Area 
 
 

The inverse specifies TTC, which denotes time remaining until the distance between the 

observer and the sign reaches zero, and is expressed as: 

TTC = ___Area___ 
ΔArea/ΔTime 
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Figure 1. Relationship  between  an  object’s  distance and the size of its projection on the 

retina. 

 
If the observer is sensitive to TTC, they can perceive the time remaining before 

the distance reaches zero without computing lower-order variables such as velocity, 

object size, or object distance.  Since, researchers have also examined looming and 

similar relationships in other modalities, such as acoustic TTC (Shaw, McGowen & 

Turvey, 1991), time-to-topple based on haptic information (Cabe & Pittenger, 1992), 

impending contact based on acoustic information (Schiff & Oldak, 1990), and haptic 

looming (Cabe, 2011).  Thus, it is likely that relationships similar to TTC exist in the 

haptic array when approaching the break point while deforming a soft tissue.   

Distance-To-Break (DTB) 

Tissue compliancy is perceived through the amount of tissue displacement or 

resistance in response to the amount of force applied, which gives the surgeon 
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information about fragility (Bergman Tiest & Kappers, 2009; Vincentini & Botturi, 2009; 

Srinivasan & LaMotte, 1995), and may offer information specifying the distance 

remaining until the material breaks.   Many soft biological tissues follow an exponential 

stress-strain pattern (Brouwer et al., 2001; Carter, Frank, Davies, McLean, & Cuscheri, 

2001; Fung, 1993; Rosen, Brown, De, Sinanan, & Hannaford, 2008; Yamada, 1970) 

where the reactionary forces increase in an exponential fashion as the displacement into 

the tissue increases towards the point of failure until the tissue finally breaks as the 

structural limits are reached.  Long et al. (2014) demonstrated that participants can 

successfully perceive the penetration distance remaining until a material will fail based 

on displacement and reactionary forces of simulated tissues using a haptic invariant 

comparable to TTC, Distance-to-Break (DTB).   

DTB = _____Force______ 
ΔForce/ΔDisplacement 

 
 Similar to TTC, DTB is a higher-order parameter that does not require the 

computation of lower-order variables such as force or tissue stiffness.  Rather, it is the 

ratio between the amount of force applied and the change in reactionary force as 

displacement increases.  As force is applied, deformation of the material and reactionary 

forces specify to the operator the amount of displacement which the tissue can tolerate 

before breaking (See Figure 2). Using nine different tissue profiles with varying break 

point distances and varying forces required to break each material, Long et al. (2014) 

demonstrated that novice participants are sensitive to DTB and can improve the 

perceptual skill of judging break points with a brief training phase through attunement 

and calibration. 
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Figure 2. Relationship between soft material displacement and mechanical force required 

for that displacement. 

Training Perception of DTB 

Virtual  environments  (VE’s)  are  a  common  means  for  providing  training  for  

situations that are dangerous, expensive, rare, or remote, such as laparoscopic surgery 

training (Bliss, Tidwell, & Guest, 1997; Darby, 2000; Peters et al., 2008).  A main 

advantage of virtual environments is that they provide a controlled scenario so users can 

repeatedly and safely interact with situations.  Due to the nature of MIS tasks, training on 

actual patients would be too dangerous and though cadavers and animal tissues are 

sometimes an option, it is often expensive, allowing the training surgeon minimal errors 

before being rendered useless (Coles, Meglan, & John, 2011).  However, medical 

simulators are becoming an increasingly accepted tool for the extensive training 

necessary to prepare surgeons. Medical simulators provide a safe, yet realistic 
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environment in which the surgeon can practice a task repeatedly and frequently to help 

maximize learning with the freedom to make mistakes. 

With practice, it may be possible to increase sensitivity to DTB by improving 

observers’  ability  to  discriminate  the  useful and meaningful properties available within 

the haptic array (Gibson, 1953; 1963; 1969; Gibson & Gibson, 1955).  Virtual simulators 

provide an opportunity for novices to experience frequent, repeated haptic interaction 

with tissues, providing an ideal scenario for perceptual learning (i.e. training).  Sensory 

systems are continually exposed to limitlessly rich information available for haptic 

perception that may or may not convey useful perceptual information about object 

properties.  Through experience and feedback, perceivers attend to the useful 

information,  and  haptic  perception  becomes  ‘tuned’  to  the  mechanically  useful  properties  

lawfully related to perceptual variables, known as specifying variables (Wagman, 

Shockley, Riley, & Turvey, 2001; Withagen & Michaels, 2005).  Before feedback, 

perceivers perceptually estimate an object property based on a combination of variables, 

both specifying and non-specifying variables, which are ambiguously related to the 

property.    Referred  to  as  “education  of  attention”  or  “attunement”,  observers  learn  to  

converge on the variables that are most correlated with the object property and which 

accurately predict it, attuning to the salient perceptual invariants that specify useful 

information (Gibson & Gibson, 1955; Gibson, 1963; Withagen & Michaels, 2005).   

The theory is that learning is more efficient when it involves perceptual 

attunement to meaningful information as opposed to the acquisition of complex mental 

structures.    Over  time,  the  perceptual  system’s  output  is  also correctly scaled for accurate 
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perceptual judgments, resulting in calibration of haptic perceptual systems (Withagen & 

Michaels, 2005).  Previous research in our lab has found such performance 

improvements, with accuracy of participant force applications during probing, grasping, 

and/or sweeping movements improving after experiencing a training phase, which 

incorporates visual feedback (Singapogu et al., 2011, 2013, in press; Long et al., 2012, 

2014).  Attunement and calibration training will be used in the current study to improve 

the ability of observers to perceive material failure points. 

Trocar Friction 

Although Long et al. (2014) were able to demonstrate that perceiving DTB is a 

trainable perceptual skill, several other factors must be taken into consideration to make 

sure the training transfers to actual MIS procedures before a DTB training program can 

be fully developed.  For example, basic research needs to demonstrate that training on the 

Core Haptic Skills Simulator transfers to perceiving DTB in real human tissues.  Also, 

more research is needed to investigate how participants learn to perceive DTB with the 

other motions performed during MIS surgery such as pulling, sweeping, and grasping 

(Singapogu et al., 2012b) and with haptic sensations more representative of the forces 

generated by multiple interactions within the MIS environment.  Not only do surgeons 

receive force feedback from applying pressure to internal organs and tissues, but the 

trocars, abdominal wall, and mass of the instrument alter the haptic feedback to the 

surgeon as well (Picod, Jambon, Vinatier, & Dubois, 2004).  Trocars are a sealing 

mechanism, made of short tubes at the site of the incision that act as a portal for tools to 

access the body organs and/or tissues and often maintain pressure within the body cavity 
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when fluid or gas is pumped in to better expose the surgical site. 

Because injury inflicted on tissues during MIS tends to be more frequent than in 

open surgery, it is imperative that surgeons learn to reduce the inappropriate over-

application  of  forces  which  damage  healthy  tissues.    It’s  possible  that  many  surgeons  

learn to ignore many of the complex haptic forces and compensate by visually observing 

the deformation of tissue as force is applied.  However, vision will not always provide 

enough information to a surgeon to perceive when a tissue is about to fail (Srinivasan & 

LaMotte, 1995; Klazky, Lederman, & Matula, 1993; Smyth & Waller, 1998), particularly 

if an unhealthy or abnormal tissue visually appears to be normal.  As discussed by Way et 

al. (2003), a great majority of these damages during cholecystectomy are caused by errors 

in perception, rather than errors in skill, knowledge, or judgment.  Although the surgeon 

is operating indirectly on a patient and challenged with issues of the remote perception 

problem, some believe the friction generated by the rubber seal in the trocar to be the 

most significant contributor to perceptual challenges which surgeons are sometimes not 

able to overcome (Perreault & Cao, 2006).   

In order to accurately attune to information of the biomechanical properties 

inherent in DTB, surgeons must be able to ignore haptic stimulation that is not relevant to 

the properties that are trying to perceive (i.e. non-specifying variables), including friction.  

But because the friction of the trocar can be relatively large compared to from the forces 

associated with the interactions between the tool and tissue, surgeons may not perceive 

that a tissue is near failure if it is very compliant or fragile.  One may have to probe 

harder in order to perceive the compliancy of a soft tissue, especially if the haptic 
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feedback from friction is very high.  Friction varies based on the type of trocar, the 

movement  velocity  and  direction  of  the  surgeon’s  pushing  or pulling gestures, and 

moistness (van den Dobbelsteen, Schooleman, & Dankelman, 2007).   

Perreault and Cao (2006) demonstrated that trocar friction may cause an increased 

haptic perception threshold, with novices applying more force and taking more time to 

detect contact with tissue when friction is present.  Early in training, surgeons must learn 

how  to  operate  despite  this  challenge.    It’s  possible  that  some  surgeons  are  already  

attuning to DTB or other haptic skills to differentiate between useful haptic information 

and non-specifying variables, while others choose to rely on visual information about 

deformation.  It is hypothesized that people can learn to ignore trocar friction, similar to 

the way the human perceptual system has been shown to accurately perceive the length of 

a rod by attuning to the invariant of inertia, ignoring the effects of wielding in different 

media such as air and water (Pagano & Cabe, 2003; Pagano & Donahue, 1999).  Also, 

Lamata et al. (2008) demonstrated that surgeons were able to discriminate between four 

different tissues with only force information available, despite large amounts of force 

feedback from trocar friction.  The goal of this research is to train participants how to 

attune to DTB and ignore other non-specifying variables so they can appropriately make 

use of perceptual information from visual and haptic modalities. 

Purpose and Goals 

Experienced surgeons have demonstrated the skills to accurately produce and 

perceive haptic forces, although it is unlikely that they were specifically trained how to 

attune to those forces.  Training devices are currently being developed that are 
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specifically devoted to training haptic skills.  Trainees have shown significant 

improvement even after only a brief training period, demonstrating that it is a learnable 

skill (Singapogu et al., 2012a; Singapogu et al., 2012b).  Although few experiments have 

investigated the effect of haptic feedback in a virtual environment (VE) simulator, the 

majority of research supports the idea that haptic feedback should be incorporated into 

VE training based on findings on the importance of haptics in minimally invasive surgery 

(Singapogu et al., 2012a).   

Two experiments are designed to investigate whether observers are able to 

perceive DTB in nonlinear compliant materials through haptic force application, even 

with a simulated friction term added to the force feedback, and then use this information 

to identify the distance remaining until mechanical failure.  The first experiment will test 

four hypotheses: 

1. Participants are sensitive to DTB  

2. Participants can detect DTB with varying friction levels present 

3. Ability to locate DTB with varying levels of friction is a skill that can be 

improved through training.   

4. Sensitivity to DTB will transfer to a task where participants must stop before 

the break point is reached 

The second experiment will test one additional hypothesis: 

5. Sensitivity to DTB generalizes to a pulling task.    
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Procedure and materials used are very similar to those used by Long et al. (2014).  

The first experiment examined to see if participants’ perception of DTB is altered by the 

presence of varying levels of simulated trocar friction. Similar to Pagano and Cabe (2003; 

Pagano & Donahue, 1999), which demonstrated that participants were able to attune to a 

mechanical invariant, inertia, even when other forces (e.g. water resistance) were 

included, we expect novices to attune to DTB of different nonlinear materials while 

ignoring other forces.  This experiment also examined participants’  ability to improve 

perception  of  DTB  with  training.    It  is  possible  to  increase  an  observer’s  reliance  on  

perceptual invariants with feedback and practice attuning to the relevant information in 

the stimulus array (E. Gibson, 1969; J. Gibson, 1966; Withagen & Michaels, 2005).  With 

experience, the useful information will become more distinct within the haptic array as 

the perceptual system identifies them as being lawfully related to material properties of 

the tissue predicting failure.  Once an observer becomes more sensitive, or attunes, to the 

relevant mechanical properties, continued feedback will allow the haptic perceptual 

system to calibrate, becoming more sensitive to the useful mechanical properties as 

useful information is scaled for accurate perceptual judgments.  Attunement and 

calibration have been shown to improve perceptual judgments of kinesthetic properties 

through training and feedback (Long, et al., 2012, 2014; Singapogu, et al., 2013, 2014; 

Wagman et al., 2001; Withagen & Michaels, 2005).  With training, attunement and 

calibration should allow participants to become sensitive to the mechanical information 

specifying the location of material failure points and improve judgments of DTB.  
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CHAPTER TWO 

EXPERIMENT ONE 

 
To test for effects of attunement and calibration, probing of simulated materials 

was evaluated with a pretest, feedback, posttest, and transfer-of-training phase design, 

with performance data in the pretest addressing Hypothesis 1, that participants are able to 

detect DTB with friction present, and performance data in the posttest and transfer-of-

training phases addressing Hypothesis 2, that DTB is a trainable skill that participants can 

calibrate with training.  Friction was simulated in some trials during each of the four 

phases.  To allow free exploration of probing materials without revealing feedback of 

break point judgments during pretest and posttest phases, materials were designed to 

provide useful information as the participant rode the nonlinear curve of the 

biomechanical properties of the tissue, but not actually break at the breaking point.  

Rather, at the point of mechanical failure, the tissues’  force  profile  “flattened  out”  by 

maintaining forces as they were presented at the point of failure.  During the feedback 

phase, feedback was provided visually.  To investigate effects of DTB attunement in a 

more realistic MIS scenario, further validating training capability of the Core Haptic 

Skills Trainer, the transfer-of-training phase presented virtual materials to participants 

that  actually  “broke”  at  the  appropriate  breaking  point.    These  two  types  of  presentations  

are referred to as Task 1 and Task 2. 

