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ABSTRACT 

Over the past few years Queensland has suffered from a number of severe tropical cyclones, 

the most recent one being Marcia, that took place on 20th of February 2015. Damage bill of 

Marcia exceeded $50 million which included cost of repairing a number of damaged bridges. 

Failure of road infrastructure isolates communities from accessing essential services and 

commodities. This necessitated an urgent need to develop a systematic method of assessing the 

failure of the bridge component to improve the resilience of future bridges and provide base 

knowledge for developing emergency maintenance response. There are several methods 

available to investigate the bridge failure. Fault tree analysis (FTA) was selected considering 

its positive attributes over other methods. FTA was used to estimate the probabilities of failure 

of main components (Super Structure and Sub Structure) and elements of timber and concrete 

bridges. Secondary data (Level 1 and level 2 bridge inspection reports from the department of 

transport and main roads) before and after the cyclone Marcia were used in conjunction with 

expert consultations to construct fault trees for both timber and concrete bridges. Results 

indicated potential failure mechanisms and the degree of susceptibility of main components of 

timber and concrete bridges to cyclonic events. However, the extent of the data was not 

adequate to draw firm conclusions and further studies (i.e. probabilistic models) are 

recommended to strengthen the understanding of the complete dynamics of the bridge failure 

under cyclonic event.  
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CHAPTER1 

INTRODUCTION 

1.1 Introduction 

Over the past century, severe tropical cyclones have been reported to cause devastating impacts 

on properties, livestock, forests, buildings and infrastructure and caused major disruption to 

livelihoods of the communities that have been exposed to the event. In certain occasions it has 

taken lives, caused injuries and illnesses by restraining access to clean water and food.  

Natural disasters also cause significant impacts on road infrastructure and Bridges, making 

affected areas isolated from ground assistance. Queensland state controlled road network 

consists of 33,337 km of roads and 6,500 bridges and culverts (Kuhlicke 2010) which 

experienced the impacts of numerous disaster events over the past few decades.  

In 2011, Cyclone Yasi (category 5) caused significant damages to buildings and road 

infrastructure and timber bridges in North Queensland which accounted for 5% of the total 

damage cost. Damages to bridges can isolate communities for weeks in a natural disaster event. 

Resilience of critical road infrastructure such as bridges, culverts and flood-ways is vital in 

evacuation support activities for disaster response and recovery. 

Cyclone Marcia was expected to reach category 5, however when it reached the landslide, it 

has reduced to category 2/3 and when it reached Rockhampton it has further reduced to 

category 1 (James Cook University Cyclone Testing Station 2015). Despite lowering its 

intensity, the damage bill of cyclone Marcia approached to $53.4 million after a weeks’ time 

and at least 1000 homes suffered structural damage in the disaster and 385 properties have been 

deemed uninhabitable (Brisbane Times 2015).  

Devastating impacts of past cyclones have imposed tighter regulations on building codes and 

technological advancements and warning systems associated with cyclones, including the use 

of satellite imagery and meteorological modelling have shown marked improvements in recent 

years. 

Bridges in Australia have been designed to various standards as they were built in different 

periods. Bridges constructed in Australia after 2004 generally complies with AS5001:2004, 

which is mainly written for rural constructions (Pitchard 2013). Pitchard (2013) suggested that 

AS5001:2004 should be amended to include potential loads that may be applied in natural 
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disasters such as floating objects and bridge design should consider the context and 

connectivity and post disaster functionality. Ataei et al. (2010) suggested that probabilistic 

models of structural vulnerability are required to predict any damages to bridge infrastructure 

under cyclonic event. 

In Australia a few studies have been done to assess the resilience of buildings and road 

infrastructure under natural disaster events (Lebbe et al., 2014; Lokuge and Setunge, 2014). 

Information on the probabilistic response of road infrastructure during cyclones appears to be 

sparse in scientific literature.  

This study endeavours to understand the response of road infrastructure to tropical cyclone 

Marcia and comprehend their potential response to any tropical cyclones with high magnitude 

that might occur in the future.  

 

1.2 The Problem 

This project is anticipated to provide broad understanding on the nature of any damages to the 

road infrastructure caused by tropical cyclones. This includes the probability of different 

mechanisms of failure i.e. attributes of the cyclone and elements of the substructure and 

superstructure of the bridge. This broad understanding will provide a guideline for road 

engineers to improve the climatic resilience of the existing and future road infrastructure.  

 

1.3 Objectives  

• To investigate the damages directly and indirectly caused  by the cyclone Marcia on 

road infrastructure with special reference to bridges 

• To  determine indicative probable mechanisms of bridge failure under cyclone Marcia 

using fault tree analysis (FTA) 

1.4 Thesis out line 

The Thesis consists of six chapters. In chapter 1 the background and motivation of this 

research with the objectives is presented. In Chapter 2; literature review of bridge failure 

due to cyclones is discussed. It explains the anatomy of the tropical cyclones, the impact of 

cyclone on bridges and how bridges are damaged in a cyclone event.  
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It also contains the methods of analysis of bridge resilience. Last section of this chapter 

describes the Fault Tree Analysis method. 

Chapter 3 provides the methodology which was used to construct the Fault Tree Diagram 

(FTD) which was used to investigate the probabilities of bridge failure. It also illustrates 

the basic fault tree diagram which was constructed to determine the failure mechanism of 

a bridge. FTD was also expanded to find the bridge failure due to cyclone Marcia using 

basic events related to a cyclone. It also describes the method used to determine the 

probabilities of bridge component failure using basic events connected by logic gates. 

Chapter 4 explains the analytical methods used in assigning probabilities for bridge 

components and elements. It explains the methods of assigning probabilities for component 

and element failure and for basic events relevant to cyclone Marcia, using level 1 and level 

2 bridge inspection reports obtained from department of transport and main roads. 

Chapter 5 discusses the results and outcomes of the study. It provides a comparative                    

account on possible responses of two main components of a bridge and variations in the 

response of concrete and timber bridges to a cyclonic event. 

Finally, summary and limitations are in discussed in chapter 6. The outcome of this study 

provides a basic understanding of the probability of a timber and concrete bridge failure 

due to a cyclone. 
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CHAPTER 2 

LITERATURE REVIEW 
 

2.1 Tropical cyclones 

Tropical cyclones generally develop as non-frontal low-pressure systems on warm waters in 

the tropics which have organized convection.  They can become intensified to generate 

sustained gale force winds of at least 63km/h (Fig 2.1). If the sustained wind achieves hurricane 

force of at least 118km/h, the system is defined as a severe tropical cyclone. The same 

phenomenon is known as hurricanes or typhoons in other parts of the world.  Based on the 

intensity, tropical cyclones are generally grouped into categories ranging from 1 (weakest) to 

5 (strongest), depending on the maximum mean wind speed as shown in Table 2.1  

If a cyclone has maximum wind gusts of >164 km/hr with very destructive winds, it is described 

as a severe tropical cyclone (BOM, 2012). Over the years severe tropical cyclones have been 

reported to destroy properties, livestock, forests, buildings and infrastructure and caused major 

disruption to livelihoods of the communities that have been exposed to the event. In certain 

occasions it has taken lives, caused injuries and illnesses by restraining access to clean water 

and food.  

 

 

 

 

 

 

 

 

 

Figure 2-1: Anatomy of a Cyclone (Bureau of Meteorology 2015) 
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James (2010) described the importance of the use of standard to investigate the factors that 

influence critical wind speeds in different locations. The amended version of (Australian 

Standard AS 4055-2006 provides useful guide on wind speed regions of Australia. 

 

 

Figure 2- 1: Wind speed regions in Australia, according to the Australian Standard AS4055-

2006 (Australian Standards, 2012) 
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Table 2-1: A description of the Category system used in Australia for Tropical Cyclones 

(BOM, 2012) 

 

Category Maximum 

Mean Wind 

(km/h) 

Typical 

Strongest 

Gust (km/h) 

Central 

Pressure 

(hPa) 

Typical Effects 

1 63 - 88 < 125 > 985 Negligible house damage. Damage to 

some crops, trees and caravans. Craft 

may drag moorings 

2 89 - 117 125 - 164 985 - 970 Minor house damage. Significant damage 

to signs, trees and caravans. Heavy 

damage to some crops. Risk of power 

failure. Small craft may break moorings. 

(e.g. Ului) 

3 118 - 159 165 - 224 970 - 955 Some roof and structural damage. Some 

caravans destroyed. Power failures likely. 

