6,794 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    A hybrid approach for fault tree analysis combining probabilistic method with fuzzy numbers

    Full text link
    Conventional fault tree analysis in safety analysis of complex engineering systems calculates the occurrence probability of the top undesired event using probabilistic failure rates. However, it is often very difficult to obtain those failure rates well in advance due to insufficient data, environment changing or new components. Fuzzy numbers can be applied to estimate failure rates by handling linguistic terms. This study proposes a hybrid approach of Fuzzy Numbers and Fault Tree Analysis to solve the conventional problem and describes its procedures using a case study of emergency core cooling system of a typical nuclear power plant. © 2010 Springer-Verlag

    The safety case and the lessons learned for the reliability and maintainability case

    Get PDF
    This paper examine the safety case and the lessons learned for the reliability and maintainability case

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    A review of applications of fuzzy sets to safety and reliability engineering

    Get PDF
    Safety and reliability are rigorously assessed during the design of dependable systems. Probabilistic risk assessment (PRA) processes are comprehensive, structured and logical methods widely used for this purpose. PRA approaches include, but not limited to Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), and Event Tree Analysis (ETA). In conventional PRA, failure data about components is required for the purposes of quantitative analysis. In practice, it is not always possible to fully obtain this data due to unavailability of primary observations and consequent scarcity of statistical data about the failure of components. To handle such situations, fuzzy set theory has been successfully used in novel PRA approaches for safety and reliability evaluation under conditions of uncertainty. This paper presents a review of fuzzy set theory based methodologies applied to safety and reliability engineering, which include fuzzy FTA, fuzzy FMEA, fuzzy ETA, fuzzy Bayesian networks, fuzzy Markov chains, and fuzzy Petri nets. Firstly, we describe relevant fundamentals of fuzzy set theory and then we review applications of fuzzy set theory to system safety and reliability analysis. The review shows the context in which each technique may be more appropriate and highlights the overall potential usefulness of fuzzy set theory in addressing uncertainty in safety and reliability engineering

    Beurteilung der Resttragfähigkeit von Bauwerken mit Hilfe der Fuzzy-Logik und Entscheidungstheorie