Task 1 is an exploratory break detection phase which allows participants to freely 

explore various simulated materials by pushing, or probing, into the material with a 

laparoscopic tool.  Similar to other training simulators, the Core Haptic Skills Simulator 
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allows participants to explore the theoretical materials with great variety of force 

applications, breaking materials numerous times, without the negative consequences as in 

actual surgery.  Participants were encouraged to examine each tissue to indicate the 

location at which they believe it feels as if it should break, applying forces both greater 

than and less than what the virtual mechanical could withstand.  Task 2 presented virtual 

nonlinear  materials  that  truly  “broke”,  examining  if  participants  could successfully detect 

DTB without breaking the simulated material.  During the transfer-of-training phase, 

Task 2 instructions were used, instructing participants to probe as close as possible to the 

breaking point without actually breaking the material.  In order to successfully complete 

this task, participants had to  perceive  the  location  of  the  material’s  breaking  point  before 

actually tearing the material. 

Methods 

Participants 

 50 university undergraduate students between the ages of 17 and 22 (M = 18.2, 

SD = 0.7) participated in Experiment 1 after providing informed consent, none of whom 

had any experience practicing MIS.  35 were female and 15 were male. Participants 

received course credit in exchange for their participation. 

Materials & Apparatus 

1. Simulator 

Nonlinear soft tissues were rendered using the Core Haptic Skills Trainer, a 

simulator developed at Clemson University with the purpose of training force-based 

skills in laparoscopic surgery.  The simulator emulates three different force-based skills 
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identified as particularly salient in minimally invasive surgery; grasping, probing, and 

sweeping (see Singapogu et al., 2011, 2012a, 2012b, 2013). Probing was used in the 

present study. 

The force-based skills were integrated into a comprehensive simulator containing 

a single input device permitting the user to make discrete probing, grasping, and 

sweeping motions (see Figure 3).  The input device was a laparoscopic surgical forceps 

tool with a scissor grip handle with pinchers removed (a Covidien AutosutureTM Endo® 

device, Dublin, Ireland).  A robotic motion system delivered force feedback to the input 

device through two direct-drive DC motors (Tohoku RiochTM, Miyagi 987-0511, Japan) 

located at the center and the end of the forceps shaft.  Through a series of computer 

algorithms, the system renders force feedback by generating a torque in response to user 

motion. 

Haptic feedback rendered by the simulator emulates the tool coming into contact 

with and encroaching into an amenable mass, such as soft tissue.  For probing, the user 

applies force through the input device by gripping the handles of the input device and 

pushing the tool forward.  Advancing the tool produced feedback imitating coming into 

contact with and then pushing onto soft tissue, effectively simulating the tensile forces 

experienced as one stretches soft tissue. 

Task 2 is designed to present haptic feedback which would render the simulated 

material  truly  ‘breaking,’  or  failing,  when  excessive  force  is  applied.    As  the  user  applies  

more force through the input tool, resistive force feedback increases at an exponential 
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rate.  Once the applied force becomes great enough, resistive feedback will immediately 

cease, emulating a soft tissue perforation.  

  

Figure 3. Schematic and photographic representation of the Core Haptic Skills Training 

Simulator (Singapogu, et al., 2013). 

2. Visual feedback 

Visual feedback was incorporated into the feedback training phase, allowing 

participants to view errors and then adjust, or calibrate, their force application after each 

trial.  The feedback was presented by a custom visual graphic displayed on a monitor, 

which indicates tool position and placement along the simulated material (see Figure 4).  

The graphic included a movable red vertical, dynamic bar indicating normalized probed 

distance and a fixed blue vertical bar indicating the actual break point position.  The red 

marker was proportional to the placement of the tool, and moved in response to 

increasing and decreasing applied force through the surgical input tool.  At the starting 

position, the marker was located at the far left, moving from left to right as force is 

applied.  Because the breaking point for each simulated material varied, relative to the 

material profile itself (described in detail below), the indication for break point in the 

graphic was static.  Thus, the location of the break point in the graphic did not change; 
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only the application force required to move the indicating marker varied.  Participants 

were asked to make their estimate of where they would place the tool to arrive as close to 

the designated break point as possible without going past. Once a participant verbally 

indicated they had made their estimate, they held the position of the tool while the 

experimenter made the graphic display available so the participant was able to view 

where their estimate was located relative to the break point. Participants were then asked 

to adjust the tool as necessary to align it with the break point.  

 

Figure 4. Visual graphic used in calibration feedback phase (Long et al., 2014). 

3. Simulated Material Profiles 

Four different nonlinear materials were simulated, based on profiles similar to soft 

tissues exhibiting exponential stress-strain relationships in response to compressive and 

tensile force loadings (Brouwer et al., 2001; Fung, 1993; Rosen, et al., 2008).  The four 

compliance profiles and breaking points were designed to be the product of two different 

material strengths (F) at four different displacement locations (d) (see Figure 5).  Thus, 

each material contained a different point of failure, or location at  which  it  would  ‘break.’  

Observers could not rely solely upon one varying dimension or the other when correctly 

determining DTB, but must rely on the invariant relationship between the two of them.  
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As one dimension is modified and the point of failure changes, the relationship will still 

be maintained, which should be sufficient for specifying DTB.   

 

Figure 5.  The four simulated material profiles and their designated breaking point 

location. 

Each of the four materials were presented with varying amounts of simulated 

trocar friction: no friction (0N), low friction (1.5N), and high friction (3N).  This range of 

friction levels encompasses the actual trocar friction observed, which can range from 0.25 

N to 3 N (van den Dobbelsteen, Schooleman, & Dankelman, 2007).  Thus, during pretest, 

posttest, and transfer-of-training phases, participants examined each material with no 

added friction, with low levels of trocar friction, and high levels of trocar friction.  

During the calibration phase, only three materials were used (see Figure 7). Tables 1a, 1b, 

and 1c display all of the metrics defining the nonlinear characteristics for each material 

profile, including break point distance and reactionary force.   

Procedure 
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 This experiment used a pretest, feedback, posttest, transfer-of-training model to 

examine attuning and calibration effects to DTB.  The pretest provided a pre-training 

baseline to compare with posttest performance after feedback training.  An additional 

transfer task evaluated the degree to which DTB perceptual skill carried over to a novel, 

more realistic MIS task.  On the initial day of testing, participants who provided informed 

consent completed the pretest after an introductory training phase, which allowed 

participants to survey a single nonlinear material, helping them become comfortable with 

the laparoscopic tool and the task.  Within the next seven days, participants returned for 

the feedback training phase, posttest, and transfer-of-training phases.   

1. Pretest Phase 

For the first phase, participants completed what has been defined as Task 1.  They 

applied forces up to and beyond a hypothetical break point for four simulated materials 

presented at 3 varying levels of simulated trocar friction (no friction, low friction, and 

high friction), with the goal of identifying the location at which the material should fail 

(see Figure 7).  Each material was presented three times with no friction, three times with 

low added friction, and three times with high added friction (4 materials x 3 friction 

levels x 3 presentations), for a total of 36 trials.  No visual feedback was provided and 

once the break point was reached, the material did not actually break so as to minimize 

haptic feedback indicating successful judgment of DTB. They could freely explore the 

material at whatever speed they feel most comfortable.  Participants made their estimates 

by suspending their force application and verbally designating their estimate to the 

experimenter. The experimenter logged the trial in MatLab, which captured the applied 
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force and distance at that moment.  At the end of each trial, the participant returned the 

surgical tool to the starting position before beginning the next trial. 

 

Figure 6.  The four simulated material profiles and their hypothetical breaking point 

location displayed during the pretest and posttest phases. 

2. Feedback training phase  

When participants returned for the second day of the experiment they completed 

the training phase, which followed the same procedures as the pretest, but incorporated 

the visual feedback graphic to allow participants to calibrate their haptic estimate, and 

utilized for only three of the four experimental tissue profiles at two levels of friction (3 

materials x 2 friction levels x 4 presentations) for a total of 24 trials.  The feedback 

training phase was completed two to eight days after the pretest phase (M = 4.1, SD = 

1.8). Participants were informed that the goal of the training is to learn to apply sufficient 

force  onto  each  simulated  profile  without  ‘breaking’  the  material.    Similar  to  the  pretest,  

participants were allowed to freely explore the material at any speed or direction.  They 

were also instructed that identifying the failure point should occur before reaching the 

breaking point, and that later phases will score excessive force applications as an error. 
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 Similar to the pretest, participants indicated the location of the hypothetical 

breaking point, although rather than immediately returning to the starting position for the 

next trial, they were then shown a visual graphic of their performance, allowing them to 

calibrate and make adjustments to their haptic estimate (see Figure 4).  The task was to 

locate the designated breaking point along the three materials depicted in Figure 7, again 

applying the amount of force they believed was required to puncture, or break, the 

material.  After receiving feedback, the participant was allowed to adjust the tool to feel 

the  appropriate  ‘break’  point.  In order to examine practice effects, half of the participants 

were randomly assigned to participate in a control condition, in which they completed the 

same task as the pretest during what would be the feedback phase for those in the 

experimental condition, resulting in a pretest, pretest, posttest, transfer-of-training model.   

 

Figure 7.  The three simulated material profiles and their designated breaking point 

location displayed during the feedback training. 

3. Posttest phase 

Participants took a five-minute break between concluding the feedback training 

phase and beginning the posttest phase, which used the same protocol and the same four 

materials as the pretest phase.  As in the pretest, each material was presented three times 
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with no friction, three times with low added friction, and three times with high added 

friction (4 materials x 3 friction levels x 3 presentations), all without any visual feedback, 

for a total of 36 trials. 

4. Transfer-of-Training (ToT) Task 

Participants took another five-minute break between concluding the posttest phase 

and beginning the transfer-of-training phase.  The transfer task was similar to the first 

three phases, presenting the same four materials as in the pretest and posttest, except that 

the designated break point location within the simulated profiles was rendered to truly 

emulate breakage.  As force was applied, the reactionary force of the material increased 

until a certain point at which the material failed (see Figure 8), haptically emulating 

puncture.  The same four tissue profiles used in the pretest and posttest phases were used 

for this task, with the breaking points occurring at the same displacement location, 

although the material function approaches an asymptotic direction at the break point.  

Each participant was instructed to apply as much force as they could to the materials 

without breaking the material.  During the instructions, they were given an analogy to 

better understand the task: like being near the edge of a cliff, the goal was to inch as close 

to the edge as possible without going over.  Any trials in which a material was broken 

with excessive force were marked as an error, ending the trial, which were then 

represented at the end of the 36 original material presentations.  Participants repeated 

trials of broken materials until they successfully complete the 36 trials (4 materials x 3 

friction levels x 3 presentations).  Performance was measured based on the proximity of 

force application to the breaking point and the number of tissue breaks.   
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Figure 8.  The four simulated material profiles and their respective actual break point 

locations used in the transfer-of-training phase. 

Metrics for Analysis 

1. Distance 

Displacement traveled by the input device into the simulated materials was 

presented by the simulator in terms of millimeters, which ranged from 0 to 35 mm, with 

four values designed as breaking points at 7.5, 15, 22.5, and 30 (see Table 1). 

2. Force 

Reactionary force rendered by the simulator was presented as rendered voltage 

and transformed into Newtons, both of which are displayed in Table 1.  Two voltages 

will define the reactionary behavior by the simulator: 3 and 5. The simulator will directly 

record voltage, which is then transformed into Newtons (see Table 1). 
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Table 1 

Distance and reactionary force qualities at material break point defining each simulated 

profile 

Material 
Profile 

Distance – all 
friction levels 

Reactionary force 
– no friction 

Reactionary force 
– low friction 

Reactionary force  
- high friction 

Millimeters Newtons Newtons Newtons 
1 7.5 3 4.5 6 
2 15 5 6.5 8 
3 22.5 3 4.5 6 
4 30 5 6.5 8 

 

3. Accuracy  

Accuracy will be defined as the difference between the participants’ indicated 

break point location and the actual break point location of the simulated material profiles.  

When presented with materials that do not truly break, as in Task 1, the difference could 

be positive, indicating over application of force, or negative, indicating under application 

of force.  When presented with materials that truly break with excessive force 

application, as in Task 2, accuracy will only be negative since estimates must be short of 

the true break location. 

Results 

 Data were screened for outliers and for logging errors with the simulator.  Due to 

the restricted range of motion of the simulator, no trials exceeded a z-value of +3, so no 

trials were excluded as outliers.  However, 20 pretest trials and 27 posttest trials in the 

experimental condition, as well as 20 pretest trials and 20 posttest trials in the control 

condition, were not correctly recorded, with all values logged as 0 and were discarded. 
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Performance was assessed by analyzing displacement into the simulated material 

via distance in millimeters.  Means and standard deviations of distance are displayed by 

material type in the experimental condition in Tables 2a, 2b, and 2c.  Break point 

estimates from the pretest and posttest, averaged across all participants in the 

experimental group are also displayed in Figures 9 and 10. 

Table 2a 

Average break point distance estimate means and standard deviations (mm) by profile 

type in experimental condition with no friction 

Material 
Profile 

Actual 
Break 

Distance 

Pre Feedback Post Transfer 

 M SD M SD M SD M SD 
1 7.5 24.7 12.7 13.4 8.9 15.1 9.5 13.4 10.1 
2 15 24.3 9.6 14.9 2.8 15.1 2.2 14.4 3.6 
3 22.5 30.8 6.8 23.8 3.5 24.2 4.7 24.5 5.7 
4 30 31.2 5.3 NA NA 27.5 3.8 27.5 2.2 

 

Table 2b 

Average break point distance estimate means and standard deviations (mm) by profile 

type in experimental condition with low friction (1.5N) 

Material 
Profile 

Actual 
Break 

Distance 

Pre Feedback Post Transfer 

 M SD M SD M SD M SD 
1 7.5 22.5 12.8 10.1 5.4 8.6 3.2 11.9 8.8 
2 15 21.5 8.3 14.3 2.9 13.5 1.9 13.8 2.3 
3 22.5 28.1 7.6 22.4 2.9 21 4.6 22.6 4.4 
4 30 28.8 6.9 NA NA 26.1 4.8 26.5 2.4 
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Table 2c 

Average break point distance estimate means and standard deviations (mm) by profile 

type in experimental condition with high friction (3N) 

Material 
Profile 

Actual 
Break 

Distance 

Pre Feedback Post Transfer 

 M SD M SD M SD M SD 
1 7.5 22.7 12.6 NA NA 8.2 3 9.5 6.7 
2 15 21.3 8.7 NA NA 13.3 3.3 13.3 0.8 
3 22.5 28.2 8.2 NA NA 19.8 4.6 20 5.6 
4 30 29 7.1 NA NA 23 7.9 24.8 4.3 

 

  

 
 
Figure 9. Average pretest break point estimates as a function of actual break point for all 

participants in the experimental condition. 