(e.g. Winifred) 

4 160 - 199 225 - 279 955 - 930 Significant roofing loss and structural 

damage. Many caravans destroyed and 

blown away. Dangerous airborne debris. 

Widespread power failures. 

(e.g. Tracy, Olivia) 

5 > 200 > 279 < 930 Extremely dangerous with widespread 

destruction. (e.g. Vance) 

Devastating impacts of past cyclones have imposed tighter regulations on building codes and 

technological advancements and warning systems associated with cyclones, including the use 

of satellite imagery and meteorological modelling have shown marked improvements in recent 

years.  

Potential risk of building failure in a cyclone can be crudely determined by comparing the 

building structure with the Australian Standard AS/NZS 1170.2 (2002), which is identified as 

the benchmark standard. It provides guidelines for structures that could be potentially affected 

by strong wind and less than 200 m high.  
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2.2 Impact of tropical cyclones on bridges 

Natural disasters cause devastating impacts on road infrastructure and Bridges, making affected 

areas isolated from ground assistance. In the United States, annual monetary losses due to 

tropical cyclones and other natural hazards have been increasing at an exponential pace, now 

averaging up to $1 billion a week (Mileti, 1999). 

The overall damage bill on repairing and replacing bridges damaged during Hurricane Katrina, 

including emergency repairs, was estimated to be over $1 billion based on damage inspection 

reports and bid estimates (Padgett 2008).  

Bridges in Australia have been designed to various standards as they were built in different 

periods. Bridges constructed in Australia after 2004 generally complies with AS5001:2004, 

which is mainly written for rural constructions (Pitchard 2013). Pitchard (2013) suggested that 

AS5001:2004 should be amended to include potential loads that may be applied in natural 

disasters such as floating objects and bridge design should consider the context and 

connectivity and post disaster functionality.  

In 2011, Cyclone Yasi (category 5) caused significant damages to timber bridges which 

accounted for 5% of the total damage cost. Two timber bridges required replacement due to 

the bridge being lifted and moved sideways by the flood water and adjacent segments of spliced 

piles were no longer connected together. There were broken timber piles and the approach road 

was also damaged (Pitchard 2013). 

A concrete bridge downstream of the dams on the North Pine River system had to be replaced 

as it underwent 4 m scouring at the river piers due to overtopping of the bridge. Subsequent 

load testing of the bridge showed that there was significant decline in the pile capacity of the 

bridge (Pitchard 2013). A steel girder bridge on the Mitchell River required replacement due 

to scour of the piers. Scouring of numerous abutments spill-through embankments was 

observed. Relieving slabs at bridge abutments were rendered un-functional and hence had to 

be replaced (Pitchard 2013). 

Cyclone Marcia was expected to reach category 5 but when it reached the landslide, it has 

reduced to category 2/3 and when it reached Rockhampton it has further reduced to category 1 

(James Cook University Cyclone Testing Station 2015).  
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Figure 2-

2: Cyclone Marcia Damaged Bridge in Monto 

 

 

 

 

 

 

 Figure 2-3: Cyclone Marcia Damaged Bridge in Gladstone Biloela Rd 

 

 

 

 

 

 

 

 

Figure 2-4: Cyclone Marcia Damaged Bridge in Mount Morgan 

Damage bill of cyclone Marcia reached $53.4 million after a weeks’ time and at least 1000 

homes suffered structural damage in the disaster and 385 properties have been deemed 

uninhabitable (Brisbane Times 2015). Cyclone Marcia has destroyed numerous properties in 

Yeppoon and road infrastructure including bridges in Monto (Fig 2.3), Gladstone Biloela Road 

(Fig 2.4) and in Mt Morgan (Fig 2.5) (Brisbane Times 2015). 
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2.3 How Bridges Are Damaged in a Cyclonic Event 

In a cyclonic event, bridges are mostly damaged by the storm surge that arises from the severe 

weather event. In most occasions bridges have failed due to unseating or drifting of 

superstructures which depend on connection type between decks and bents (Meng and Jin 

2007; Padgett et al. 2008; Chen et al. 2009). Padgett et al. (2008) studied bridge damage 

mechanisms using observations of 44 damaged during Hurricane Katrina. Their study revealed 

that major bridge damages during hurricane events are caused by the increased uplifting loads 

and impacts from debris and objects near the bridge, induced by the storm surges, and partially 

by high winds, scour, and malfunction of electrical and mechanical equipment due to water 

inundation. In a hurricane or cyclone, bridges are mainly damaged by (1) impact (2) 

catastrophic winds scouring, (3) Damages due to surge induced loadings  (4) Scouring (Padgett 

et al. 2008).  

a) Impact damage 

Impact damage is quite common bridges associated with large water ways. Impact damage is 

generally caused by floating objects i.e. debris, boats any items that gets transported due to 

flooding resulted from the intensive rainfall caused by cyclones. Post disaster inspections found 

that in most occasions, impact damage demonstrated itself in the form of span misalignment 

and fascia girder, fender, and pile damage (Padgett et al. 2008). 

 

A      

     B 

Figure 2-6, 2-6: Damage due to impact (Padgett et al. 2008). 
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b) Damages caused by catastrophic winds 

Suspension bridges are mostly vulnerable for wind damage. Long cable-stayed and suspension 

bridges must withstand the drag forces induced by strong winds. In addition, such bridges are 

prone to aeroelastic effects, which include torsion divergence (or lateral buckling), vortex-

induced oscillation, flutter, galloping, and buffeting in the presence of self-excited forces 

(Simiu and Scanlan 1986). Due to the aeroelastic and aerodynamic effects from high winds on 

long-span bridges, strong dynamic vibrations will be expected. Excessive vibrations will cause 

the service and safety problems of bridges (Conti etal. 1996; Gu et al. 2001).  In Australia there 

are very few suspension bridges. During Cyclone Marcia 2015, a timber bridge at Mt Morgan 

was found to be damaged by strong winds (Fig 2.5). 

c) Damages due to surge induced loadings  

Bridges with spans of the same or lower elevation than peak surge levels experience severe 

structural failure during hurricane events level (Irish and Cañizares, 2009). Under a storm surge 

the surface waves strike the superstructure and overcome the capacity of the anchorages 

(Douglass et al. 2006; Chen et al. 2009) and subsequent waves pushes the superstructures off 

of the supporting substructure. Robertson et al. (2007) described that hurricane damaged 

bridges experience reduced dead weight due to air trapped below the deck, which complements 

the hydro-dynamic uplift forces overcame the capacity of the anchorages. 

d) Scouring 

 

 

 

 

 

 

 

 

 

 

Figure2-7: Damage caused by scouring (Padgett et al. 2008) 

 

Another failure mode was due primarily to scour. Observations revealed that this damage type 

may or may not accompany the other damage modes inherent to storm-surge loads.  
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The scour damage that was readily visible to inspectors included scour and erosion of the 

abutment, slope failure, and undermining of the approach (Figure2.7) 

Scour results in foundation failure, which is caused by water flow eroding the foundations. 

When the foundation depth is shallow enough that the abutment or pier can move vertically, 

failure can occur (LeBeau and Wadia-Fascetti 2007). The major cause of bearing failure is 

extreme lateral forces that knock the superstructure off the bearings (LeBeau and Wadia-

Fascetti 2007).  

e) Damage in bridge connection 

Lehrman et al. (2012) tested three bridge connection types a) headed stud, b) clip bolt, c) 

through bolt (varying in elasticity and stiffness) against (1) vertical pseudostatic cyclic loading, 

(2) horizontal pseudostatic cyclic loading, (3) combined horizontal and vertical pseudostatic 

cyclic loading, and (4) combined horizontal and vertical dynamic loading on the basis of wave 

force histories from simulated hurricane wave loads on a 1∶5 scale bridge model.  According 

to those authors vertical forces alone represent the impacts on off-shore bridges.  

Lehrman et al. (2012) concluded that headed stud (HS) anchorage is the most robust of the 

three anchorages tested. It showed higher load capacity and had minimal ancillary damage to 

the prestressed concrete girders at the point of failure.   Failure of the HS anchorage was 

influenced by the performance of the steel studs, which allows high level of predictability and 

anchorage can be detailed to limit forces that could act on the substructure. 

The CB and TB anchorages exhibited concrete cracking and strand slip prior to failure which 

may impact long-term performance of the bridge after survival of the hurricane event. None of 

the three anchorages were able to withstand the simulated vertical loadings generated by 3.6 m 

wave as prescribed by AASHTO guide specifications (Lehrman et al. 2012).  