    Get PDF
    Whereas the design of new structures is almost completely regulated by codes, there are no objective ways for the evaluation of existing facilities. Experts often are not familiar with the new tasks in system identification and try to retrieve at least some information from available documents. They therefore make compromises which, for many stakeholders, are not satisfying. Consequently, this publication presents a more objective and more realistic method for condition assessment. Necessary basics for this task are fracture mechanics combined with computational analysis, methods and techniques for geometry recording and material investigation, ductility and energy dissipation, risk analysis and uncertainty consideration. Present tools for evaluation perform research on how to analytically conceptualize a structure directly from given loads and measured response. Since defects are not necessarily visible or in a direct way detectable, several damage indices are combined and integrated in a model of the real system. Fuzzy-sets are ideally suited to illustrate parametric/data uncertainty and system- or model uncertainty. Trapezoidal membership functions may very well represent the condition state of structural components as function of damage extent or performance. Tthe residual load-bearing capacity can be determined by successively performing analyses in three steps. The "Screening assessment" shall eliminate a large majority of structures from detailed consideration and advise on immediate precautions to save lives and high economic values. Here, the defects have to be explicitly defined and located. If this is impossible, an "approximate evaluation" should follow describing system geometry, material properties and failure modes in detail. Here, a fault-tree helps investigate defaults in a systematic way avoiding random search or negligence of important features or damage indices. In order to inform about the structural system it is deemed essential not only due to its conceptual clarity, but also due to its applicational simplicity. It therefore represents an important prerequisite in condition assessment though special circumstances might require "fur-ther investigations" to consider the actual material parameters and unaccounted reserves due to spatial or other secondary contributions. Here, uncertainties with respect to geometry, material, loading or modeling should in no case be neglected, but explicitly quantified. Postulating a limited set of expected failure modes is not always sufficient, since detectable signature changes are seldom directly attributable and every defect might -together with other unforeseen situations- become decisive. So, a determination of all possible scenarios to consider every imaginable influence would be required. Risk is produced by a combination of various and ill-defined failure modes. Due to the interaction of many variables there is no simple and reliable way to predict which failure mode is dominant. Risk evaluation therefore comprises the estimation of the prognostic factor with respect to undesir-able events, component importance and the expected damage extent.Während die Bemessung von Tragwerken im allgemeinen durch Vorschriften geregelt ist, gibt es für die Zustandsbewertung bestehender Bauwerken noch keine objektiven Richtlinien. Viele Experten sind mit der neuen Problematik (Systemidentifikation anhand von Belastung und daraus entstehender Strukturantwort) noch nicht vertraut und begnügen sich daher mit Kompromißlösungen. Für viele Bauherren ist dies unbefriedigend, weshalb hier eine objektivere und wirklichkeitsnähere Zustandsbewertung vorgestellt wird. Wichtig hierfür sind theoretische Grundlagen der Schadensanalyse, Methoden und Techniken zur Geometrie- und Materialerkundung, Duktilität und Energieabsorption, Risikoanalyse und Beschreibung von Unsicherheiten. Da nicht alle Schäden offensichtlich sind, kombiniert man zur Zeit mehrere Zustandsindikatoren, bereitet die registrierten Daten gezielt auf, und integriert sie vor einer endgültigen Bewertung in ein validiertes Modell. Werden deterministische Nachweismethoden mit probabilstischen kombiniert, lassen sich nur zufällige Fehler problemlos minimieren. Systematische Fehler durch ungenaue Modellierung oder vagem Wissen bleiben jedoch bestehen. Daß Entscheidungsträger mit unsicheren, oft sogar widersprüchlichen Angaben subjektiv urteilen, ist also nicht zu vermeiden. In dieser Arbeit wird gezeigt, wie mit Hilfe eines dreistufigen Bewertungsverfahrens Tragglieder in Qualitätsklassen eingestuft werden können. Abhängig von ihrem mittleren Schadensausmaß, ihrer Strukturbedeutung I (wiederum von ihrem Stellenwert bzw. den Konsequenzen ihrer Schädigung abhängig) und ihrem Prognosefaktor L ergibt sich ihr Versagensrisiko mit. Das Risiko für eine Versagen der Gesamtstruktur wird aus der Topologie ermittelt. Wenn das mittlere Schadensausmaß nicht eindeutig festgelegt werden kann, oder wenn die Material-, Geometrie- oder Lastangaben vage sind, wird im Rahmen "Weitergehender Untersuchungen" ein mathematisches Verfahren basierend auf der Fuzzy-Logik vorgeschlagen. Es filtert auch bei komplexen Ursache-Wirkungsbeziehungen die dominierende Schadensursache heraus und vermeidet, daß mit Unsicherheiten behaftete Parameter für zuverlässige Absolutwerte gehalten werden. Um den mittleren Schadensindex und daraus das Risiko zu berechnen, werden die einzelnen Schadensindizes (je nach Fehlermodus) abhängig von ihrer Bedeutung mit Wichtungsfaktoren belegt,und zusätzlich je nach Art, Bedeutung und Zuverlässigkeit der erhaltenen Information durch Gamma dividiert. Hiermit wurde ein neues Verfahren zur Analyse komplexer Versagensmechanismen vorgestellt, welches nachvollziehbare Schlußfolgerungen ermöglicht

    Analysis of bridge failure due to Cyclone Marcia in Central Queensland using fault tree method

    Get PDF
    Over the past few years Queensland has suffered from a number of severe tropical cyclones, the most recent one being Marcia, that took place on 20th of February 2015. Damage bill of Marcia exceeded $50 million which included cost of repairing a number of damaged bridges. Failure of road infrastructure isolates communities from accessing essential services and commodities. This necessitated an urgent need to develop a systematic method of assessing the failure of the bridge component to improve the resilience of future bridges and provide base knowledge for developing emergency maintenance response. There are several methods available to investigate the bridge failure. Fault tree analysis (FTA) was selected considering its positive attributes over other methods. FTA was used to estimate the probabilities of failure of main components (Super Structure and Sub Structure) and elements of timber and concrete bridges. Secondary data (Level 1 and level 2 bridge inspection reports from the department of transport and main roads) before and after the cyclone Marcia were used in conjunction with expert consultations to construct fault trees for both timber and concrete bridges. Results indicated potential failure mechanisms and the degree of susceptibility of main components of timber and concrete bridges to cyclonic events. However, the extent of the data was not adequate to draw firm conclusions and further studies (i.e. probabilistic models) are recommended to strengthen the understanding of the complete dynamics of the bridge failure under cyclonic event
    corecore