47 research outputs found

    Assessing Land Degradation/Recovery in the African Sahel from Long-Term Earth Observation Based Primary Productivity and Precipitation Relationships

    Get PDF
    The ‘rain use efficiency’ (RUE) may be defined as the ratio of above-ground net primary productivity (ANPP) to annual precipitation, and it is claimed to be a conservative property of the vegetation cover in drylands, if the vegetation cover is not subject to non-precipitation related land degradation. Consequently, RUE may be regarded as means of normalizing ANPP for the impact of annual precipitation, and as an indicator of non-precipitation related land degradation. Large scale and long term identification and monitoring of land degradation in drylands, such as the Sahel, can only be achieved by use of Earth Observation (EO) data. This paper demonstrates that the use of the standard EO-based proxy for ANPP, summed normalized difference vegetation index (NDVI) (National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies 3rd generation (GIMMS3g)) over the year (ΣNDVI), and the blended EO/rain gauge based data-set for annual precipitation (Climate Prediction Center Merged Analysis of Precipitation, CMAP) results in RUE-estimates which are highly correlated with precipitation, rendering RUE useless as a means of normalizing for the impact of annual precipitation on ANPP. By replacing ΣNDVI by a ‘small NDVI integral’, covering only the rainy season and counting only the increase of NDVI relative to some reference level, this problem is solved. Using this approach, RUE is calculated for the period 1982–2010. The result is that positive RUE-trends dominate in most of the Sahel, indicating that non-precipitation related land degradation is not a widespread phenomenon. Furthermore, it is argued that two preconditions need to be fulfilled in order to obtain meaningful results from the RUE temporal trend analysis: First, there must be a significant positive linear correlation between annual precipitation and the ANPP proxy applied. Second, there must be a near-zero correlation between RUE and annual precipitation. Thirty-seven percent of the pixels in Sahel satisfy these requirements and the paper points to a range of different reasons why this may be the case

    Copernicus Global Land Cover Layers—Collection 2

    Get PDF
    In May 2019, Collection 2 of the Copernicus Global Land Cover layers was released. Next to a global discrete land cover map at 100 m resolution, a set of cover fraction layers is provided depicting the percentual cover of the main land cover types in a pixel. This additional continuous classification scheme represents areas of heterogeneous land cover better than the standard discrete classification scheme. Overall, 20 layers are provided which allow customization of land cover maps to specific user needs or applications (e.g., forest monitoring, crop monitoring, biodiversity and conservation, climate modeling, etc.). However, Collection 2 was not just a global up-scaling, but also includes major improvements in the map quality, reaching around 80% or more overall accuracy. The processing system went into operational status allowing annual updates on a global scale with an additional implemented training and validation data collection system. In this paper, we provide an overview of the major changes in the production of the land cover maps, that have led to this increased accuracy, including aligning with the Sentinel 2 satellite system in the grid and coordinate system, improving the metric extraction, adding better auxiliary data, improving the biome delineations, as well as enhancing the expert rules. An independent validation exercise confirmed the improved classification results. In addition to the methodological improvements, this paper also provides an overview of where the different resources can be found, including access channels to the product layer as well as the detailed peer-review product documentation

    Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel

    Get PDF
    Climate change in drylands has caused alterations in the seasonal distribution of rainfall including increased heavy-rainfall events, longer dry spells, and a shifted timing of the wet season. Yet the aboveground net primary productivity (ANPP) in drylands is usually explained by annual-rainfall sums, disregarding the influence of the seasonal distribution of rainfall. This study tested the importance of rainfall metrics in the wet season (onset and cessation of the wet season, number of rainy days, rainfall intensity, number of consecutive dry days, and heavy-rainfall events) for growing season ANPP. We focused on the Sahel and northern Sudanian region (100–800 mm yr−1) and applied daily satellite-based rainfall estimates (CHIRPS v2.0) and growing-season-integrated normalized difference vegetation index (NDVI; MODIS) as a proxy for ANPP over the study period: 2001–2015. Growing season ANPP in the arid zone (100–300 mm yr−1) was found to be rather insensitive to variations in the seasonal-rainfall metrics, whereas vegetation in the semi-arid zone (300–700 mm yr−1) was significantly impacted by most metrics, especially by the number of rainy days and timing (onset and cessation) of the wet season. We analysed critical breakpoints for all metrics to test if vegetation response to changes in a given rainfall metric surpasses a threshold beyond which vegetation functioning is significantly altered. It was shown that growing season ANPP was particularly negatively impacted after  > 14 consecutive dry days and that a rainfall intensity of  ∼ 13 mm day−1 was detected for optimum growing season ANPP. We conclude that the number of rainy days and the timing of the wet season are seasonal-rainfall metrics that are decisive for favourable vegetation growth in the semi-arid Sahel and need to be considered when modelling primary productivity from rainfall in the drylands of the Sahel and elsewhere