They also concluded that bridges that have CB, TB and HS connections have to be retrofitted 

with higher anchorage into the stem and end diaphragms.  

2.4  Methods of studying the resilience of buildings and road Infrastructure 

2.4.1. Vulnerability Index 

Risk of a natural hazard is depending on the intensity of the hazard and the vulnerability of the 

community and infrastructure. 

Risk = Hazard Intensity x Vulnerability (Holland 1993).   
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According to Varnes (1984), vulnerability refers to the potential degree of damage that can be 

expected based on the characteristics of an ‘element at risk’ with reference to a certain hazard.  

Even at present, this understanding of vulnerability has been complemented by encompassing 

‘the conditions determined by physical, social, economic, and environmental factors or 

processes, which increase the susceptibility of a community to the impact of hazards 

(Hufschmidt 2011). 

Vulnerability research has recently encompassed the challenge of integrating three different 

aspects, (1) components such as exposure, sensitivity or adaptive capacity, (2) different 

methods used in different disciplines, (3) target dimension of vulnerability (Fuchs et al. 2011). 

Vulnerability index (VI) refers to numerical values representing the quality of the structural 

and non-structural parameters which are considered to influence in the response of the building 

to a natural hazard (Belheouane and M. Bensaibi 2013). 

Vulnarability Index VI= ∑ ��
���        

Where  n=number of items in a building structure, K = correlation coefficient of building 

response (Tesfamariam and Saatcioglu 2010).  

Pompe and Haluska (2011) described following components as factors influencing hurricane 

vulnerability index (HVI): (1) the level of exposure, (2) physical susceptibility to the hurricane, 

and (3) the hurricane’s frequency and intensity. They used the following formula: 

HVI = (E)*(S)*(H)      

Where E and S are the exposure and susceptibility to the hurricane, and H is likelihood of the 

hazard. Pompe and Haluska (2011) used a multiplicative model (Saaty 1980) since risk is a 

product of exposure, susceptibility, and hazard. The three elements are calculated with the 

following equations: 

E = wE1R E1 + wE2R E2 + wE3R E3   

S = wS1R S1 + wS2R S2 + wS3R S3  

H = wH1R H1      

Where R E1, R E2, and R E3 are population, housing units, and housing value; R S1, R S2, 

and RS3 are building code effectiveness, average building age, and vulnerability to sea-level 

rise; R H1 is hurricane probability; and w is the appropriate weight for each indicator (Pompe 

and Haluska 2011) 
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2.4.2 Damage index 

Blong (2003) used damage index to evaluate the performance of buildings which relies on the 

construction cost per square metre and a replacement cost ratio which is approximately equal 

to the costs relative to the cost of replacing a median-sized family home. In this research 

damage index for the infrastructure is defined as:  

Damage index = Cost for repair/Cost of replacement 

2.5 Methods of studying bridge  

2.5.1 Probabilistic models 

Studying the interactions between waves and bridge decks is important to understand the 

damages to bridges caused by storm surge. Fluid structure interaction is a complex 

phenomenon, due to air entrainment, turbulence and wave diffraction (Ataei et al. 2010).   

Ataei et al. (2010) suggested that probabilistic models of vulnerability are required to predict 

any damages to bridge infrastructure under hurricane event.  According to them the first step 

in developing the probabilistic model involves studying of dynamic responses of the bridges to 

hurricane induced loadings (Ataei et al. 2010).  Kaplan et al. (1995) proposed a mathematical 

model for predicting the forces on cylinders and plates of offshore bridges based on Morrison’s 

equation which considered drag and inertial terms. Morrison’s equation applies to structures 

that have large clearance between the deck and the water level.  

  



24 | P a g e  

 

Ataei et al. (2013) proposed following equation for the damage index for the bridges by using 

Longuet-Higgins (1983) joint probability wave function: 

 

    P [D>C|IM = s]                         Single valued IM 
                                        P [D>C|IM1= s1,…...., IMn =sn ]   Single valued IM 
 
[Equation 7: Damage Index Equation] 
                                       

Where D =structural demand, C = structural capacity, and IM =s= realization of the measure 

of hazard intensity for a single-valued IM and where IM1 = s1 to IMn = sn are the measures of 

intensity for a vector-valued IM. 

2.5.2. Risk Analysis and Fault Tree Analysis (FTA) 

Current risk analysis methods and tools used in bridge maintenance can be grouped into three 

categories: field inspections, computer simulations, and real-time monitoring by using on-site 

sensors. The visual field inspections look for signs and symptoms of deterioration that could 

form into a failure. Real-time monitoring sensors, such as structural health monitoring (SHM) 

sensors, detect symptoms by a number of sensors on the bridge that can be connected to a 

computer network.  

Computerized models and simulations predict failure by using historical data and trends. Pontis 

(Futkowski and Arenella 1998; Cambridge Systematics, Inc. 2004) and artificial neural 

network (ANN) (Huang 2010) are two examples for computerised risk assessment models. In 

addition to historical data and trends, computerized knowledge based systems use expert 

opinions and results from other methods (e.g., field inspections).Despite the numerous practical 

advantages; risk assessment methods still have several limitations. Fault Tree Analysis (FTA) 

could be used to resolve majority of these issues. 

2.5.2.1. Advantages of FTA method 

Fault Tree Analysis could be used to address the limitations of risk assessment methods on 

following ways (Davis-McDaniel 2013): 

• Computerized mechanistic-based simulations and knowledge-based models require large 

amount of technical data. In FTA, if the exact information is not known, an educated guess 

or probable range can be used as input for the probability of basic events. 

P [Damage|IM] = 
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• Structural health monitoring, computerized mechanistic-based simulation, and in certain 

occasions visual inspection do not consider the chain of events that lead to bridge failure. 

The FTA models are developed using the chain of events; therefore, all the events that lead 

to failure can be identified through the analysis. 

• Majority of the visual inspections, computerized simulations, and computerized 

knowledge-based systems only evaluate the condition of individual bridge components 

instead of assessing the both individual components and their interrelationships.  

• Fault-tree analysis can also be used to assess the condition of individual components and 

the cause-and-effect relationships between different levels of events. 

• Only few computerized simulations are known to use or produce a visual model of the 

bridge system. On the contrary, FTA produces a fault-tree model, which illustrates the 

individual bridge components with the chain of events leading to their failure of the bridge, 

and the relationships between the various causal events and the individual bridge 

components. 

In addition to these advantages, FTA has the benefit of being fast and easy to use. Although 

FTA appears to have multiple advantages, it also comes with some limitations. FTA uses 

significant amount of background knowledge required on the bridge to construct the fault-tree. 

FTA also finds it difficult to compute probabilities for each event in the quantitative analysis 

due to the lack of research material or large amounts of data that require analysis. Visual 

inspections can be used to extract a majority of the data required for FTA; hence, FTA is best 

used in combination with visual inspections (Davis-McDaniel 2013). 

2.5.2.2 Fault Tree Analysis Method 

Whilst the damage index offers the level of damage to the structure, it doesn’t allow 

identification of the probability of bridge collapse at a given intensity of an extreme event. 

Fault tree method can be used to establish this relationship (FHWA 2011). It is also used as a 

prognostic tool in the design stage of a bridge which trouble shoots all possible events that 

could cause bridge to collapse (LeBaeu et al. 2007).  

Fault tree analysis (FTA) is a technique adopted to determine the root cause and the probability 

of failure of a structure due to an undesired event (Ericson, 2005). It can be used for risk 

assessment based on the likelihood and consequence ratings of various events of fault tree 
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(Williams et al., 2001). FTA is also a systematic analysis and often used in evaluating large 

complex dynamic systems to identify and prevent potential problems.  

FTA uses a graphical model based on logic gates and fault events to model the interrelations 

involved in causing the undesired event.  

 

Table 2-2: Fault tree gates and events (Zhu 2008) 

 

 

 

A logic gate may have one or more input events but only one output event. AND gate means 

the output event occur if all input events occur simultaneously while the output event of OR 

gate occurs if any one of the input events occurs. In this analysis, two fault tree diagrams were 

developed for pre stressed concrete bridges and the timber bridges.  
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To develop the fault tree diagrams, damages in each element of the bridges were identified. In 

this analysis, four symbols were used i.e. event, sub event, AND gate, and OR gate. 

One of the advantages of fault tree is its ability to unveil logical interrelationships of the bridge 

system through graphical depiction and Boolean algebra. The bridge can be modelled in its 

entirety, including element interactions, redundancy, deterioration mechanisms such as 

corrosion and fatigue, and environmental factors (LeBaeu et al. 2007).  