 31 

 
Figure 10. Average posttest break point estimates as a function of actual break point for 

all participants in the experimental condition. 

 
Means and standard deviations of distance are displayed by material type in the 

control condition in Tables 3a, 3b, and 3c.  Break point estimates from the pretest and 

posttest, averaged across all participants in the experimental group are also displayed in 

Figures 13 and 14. 

 

 

 



 32 

Table 3a 

Average break point distance estimate means and standard deviations (mm) by profile 

type in control condition with no friction 

Material 
Profile 

Actual 
Break 

Distance 

Pre Feedback Post Transfer 

 M SD M SD M SD M SD 
1 7.5 25.6 11.4 20.1 10.9 20.7 10.2 6.8 0.5 
2 15 21.3 8 21.7 7.6 20.9 7.2 13.4 0.8 
3 22.5 28.9 7 28.7 5.5 27.8 5.8 20.6 2.1 
4 30 31 4.6 NA NA 29.7 3.8 26.2 3 

 

Table 3b 

Average break point distance estimate means and standard deviations (mm) by profile 

type in control condition with low friction (1.5N) 

Material 
Profile 

Actual 
Break 

Distance 

Pre Feedback Post Transfer 

 M SD M SD M SD M SD 
1 7.5 20.6 11.1 19.2 10 16.6 9.6 6.8 0.6 
2 15 20 7.4 19.8 7.1 18.7 5.8 13.1 1.5 
3 22.5 27.8 6.4 27.1 6 26.2 5.8 19.8 3.1 
4 30 28.6 6.6 NA NA 28.1 5.4 25.3 3.9 

 

Table 3c 

Average break point distance estimate means and standard deviations (mm) by profile 

type in control condition with high friction (3N) 

Material 
Profile 

Actual 
Break 

Distance 

Pre Feedback Post Transfer 

 M SD M SD M SD M SD 
1 7.5 18.6 10.6 NA NA 15.2 9.4 6.6 1 
2 15 18.7 7.9 NA NA 17.5 7.1 13 1 
3 22.5 24.4 7.6 NA NA 21.8 7.9 18.9 3.8 
4 30 25.2 8.3 NA NA 25.1 6.7 22.5 6 
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Figure 11. Average pretest break point estimates as a function of actual break point for 

all participants in the control condition. 
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Figure 12. Average posttest break point estimates as a function of actual break point for 

all participants in the control condition. 

 

Simple regression models were used to determine the slopes and intercepts of the 

functions predicting indicated distance from actual break point distance for each 

participant and for each experimental phase.  Then, they are used for the comparisons of 

the contributors to perceptual estimates of distance of actual target distance and actual 

force.  Slopes, intercepts, and R2 values for both metrics for each participant across 
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phases are displayed in Tables 4a, 4b, 4c, and 4d for those in the experimental condition, 

and Tables 5a, 5b, 5c, and 5d for those in the control condition.  Perfect performance 

estimating break point would result in a R2 = 1, slope = 1, and intercept = 0 for actual 

distance and R2 = 0 for actual force. Slopes and intercepts given by regression techniques 

are more useful than other descriptive statistics such as session means and signed error 

because they describe the function that takes you from the actual target distances to the 

perceived target distances. Trials in which participants broke the material were excluded 

from analyses in the ToT Task, presented in Tables 4d and 5d, as the sudden decrease of 

reactionary  force  would  cause  the  participant’s  estimate  to  fall  close  to  or  at  the  end  of  

the physical limitations of the simulator.
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Table 4a 

 Average R2, Slope, and Intercepts of Simple Regressions Predicting Break Point Estimates from Actual Break Point during the 
Pretest Phase for Each Participant in the Experimental Condition 

 Friction 1 Friction 2 Friction 3 
Participant R2 Slope Intercept R2 Slope Intercept R2 Slope Intercept 

1 .082 -.09 39.2 .038 .07 35.2 .009 .04 35.5 
2 .594 .65 18.8 .184 -.28 34.4 .159 -.44 28.4 
3 .168 .28 27.4 .000 .004 34.6 .014 -.04 35.5 
4 .434 .43 22.2 .408 -.82 36.07 .099 -.25 29.1 
5 .000 .007 32.8 .817 .73 5.9 .324 -.2 40.9 
6 .207 -.18 39.2 .108 .25 21.6 .407 .41 15.2 
7 .116 -.13 38.7 .088 .17 32.5 .003 -.02 35.8 
8 .897 1.02 -.2 .686 .69 5 .963 .8 1.3 
9 .162 .35 14.7 .983 .84 1.3 .794 .58 6.4 

10 .209 -.4 38.4 .478 -.25 38.4 .345 -.26 39.7 
11 .249 .49 16.5 .109 .21 22.7 .000 -.001 25.7 
12 .148 -.28 29.8 .019 .1 25.2 .42 .57 14.8 
13 .262 .5 16.6 .104 .28 10.1 .464 .59 4.6 
14 .984 .92 .8 .976 .9 1.3 .992 .95 -.2 
15 .843 .7 8 .979 .9 .9 .616 .7 2 
16 .000 .004 37.9 .002 .02 33.2 .223 -.17 37.8 
17 .066 -.17 37.3 .412 .57 10.5 .07 .27 21.4 
18 .392 .38 25 .425 .56 19.5 .243 .49 18.4 
19 .303 .49 17.3 .389 .5 21 .257 .49 13.2 
20 .991 .89 0 .994 .89 1.2 .96 .86 2.2 
21 .981 .91 .9 .978 .85 1.2 .416 .47 11.1 
22 .25 .5 9.8 .998 1.02 -.3 .987 1 -.4 
24 .008 .04 34.5 .148 -.28 37.4 .001 .009 35.4 
25 .072 .16 29.5 .000 .01 29.7 .005 -.05 26.5 
31 .908 1.08 -.8 .925 1.08 -.9 .614 .62 6.3 

Avg .373 .34 21.4 .450 .36 18.3 .375 .3 19.5 
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Table 4b  
 
Average R2, Slope, and Intercepts of Simple Regressions Predicting Break Point Estimates from Actual Break Point during the 
Feedback Phase for Each Participant in the Experimental Condition 

 Friction 1 Friction 2 
Participant R2 Slope Intercept R2 Slope Intercept 

1 .004 -.06 27.7 .459 .45 11.9 
2 .787 .81 4.4 .591 .62 7.9 
3 .002 -.06 28 .864 .91 3.5 
4 .002 .04 21 .517 .84 3.3 
5 .768 .71 6.1 .331 .48 9.1 
6 .89 1 .6 .975 .97 .7 
7 .355 .56 8.3 .984 1 -1.1 
8 .724 .84 3.1 .967 1 -.57 
9 .165 .42 9.3 .62 .67 3 

10 .957 1.1 -1 .055 .33 12.3 
11 .457 .56 7.9 .871 .92 2 
12 .458 .49 9.5 .887 .98 1.5 
13 .973 1 -.67 .931 .97 -.6 
14 .995 1.03 -.77 .98 .95 .07 
15 .677 .69 7.1 .962 1.03 -1.87 
16 .893 .75 4.16 .44 .81 3.65 
17 .937 .95 .52 .89 .88 1.5 
18 .87 .99 1.59 .859 1.09 .43 
19 .064 .36 15.05 .089 .38 12.42 
20 .136 .54 9.5 .975 .92 .69 
21 .99 1.04 -.76 .981 .89 1.19 
22 .981 .95 1.07 .991 .98 .22 
24 .335 .59 7.71 .142 .39 10.4 
25 .242 .79 6.84 .983 1 -.31 
31 .882 1 0.5 .957 1.1 -1.5 

Avg .582 .68 7.1 .732 .82 3.2 
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Table 4c  
 
Average R2, Slope, and Intercepts of Simple Regressions Predicting Break Point Estimates from Actual Break Point during the 
Posttest Phase for Each Participant in the Experimental Condition 

 Friction 1 Friction 2 Friction 3 
Participant R2 Slope Intercept R2 Slope Intercept R2 Slope Intercept 

1 .712 .63 7.32 .083 .17 8.19 .203 -.18 11.64 
2 .486 .55 12.39 .971 .9 1.09 .32 .58 1.16 
3 .131 .29 25.74 .877 .81 6 .084 .25 8.05 
4 .18 .24 11.87 .194 .36 12.11 .731 .76 5.07 
5 .208 .37 16.5 .858 .7 5.37 .809 .89 -1.35 
6 .278 .38 14.37 .902 .7 5.5 .923 .69 5.06 
7 .292 .53 7.6 .555 .74 .16 .976 .86 .45 
8 .031 .14 21.4 .984 .85 .73 .938 .82 .56 
9 .811 .66 4.31 .997 .86 1.53 .117 .23 8.73 

10 .964 .89 2.33 .764 .88 -.12 .989 .89 1.32 
11 .969 .8 3.41 .493 .63 3.65 .607 .6 3.32 
12 .052 .19 20.58 .991 .876 1.71 .712 .68 7.22 
13 .108 .28 19.05 .988 .92 1.08 .995 .9 .23 
14 .994 .92 .58 .995 .94 -.6 .977 .97 -1.95 
15 .997 .92 .35 .991 .93 -.1 .955 .79 .98 
16 .991 .84 2.67 .39 .53 3.55 .002 .03 10.09 
17 .904 .94 2.64 .989 .86 .95 .996 .904 .433 
18 .518 .55 7.53 .985 .9 .89 .599 .7 3.22 
19 .213 .43 15.21 .961 2.3 .91 .902 .84 3.14 
20 .998 .93 .45 .995 .93 0 .993 .88 .68 
21 .995 .94 .2 .993 .92 .08 .683 .64 1.98 
22 .99 .95 1.3 .995 .93 1.48 .992 .94 .72 
24 .749 .67 10.05 .824 .85 1.88 .659 .42 11.9 
25 .211 .42 14.79 .996 .95 -.04 .982 .96 .56 
31 .995 .99 -.12 .995 .96 -.33 .95 .88 1.4 

Avg .591 .62 8.9 .831 .86 2.23 .724 .68 3.38 
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Table 4d  
 
Average R2, Slope, and Intercepts of Simple Regressions Predicting Break Point Estimates from Actual Break Point during the 
ToT Phase for Each Participant in the Experimental Condition 

 Friction 1 Friction 2 Friction 3 
Participant R2 Slope Intercept R2 Slope Intercept R2 Slope Intercept 

1 .997 .92 -.01 .991 .94 -.4 .733 .78 .3 
2 .991 .94 .03 .981 .85 1 .991 .84 1 
3 .991 .95 -.1 .995 .9 .7 .275 .51 6 
4 .359 .36 8 .9 .8 1.3 .432 .33 6.5 
5 1.0 .95 -.3 .985 .9 .2 .934 .8 -.2 
6 .994 .95 .1 .997 .95 .04 .918 .75 2.6 
7 .932 .88 .3 .995 .87 .7 .991 .89 .6 
8 .995 .9 .01 .987 .9 -.1 .834 .68 2.6 
9 .991 .9 .7 .991 .84 1.2 .993 .78 1.6 
10 .995 .92 .3 .962 .79 1.8 .994 .92 .01 
11 .993 .91 .5 .999 .94 -.2 .983 .92 .07 
12 .994 .95 .3 .996 .9 .6 .943 .87 .4 
13 .997 .96 .2 .993 .92 -.03 .984 .88 .5 
14 .997 .93 .4 .996 .93 .2 .996 .97 -1 
15 .990 .92 -.4 .995 .88 .3 .985 .77 1.1 
16 .997 .93 .3 .858 .76 1.4 .983 .86 .7 
17 .996 .93 .2 .992 .83 .6 .624 .6 4.5 
18 .995 .93 -.1 .620 .7 3.1 .990 .89 .6 
19 .999 .95 -.08 .998 .92 .4 .997 .93 .2 
20 .992 .91 .35 .995 .89 .2 .988 .86 7 
21 .996 .96 -.5 .994 .9 .2 .971 .79 1.3 
22 .999 .99 -.7 .996 .96 -.2 .998 .98 -.8 
24 .988 .91 .5 .987 .86 .1 .997 .89 .07 
25 .994 .95 -.5 .985 .92 -1.1 .978 .84 .7 
31 .998 1 -.6 .994 .96 -.5 .998 .93 .04 

Avg .967 .91 .4 .967 .88 .5 .900 .81 1.5 
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Table 5a  
 
Average R2, Slope, and Intercepts of Simple Regressions Predicting Break Point Estimates from Actual Break Point during the 
Pretest Phase for Each Participant in the Control Condition 

 Friction 1 Friction 2 Friction 3 
Participant R2 Slope Intercept R2 Slope Intercept R2 Slope Intercept 