    Attribution of satellite-observed vegetation trends in a hyper-arid region of the Heihe River basin, Western China

    Get PDF
    Terrestrial vegetation dynamics are closely influenced by both climate and by both climate and by land use and/or land cover change (LULCC) caused by human activities. Both can change over time in a monotonic way and it can be difficult to separate the effects of climate change from LULCC on vegetation. Here we attempt to attribute trends in the fractional green vegetation cover to climate variability and to human activity in Ejina Region, a hyper-arid landlocked region in northwest China. This region is dominated by extensive deserts with relatively small areas of irrigation located along the major water courses as is typical throughout much of Central Asia. Variations of fractional vegetation cover from 2000 to 2012 were determined using Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index data with 250 m spatial resolution over 16-day intervals. We found that the fractional vegetation cover in this hyper-arid region is very low but that the mean growing season vegetation cover has increased from 3.4 % in 2000 to 4.5 % in 2012. The largest contribution to the overall greening was due to changes in green vegetation cover of the extensive desert areas with a smaller contribution due to changes in the area of irrigated land. Comprehensive analysis with different precipitation data sources found that the greening of the desert was associated with increases in regional precipitation. We further report that the area of land irrigated each year can be predicted using the runoff gauged 1 year earlier. Taken together, water availability both from precipitation in the desert and runoff inflow for the irrigation agricultural lands can explain at least 52 % of the total variance in regional vegetation cover from 2000 to 2010. The results demonstrate that it is possible to separate the satellite-observed changes in green vegetation cover into components due to climate and human modifications. Such results inform management on the implications for water allocation between oases in the middle and lower reaches and for water management in the Ejina oasis

    World Atlas of Desertification - Introductory Brochure

    Get PDF
    The brochure introduces the concept of the World Atlas of Desertification which relies on converging evidence of combined human-environment processes pointing out that land degradation cannot be modeled satisfactorily at global scales.The introductory brochure provides a short overview of the main land degradation issues, through illustration of a number key global datasets and some case study examples that reflect the global patterns and pathways to solutions. The brochure start with highlighting the human dominance that drives global environmental changes. The consequences of feeding a growing population include agriculture expansion and intensification, illustrated by maps and data on irrigation and nutrient use. Aridity and drought are important phenomena aggravating the already present human pressures on the environment. Other pressure patterns playing at global scale are illustrated with examples from China, India, S. America and the Sahel, along with a forward view on solutions.JRC.H.5-Land Resources Managemen

    Global Ecosystem Response Types Derived from the Standardized Precipitation Evapotranspiration Index and FPAR3g Series

    Get PDF
    Observing trends in global ecosystem dynamics is an important first step, but attributing these trends to climate variability represents a further step in understanding Earth system changes. In the present study, we classified global Ecosystem Response Types (ERTs) based on common spatio-temporal patterns in time-series of Standardized Precipitation Evapotranspiration Index (SPEI) and FPAR3g anomalies (1982–2011) by using an extended Principal Component Analysis. The ERTs represent region specific spatio-temporal patterns of ecosystems responding to drought or ecosystems with decreasing severity in drought events as well as ecosystems where drought was not a dominant factor in a 30-year period. Highest explanatory values in the SPEI12-FPAR3g anomalies and strongest SPEI12-FPAR3g correlations were seen in the ERTs of Australia and South America whereas lowest explanatory value and lowest correlations were observed in Asia and North America. These ERTs complement traditional pixel based methods by enabling the combined assessment of the location, timing, duration, frequency and severity of climatic and vegetation anomalies with the joint assessment of wetting and drying climatic conditions. The ERTs produced here thus have potential in supporting global change studies by mapping reference conditions of long term ecosystem changes