Fault tree method has both qualitative and quantitative analysis. Qualitative analysis derives a 

graphical Boolean depiction of the factors (events) which could lead to bridge failure (top 

event). Each event is connected to an upper-level event by an OR, AND, EXCLUSIVE OR, 

INHIBIT, and PRIORITY AND gates (Davis-McDaniel 2013). The events that constitute fault 

tree are classified as intermediate, basic, undeveloped, conditional, or house events (Fig 2-8). 

 

 

Figure 2-8: A Simple Fault Tree (Setunge et al. 2010). 
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Figure 2-9: Main Fault Tree Diagram for Scour and Channel Instability at Bridges (Setunge 

et al. 2010) 

 

2.5.3 Voting gate 

Voting gate means once M of N combinations of inputs occur, the output event 
Occurs, (Ericson, 2005). It is a combination of 	⋁ 
�   AND gates with M inputs and OR gate 
with  ⋁ 
�    inputs. 
 

 

Pf   = 1-�1  	��
��^	��

� 

Where Pf is the system probability of failure, Pc is the component probability of failure, M is 

the number of failure of components and N is the total number of parallel components. The 

intensity of failure changes with M.N is easy to determine but M is a crucial factor for the 

accuracy of the calculation. 

The voting gate model can provide a connection of the quantitative results of component 
probability of failure due to initiation of a distress mechanism and the previous fault tree model  
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Figure 2.10.Voting gate diagram 
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CHAPTER 3 

METHODOLOGY 

3.1 Summary of the Methodology  

This chapter describes the methodology used to analyse the damaged bridges due to cyclone 

Marcia. A case study was carried out to identify all potential attributes of bridges that 

contributed or could contribute to failure such as bridge approaches, bridge surface, waterway, 

bridge substructure, bridge superstructure etc.   

Data used in this exercise was obtained from Department of Transport and Main Roads based 

on level 1 and level 2 pre-cyclone and post cyclone bridge inspections. Level 1 inspection 

indicates the damaged components and the morphology of the damage.  The level 2 inspection 

provides more details of the damage including its severity.  

The failure criteria was used to calculate the failure of two different types of bridges, Concrete 

and timber bridges. Inspection data were grouped based on the type of bridges as timber or 

concrete and evaluated for type of damage, age, standard used to design these bridges and 

separate databases were developed for each bridge type.  

The relationship between the collected data and the failure of the specific bridge of interest 

were analysed using fault tree method (Fig 2-8) (Setunge et al. 2010). Fault tree was 

constructed using data on element failure reported in level 1 and level 2 inspections in 

conjunction with the advice from experts in bridge engineering.  

This chapter has three sections 

A) Secondary Data collection and Pre Analysis 

B) Development of Fault tree 

C) An example of probability Calculation using the fault tree diagrams 
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3.2. Data collection 

Pre-disaster and post-disaster inspection data for damaged bridge were obtained from 

department of transport and main roads Rockhampton. Bridges inspection system (BIS) has 

been developed at TMR (Transport and Main Road) to keep all the records of the bridges 

nationwide. Level 1 and level 2 inspection reports were used to analysed the data. 

• Level 1 - Routine Maintenance Inspections 

• Level 2 - Bridge Condition Inspections  

3.1.1 Level 1 reports-Routine Maintenance inspection 

Purpose of the level 1 inspection report is to check the general serviceability of the structure, 

particular for the safety of the road users and identifying the emergency problems (Bridge 

Inspection Manual, 2004) 

Scope 

The scope of a Routine Maintenance Inspection includes: 

• Inspection of approaches, waterway, deck/footway, substructure, superstructure and 

attached services to assess and report any significant visible signs of distress or 

unusual behaviour, 

• Inspecting the active scours or deck joint movements. 

• Check of miscellaneous inventory items, including the type, extent and thickness of 

the bridge surfacing as well as details of existing services. 

• Recommendation of a Bridge Condition Inspection if warranted by observed distress 

or unusual behaviour of the structure. 

• Identify maintenance work requirements and record on the Structure Maintenance 

Schedule form 

Level 1 inspection was carried out immediately for all the damaged bridges after the cyclone 

Marcia. An example of a Level1 inspection report was attached in Appendix B. 

3.1.2 Level 2 - Bridge Condition Inspections 

Purpose of the level 2 inspection report is  to assess and rate the condition of a structure (as a 

basis for assessing the effectiveness of past maintenance treatments, identifying current 
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maintenance needs, modelling and forecasting future changes in condition and estimating 

future budget requirements). 

Scope 

The scope of the Bridge Condition Inspection includes: 

• Compiling, verifying and updating inspection inventory element items as appropriate. 

• Visual inspection of the principal bridge components (including measurement of 

crack widths, and an assessment of condition using a standard condition rating system 

as defined in the inspection procedures. 

• Visual inspection to identify any suspected asbestos containing material. 

• The inspection of timber bridges will be supplemented by a drilling investigation, and 

also include the identification and reporting of under sized timber members. 

• Reporting the condition of the principal bridge components and determining an 

aggregate rating of the structure as a whole. 

• Identifying and programming preventative maintenance requirements and recording 

on the Structure Maintenance Schedule form (M1). If access equipment is required to 

conduct the 

• Inspection, then routine / preventative maintenance may also be completed in 

conjunction with the inspection. 

• Requesting a detailed bridge inspection by a bridge engineer if warranted by apparent 

rapid changes in structural condition and/or apparent deterioration to condition state 4. 

• Underwater inspections of those elements in permanent standing water at the 

specified frequency. 

• Recommending requirements for the next inspection and nominating components for 

closer monitoring as appropriate. 

• Recommending supplementary testing as appropriate. 

. 
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An example of level 2 report was attached in Appendix C 

Level 1 Inspection data were available for 41 pre stressed concrete bridges, and 18 Timber 

bridges. Level 2 inspection reports were available for 6 concrete bridges and 8 timber bridges. 

Data were analysed separately for level 1 and level 2 inspection reports before and after the 

cyclone Marcia. An excel sheet was used to analyse the nature of damage for each element of 

the bridges individually (Excel sheets were attached in Appendix D Appendix E). 

3.2 Development of Fault Tree 

Bridges can deteriorate before the end of service life, if the design does not give the structure 

resilience to the environment to which it is exposed. However, deterioration of a structure does 

not necessarily imply structural collapse but could lead to loss of structural serviceability, such 

as poor durability and poor appearance with cracking, spalling, etc. Evaluation of the risk of 

failure of serviceability is important in decision making in relation to identifying different 

rehabilitation options for managing aging bridges. 

Table 3-1: Different symbols used in fault tree construction  

Symbols Name Usage 

 Circle Basic event  

 Triangle Transfer 

 AND Gate Output event occurs if all 

input events occur 

simultaneously 

 OR Gate Output event occurs if any 

one of the input events 

occurs 

 Voting gate M of N combination of 

inputs causes output to 

occur 

 

 

Components/elements of all the bridges can be grouped under two headings 

M
/N
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• Super structure 

• Substructure 

The main components of the Super structure and the Sub structure are shown below: 

Table 3-2: Components of a typical bridge structure  

 Bridge Component Description 

Super Structure Deck A bridge deck or road bed is the roadway, or the 

pedestrian walkway, surface of a bridge, and is one 

structural element of the superstructure of a bridge. 

The deck may be constructed of concrete, steel, 

open grating, or wood. Sometimes the deck is 

covered with asphalt concrete or other pavement. 

The concrete deck may be an integral part of the 

bridge structure (T-beam or double tee structure) 

or it may be supported with I-beams or steel 

girders. The main function of deck is to distribute 

Superstructure loads transversely along the bridge 

cross section. 

 

Girder A girder bridge, in general, is a bridge that utilizes 

girders as the means of supporting the deck. 

Girders distribute loads longitudinally and resist 

flexure and shear. 

Sub Structure Pier Piers are structures which support the 

superstructure at intermediate 

Substructure points between the end supports 

(abutments). Single-span bridges have abutments 

at each end that support the weight of the bridge 

and serve as retaining walls to resist lateral 

movement of the earthen fill of the bridge 

approach. Multi-span bridges require piers to 
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support the ends of spans between these 

abutments.  