23 .041 .1 29.4 .147 .08 28 .088 -.39 30.7 
26 .003 -.05 26.8 .309 .49 12.4 .000 .02 21.6 
27 .051 .08 35 .119 -.09 37 .001 -.01 32.9 
28 .018 -.13 27.2 .966 1.7 .86 .980 .92 -0.2 
29 .110 -.11 38 .016 -.07 31 .464 .48 13.3 
30 .025 -.1 35.7 .298 .53 11 .766 .48 9.4 
32 .946 .9 4.2 .435 .61 7.2 .008 -.03 12.8 
33 .617 .59 16.6 .428 .58 14.3 .805 .85 5.9 
34 .164 .42 15.7 .483 .5 13.1 .965 .93 1 
35 .001 -.02 33.4 .468 .47 11.9 .021 .09 15.1 
36 .024 .12 28.3 .883 .88 3.1 .094 .09 28.5 
37 .882 .89 5.6 .452 .66 13.5 .103 .29 6.6 
38 .077 .35 21.3 .737 1.1 0.9 .980 .89 0.8 
39 .150 .38 20.9 .666 .85 6.7 .935 .84 4.2 
40 .784 .63 1.4 .106 .15 7.3 .002 .02 6.4 
41 .247 .36 24.8 .275 .47 19.1 .153 .19 26.3 
42 .616 .79 5.5 .002 -.03 35.8 .272 .41 17.6 
43 .053 .13 28.3 .118 .18 25.8 .038 -.08 30.1 
44 .334 .63 9.6 .981 .87 2.1 .922 .85 2.5 
45 .950 .87 2.5 .874 .94 -0.1 .973 .99 0.3 
46 .154 .25 23.1 .254 .26 25.8 .001 .02 25.9 
48 .106 .24 26.9 .037 .03 34.1 .078 -.06 34.2 
49 .101 .2 22.8 .041 .1 28.6 .290 .39 21.4 
50 .006 .05 19.9 .008 .05 21.1 .081 -.22 28.7 
52 .769 .73 7.6 .114 .25 14.7 .553 .74 6.1 

Avg .289 .33 20.4 .369 .45 16.2 .383 35 15.3 
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Table 5b  
 
Average R2, Slope, and Intercepts of Simple Regressions Predicting Break Point Estimates from Actual Break Point during the 
Feedback Phase for Each Participant in the Control Condition 

 Friction 1 Friction 2 
Participant R2 Slope Intercept R2 Slope Intercept 

23 .000 0 30.2 .003 .04 29.8 
26 .959 .85 1.3 .283 .41 9.5 
27 .191 .15 31.4 .125 .11 33.5 
28 .784 .74 4.5 .396 .59 5.8 
29 .821 1 1.8 .499 .7 8.8 
30 .289 .38 25.5 .616 .58 21.9 
32 .923 1.1 4.3 .861 .84 8 
33 .561 .57 14 .966 .88 2.9 
34 .318 9.91 .6 .462 .61 9.8 
35 .379 .62 9.9 .735 .72 4.4 
36 .985 .98 -.8 .818 .77 1.8 
37 .825 1.13 .5 .891 1.1 2.4 
38 .004 .06 32 .102 .55 13.5 
39 .824 1 2.8 .907 1 .2 
40 .871 .84 7.3 .843 .75 6.2 
41 .004 .07 26.4 .112 .35 23.1 
42 .294 .32 25.3 .01 27.2 .06 
43 .269 .34 23.8 .039 .09 29.4 
44 .776 1.3 -3.1 .762 1.2 -1.9 
45 .012 -.14 33.1 .568 .84 7.6 
46 .871 .68 16.1 .309 .448 9.6 
48 .067 -.1 36.5 .022 .07 30.9 
49 .167 .34 25.2 .269 .47 21.1 
50 .983 .95 -1.1 .281 -.58 31.9 
52 .138 .33 20.5 .515 .7 14.1 

Avg .493 .94 14.7 .456 1.62 13 
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Table 5c  
 
Average R2, Slope, and Intercepts of Simple Regressions Predicting Break Point Estimates from Actual Break Point during the 
Posttest Phase for Each Participant in the Control Condition 

 Friction 1 Friction 2 Friction 3 
Participant R2 Slope Intercept R2 Slope Intercept R2 Slope Intercept 

23 .077 .17 26.2 .014 -.09 26.8 .026 .12 24.7 
26 .858 .74 3.8 .988 .84 .5 .993 .89 -.3 
27 .135 .1 27.8 .1 .07 24.7 .07 -.11 31.5 
28 .056 .15 18.6 .994 .91 .1 .861 .69 2.3 
29 .309 .5 15.1 .851 .94 2.1 .215 .41 9.1 
30 .252 .23 25.1 .001 .02 24.1 .118 -.25 25.6 
32 .774 .78 10.8 .93 1 7 .967 .92 5.9 
33 .961 .92 3.3 .968 .96 1.2 .958 .96 -.89 
34 .359 .45 13.5 .899 .62 6.2 .084 .17 10.2 
35 .903 .91 1.8 .885 .83 .2 .794 .59 6.8 
36 .553 .69 7.6 .986 .89 .2 .992 .85 1 
37 .408 .45 21.6 .867 .96 6.3 .014 -.099 18.3 
38 .219 -.14 36.2 .000 .01 28.4 .994 .92 .4 
39 .295 .54 11.2 .984 .14 1 .410 .79 -1.9 
40 .98 .79 8.5 .955 .88 6.2 .577 .84 4.7 
41 .000 .001 26.7 .416 .54 17.7 .392 .5 21.5 
42 .011 .04 29.7 .624 .38 21.5 .56 .49 11.4 
43 .528 .22 29.1 .056 .11 31.5 .009 -.04 32.1 
44 .334 .62 9.5 .992 .93 -.4 .985 .97 -1.2 
45 .327 .45 19 .792 .73 10.2 .646 .58 2.5 
46 .262 .41 11.5 .01 .05 19.3 .128 -.11 15.8 
48 .002 -.02 32.3 .106 .11 27.1 .063 -.06 32.8 
49 .390 .38 22.3 .059 .19 22.9 .482 .37 16.1 
50 .994 .91 -1 .99 .87 -.7 .940 .73 1.1 
52 .516 .7 6.6 .030 .11 18.5 .55 .24 13.5 

Avg .420 .44 16.7 .58 .52 12.1 .513 .45 11.3 
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Table 5d  
 
Average R2, Slope, and Intercepts of Simple Regressions Predicting Break Point Estimates from Actual Break Point during the 
ToT Phase for Each Participant in the Control Condition 

 Friction 1 Friction 2 Friction 3 
Participant R2 Slope Intercept R2 Slope Intercept R2 Slope Intercept 

23 .996 .93 .2 .993 .94 -.3 .382 .43 6.7 
26 .992 .91 -.6 .991 .8 1 .968 .82 .9 
27 .957 .77 2.5 .797 .62 3.2 .294 .22 7.3 
28 .987 .91 .2 .976 .84 1.3 .975 .86 .6 
29 .977 .88 .5 .884 .83 0 .993 .91 -.06 
30 .996 .94 -.3 .995 .9 .4 .978 .9 .4 
32 .995 .93 .3 .995 .89 .4 .990 .9 .4 
33 .991 .89 1.7 .996 .96 -.5 .988 .87 .5 
34 .997 .86 .9 .994 .88 .6 .978 .8 1.9 
35 .837 .66 1 .300 .35 3.7 .486 .31 3.8 
36 .995 .93 .1 .986 .9 .3 .990 .9 -.3 
37 .991 .91 .7 .935 .87 .1 .987 .92 -.2 
38 .996 .91 .3 .991 .93 -.2 .992 .91 .5 
39 .997 .93 .3 .999 .992 -.5 .995 .92 .2 
40 .967 .92 -1.2 .981 .87 .9 .320 .45 3.7 
41 .833 .58 4.9 .604 .85 -2.3 .490 .36 6.4 
42 .997 .98 -.7 .994 .94 .1 .698 .51 7.8 
43 .991 1.09 -3.9 .982 .88 .7 .813 .6 4.3 
44 .994 .87 .6 .947 .79 .7 .978 .97 -2.4 
45 .991 .91 -.1 .996 .94 -.2 .358 .49 3.9 
46 .464 .55 4.1 .754 .62 2.6 .759 .5 5 
48 .995 .89 .3 .986 .88 .7 .988 .9 .2 
49 .992 .83 1.3 .814 .71 3 .715 .65 2.9 
50 .994 .94 -.8 .985 .83 .1 .974 .76 .3 
52 .988 .82 .9 .939 .77 1.3 .539 .56 3.5 

Avg .956 .87 0.5 .913 .83 .7 .785 .7 2.3 
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Comparing Experimental & Control Conditions 

Pretest. Examination of Tables 4a-d and 5a-d reveals that across friction levels, 

the R2 values did not differ between the experimental and control conditions during the 

pretest. A 3x2 mixed ANOVA using the R2 values from both conditions in the pretest 

confirmed that there was no statistically significant difference in R2 values during pretest 

performance, F(1, 48) = .413, p = .523.  There also were no significant effect in the 

difference in R2 values of break point estimates for different friction levels F(2, 96) = 

1.139, p = .319, or significant condition by friction interaction, F(2, 96) = .495, p = .585. 

Similarly, slope values did not differ between the experimental and control 

conditions in the pretest. A 3x2 mixed ANOVA using slope values from both conditions 

in the pretest confirmed no significant differences during pretest performance, F(1, 48) = 

.237, p = .629. There also was no effect of friction on break point estimates across 

participants F(2, 96) = 1.24, p = .291, or significant condition by friction interaction, F(2, 

96) = .426, p = .626. 

Similar to findings from R2 values and slope, intercept values observed in simple 

regressions of individual participant performance did not differ between the experimental 

and control conditions in the pretest. A 3x2 mixed ANOVA using intercept values from 

both conditions in the pretest confirmed no significant differences during pretest 

performance, F(1, 48) = .538, p = .467. However, there was an effect of friction across 

the different friction levels F(2, 96) = 3.915, p = .023, but no significant condition by 

friction interaction, F(2, 96) = .613, p = .544. Follow up paired samples t-tests revealed 

that there were no significant differences in intercept values of simple regressions of 
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break point estimates between friction levels during the pretest within the experimental 

condition. However, the change in R2 values in the control condition for materials with no 

friction (M = .591, SD = .38) compared to low friction of 1.5N (M = .831, SD = .27) 

revealed a significant difference between the estimates in the two friction levels, t(24) = -

2.557, p = .017. 

Posttest. A 3x2 mixed ANOVA using the R2 values from both conditions in the 

posttest phase revealed a significant effect of condition F(1, 48) = 7.97, p < .01 indicating 

that those who experienced the intervening calibration session tended to produce break 

point estimates more strongly based on the actual break point. There was also a main 

effect of friction level F(2, 96) = 5.893, p < .01, but no condition by friction interaction 

F(2, 96) = .234, p = .792. Follow up paired samples t-tests revealed that there were no 

significant differences in R2 values of break point estimates between friction levels during 

the posttest within the control condition. However, the increase in R2 values in the 

experimental condition for materials with no friction (M = .591, SD = .38) compared to 

low friction of 1.5N (M = .831, SD = .27) revealed a significant difference between the 

estimates in the two friction levels, t(24) = -2.557, p = .017.  

 A 3x2 mixed ANOVA of the slope values observed during posttest performance 

for each participant revealed a significant effect of condition F(1, 48) = 10.48, p < .01 

indicating that those who experienced the intervening calibration session tended to 

produce simple regressions with a slope closer to 1. There was also a main effect of 

friction level F(2, 96) = 4.73, p < .05, but no condition by friction interaction F(2, 96) = 

1.12, p = .329. Follow up paired samples t-tests revealed that there were no significant 
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differences in break point estimates between friction levels during the posttest within the 

control condition. However, the increase in slope values in the experimental condition for 

materials with no friction (M = .62, SD = .28) compared to low friction of 1.5N (M = .86, 

SD = .36) revealed a significant difference between the estimates in the two friction 

levels, t(24) = -2.618, p = .015, as did the increase in slope values from materials with 

high friction of 3N (M = .67, SD = .3) to low friction of 1.5N (M = .86, SD = .36), t(24) = 

2.487, p = .02. 

A 3x2 mixed ANOVA of the intercept values observed during posttest 

performance for each participant revealed a significant effect of condition F(1, 48) = 

15.757, p < .001 indicating that those who experienced the intervening calibration session 

tended to produce simple regressions with an intercept closer to 0. There was also a main 

effect of friction level F(2, 96) = 18.667, p < .001, but no condition by friction interaction 

F(2, 96) = .628, p = .536. Follow up paired samples t-tests revealed significant 

differences in break point estimates between friction levels during the posttest within the 

control condition between materials with no friction (M = 16.7, SD = 10.6) and low 

friction of 1.5N (M = 12.1, SD = 11.3) t(24) = 3.367, p = .003, as well as no friction (M = 

16.7, SD = 10.6) and high friction of 3 N (M = 11.3, SD = 11.3) t(24) = 2.871, p = .008. 

Within the experimental condition, intercept values also differed between materials with 

no friction (M = 8.9, SD = 7.8) and low friction of 1.5N (M = 2.2, SD = 3.1) t(24) = 

4.494, p < .0001 , and between materials with no friction (M = 8.9, SD = 7.8) and high 

friction of 3N (M = 3.4, SD = 4), t(24) = 3.347, p = .003. The R2 values and the slopes of 

the simple regressions tended to increase in the experimental group compared to the 
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control group, moving more closely to 1.0, and the intercepts decreased, moving more 

closely to 0. 