    Climate contributions to vegetation variations in Central Asian drylands:Pre- and post-USSR collapse

    Get PDF
    Central Asia comprises a large fraction of the world’s drylands, known to be vulnerable to climate change. We analyzed the inter-annual trends and the impact of climate variability in the vegetation greenness for Central Asia from 1982 to 2011 using GIMMS3g normalized difference vegetation index (NDVI) data. In our study, most areas showed an increasing trend during 1982–1991, but experienced a significantly decreasing trend for 1992–2011. Vegetation changes were closely coupled to climate variables (precipitation and temperature) during 1982–1991 and 1992–2011, but the response trajectories differed between these two periods. The warming trend in Central Asia initially enhanced the vegetation greenness before 1991, but the continued warming trend subsequently became a suppressant of further gains in greenness afterwards. Precipitation expanded its influence on larger vegetated areas in 1992–2011 when compared to 1982–1991. Moreover, the time-lag response of plants to rainfall tended to increase after 1992 compared to the pre-1992 period, indicating that plants might have experienced functional transformations to adapt the climate change during the study period. The impact of climate on vegetation was significantly different for the different sub-regions before and after 1992, coinciding with the collapse of the Union of Soviet Socialist Republics (USSR). It was suggested that these spatio-temporal patterns in greenness change and their relationship with climate change for some regions could be explained by the changes in the socio-economic structure resulted from the USSR collapse in late 1991. Our results clearly illustrate the combined influence of climatic/anthropogenic contributions on vegetation growth in Central Asian drylands. Due to the USSR collapse, this region represents a unique case study of the vegetation response to climate changes under different climatic and socio-economic conditions

    What four decades of earth observation tell us about land degradation in the Sahel?

    Get PDF
    The assessment of land degradation and the quantification of its effects on land productivity have been both a scientific and political challenge. After four decades of Earth Observation (EO) applications, little agreement has been gained on the magnitude and direction of land degradation in the Sahel. The large number of EO datasets and methods associated with the complex interactions among biophysical and social drivers of ecosystem changes make it difficult to apply aggregated EO indices for these non-linear processes. Hence, while many studies stress that the Sahel is greening, others indicate no trend or browning. The different generations of sensors, the granularity of studies, the study period, the applied indices and the assumptions and/or computational methods impact these trends. Consequently, many uncertainties exist in regression models between rainfall, biomass and various indices that limit the ability of EO science to adequately assess and develop a consistent message on the magnitude of land degradation. We suggest several improvements: (1) harmonize time-series data, (2) promote knowledge networks, (3) improve data-access, (4) fill data gaps, (5) agree on scales and assumptions, (6) set up a denser network of long-term field-surveys and (7) consider local perceptions and social dynamics. To allow multiple perspectives and avoid erroneous interpretations, we underline that EO results should not be interpreted without contextual knowledge

    Global Ecosystem Response Types Derived from the Standardized Precipitation Evapotranspiration Index and FPAR3g Series

    Get PDF
    Observing trends in global ecosystem dynamics is an important first step, but attributing these trends to climate variability represents a further step in understanding Earth system changes. In the present study, we classified global Ecosystem Response Types (ERTs) based on common spatio-temporal patterns in time-series of Standardized Precipitation Evapotranspiration Index (SPEI) and FPAR3g anomalies (1982–2011) by using an extended Principal Component Analysis. The ERTs represent region specific spatio-temporal patterns of ecosystems responding to drought or ecosystems with decreasing severity in drought events as well as ecosystems where drought was not a dominant factor in a 30-year period. Highest explanatory values in the SPEI12-FPAR3g anomalies and strongest SPEI12-FPAR3g correlations were seen in the ERTs of Australia and South America whereas lowest explanatory value and lowest correlations were observed in Asia and North America. These ERTs complement traditional pixel based methods by enabling the combined assessment of the location, timing, duration, frequency and severity of climatic and vegetation anomalies with the joint assessment of wetting and drying climatic conditions. The ERTs produced here thus have potential in supporting global change studies by mapping reference conditions of long term ecosystem changes.JRC.H.5-Land Resources Managemen
    corecore