 Bearing Bearings are mechanical systems which transmit 

the vertical and 

horizontal loads of the superstructure to the 

substructure, and 

accommodate movements between the 

superstructure and the 

substructure 

 Abutment Abutments are earth-retaining structures which 

support the superstructure and overpass roadway at 

the beginning and end of a bridge. abutments at 

each end which provide vertical and lateral support 

for the bridge, as well as acting as retaining walls 

to resist lateral movement of the earthen fill of the 

bridge approach 

 

 

Generally, the problems associated with concrete structures can be grouped into following 

aspects (Rendell et al., 2002):   

a) Initial design errors: either structural or in the assessment of environmental exposure. 

b) Built-in problems: the concrete itself can have built-in problems. A good example of 

this is alkali-silica reaction (ASR). 

c) Construction defects: poor workmanship and site practice can create points of weakness 

in concrete that may cause acceleration in the long-term deterioration of the structure. 

A common defect of this type is poor curing of the concrete. 

d) Environmental deterioration: a structure has to satisfy the requirement of resistance 

against the external environment. Problems may occur in the form of physical agents 

such as abrasion, and biological or chemical attack such as sulphate attack from ground 

water. 
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Considering above basic events, and using the analysis of bridge inspection data, and referring 

to the models used by Zhu (2008)  Johnson (1999) and Davis-McDaniel,etal  (2013)the following 

fault tree diagrams were developed for concrete bridges and timber bridges. 

Fault tree diagram for concrete bridges 

           

  

 

            

 

 

Figure 3.1: The main Fault tree diagram for concrete bridge 

 

 

 

     

     

 

 

Figure 3.2: Main Sub tree Branch for the deck failure  
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Figure 3.3: Main sub tree branch for accidental damage 

1-Train accident 

2-Marine accident 

3-Road accident 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Main sub tree branch for faulty construction 

1 2 3 

Accidental Damage 

Faulty Construction 

Poor Quality Material 2 1

o

Poor design 

Steel  Properties Concrete Properties 

9

o

8

o

7

o

6

o

5

o

10 

3 4

o



38 | P a g e  

 

1-Wrong Alignments    6-Improper construction 

2-Scour     7-Wrong Strength 

3-Poor detailing    8-Wrong size 

4-Wrong load estimation   9-Poor detailing 

5-Inadequate Curing    10-Wrong type 

 

 

 

 

 

 

 

 

 

Figure 3.5: Main sub tree branch for age /durability 

1-Chloride exposure   6-High CO2 

2-Access to Reinforcement  7-High Reactive Humidity 

3-Reactive Aggregates  8-Permeable Concrete 

4-Poor material   9-High Wind Speed 

5-Excessive Moisture   10-Low reactive humidity 

11-Improper Curing 

 

 

Age/Durability 

Cl2 induced 

Coorution 

Carbonisation ASR Plastic 

Shinkage 

11 9

o

8

o

7

o

6

o

5

o

4

o

3

o

2

o

1

o

Arid Environent 

10

00



39 | P a g e  

 

 

 

 

 

 

 

 

 

Figure 3.6 Main sub tree branch for extreme events 

1-Heat (Temperature of the environment)    5-Cyclone 

2-Fire        6-Flood 

3-High Traffic loads      7-Earth Quake 

4-Over Weigh Traffic 

The basic fault Tree diagram for the Deck, Girder, Abutment, Column and Head stock was 

similar. But the assigned probabilities for the basic events under each bridge component were 

different. For an example when considering the fault tree diagram for an extreme event, the 

probability of natural events result from flood, cyclone and earthquake varies along the deck, 

Girder, abutment, head stock and piles. 
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Fault Tree diagram for timber bridges 

The basic structure of the fault tree diagram for the timber bridges is similar to concrete bridges. 

The only difference occurs in faulty construction subtree and age/durability sub tree. 

         

  

 

            

  

 

 

Figure 3.7: Fault tree diagram for timber bridges 

 

 

     

     

 

     

     

Figure 3.8: Sub Tree Diagram for the timber deck Failure 
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The accidental subtree branch and the extreme event sub tree branch is the same as for concrete 

bridges. The only difference is that the concrete properties have been replaced by timber 

properties. In the timber bridge fault tree diagram, age/durability represent as a basic evet. This 

is because in timber bridges ASR, carbonisation, Cl2 corrosion and plastic shrinkage don’t 

occur. 

Fault tree Diagram for the concrete and timber bridge failure due to cyclone Marcia 

In this study concrete and timber bridge failure due to cyclone Marcia was only considered. 

Therefore the Fault Tree Diagram due to the cyclone Marcia was further developed to analyse 

the data.  

      

  

 

 

 

            

 

 

 

Figure 3.9: Fault tree diagram for timber bridges due to a cyclone 
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Figure 3.10: Fault tree diagram for concrete bridges due to a cyclone 

 

1-Debris/Impact 

2-Surge induced loadings 

3-Scour 

A bridge could fail due to a cyclone because of the impact damage blocked debris, surge 

induced forces and scour. The main purpose of this study is to find the basic event probabilities 

for super structure and substructure failure. To estimate and assigns probabilities for basic 

events, level 1and level 2 bridge inspection reports from Department of Transport and Main 

Roads (DTMR) were used. The Probability calculation is shown in the analysis section. 

 

3.3 Probability of failure of each element 

The fault tree model can be converted into a mathematical model to compute the failure, 

probabilities and system importance measures (Ericson, 2005, Mahar and Wilbur, 1990). The 

main logic gates used to combine the events are:  

• AND gate                                

• OR  gate 

Equation for AND gate is 
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P =∏ ���
���      

 

Equation for OR gate is 

P =1∏ �1  ����
���      

 

 Example of calculation of the probability of top event 

If the basic event probabilities are known (Basic events-Events happens at the very end of the 

Fault tree diagram and represent as a circle) Using the above two equation for OR gate, AND 

gate the probability of the top event can be calculated 

 

 

 

 

 

 

 

 

The probability of Occurrence of top event can be calculated as follows 

P(PS1) =P(PS3).P(PS4)   (AND gate) 

P(PS) =1-[1-P(PS1)].[1-P(PS2)]  (OR gate) 

For this example let’s take the probability of basic events as 0.01 and 0.001 

PS3 =0.01 

PS4 =0.001 

PS=A6 

PS1 PS 
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PS
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Then the probability of PS1 is calculated as follows. 

PS1 =P (PS3).P (PS4) 

       =0.01*0.001 

       =0.00001 

Then the probability of the top event, 

 PS     =1-[1-P (PS1)]. [1-P (PS2)] 

          =1-[1-(0.01)]. [1-(0.001] 

          =0.0109 
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CHAPTER 4 

MODEL DEVELOPMENT 
 

4.1 Condition rating of the level 2 inspection reports 

The condition rating system reflects the performance, integrity and durability of the structure and its 

principal components. The assessment of the nature and extent of defects shall be detailed in the 

procedures as appropriate to each component type. The overall structure condition rating is based on 

the condition of its principal load bearing components. The condition ratings have been developed to 

represent the easily discernible stages of deterioration. (Bridge inspection manual, 2004) 

4.1.1 Assigned Probabilities for the condition states 

Qualitative ratings were extracted from the TMR Bridge Inspection manual and assigned 

probabilities were selected in consultation with the experts and resource personal with 

substantial knowledge and experience in the field of road infrastructure  (Expertise- Director 

of the infrastructure management and delivery section in Rockhampton, TMR, Two Structural 

engineers from TMR, two senior civil engineers from TMR, Rockhampton and Toowoomba, 

head of the department of civil engineering at CQ university, and Two senior lecturer in USQ) 

The majority (99%) of the experts consulted have agreed with the following approach in 

assigning probabilities;  

a) Change of condition state 1 to condition 2 is negligible. 

b) Change of condition 2 to 3 is a concern but it doesn’t need immediate action. 

c)  Change of condition 3 to 4 needs immediate action.  

d)  Condition 5 was allocated as the worst case scenario and normally before any element 

reaches condition 5; TMR immediately repairs that particular component/element or 

repair the whole bridge. Based on these general agreement assigned probabilities were 

chosen as below. 
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Table 4-1: Qualitative rating for the condition levels of a bridge 

 

Condition levels Qualitative Rating Assigned Probability 

1 Good 7% 

2 Fair 12% 

3 Poor 25% 

4 Very poor 50% 

5 Worst 65% 

 

Table 4-2: Change Of probabilities according to the change of condition state 

 

Change of condition state of a bridge 

component 

Change of probability 

Condition state 1-condition state 2 0.05   (12%-5%) 

Condition state 1-condition state 3 0.18 (25%-7%) 

Condition state 1-condition state 4 0.43 (50%-7%) 

Condition state 2-condition state 3 0.13   (25%-12%) 