Comparing Pretest and Posttest Phases 

Control Condition. Examination of Tables 4a-d and 5a-d reveals that across 

friction levels, the R2 values differed across phases in the control condition. A 3x2 

repeated measures ANOVA using the R2 values from both phases in the control condition 

confirmed that the R2 values during pretest performance (M = .347, SE = .05) were 

significantly lower than during posttest performance (M = .504, SE = .062) F(1, 24) = 

5.536, p < .05.  There was, however, no significant effect in the difference in R2 values of 

break point estimates for different friction levels F(2, 48) = 1.888, p = .162, or significant 

phase by friction interaction, F(2, 48) = .434, p = .651. 

Slope values did not differ across phases in the control condition. A 3x2 repeated 

measures ANOVA using slope values from both phases in the control condition 

confirmed no significant differences across phase, F(1, 24) = 1.564, p = .223. There also 

was no effect of friction on break point estimates across participants F(2, 48) = 1.24, p = 

.291, or significant phase by friction interaction, F(2, 48) = 1.637, p = .205. 

Similar to findings from slope values, intercept values observed in simple 

regressions of individual participant performance did not differ across phases in the 

control condition. A 3x2 repeated measures ANOVA using intercept values from both 

phases in the control condition confirmed no significant differences across phase, F(1, 

24) = 4.228, p = .051. However, there was an effect of friction across the different 

friction levels F(2, 48) = 6.904, p < .05, but no significant phase by friction interaction, 
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F(2, 48) = .01, p = .99. Follow up paired samples t-tests revealed that there were 

significant differences in intercept values of simple regressions of break point estimates 

between friction levels of no friction (M = 18.55, SD = 10.93) and low friction of 1.5N 

(M = 14.16, SD = 11.59), t(49) = 3.005, p < .05. There were also significant differences 

in estimates between materials with no friction (M = 18.55, SD = 10.93) and high friction 

of 3N (M = 13.3, SD = 11.62), t(49) = 3.556, p < .05. However, there were no differences 

in estimates between materials with low friction (M = 14.16, SD = 11.59) and high 

friction (M = 13.3, SD = 11.62), t(49) = .732, p = .468. 

Experimental Condition. A 3x2 repeated measures ANOVA using the R2 values 

from both phases in the experimental condition confirmed that the R2 values during 

pretest performance (M = .399, SE = .065) were significantly lower than during posttest 

performance (M = .715, SE = .041) F(2, 24) = 41.081, p < .05.  There was also a 

significant effect for different friction levels F(2, 48) = 4.779, p < .05, but no significant 

phase by friction interaction, F(2, 48) = 1.26, p = .293. Follow-up paired samples t-tests 

revealed significant differences between estimates of break points on materials with no 

friction (M = .482, SD = .38) and low friction of 1.5N (M = .64, SD = .39), t(49) = -

2.784, p < .05, as well as between materials with low friction of 1.5N (M = .64, SD = .39) 

and high friction of 3N (M = .55, SD = .38), t(49) = 2.21, p < .05. 

Slope values also differed across phases in the control condition. A 3x2 repeated 

measures ANOVA using slope values from both phases in the experimental condition 

revealed that slopes were steeper in the posttest (M = .33, SE = .08) than the pretest (M = 

.72, SD = .04), F(1, 24) = 33.608, p < .05. There was no effect of friction on break point 
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estimates across participants F(2, 48) = .282, p = .052, or significant phase by friction 

interaction, F(2, 48) = 1.827, p = .172. 

A 3x2 repeated measures ANOVA using intercept values from both phases in the 

experimental condition confirmed intercepts were significantly lower in the posttest (M = 

4.84, SD = .74) than the pretest (M = 19.71, SD = 1.81), F(1, 24) = 39.024, p < .05. There 

was also an effect of friction across the different friction levels F(2, 48) = 10.331, p < 

.05, but no significant phase by friction interaction, F(2, 48) = 1.508, p = .232. Follow up 

paired samples t-tests revealed that there were significant differences in intercept values 

of simple regressions of break point estimates between friction levels of no friction (M = 

15.14, SD = 13.05) and low friction of 1.5N (M = 10.27, SD = 13.27), t(49) = 3.773, p < 

.05. There were also significant differences in estimates between materials with no 

friction (M = 15.14, SD = 13.05) and high friction of 3N (M = 11.42, SD = 13.21), t(49) 

= 3.012, p < .05. However, there were no differences in estimates between materials with 

low friction (M = 10.27, SD = 13.27) and high friction (M = 11.42, SD = 13.21), t(49) = -

1.217, p = .229. 

In short, the results revealed an increase in the R2 values and improvements in 

both slope and intercept, indicating a calibration effect that is characterized by an 

improved scaling of the estimates to the actual target break point distances.  Similar 

improvements were seen in the control condition, but with smaller F-values than seen in 

the experimental condition. Next, multilevel modeling techniques were used to determine 

if the slopes and intercepts differed between the pretest and posttest sessions within each 

of the conditions.  
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Multilevel Modeling 

Due to the repeated measurements of the same participants, the trials of estimates 

of break points are nested, or grouped, within participants. Variation in estimates may be 

affected by individual differences, which affect performance throughout all of a 

participant’s  estimates.  Nested  data  structures  violate  assumptions  for  performing  an  

ordinary least squares regression or repeated-measures ANOVA (Bickel, 2007). 

Therefore, multilevel modeling (MLM) was used to analyze the repeated measures model 

in order to account for the nesting, or grouping, of trials within participants, which allows 

for measurement occasions to be correlated. MLM accounts for correlated measurements 

by estimating error separately for measurement occasions, or trials, and for individuals. 

In the following MLM analysis, a two-level hierarchical structure is employed, 

with  each  estimation  trial  defined  as  “Level  1”  and  each  individual  participant defined as 

“Level  2,”  allowing  for  the  exploration  of  trial-level predictors, such as phase (pretest and 

posttest) and friction levels, and person-level predictors such as condition assigned 

(experimental versus control).  The models employed were specified as: 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒௧௜ =   𝛽଴௜ +   𝛽ଵ௜(𝐴𝑐𝑡𝑢𝑎𝑙  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) +  𝛽ଶ௜(𝐴𝑐𝑡𝑢𝑎𝑙  𝐹𝑜𝑟𝑐𝑒) +

  𝛽ଷ௜(𝑃ℎ𝑎𝑠𝑒) +  𝛽ସ௜(𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛)  

where 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒௧௜, participant i’s estimated break point at trial t, is a function 

of an individual specific intercept parameter, 𝛽଴௜; participant-specific slope parameters, 

  𝛽ଵ௜, capturing actual break point distance, 𝛽ଶ௜, capturing actual break point force, 𝛽ଷ௜, 

representing which phase the estimate occurred in (pretest or posttest), and 𝐵ସ௜, 

representing the level of friction applied to the material.  Models were used to analyze 
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performance for the 25 participants in the experimental condition (N = 1753 trials), 

separately from the 25 participants in the control condition (N = 1760 trials). Separate 

models were then used to directly compare the two conditions. 

It was important to first use an intercepts-only model without predictors to 

provide a baseline (or null) model for the individual-level dependent variable, estimated 

distance, and to determine if MLM was appropriate (Bickel, 2014). Results from the 

intercept-only model indicate an intraclass correlation (ICC) of .109 in the experimental 

condition, and .233 in the control condition, meaning that 11% and 23% of the total 

variance of break point estimates, respectively, resides between participants, and 89% 

and 77%, respectively, resides within participants, which supports the mixed model 

approach. It is recommended that MLM analyses be used if ICC values exceed 0.05 

(Heck, Thomas, & Tabata, 2010). 

Predictor variables were centered around the grand mean to allow for comparison 

of parameter estimates across models with both level-1 and level-2 predictors and to 

reduce possible effects of collinearity.  Predictors were entered into the model 

hierarchically to determine their unique contribution to the model (see Tables 6 & 7).  

Comparing Phases. Two models were analyzed, one for participants in each 

condition, experimental and control. Predictors were added to the model as fixed effects 

and random effects one at a time.  If a predictor did not result in a significant effect, it 

was removed from the model. In the first model, estimated break point distance was 

entered as a dependent variable. Actual break point distance was entered as a fixed effect 

to determine the linear trend of break point estimates across actual break points and also 
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entered as a random effect to determine the random error term. The final model included 

all predictors that resulted in significant fixed or random effects. All predictors produced 

significant fixed effects, and two produced significant random effects (actual distance and 

friction) in each model. 

Experimental Condition. Although R
2
 is not directly reported in MLM analyses 

by statistical software, a pseudo-  R
2
 was calculated, which represents the increase in 

explained variance (and thus the reduction in residual variance) contributed by the 

addition of a particular predictor. As seen in Table 6, actual break point distance, actual 

break point force, phase, and friction all resulted in significant fixed effects, with phase 

resulting in the greatest R
2
 effect size of 24.9% reduction in error variance, followed by 

actual break point distance, 22.1%, friction, 4.3%, and actual force, 2.1%. As seen in 

Figures 13 and 14 and Tables 4a & 4c, break point estimates for all friction levels became 

more accurate in the posttest, with slopes becoming closer to 1 and intercepts becoming 

closer to 0. Although performance significantly improved after training, it appears that 

participants still tended to overestimate break point estimates for materials with low force 

values (Materials 1 & 3) and no friction, and underestimate break point estimates with 

high friction in the posttest.  As evidenced in Figures 10 and 12 of posttest performance, 

it’s  possible  the  reactionary  force  in  Material  1  fell  below  participants’  perceptual  

threshold when no friction was applied, as performance still lagged after training.  

However, the introduction of friction, increasing the reactionary force as an operator 

probes on the tissue, may cause fragile materials such as Material 1 to become above 

perceptual threshold. 
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Table 6 

Estimates of Fixed Effects and Standard Error (SE) in the Experimental Condition 

 Model  1   Model  2   Model  3   Model  4   Model  5   

Effect   
Estimate  
(SE)   

Estimate  
(SE)   

Estimate  
(SE)   

Estimate  
(SE)   

Estimate  
(SE)   

Intercept 22.025 (.684) 22.007 (.685) 22.007 (.686) 17.982 (.7004) 17.989 (.701) 

Actual  Distance  .514 (.052)* .586 (.116)* .586 (.053)* .586 (.053)* 

Actual  Force   -1.357 (.219)* -1.367 (.179)* -1.367 (.173)* 

Phase    8.018 (.32)* 8.012 (.309)* 

Friction     -1.185 (.213)* 

Change  in  Model  R2
 -­-­ .221 .021 .249 .043 

*p < .05 
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Calculations  for  Changes  in  Model  R2 

x Model  2  (unique  effect  of  actual  distance)   
o Model  1  residual  –  model  2  residual  /  model  1  residual 
o (85.571  –  66.688)  /  85.571  =  .221 

x Model  3  (unique  effect  of  actual  force) 
o Model  2  residual  –  model  3  residual  /  model  2  residual 
o (66.688  –  65.256)  /  66.688  =  .021 

x Model  4  (unique  effect  of  phase) 
o Model  3  intercept  –  model  4  intercept  /  model  3  intercept 
o (65.256  –  48.997)  /  65.256  =  .249 

x Model  5  (unique  effect  of  friction) 
o Model  4  intercept  –  model  5  intercept  /  model  4  intercept 
o (48.997  –  46.886)  /  48.997  =  .043 

 

 

Figure 13. Pretest break point estimates as a function of actual break point for all 

participants in the experimental condition. 
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Figure 14. Posttest break point estimates as a function of actual break point for all 

participants in the experimental condition. 

Random effects. The intercept variance for those in the experimental condition 

was estimated as 11.08, p < .05, so the estimate of the standard deviation is 3.33.  This 

suggests that there are unmeasured predictor variables for each participant that raise or 

lower their performance. Individual participants will have intercepts that are within 3.33 

mm higher or lower than the group average about 68% of the time, and within 6.66 mm 

higher or lower 95% of the time.   

Significant random effects of slope also occurred for predictors Actual Distance 

and Friction (both p’s  <  .05). This suggests that the slope of actual distance predicting 
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estimated distance and friction predicting estimated distance varies for each participant. 

Individual participant’s  estimates  predicted  by  actual  distance  will  have  slopes  that  vary  

within +0.24 mm of the group average 68% of the time, and within +0.48 mm of the 

group  average  95%  of  the  time.  Individual  participant’s  estimates  predicted  by  friction  

will also have slopes that vary within +0.86 mm steeper than the group average 68% of 

the time, and within +1.72 mm steeper than the group average 95% of the time.  This 

simply suggests that some participants produced more accurate break point estimates than 

others, and some  participants’  were more successful than others in ignoring variations in 

friction level, with their estimates being less affected by the presence of friction. 