Condition state 2-condition state 4 0.38   (50%-12%) 

Condition state 3-condition state 4 0.25   (50%-25%) 

 

4.1.2 Reasons for allocating the assigned probability for each condition levels 

As shown in the above table the change of probability from condition 1 to 2 was given as 

5%.This is because according to the TMR procedures the change of condition from 1 to 2 is 

negligible. Change of condition state 2 – 3 is a concern; hence the probability difference 

between condition levels 2 to 3 was taken as 13% (25% -12%). If the condition state changes 

from 3 to 4, it is a main concern and immediately need to repair the component. Therefore the 

change of possibility from condition state 3 to 4 is chosen as 25% (50%-25%) 
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4.2 Example for Probability calculations: Roubdstone Timber Bridge 

(structure ID 718) 

4.2.1 Calculations for girder failure of span 1 

Table 4-3: Change of condition state for girders in span1  

 

No of 

Girders 

Span1 conditions  state before the 

cyclone 

Span 2 conditions  state after the 

cyclone 

Probability of failure 

of girders in span1 

7 1 2 3 4 1 2 3 4 

  5 2     7 0.343 

 

Probability calculation for the girders of span1 

a) 

Condition state before the cyclone Marcia     = 2 (12%)  

Condition state after the cyclone Marcia     = 4 (50%) 

The probability difference between condition levels     = (0.5-0.12) 

           

                       =0.38 

Number of girders changed from condition 2 to condition 4   = 5 

Therefore the probability of failure of girders in span 1   = 0.38*5 

            

          =1.9 (result 1) 

b) 

Condition state before the cyclone Marcia     = 3 (25%)  

Condition state after the cyclone Marcia     = 4 (50%) 

The probability difference between condition levels    = (0.5-0.25) 

            

          =0.25 

Number of girders changed from condition 3 to condition 4   = 2 

Therefore the probability of failure of girders in span 1   =0.25*2 

 

          =0.5 (Result 2) 

Therefore the probability of all girder failure for span 1   =1.9 + 0.5 (result 

1+result 2)         =2.4 

Total number of girders changed the existing condition   =7 
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The probability of a girder failure      =2.4/7 

          =0.343 

4.2.2 Calculations for girder failure of span 2 

Table 4.4: Change of condition state for girders in span2  

No of 

Girders 

Span2 conditions  state before the 

cyclone 

Span 2 conditions  state after the 

cyclone 

Probability of failure 

of girders in span1 

7 1 2 3 4 1 2 3 4 

  5 1 1    7 0.3583 

 

a) 

Condition state before the cyclone Marcia     =2 (12%)  

Condition state after the cyclone Marcia     =4 (50%) 

The probability difference between condition levels    = (0.5-0.12) 

          = 0.38 

Number of girders changed from condition 2 to condition 4   = 5 

Therefore the probability of failure of girders in span 2   =0.38*5 

            

          =1.9 (result 1) 

b) 

Condition state before the cyclone      = 3 (25%)  

Condition state after the cyclone      = 4 (50%) 

The probability difference between condition levels    = (0.5-0.25) 

            

          =0.25 

Number of girders changed from condition 3 to condition 4   = 1 

Therefore the probability of failure of girders in span 2   =0.25*1 

 

          =0.25 (Result 2) 

Therefore the probability of all girder failure for span 2   =1.9+0.25(result 

(result 1+result 2)         =2.15 

 

Total number of girders changed it existing condition   =6 

The probability of a girder failure of span 2     = (2.15)/6 

          =0.3583 
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Same method can be applied for span 3 and span 4.The result are as below. 

The probability of a girder failure of span 3   =0.3428 

The probability of a girder failure of span 4   =0.331 

 

4.2.3 Calculation of the probability of girder failure using span1, span2, span3, span4 

results 

The probability of a girder failure of span 3 due to cyclone Marcia  =0.343 

The probability of a girder failure of span 4 due to cyclone Marcia  =0.3583 

The probability of a girder failure of span 3 due to cyclone Marcia  =0.3428 

The probability of a girder failure of span 4 due to cyclone Marcia  =0.331 

Total                 = (0.343+0.3583+0.3428+0.331) 

          =1.3746 

Total number of span        =4 

Total number of girder       =7 

 

                                                             

PGS                                          =
�����������	� 	!��"#�	 ���$�#	 ��		���	%&��%

�$'�#�	� 	!��"#�%∗�$'�#�	� 	%&��
 

 

=1.3746/ (7*4) 

     =0.049 

Where PGS -Probability of girder failure for all span 

  



50 | P a g e  

 

4.2.4 Probability of a girder failure for all bridges 

Using the same method probability of a girder failure for eight timber bridges were calculated. 

The results are shown below. 

Table 4-5: Results from the excel sheet for the girder failure 

 

Bridge Probability of a girder failure for all bridges 

1 
0 

2 
0 

3 
0 

4 
0.01 

5 
0.032 

6 
0.049 (calculation for this bridge shown above) 

7 
0 

8 
0.01 

Total 0.101 (0+0+0+0.01+0.032+0.049+0+0.01) 
 

 

 

In the above table, the probability of failure for four bridges stated as 0.This because the 

condition state of girders haven’t changed before and after the cyclone Marcia for all the span 

in those bridges. 

 

      	

PG                                                                 =
�����������	� 		!��"#�	 ���$�#	 ��		���	���"!#%

�$'�#�	� 	���"!#%
 

 

     = (0.101)/8  

= 0.013 

 

Where P G -Probability of a girder failure for timber bridges   

 

Using the same method the probability of failure of the deck, piles, abutments, and headstock 

were calculated. 
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4.3 Method of calculating the basic events for the FTD 

 

 

 

 

 

 

 

 

The probability of the girder failure was calculated as 0.013.In the fault tree diagram the girder 

failure was divided into two basic events, debris/impact damage and surge induced loadings. 

To find the basic event probabilities, top to bottom method was used. 

To assign the weight for the basic event, the same expert consultation method mentioned in the 

previous section was used. The level 1 inspection report was also used to assign the weight for 

debris and impact damage. 

 Level 1 inspection report 

41 concrete bridges and 18 timber bridges were analysed before and after the cyclone Marcia 

using the level 1 inspection reports. According to the data results as follows 

 

Timber bridges 

Total number of bridges considered   -18 

Number of Impact damage     - 6 

Number of debris damaged     -3 

Scour (Bed, spill through, bedside)   -9 

 

Concrete bridges 

Total number of bridges considered   -41 

Number of Impact damage     - 8 

Number of debris damaged    -3 

Girder failure due to cyclone  

Debris/ 

Impact 

Surge 

induced 

Loading 
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Scour (Bed, spill through, bedside)   -25 

 

Using above results and consulting expertise (Section 4.3) the weight of a girder failure due to 

debris/ impact and surge induced forces were assigned as below. In a cyclonic event, bridges 

are mostly damaged by the storm surge that arises from the severe weather event. In most 

occasions bridges have failed due to unseating or drifting of superstructures which depend on 

connection type between decks and bents (Meng and Jin 2007; Padgett et al. 2008; Chen et al. 

2009). 

Girder failure due debris/impact   =25% 

Girder failure due to surge induced forces  =75% 

 

Probability calculation for the basic events 

In the above fault tree diagram (Figure 1) the probability of the girder failure due to a cyclone 

was connected by two basic events; debris/impact and surge induced loadings. OR gate was 

used to connect the secondary branches. Using the equation for the OR gate probability of the 

basic two events can be calculated as follows. 

Probability of a girder failure       = PD  

Probability of a girder failure due to debris/impact   = Pd 

Probability of a girder failure due to surge induced loadings = Pi 

  

PD  =1.3% (Calculated probability from level 2 

inspection report) 

Pd =25% (assigned probabilities using level 1inspection 

reports and expertise knowledge) 

Pi =75% (assigned probabilities using level 1inspection 

reports and expertise knowledge) 

 

P =1-  [(1- Pd)×(1-Pi)]      [Equation 8:Equation for the 

OR gate] 

0.013 =1-[(1-0.25 Pd)(1-0.75Pd)] (Pi can be replaced as               

0.75 Pd) 

0.013                                        =1-[1-0.75Pd-0.25Pd+0.1875 ( Pd)2] 
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0.1875 (Pd) 2 –Pd +0.013  =0 

By solving this equation:  

Calculated Pd is      = 0.0143 

0.25 Pd       = 0.75 Pi 

Pd       = (0.75 Pi)/0.25  

       = 3 Pi 

 

Therefore Pi   is     =0.0143×3 

       =0.043 

Probability of a girder failure of a timber bridge due to debris/impact  =0.0143 

Probability of a girder failure of a timber bridge due to surge induced loadings = 0.043 

 

 

 

 

 

 

 

 

 

Using the same method the probability of basic events for each bridge components can be 

calculated. 

Table 4-6: Basic events used to calculate the main element failure of a bridge 

 Bridge component Basic events 

 Super structure Girder Debris/Impact, surge  
Deck Debris/impact, surge 

Sub structure Piles Debris/impact, surge, scour 
Columns Debris/impact, surge, scour 

Abutments Debris/impact, surge, scour 

Girder (0.013) 

Debris/ 

Impact 

(0.0143) 

Surge 

induced 

loading 

(0.043) 
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As shown in the table 4-6, impact/debris and damages caused by surge induced loadings were 

only considered as basic events for the girders and deck failure. But for substructure 

components, debris/impact, surge induced loadings and scour were selected as basic events. 

When selecting the probabilities of basic events for substructure, results from the level 1 

inspection reports (Mentioned above refer to page 43) and expert knowledge was used. 

Assigned probabilities for piles are shown below: 

Pile failure due debris/impact    =25% 

Pile failure due to surge induced loadings        =45% 

Pile failure due to scour    =35% 

All the basic event for the components of the substructure failure are connected using an OR 

gate. Therefore probabilities of the basic events were calculated using the same equation and 

same method described in earlier section (The method used to calculate the probabilities of 

basic events of the girder). Same method was applied to calculate the probabilities for the 

concrete bridges. 

 

T-tests 

Unbalanced paired t-tests were used to compare the mean probability values of selected 

elements of timber and concrete bridges. 
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CHAPTER 5 

RESULTS & DISCUSSION 

 

5.1. General Observations 

Post cyclone inspection data (level 1 inspection) for 59 bridges (41 were concrete bridges, 18 

timber bridges), were tabulated for analysis.  

 

Figure 5-1: Comparison of super structure and substructure failure between concrete and 

timber bridges 

 

Preliminary observations showed that there are no significant difference between potential 

cyclones induced damage on superstructure and substructure on both timber and concrete 

bridges. Potential cyclone related impact on substructure was most prevalent in timber bridges 

(˜66 %) (Fig 5-1). 

However, pre-cyclone level two inspection data indicated that majority (62%) of the timber 

bridges were in exhausted state (condition 3). After the cyclone the condition of 82% of the 

timber bridges reached critical state which required immediate attention.  
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5.2  Results from Fault Tree Analysis (FTA) 

Level 1 inspection data for 41 concrete bridges and 18 timber bridges and level 2 inspection 

data for 8 timber bridges and 6 concrete bridges were used in the FTA analysis. Below table 

shows the calculated probabilities for the concrete and timber bridge failures due to cyclone 

Marcia. 

Fault tree analysis for the selected concrete and timber bridges using cyclonic events suggested 

that in general timber bridges are more susceptible for forces of natural disasters (P timber 

=0.17, P concrete =0.14 ).  

Probability values for basic events selected to construct fault tree for concrete bridges are 

closely in line with the reported probability values in the study conducted by Mc Daniel et al 

.(2013) 

5.2.1 Failure of timber bridges under cyclone events 

Fault tree analysis for timber bridges indicated that substructure is more susceptible for cyclone 

induced damage than super structure (Table). Failure of substructure was found to have mostly 

influenced by damages to headstock.  

Table 5-1: Probability of main element failure for timber bridges 

 

Probability of component failure of a timber bridges  

Super structure 

0.06898 

Substructure 

0.1121 

Deck Girder Piles Abutments Head stock 

0.057 0.0127 0.0297 0.01423 0.0718 

 
Results suggested that superstructure failure in timber bridges under cyclonic even is mainly 

due to deck failure which is likely to have caused by surge induced loadings (Table 5-1, Table 

5.2) 
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Table 5-2: Probability of basic events of the super structure for timber bridges 

 

 
A number of authors have also reported and discussed similar observations where super 

structure failure was found to be influenced by damage or displacement of the deck (Douglass 

et al. 2006; Chen et al. 2009).  Douglass et al. 2006 suggested that surface waves generated by 

storm surge, can overcome the anchorage and subsequent waves dislocate them causing bridge 

to collapse.   

Fault tree analysis for timber bridges indicated the substructure failure is mostly influenced 

by surge forces followed by weakness caused by scouring (Table 5-3). 

Table 5-3: Probability of basic events of the sub structure for timber bridges 

Surge induced loading seems to have caused the majority of the substructure elements failures. 

The intensity of the damage may have been compounded due to the age of these timber bridges 

in question as anchorage and joints may have weakened over the years. Some of the bridges 

that have been included in this study are as old as 35 years.  

 
 

 

 

 

 

 

 

 

 

 

 

Super structure failure of timber bridges (basic event probabilities) 

Deck Girder 

Debris/Impact 
Surge Induced 

Loading 
Debris/Impact 

Surge Induced 

Loading 

0.01439 0.04319 0.00319 0.00956 

Sub structure failure of a timber bridge  (basic event probabilities) 
Piles Abutment Head stock 

Surge Scour Impact Surge Scour Impact Surge Scour Impact 
0.013426 0.010442 0.00596 0.0062 0.00483 0.00276 0.032832 0.025536 0.01459 
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5.2.2 Failure of concrete bridges under cyclonic events 

 

Table 5-4: Probability of main element failure for concrete bridges 

 

Probability of component failure of concrete bridges  

Super structure 

0.00958 

Substructure 

0.13934 

Deck Girder Piles Abutments Head stock 

0.0036 0.006 0.0035 0.1327 0.004167 

 
 
According to the FTA (Table 5-4), probability of substructure failure in concrete bridges at the 

presence of cyclonic forces is slightly greater than that of superstructure failure. Results did 

not indicate marked difference in the susceptibility of super structure and substructure of 

concrete bridges. Unlike timber bridges, failure of superstructure in concrete bridges has found 

to be mainly caused by girder damage. Similar to timber bridges, surge induced loadings have 

caused super structure element failure (Table 5-5) 

 

Table 5-5: Probability of main element failure for concrete bridges 

 
Results (Table 5-6) suggested that surge induced loading closely followed by structural 

weakness caused by souring are responsible for substructure element failure. In contrast to 

timber bridges, abatement failure has shown significant impact on substructure failure (Table 

5-6)  

Table 5-6: Probability of basic events of the sub structure for concrete bridges 

 

Sub-structure failure for concrete bridges(basic event probabilities) 
Piles Abutment Head stock 

Surge Scour Impact Surge Scour Impact Surge Scour Impact 

0.001466 0.00114 0.000652 0.06197 0.0482 0.02754 0.001869 0.00145 0.00083 

Super structure failure for concrete bridges (basic event probabilities) 

Deck Girder 

Debris/Impact 
Surge Induced 

Loading 
Debris/Impact 

Surge Induced 

Loading 

0.00065 0.00195 0.001502 0.004505 
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Probabilities of failure for both timber bridges and concrete bridges as a direct or indirect 

impact from cyclone were calculated by using the probabilities in the table. 

 

• The probability of a timber bridge failure due to a cyclone  =0.17 
 

• The probability of a concrete bridge failure due to a cyclone  =0.14 
 
 
Probability of timber bridge failure due to cyclonic events is higher than that for concrete 

bridges. The main reasons for this may be due to age of the timber bridges. All the timber 

bridges studied for these case studies were built more than 35 years ago. The timber code during 

those days was different to the current standard. Components of timber bridges are vulnerable 

to decay if exposed to moisture.  

5.2.3 Comparison of the Responses of Timber and Concrete Bridges under Cyclonic events 

Timber and concrete bridges were found to demonstrate significant difference in the 

susceptibility of their superstructure to cyclonic forces (Figure 5-2). A strong possibility exists 

for the surge related vertical forces to lift or dislocate the deck of a timber bridge causing super 

structure to collapse.    

 
 

Figure 5-2: Comparison of super structure and substructure failure between concrete and 

timber bridges  
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Results indicated that substructure of concrete bridges is more sensitive to surge induced forces 

compared to that of timber bridges. However, it should be noted that this indication has been 

exaggerated by the probality of abutement failure in concrete bridges (Figure 5-3). If the 

probability values of abutements had been taken off, then the overall probability of substructure 

failure for conctre bridges would have been markedly less than that of timber bridges.  