Control Condition. As seen in Table 7, actual break point distance, actual break 

point force, phase, and friction all resulted in significant fixed effects, similar to the 

experimental condition. Although both conditions shared fixed and random effects, 

differences can be seen in effect sizes. For participants in the control condition who did 

not receive calibration training, actual break point distance resulted in the greatest R
2
 

effect size of 20.8% reduction in error variance, followed by friction, 8.6%, actual force, 

3.5%, and phase, 1.7%. Although participants who did not receive training performed 

better in the posttest than the pretest, likely due to practice effects, the effect of phase 

accounted for only 1.7% of the variance compared to 24.9% in the experimental 

condition. As seen in Figures 13 & 14 and Tables 4a & 4c, break point estimates for all 

friction levels became somewhat more accurate in the posttest, with slopes becoming 

closer to 1 and intercepts becoming closer to 0. 
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Although friction was a significant fixed effect in both experimental and control 

group models, the R
2
 was relatively small at 8.6% and 4.3% respectively, accounting for 

twice as much variance in the control group than the experimental group. 
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Table 7 

Estimates of Fixed Effects and Standard Error (SE) in the Control Condition 

 Model  1   Model  2   Model  3   Model  4   Model  5   

Effect   Estimate  (SE)   
Estimate  
(SE)   

Estimate  
(SE)   

Estimate  
(SE)   

Estimate  
(SE)   

Intercept 23.301 (.892) 23.318 (.893) 23.32 (.895) 22.411 (.909) 22.417 (.909) 

Actual  Distance  .427 (.02)* .506 (.022)* .506 (.022)* .505 (.021)* 

Actual  Force   -1.468 (.184)* -1.468 (.183)* -1.461 (.175)* 

Phase    1.818 (.327)* 1.815 (.313)* 

Friction     -1.637 (.128)* 

Change  in  Model  R2
 -­-­ .208 .035 .017 .086 

*p < .05 
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Calculations  for  Changes  in  Model  R2 

x Model  2  (unique  effect  of  actual  distance)   
o Model  1  residual  –  model  2  residual  /  model  1  residual 
o (62.573  -­  49.573)  /  62.573  =  .208 

x Model  3  (unique  effect  of  actual  force) 
o Model  2  residual  –  model  3  residual  /  model  2  residual 
o (49.573  –  47.848)  /  49.573  =  .035 

x Model  4  (unique  effect  of  phase) 
o Model  3  intercept  –  model  4  intercept  /  model  3  intercept 
o (47.848  -­  47.037)  /  47.848  =  .017 

x Model  5  (unique  effect  of  friction) 
o Model  4  intercept  –  model  5  intercept  /  model  4  intercept 
o (47.037  -­  43.001)  /  47.037  =  .086 

 

 

Figure 15. Pretest break point estimates as a function of actual break point for all 

participants in the control condition. 
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Figure 16. Posttest break point estimates as a function of actual break point for all 

participants in the control condition. 

Random Effects. The intercept variance for those in the control condition was 

estimated as 19.54, p < .05, so the estimate of the standard deviation is 4.42.  This 

suggests that there are unmeasured predictor variables for each participant that raise or 

lower their performance. Individual participants will have intercepts that are within 4.42 

mm higher or lower than the group average about 68% of the time, and within 8.84 mm 

higher or lower 95% of the time.   
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Similar to the experimental condition, significant random effects of slope also 

occurred for predictors: Actual Distance and Friction, p’s  <  .05.  This  suggests  that  the  

slope of actual distance predicting estimated distance and friction predicting estimated 

distance  varies  for  each  participant.  Individual  participant’s  estimates  predicted  by  actual  

distance will have slopes that vary within +0.24 mm of the group average 68% of the 

time, and within +0.48 mm of the  group  average  95%  of  the  time.  Individual  participant’s  

estimates predicted by friction will also have slopes that vary within +1.24 mm of the 

group average 68% of the time, and within +2.48 mm of the group average 95% of the 

time, which was greater variance for Friction than observed in the experimental 

condition.  This simply suggests that some participants produced more accurate break 

point estimates  than  others,  and  some  participants’  estimates  were  more  affected  by  the  

presence of friction than others. 

Comparing Conditions. Next, we consider if there was an effect of control 

versus experimental condition on break point estimates.  Two models were conducted, 

one for pretest performance and one for posttest, with the same predictors as the final 

model for examining effect of phase, but replaced effect of phase with effect of 

Condition: Actual Distance, Actual Force, Friction, and Condition. As a Level 2 

predictor, Condition was entered last into the model. There was a fixed effect of 

Condition in the posttest, p < .05, which reduced the error variance by 22.6%. Condition 

was not significant in the pretest, p = .489, indicating that there was no difference in 

participant performance in each group before training. 
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Transfer of Training Phase 

 The Transfer of Training task was more realistic than the previous three phases, in 

that materials would actually break if pushed past the simulated break point.  As seen in 

Tables 4d and 5d, performance was very similar between the experimental and control 

conditions during the transfer of training phase, with those in the control group appearing 

to underestimate break points more than those in the experimental group.  Number of 

breaks compared across friction level and material are displayed in Tables 8 & 9.  Similar 

to Long et al. (2014), the majority of breaks occurred when materials required the lowest 

reactionary force before breaking (Materials 1 and 3).  Breaks also appear to decrease as 

friction increases.   

An independent samples t-test shows that the number of times a participant broke 

the tissue during the 36 trials in the experimental group (M = 4.64, SD = 3.09) was not 

significantly different than the number of times a participant broke the tissue in the 

control group  (M = 4.36, SD = 2.8), t(48) = 0.336, p < .05.  Although the number of 

tissue  breaks  did  not  differ  between  the  groups,  it’s  possible  that  combined  with  practice  

effects, those in the control group received enough haptic feedback within the first few 

trials to judge tissue break points as well as those in the experimental group.  Future 

research should investigate different types of training (visual, haptic, or both) and the 

number of trials needed for calibration to occur. 
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Table 8 
 
Break Frequency Occurrence in the ToT Phase Across Material and Friction Level for 
Participants in the Experimental Condition 

 

Material No Friction Low Friction High Friction Total 
1 26/100 26% 27/96 28.1% 17/90 18.9% 70/286 24.5% 
2 2/73 2.7% 2/75 2.7% 0/72 0% 4/220 1.8% 
3 22/93 23.7% 16/86 18.6% 6/75 8% 44/254 17.3% 
4 0/73 0% 0/75 0% 0/69 0% 0/217 0% 

Total 50/339 14.7% 45/332 13.6% 23/306 7.5% 118/977 12.1% 
 

Table 9 
 
Break Frequency Occurrence in the ToT Phase Across Material and Friction Level for 
Participants in the Control Condition 
 

Material No Friction Low Friction High Friction Total 
1 23/95 24.2% 21/90 23.3% 24/94 25.5% 68/279 24.4% 
2 5/75 6.7% 6/80 7.5% 4/75 5.3% 15/230 6.5% 
3 12/82 14.6% 14/87 16.1% 4/79 5.1% 30/248 12.1% 
4 1/72 1.4% 1/73 1.4% 0/72 0% 2/217 0.9% 

Total 41/324 12.7% 42/330 12.7% 32/320 10% 115/974 11.8% 
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CHAPTER THREE 

EXPERIMENT TWO 

  Experiment 2 tested if the phenomenon of detecting material break points 

generalizes to a task other than pushing.  The primary movements conducted during MIS 

procedures include pushing, pulling, sweeping, and grasping (Singapogu et al., 2012b). 

This experiment studied the generalizability of DTB to pulling motions, using the same 

methodologies and procedures as in Experiment 1, except that participants will be 

required to pull simulated tissues rather than push/probe them.  If subjects can attune to 

the invariant of DTB, they should be able to attune to DTB in other tasks such as pulling, 

and results are expected to be the same as in Experiment 1.  

Methods 

Participants 

 23 university undergraduate students between the ages of 17 and 19 (M = 18.2, 

SD = 0.6) Participated in Experiment 2 after providing informed consent, none of whom 

had any experience practicing MIS.  12 were female and 11 were male. Participants 

received course credit in exchange for their participation. 

Materials, Apparatus and Procedures 

All materials and procedures were the same as in Experiment 1, except subjects 

were asked to pull simulated tissues using the laparoscopic device rather than push.  The 

feedback training phase was completed two to ten days after the pretest phase (M = 7, SD 

= 2.2). 
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Results 

 Data were screened for outliers and for logging errors with the simulator.  Due to 

the restricted range of motion of the simulator, no trials exceeded a z-value of +3, so no 

trials were excluded as outliers.  However, two participants were excluded from the 

analyses because they could not complete the task. Also, 15 pretest trials and 19 posttest 

trials were not correctly recorded, with all values logged as 0, and were discarded. 

Performance was assessed by analyzing displacement into the simulated material 

via distance in millimeters.  Means and standard deviations of distance are displayed by 

material type and experimental phase in Tables 10a, 10b, and 10c.  Break point estimates 

from the pretest and posttest, averaged across all participants in the experimental group 

are also displayed in Figures 17 and 18. 

 

Table 10a 

Average break point distance estimate means and standard deviations (mm) by profile 

type and experimental phase with no friction 

Material 
Profile 

Actual 
Break 

Distance 

Pre Feedback Post Transfer 

 M SD M SD M SD M SD 
1 7.5 19.8 10.7 12.8 7.2 13.6 6.6 6.9 0.4 
2 15 20.2 7.7 16.5 4.6 16.8 3.8 13.6 0.7 
3 22.5 26.5 6.6 23.2 4.2 24.1 4.1 20.8 1.3 
4 30 28.1 5.5 NA NA 28.7 3.6 26.6 2.6 
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Table 10b 

Average break point distance estimate means and standard deviations (mm) by profile 

type and experimental phase with low friction (1.5N) 

Material 
Profile 

Actual 
Break 

Distance 

Pre Feedback Post Transfer 

 M SD M SD M SD M SD 
1 7.5 16.2 9.9 11.5 6.7 12.4 6.7 6.8 0.4 
2 15 21.1 9 15.1 4.5 15.2 3.1 13.2 1.6 
3 22.5 22.6 9.5 21 6.2 22.6 4.4 20.3 2.9 
4 30 24.1 8 NA NA 26.1 6.2 25.5 3.5 

 

Table 10c 

Average break point distance estimate means and standard deviations (mm) by profile 

type and experimental phase with high friction (3N) 

Material 
Profile 

Actual 
Break 

Distance 

Pre Feedback Post Transfer 

 M SD M SD M SD M SD 
1 7.5 17.6 10.4 NA NA 10.4 5.5 6.8 0.5 
2 15 18.1 8.5 NA NA 15 3.3 13.4 1 
3 22.5 21.8 8.3 NA NA 20.5 4.2 19.8 3.2 
4 30 23 8.4 NA NA 24.6 6.7 25.4 4 
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Figure 17. Average pretest break point estimates as a function of actual break point for 

all participants. 
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Figure 18. Average posttest break point estimates as a function of actual break point for 

all participants. 

 
Simple regression models were used to determine the slopes and intercepts of the 

functions predicting indicated distance from actual break point distance for each 

participant.  Then, they are used for the comparisons of the contributors to perceptual 

estimates of distance of actual target distance and actual force.  Slopes, intercepts, and R2 
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values for both metrics for each participant across phases are displayed in Tables 11a, 

11b, 11c, and 11d.  
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Table 11a 
 
 Average R2, Slope, and Intercepts of Simple Regressions Predicting Break Point Estimates from Actual Break Point during the 
Pretest Phase for Each Participant  

 Friction 1 Friction 2 Friction 3 
Participant R2 Slope Intercept R2 Slope Intercept R2 Slope Intercept 

1 .360 .7 13.1 .434 .83 10.4 .435 .7 9.6 
2 .748 .49 14.9 .155 -.31 20 .055 -.12 13.3 
3 .011 .06 22.4 .653 .96 .8 .152 -.35 19.7 
5 .005 .06 24.5 .988 .9 -.6 .118 .4 17.7 
6 .036 .11 30.2 .179 .58 12.8 .563 .69 4.5 
7 .043 .11 26.5 .230 .26 25 .281 -.38 32.6 
9 .017 -.1 31.9 .65 .59 5.5 .192 .26 9.5 

10 .374 .35 19.2 .119 -.3 26.5 .463 .54 8.7 
11 .820 1 -.3 .860 .67 2.8 .015 -.07 30.1 
12 .877 .68 4.3 .572 .38 9.7 .457 .54 6.2 
13 .921 1 .4 .000 -.03 14.4 .303 .69 6.7 
14 .950 .83 .2 .734 .73 2 .492 .41 3.3 
15 .831 .67 12.2 .959 .86 4.1 .516 .61 8.9 
17 .202 .29 11.7 .001 -.01 20.9 .273 .28 6.7 
18 .234 -.2 34.8 .073 .15 25 .221 -.23 31.9 
19 .114 -.26 18.2 .009 .03 10 .033 -.08 11.6 
20 .485 .37 21.5 .046 -.13 27.8 .517 .24 24.8 
21 .004 -.02 30.8 .001 .02 30.7 .057 .15 25.1 
22 .027 -.08 32.7 .292 -.31 37.6 .264 -.41 36 
23 .915 .87 7.7 .852 .72 11.8 .316 .52 10.5 
25 .904 .86 2.8 .062 .26 6.9 .963 .77 4.8 
26 .741 1.1 .2 .976 .99 -.9 .047 .25 22.2 
27 .745 .63 5.3 .003 .03 32.4 .934 .86 1.4 

Avg .451 .41 15.9 .385 .34 14.6 .333 .27 15 
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Table 11b  
 
Average R2, Slope, and Intercepts of Simple Regressions Predicting Break Point Estimates from Actual Break Point during the 
Feedback Phase for Each Participant 

 Friction 1 Friction 2 
Participant R2 Slope Intercept R2 Slope Intercept 

1 .814 1.1 2.4 .852 .72 4.3 
2 .992 .93 .8 .008 .12 15.3 
3 .209 .47 10.3 .631 .91 .5 
5 .805 .81 3.3 .898 .88 2.1 
6 .673 .66 7.6 .813 .83 1.8 
7 .650 1 2.2 .964 .94 1 
9 .774 1.2 -1.3 .206 .46 7.4 

10 .644 .69 3.6 .107 .44 6.8 
11 .062 .31 16.6 .566 1 4.1 
12 .246 .49 10 .340 .65 7 
13 .999 1 -.3 .608 .76 2.2 
14 .132 .37 15.6 .124 .2 10.9 
15 .917 .87 1.8 .996 1 -.2 
17 .867 .86 3.9 .066 .23 14.3 
18 .634 .98 2.7 .022 .14 14.3 
19 .967 .91 .5 .773 .9 .5 
20 .158 .4 14.4 .523 .85 1.3 
21 .361 .59 9.1 .964 1.13 -2.2 
22 .106 .38 11.7 .421 .49 6.8 
23 .797 .79 5 .780 .84 3.9 
25 .998 .98 -.1 .270 .59 7.2 
26 .980 1.08 -.8 .976 .97 .1 
27 .067 -.18 31.8 .002 -.06 26.7 

Avg .602 .73 6.6 .518 .65 5.9 
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Table 11c  
 
Average R2, Slope, and Intercepts of Simple Regressions Predicting Break Point Estimates from Actual Break Point during the 
Posttest Phase for Each Participant 

 Friction 1 Friction 2 Friction 3 
Participant R2 Slope Intercept R2 Slope Intercept R2 Slope Intercept 

1 .966 .9 3.9 .396 .71 3.2 .982 .97 .8 
2 .994 .97 .3 .981 .93 .2 .990 .95 .7 
3 .853 .96 5.4 .698 .75 8 .845 .73 6.7 
5 .980 .97 -.1 .982 .31 .9 .993 .95 -.8 
6 .095 .21 22.2 .427 .54 11 .768 .74 4 
7 .817 .81 7.8 .568 .53 10.4 .919 .83 4.9 
9 .867 .89 5.8 .916 .93 4.5 .747 .98 -1.5 

10 .222 .39 11.5 .035 .16 10.7 .021 .1 11.9 
11 .874 .8 6.2 .399 .53 11.3 .334 .38 14.5 
12 .988 .87 2.7 .614 .69 4.4 .340 .37 7.9 
13 .997 .94 .5 .993 .92 .2 .991 .94 .87 
14 .898 .77 5 .245 .3 16.4 .000 .01 20.4 
15 .965 .89 3.5 .984 .88 2 .652 .74 1.8 
17 .919 .74 5.2 .747 .44 15.1 .042 .14 15.8 
18 .409 .49 10.1 .879 .85 3.2 .919 .87 2.7 
19 .387 .32 15.4 .314 .41 7.9 .716 .65 6.4 
20 .965 .93 1.2 .183 .28 16.6 .084 -.23 23.7 
21 .383 .33 19.6 .797 .66 9.9 .030 .09 12.2 
22 .649 .51 11.5 .393 .33 7.2 .945 .74 2.4 
23 .974 .83 3.8 .982 1.1 -3.1 .467 .65 3.2 
25 .985 .75 3.9 .992 .9 .4 .845 .93 -1 
26 .993 .92 -.6 .985 .95 -.5 .994 .95 -.04 
27 .120 .19 25.5 .079 .18 20.1 .980 .86 2 

Avg .752 .71 7.4 .634 .6 7 .635 .62 6.1 
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Table 11d  
 
Average R2, Slope, and Intercepts of Simple Regressions Predicting Break Point Estimates from Actual Break Point during the 
ToT Phase for Each Participant 

 Friction 1 Friction 2 Friction 3 
Participant R2 Slope Intercept R2 Slope Intercept R2 Slope Intercept 

1 .995 .97 -.3 .992 .95 .1 .991 .95 -.4 
2 .996 .9 .5 .994 .95 -.3 .996 .94 -.1 
3 .994 .94 -.6 .98 .86 .7 .995 .94 -.2 
5 .993 .92 -.2 .995 .9 -.1 .927 .87 -.4 
6 .861 .58 4 .732 .57 5 .442 .39 4 
7 .996 .94 -.1 .997 .97 -.3 .986 .9 .5 
9 .962 .92 -.5 .928 .85 .8 .973 .94 -.7 

10 .997 1 -.7 .892 .74 2.2 .847 .81 1.7 
11 .996 .9 -.9 .993 .89 -.1 .996 .94 -.4 
12 .995 .93 -.7 .845 .83 -.2 .993 .9 -.2 
13 .994 .96 -.3 .993 .92 -.2 .993 .91 .2 
14 .988 .92 -.1 .985 .86 1 .796 .58 4.3 
15 .997 .89 .3 .994 .91 -.1 .998 .94 -.03 
17 .92 .8 2 .665 .68 2.2 .572 .52 3.9 
18 .986 .88 .9 .985 .9 -.1 .902 .79 2.3 
19 .997 .92 .3 .991 .87 .4 .988 .83 1.1 
20 .992 .93 -.1 .989 .87 .9 .973 .9 .6 
21 .990 1 -1.3 .749 1 -5.8 .494 .7 2 
22 .926 .74 2.1 .390 .41 5.8 .764 .65 4 
23 .994 .89 .8 .992 .88 .5 .996 .9 .3 
25 .977 .87 .5 .982 .87 1.4 .986 .9 .8 
26 .995 .97 -.5 .997 .96 -.4 .999 .95 -.1 
27 .991 .91 .1 .992 .86 .3 .996 .9 -.4 

Avg .980 .90 .2 .915 .85 .6 .896 .83 1 
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Comparing Pretest and Posttest Phases 

Examination of Tables 11a-d reveals that across friction levels, the R2 values did 

differ across phases. A 3x2 repeated measures ANOVA using the R2 values from both 

phases confirmed that the R2 values during pretest performance (M = .39, SE = .05) were 

significantly lower than during posttest performance (M = .674, SE = .052) F(1, 22) = 

21.465, p < .05.  There was, however, no significant effect in the difference in R2 values 

of break point estimates for different friction levels F(2, 44) = 1.529, p = .228, or 

significant phase by friction interaction, F(2, 44) = .151, p = .86. 

Slope values also differed across phases. A 3x2 repeated measures ANOVA using 

slope values from both phases revealed significant differences in break point estimates 

between the pretest (M = .343, SE = .065) and posttest (M = .652, SE = .049), F(1, 22) = 

21.001, p < .05. There was, however, no effect of friction on break point estimates across 

participants F(2, 44) = 1.627, p = .208, or significant phase by friction interaction, F(2, 

44) = .198, p = .821. 

Similar to findings from R2 and slope values, intercept values observed in simple 

regressions of individual participant performance also varied across phase. A 3x2 

repeated measures ANOVA using intercept values from both phases in the control 

condition confirmed significant differences between pretest (M = 15.2, SE = 1.838) and 

posttest (M = 6.809, SE = 1.121), F(1, 22) = 4.228, p = .051. There was no effect across 

the different friction levels F(2, 44) = .225, p = .799, and no significant phase by friction 

interaction, F(2, 44) = .135, p = .874.  
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In short, the results showed an improvement in break point estimates in the 

posttest compared to the pretest, with R2 and slope values closer to 1 and intercept values 

closer to 0, indicating a calibration effect that is characterized by an improved scaling of 

the estimates to the actual target break point distances. Next, multilevel modeling 

techniques were used to determine if phase and friction produced main effects while 

accounting for variance between and within participants.  

Multilevel Modeling 

Models similar to those employed in Experiment 1were used to analyze 

performance for the 23 participants in the experiment (N = 1622 trials). It was important 

to first use an intercepts-only model without predictors to provide a baseline (or null) 

model for the individual-level dependent variable, estimated distance, and to determine if 

MLM was appropriate. Results from the intercept-only model indicate an intraclass 

correlation (ICC) of .097, meaning that 9.7% of the total variance of break point 

estimates, resides between participants, and 90.3% resides within participants, which 

supports the mixed model approach. It is recommended that MLM analyses be used if 

ICC values exceed 0.05 (Heck et al., 2010). 

Predictor variables were centered around the grand mean to allow for comparison 

of parameter estimates across models with both level-1 and level-2 predictors and to 

reduce possible effects of collinearity.  Predictors were entered into the model 

hierarchically to determine their unique contribution to the model (see Table 12).  

Comparing Pretest and Posttest. Predictors were added to the model as fixed 

effects and random effects one at a time. As with the previous push gesture experiment, 
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all predictors produced significant fixed effects, and two produced significant random 

effects (actual distance and friction).  As seen in Table 12, actual break point distance, 

actual break point force, phase, and friction all resulted in significant fixed effects, with 

actual distance resulting in the greatest R
2
 effect size of 26.7% reduction in error 

variance, followed by friction, 3.9%, phase, 3%, and actual force, 0.6%. As seen in 

Figures 19 and 20 and Tables 11a & 11c, break point estimates for all friction levels 

became more accurate in the posttest, with slopes becoming closer to 1 and intercepts 

becoming closer to 0. Results were very similar to those in the push gesture experiment, 

both exhibiting the same fixed and random effects, with similar effect sizes. However, 

although performance significantly improved after training in the current experiment, 

phase reduced the error variance by only 3%, rather than 24.9% as with the push gesture 

experiment, which may be largely due to better pretest performance in the current 

experiment. It also appears that participants did not tend to overestimate break point 

estimates for materials with low force values (Materials 1 & 3) and no friction, as they 

did in the push gesture experiment.   
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Table 12 

Estimates of Fixed Effects and Standard Error (SE) in the Experimental Condition 

 Model  1   Model  2   Model  3   Model  4   Model  5   

Effect   
Estimate  
(SE)   

Estimate  
(SE)   

Estimate  
(SE)   

Estimate  
(SE)   

Estimate  
(SE)   

Intercept 20.399 (.592) 20.401 (.592) 20.403 (.593) 19.19 (.615) 19.181 (.614) 

Actual  Distance  .499 (.047)* .533 (.048)* .534 (.048)* .536 (.048)* 

Actual  Force   -.635 (.188)* -.639 (.184)* -.644 (.176)* 

Phase    2.42 (.33)* 2.429 (.315)* 

Friction     -1.089 (.277)* 

Change  in  Model  R2
 -­-­ .267 .006 .030 .039 

*p < .05 
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Calculations  for  Changes  in  Model  R2 

x Model  2  (unique  effect  of  actual  distance)   
o Model  1  residual  –  model  2  residual  /  model  1  residual 
o (66.478  –  48.72)  /  66.478  =  .267 

x Model  3  (unique  effect  of  actual  force) 
o Model  2  residual  –  model  3  residual  /  model  2  residual 
o (48.72  –  48.42)  /  48.72  =  .006 

x Model  4  (unique  effect  of  phase) 
o Model  3  intercept  –  model  4  intercept  /  model  3  intercept 
o (48.42  –  46.985)  /  48.42  =  .030 

x Model  5  (unique  effect  of  friction) 
o Model  4  intercept  –  model  5  intercept  /  model  4  intercept 
o (46.985  –  45.157)  /  46.985  =  .039 

 

 
Figure 19. Pretest break point estimates as a function of actual break point for all 

participants. 
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Figure 20. Posttest break point estimates as a function of actual break point for all 

participants. 

Random effects. The intercept variance for those in the experimental condition 

was estimated as 7.51, p < .05, so the estimate of the standard deviation is 2.74.  This 

suggests that there are unmeasured predictor variables for each participant that raise or 

lower their performance. Individual participants will have intercepts that are within 2.74 

mm higher or lower than the group average about 68% of the time, and within 5.48 mm 

higher or lower 95% of the time.   



 80 

Significant random effects of slope also occurred for predictors Actual Distance 

and Friction, p’s  <  .05.  This  suggests  that  the  slope  of  actual  distance  predicting  

estimated distance and friction predicting estimated distance varies for each participant. 

Individual  participant’s  estimates  predicted  by  actual  distance  will  have  slopes  that  vary  

within +0.2 mm of the group average 68% of the time, and within +0.41 mm of the group 

average  95%  of  the  time.  Individual  participant’s  estimates  predicted by friction will also 

have slopes that vary within +1.17 mm of the group average 68% of the time, and within 

+2.35 mm of the group average 95% of the time.  This simply suggests that some 

participants produced more accurate break point estimates than others before training, 

and  some  participants’  estimates  were  more  affected  by  the  presence  of  friction  than  

others. 

Transfer of Training Phase 

 Number of breaks compared across friction level and material are displayed in 

Table 13.  Similar to Long et al. (2014) and Experiment 1, the majority of breaks 

occurred when materials required the lowest reactionary force before breaking (Materials 

1 and 3).  However, breaks do not appear to decrease as friction increases as they did in 

Experiment 1.   
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Table 13 
 
Break Frequency Occurrence in the ToT Phase Across Material and Friction Level 

 

Material No Friction Low Friction High Friction Total 
1 30/99 30.3% 21/91 23.1% 32/96 33.3% 83/286 29% 
2 7/82 8.5% 2/74 2.7% 3/76 3.9% 12/232 5.2% 
3 21/95 22.1% 10/82 12.2% 12/85 14.1% 43/262 16.4% 
4 1/73 1.4% 0/75 0% 0/74 0% 1/222 0.5% 

Total 59/349 16.9% 33/322 10.2% 47/331 14.2% 139/1002 13.9% 
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CHAPTER FOUR 

GENERAL DISCUSSION 

The current experiments demonstrated the ability of novices to detect soft tissue 

break points in the presence of friction, particularly in the context of a simulated MIS 

task. Two experiments were conducted to investigate whether participants were sensitive 

to DTB through applied force on a MIS tissue simulator.  In the first experiment, 

participants probed four simulated soft tissues at three levels of friction (no friction, low 

friction, and high friction), where training was found to improve sensitivity to DTB 

through attunement and calibration.  In the second experiment, participants’  sensitivity  to  

DTB was observed in a pulling task, another motion common during MIS procedures. 

Hypothesis 1 

 It was hypothesized that participants are sensitive to DTB, which was supported 

with simple regressions of pretest performance for materials without friction simulated 

(Tables 4a, 5a, and 11a).  Perfect performance would be represented as having R2 and 

slope values of 1, and intercepts of 0.  Simple regressions predicting break point 

estimates from actual tissue break point produced positive R2 values of .373 and .289 for 

the experimental and control conditions in Experiment 1, respectively, and .451 in 

Experiment 2.  Slope values were also positive values of .34 and .33 for the two groups in 

Experiment 1 and .41 in Experiment 2.  Intercept values were 21.4 and 20.4 for the two 

groups in Experiment 1 and 15.9 in Experiment 2.  These values indicate that participants 

could complete the task, although slopes of 21.4, 20.4, and 15.9 indicate overestimation 

of break points, especially for tissues that broke early. 
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Hypothesis 2 

It was also hypothesized that novice participants are able to detect DTB with 

varying levels of friction present, which was supported with simple regressions of 

performance data in the pretest (Tables 4a, 5a, and 11a). Participants were able to 

complete the task in the pretest, with no difference in performance between experimental 

and control conditions. Multilevel modeling techniques revealed that the main contributor 

to break point estimates was the actual break point distance location, which participants 

must detect by utilizing the change in haptic force as distance into the tissue was 

manipulated.  Even as lower-order parameters, actual break point distance and force, 

varied across materials, participants were successfully able to detect break points, 

indicating sensitivity to DTB. Because friction components do not affect the change in 

reactionary force as displacement into the tissue increases, it was hypothesized that 

participants would successfully be able to attune to DTB in the presence of friction. 

Although there was an effect of friction on break point estimates, this appears to 

be due primarily to two trends. First, when 3N of friction, the highest level observed by a 

trocar in actual laparoscopic surgery (van den Dobbelsteen, Schooleman, & Dankelman, 

2007), was applied participants tended to underestimate tissue break point, particularly as 

actual break point distance increased.  In other words, when reactionary force was high 

immediately upon probing, participants were hesitant to push as far into the simulated 

tissue as when reactionary force was lower.  Second, participants tended to overestimate 

the break point of tissues when no friction was present, particularly when the actual break 

point reactionary force was low.  This result suggests that the presence of trocar friction 
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may have the positive effect of causing users to be more cautious, and thus accidently 

breaking tissues less. Future research should investigate the possibility that this trend is 

likely caused by these materials of low reactionary force falling below perceptual 

threshold.  Without perceiving contact with the tissue, break point estimates fell toward 

the end of the tissue simulator, as participants searched for contact. 

Hypothesis 3 

Performance data in the posttest supports the third hypothesis, that sensitivity to 

DTB is a skill that can be improved with training.  Similar to Long et al. (2014), 

participant break point estimates were significantly more accurate after attunement and 

calibration to DTB during a brief training phase.  These performance improvements were 

observed across all four materials and three friction levels, even though training only 

provided feedback for three of the materials and two of the friction levels, indicating 

sensitivity to DTB rather than lower-order parameters such as actual break point force 

and distance.  . In Experiment 1, average R2 values of participant performance in the 

posttest increased 58% for materials with no friction, 85% for those with low friction, and 

93% for those with high friction compared to pretest performance, indicating that break 

point estimates were more consistent and precise as they became more sensitive to the 

mechanical information specifying DTB.  Slopes of the simple regressions also 

significantly improved in the posttest, approaching perfect performance of 1, and 

intercepts significantly improved, approaching perfect performance of 0.  Multilevel 

modeling also revealed that posttest performance was significantly better for those in the 
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experimental condition than those in the control condition, who did not receive visual 

feedback after each estimate in the feedback phase.  

Similar to the pretest, there was an effect of friction on break point estimates after 

training, reducing the error variance by 8.6% in the posttest compared to 4.3% in the 

pretest.  Although the effect size was greater in the posttest, this increase in effect size 

was due to the improved performance despite friction, with the exception of the first 

material. Materials 1 and 3 may have been below perceptual threshold when friction was 

not present, with 90% and 77% of estimates in the pretest, respectively, and 81% and 

64% of estimates in the posttest, respectively, exceeding the actual break point.  

However, break point estimates become more accurate on Material 1 as friction was 

added (see Figure 10).  Because performance was much more accurate and consistent in 

the posttest compared to the pretest, this effect of friction appears larger in the posttest.  

Future research should investigate the possibility that friction actually causes fragile 

materials with break points below perceptual threshold to become above threshold. 

Unlike past research which has shown that friction can cause perceptual thresholds to 

increase (Perreault & Cao, 2006), the current study suggests that friction does not appear 

to be a variable that surgeons must overcome, but is something that surgeons can learn to 

ignore with training while it may simultaneously increase sensitivity to DTB.  Friction 

may assist in the perception of other variables, such as reactionary force or distance, 

required to attune to DTB.  These differences may be due to the different methodologies 

(training vs. no training), equipment (haptic simulator vs. real silicone materials), or 

differences in the fragility of materials presented. 
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Similar to Pagano and Cabe (2003; Pagano & Donahue, 1999), participants were 

successfully able to attune to and differentiate between useful haptic information and 

non-specifying variables.  Just as the human perceptual system had shown to accurately 

perceive the length of a rod by attuning to the invariant of inertia, ignoring effects of 

wielding in different media, novices in both Experiment 1 and 2 were successfully able to 

ignore trocar friction, attuning to the invariant of DTB.  However, there are times when 

the additional muscular forces needed to overcome the added friction may have made it 

easier to attune to useful information in the haptic array, which allowed participants in 

the current study to make more accurate break point estimates. 

Hypothesis 4 

 It was hypothesized that sensitivity to DTB would transfer to a task where the 

participants must stop before the break point is reached, which was supported by 

performance in the ToT phase of both experiments.  Simple regressions predicting break 

point estimates from actual break point (Tables 4d and 5d) for trials in which the break 

point was not exceeded reveal that estimates were near perfect performance, with an 

average R2 value of .945 across friction levels in the experimental condition and .885 in 

the control condition of Experiment 1.  In Experiment 2, R2 values were similarly high, 

with an average of .930 across friction levels.  Slope values were near perfect, with 

average values of 0.87 across friction levels in the experimental condition and 0.8 in the 

control condition of Experiment 1, and 0.86 in Experiment 2.  Average intercept values 

were 0.8 in the experimental condition and 1.2 in the control condition of Experiment 1, 

and 0.6 in Experiment 2. 
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 Participants only broke 12.1% of the tissues in the experimental condition, with 

breaks decreasing with increased friction, and 11.8% of the tissues in the control 

condition.  Although participant estimates in the control condition appeared to be less 

accurate than those in the experimental condition, they did not break more tissues, likely 

due to practice effects and possible rapid calibration to DTB once haptic feedback was 

received upon breaking materials.  Those in Experiment 2 only broke 13.9% of the 

tissues when pulling tissues.  Similar to Long et al. (2014), breaks were most likely to 

occur when materials required the lowest reactionary force before breaking. 

Hypothesis 5 

Finally, it was also hypothesized that DTB generalizes to other MIS motions or 

tasks, such as pulling, which was supported by findings in Experiment 2, which 

employed the same procedure and materials as Experiment 1 but required that 

participants pull the simulated tissue rather than push to identify break point.  Similar to 

the first experiment, participant break point estimates were significantly more accurate 

across all four materials and three friction levels after attunement and calibration to DTB 

during a brief training phase that only provided feedback for three of the materials and 

two of the friction levels.  Performance in Experiment 2 revealed the same main effects 

(actual distance, actual force, phase, and friction) as observed in Experiment 1, and the 

same random effects (actual distance and friction). 

Simple regressions of individual participant performance reveal that in 

Experiment 2, as in Experiment 1, R2 values significantly improved 67% for materials 

without friction, 65% for materials with low friction, and 91% for materials with high 
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friction after training, indicating that estimations became more precise and consistent.  

Slope and intercept values also became more accurate, approaching perfect performance 

of 1 and 0, respectively.  However, unlike Experiment 1, Materials 1 and 3 did not appear 

to fall below perceptual threshold when friction was not present.  Although these may 

still  be  difficult  materials  to  detect  break  point  because  of  the  fragility,  it’s  possible  that  

the muscular forces needed to move the tool, hand and arm against gravity during the 

pulling motion, rather than with gravity as in the pushing motion, may have helped 

participants perceive the low force values. Thus in Experiment 2, gravity may have 

played the facilitating role served by friction in Experiment 1.  

Conclusions 

The current study was one of the first to examine how trocar friction affects soft 

tissue break point estimates within the context of a simulated MIS task.  With a brief 10-

minute training using our Core Haptic Skills Training Simulator, 18 to 20-year-old 

undergraduate  psychology  students’  estimates  of  tissue  break  points  significantly  

improved, even in the presence of friction.  However, future research should continue to 

investigate certain shortcomings of the current experiments.  For example, the current 

study only examined simulated tissues and simulated trocar friction.  Future research 

should investigate if the observed improved performances transfer to real biological 

tissues and real trocars.  Although the current simulated materials follow the exponential 

stress-strain pattern as exhibited in actual soft tissues (Brouwer et al., 2001; Fung, 1993; 

Rosen, et al., 2008; Yamada, 1970),  it’s  important  to  determine  if the training generalizes 

to actual surgical procedures and other stick and slip effects of the rubber trocar.  If so, 
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surgical training programs should employ the current haptic training to reduce the 

number of accidental breakage of healthy tissues during surgery.  Future work should 

also research other possible types of feedback during training, such as haptic feedback 

alone, or a combination of visual and haptic feedback to maximize effects of attunement 

and calibration.  Additionally, research should further investigate perceptual threshold for 

pushing motions and pulling motions and the possibility that the addition of friction can 

cause these fragile tissues to become perceptible.  

One other shortcoming of the current experiments is that all participants were 

novice psychology students without any other surgical training. Past research, however, 

indicates that while experienced surgeons have an increased ability to detect DTB, their 

overall performance is very similar to that of the participant population employed in the 

present study (Long et al., 2014).  Future work should confirm if the current findings 

generalize to actual surgeons, or if the improved performance resulting from the current 

methods only apply to those with no previous experience.  However, it was also found 

that although surgeons demonstrated better performance than novices overall, some 

surgeons may be better at detecting DTB than others.  Additionally, other research has 

demonstrated that receiving haptic feedback in a virtual training environment may be 

especially critical during early training phases for psychomotor skill acquisition (Ström et 

al., 2006). 

Surprisingly, break point estimates in the current study became more accurate 

when friction was present than when it was absent.  Previous research on friction and soft 

tissue break points in MIS has primarily assumed that friction is a hindrance, which 
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surgeons must learn to overcome, and which engineers must work to reduce (Perreault & 

Cao, 2006; van den Dobbelsteen, Schooleman, & Dankelman, 2007).  However, with 

other variables controlled, such as laparoscopic tool angle and visual feedback, it’s  

possible that surgeons may be easily trained to attune to mechanical properties specifying 

DTB, using friction to assist them when reactionary force values of fragile tissues fall 

below perceptual threshold.  Perhaps researchers should seek to identify an optimal level 

of friction, as too much friction may cause underestimation of break points, and too little 

may prevent fragile tissues from being haptically perceived.   Minimizing preventable 

damages and injuries during MIS is achievable goal, one which can be improved by 

further research of mechanical information specifying DTB and by employing effective 

training MIS haptic training programs. 
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Appendix A 

Demographics Questionnaire 

 

 

 
Age: 
Sex: (circle one)        Male Female 
 
1.  Do you currently have any problems with your hands, arms, or neck?       
Yes      No 
 
If yes, please describe: 
 
2.  Have you ever required surgery on your hands or arms (including fingers and wrists)?         
Yes      No 
 
If yes, please describe (including which hand or both): 
 
 
3.  Do you currently have any vision problems aside from corrected vision?        
Yes       No 
 
If yes, please describe: 
 
 
4.  Do you have any experience with videogames?            
Yes      No 
 
If yes, estimated past usage or current hours per week: 
If yes, list/describe your 3 most commonly played games and their respective consoles. 
 
 
5.  Does this include first-person perspective games (e.g. first-person shooter)?      
Yes   No 
 
If yes, estimated past usage or current hours per week: 
Please describe: 

ID  

Date  
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Appendix B 

Effects of Friction 

Table 14 
 
T-values for Multiple Regression Analyses Predicting Break Point Estimates from Actual 
Break Point Distance, Actual Break Point Force, and Friction Level 
 

 Pretest Posttest 
Participant Actual 

Distance 
Actual Force Friction Actual 

Distance 
Actual 
Force 

Friction 

1 1.99 -4.29** -1.2 1.53 0.28 -5.35** 
2 0.68 -1.82 -3.44** 6.99** -2.26* -5.08** 
3 2.83** -4.87** 1.13 4.86** -2.9** -7.9** 
4 -1.49 0.71 -1.73 4.28** -2.05 1.84 
5 1.59 -2.23* 0.94 7.27** -2.53* -4.13** 
6 3.15** -3.56** -6.61** 8.78** -2.19* -2.37* 
7 1.33 -2.75* -0.6 4.79** 1.02 -0.56 
8 12.07** -1.16 -1.94 5.85** -1.73 -3.83** 
9 6.38** -1.77 -1.89 6.09** -1.31 -1.92 

10 -2.05* -2.74* 2.19* 13.52** 0.82 -0.77 
11 1.78 -0.81 0.003 7.13** -0.03 -2.16* 
12 1.83 -2.07* 0.38 5.04** -1.13 -1.74 
13 4.01** -2.51* -3.82** 7.05** -1.66 -3.62** 
14 44.86** -3.17** -0.74 74.68** -6.56** -6.51** 
15 10.51** -0.74 -4.24** 39.55** -2.71* -3.83** 
16 0.57 -2.97** -2.74* 4.68** -1.67 -3.24** 
17 2.56* -2.85** -2.34* 25.48** -2.8** -4.14** 
18 3.71** -0.74 -1.78 8.15** -1.26 -0.75 
19 3.63** -0.97 -1.39 7.18** -1.46 -2.22* 
20 39.29** -2.1* 3.92** 91.89** -4.49** -4.21** 
21 10.21** -1.57 1.42 13.25** -0.38 -3.46** 
22 7.21** 0.02 -0.36 58.15** -1.87 -2.53* 
24 -0.9 0.33 0.2 8.93** -2.39* -1.79 
25 1.98 -3.66** -3.13** 8.53** -2.32* -1.92 
31 12.67** -3.01** -1.05 35.83** -1.94 -1.23 

*p < .05, **p < .01 
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