Most conctere bidges do not have a relieving slabs for abutements, and show poor compaction 

of the appraches. Load distribution in timber bridges are differnet to that of concrete bridges 

and hence it impats on the piles of concrete bridges (Eberhard el al. 1993). Timber bridges due to 

its specific construction method have better anchorage in their abutments compared to that of concrete 

bridges resulting relatively higher resilience under surge induced forces. Due to this reason timber 

bridges can sustain longer under scouring.   

 

 
 
 
 

Results (Figure 5-3) indicated that the majority of the elements of timber bridges, have low 

resilience to cyclonic events compared to that of concrete bridges. However there was a marked 

variation in the probability of abutment failure in timber and concrete bridges, which impacted 

over all response of the substructure of concrete bridges.  

 

 
Figure 5-3 Comparison between main elements of the bridge component 
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Table 5.6: Comparison of mean probabilities of bridge elements in timber and concrete 

bridges using unbalanced paired t-test.  

Super Structure Sub Structure 

 Deck Girder Pile Abutment Head Stock 
Timber 0.056a 0.013a 0.0297a 0.007a 0.058a 

Concrete 0.0036a 0.006a 0.0035b 0.065a 0.004a 
Significance    P=0.03 P=0.05  

 

Unbalanced paired t-tests were used to compare the mean probability values. n=8 *Means 

followed by the same letter are not significantly different at the P<0.05 level. 

Resulted showed significant variations (P<0.05) in the failure of substructure elements which 

is consistent with the outcomes of fault tree analysis (FTA) results.  Probability of failure for 

other components were not found to be statistically significant (P>0.05). However, the extent 

of data was not adequate to draw firm conclusion.  
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CHAPTER 6 

CONCLUTION AND FURTHER RECOMMENDATION 

Existing data were not adequate to draw firm conclusions; however the resultant probability 

values from FTA were consistent with those values for the events in hurricanes that were 

reported by numerous authors in America. Based on the results following outcomes could be 

drawn: 

• Timber bridges appear to be more susceptible to cyclones compared to concrete bridges 

mainly due to the attributes of its super structure. However this difference in their 

resilience was not found to be statistically significant. 

• Surge induced forces are the main contributing factors for both super and substructure 

failure  

• Vulnerability of sub-structure (piles and abutments) of concrete bridges under cyclonic 

events is significantly greater than that of timber bridges due to the characteristics of 

abutments, method of construction, anchorage and load distribution.   
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Future recommendation 

 

Using further data for cyclones, FTA can be refined. Also the normal deterioration will have 
an impact on the effect due to cyclone.  
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APPENDIX 

Appendix A: Risk assessment 

Risk Assessment  

Since this study was undertaken using secondary data obtained from DTMR safety risks 

associated with the study was determined to be negligible.  

 Resource requirements 

• Statistical and analytical software 

• Electronic journal resources, secondary data from department of main roads 

• Digital camera and image analysis software 
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Appendix B-Cross section of a bridge 
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APPENDIX B: Level 1 bridge inspection report 
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APPENDIX C-Level 2 bridge inspection report 



75 | P a g e  

 

 

 

 

 



76 | P a g e  

 

APPENDIX D: Primary data analysis using level 1 inspection reports 

Road drainage

Blocked inlets/outletsscour of outlet,embankment matarial defects surfacingsSettlements/Depressions

Structural IDName Material

628 Six mile creek Pre stressed ConcreteN N N N

632 Bobs Creek Pre Stressed concreteN N N N

635 Hut Creek Concrete N Y-AP1/PRO 1m3 scour side1,!m3 scour side 2,A2/PRO 10M3 scour side 1N N

636 Larcom creek Pre Streesed concreteN Y-AP1/PRO 20M3 embankment scour N N

637 Raglan Creek Pre Streesed concreteN Y-AP1/PRO 1m3 scour side1,!m3 scour side 2,A2/PRO 10M3 scour side 1Y-AP1/AP pushing typical Y-AP1/AP 40M2 depression typical

641 Station Creek Pre Streesed concreteN Y-AP2/PRO scour undermined inlet relive N Y-AP2/AP 30M settlemnt of relieve AP2/AP,side 2 AP2/AP relving slab voided at leasr 5.4M side1

650 Ramsay Creek Pre stressed ConcreteN N N N

658 Princhester Creek Pre Streesed concreteN N N N

662 Pine Mountain Creek Pre stressed ConcreteN N N N

664 Seven Mile Creek Pre stressed ConcreteN N N N

667 Unnamed Creek Pre stressed ConcreteN N N N

668 Deep Creek Pre stresses ConcreteN Y-AP1/side 2 hole in batter N N

669 Tooloombah Creek Pre stresses ConcreteN N N N

673 Gracemere Creek Pre stressed ConcreteN N N N

674 Middle Creek Pre stressed ConcreteN N N N

675 Neerkol creek NO1 Pre stressed ConcreteY Y-sever erotion Y-road collapsed Y-road collapsed

677 Neerkol Creek(No 2) Pre stressed ConcreteN Y N N

680 Sebastopol Creek Pre stressed ConcreteN N N N

682 Gogango Creek Pre stressed ConcreteN N N N

683 Sandy creek Pre stressed ConcreteN N N N

684 Googango Creek(NO 2)Pre stressed ConcreteN N N N

690 Woolian Creek Pre stressed ConcreteN Y Y Y

692 Four Mile Creek Pre stressed ConcreteN N N N

699 Grevillia Creek Pre stressed ConcreteN N N N

703 Kroombit Creek Pre stressed ConcreteN Y-scoured AP2 side2 N N

704 Dee River Pre stressed ConcreteN N N N

707 Collard Creek(No 4) Pre stressed ConcreteN N N Y-AP2/AP releiving slab settled 40MM

730 Don River Pre stressed ConcreteN Y-5M AP2 side1  scour to batter N N

754 Oaky Creek Pre stressed ConcreteN Y-AP1 18M scour N N

756 Headlow Creek Pre stressed ConcreteN Y-AP1/PRO 5M3 scour N N

757 Limestone Creek Pre stressed ConcreteY-AP2/PRO blocked by debrisN N N

760 Washpool Creek Pre stressed ConcreteN N N N

805 Nankin creek Pre stressed ConcreteN Y-embankment scour behind A1/WW1 N N

806 Coorooman creek Pre stressed ConcreteN N N N

814 Moores Creek Concrete N N N N

9011 Dgranite Creek Pre stressed ConcreteN Y-around A1-PRO side2 N N

13350 Palm Tree Creek Pre stressed ConcreteN N N N

25380 Poison Creek Concrete N N N N

25897 Portensia Creek(Part C)Pre stressed ConcreteN N N N

34318 South Kariboe Creek Pre stressed ConcreteN Y-AP2 PRO scour N N

35784 Kianga Creek Pre stressed ConcreteN Y N/A N

2 16 3 5

0.048780488 0.390243902 0.073170732 0.12195122
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Bridge surface Barriers water way

Rough joint transittoins material defects-surfacing Impact damage Damaged missing seals trees  under bridge Debris against structure River bank/embankment erotions

N N N Y-A2 joint exposed Y-debris at AP1 GR1,tree at AP1 GR2Y-dbris at AP1 GR1,tree at GR2 N

N N N N/A N N N

N Y-S2/WS pushing,cracks N N/A N N Y-S3/W 200M3 embankment scour

N N N N N N N

Y-AP1/AP 30MM transition typicalN N N N N N

N N N N/A N N N

N N N N/A N N N

N N N N N N N

N N N N N N N

N N N N/A N N N

N N N N N N N

N N N N N N N

N N N N N N N

N Y-S1/WS pushing N N/A N N N

N N N N/A N N N

Y-Road collapsed Y Y Y Y Y Y

N N N N N Y N

N N N N/A N N N

N N Y-S5/BR2,S2/BR2 N N Y N

N N N N N Y-p3/c2 N

N N N N N N Y-embankment erotion at span3

Y N N N/A N N N

N N N N N N N

N N N N N N N

N N N N/A N Y-GR and BR N

N N N N N N Y-Span 2 exposingh P2 columns

Y-AP1/AP 40MM transition N N Y-P2/J damaged seal N N N

N N N N/A N N N

N N N N/A Y-S2/W N N

N N N N/A N N N

N N N N N N N

N N N N/A N Y-timber against P2/P1 N

N N N N N Y-debris against side1 Y-span 1 side1 embankment errotion

N N N N/A N Y N

N N N N N Y-minor debris N

N N N N N N N

N N N N N Y-P1/P4 debris on side 2 N

N N N/A N/A N N N

N N N N N N N

N N N N/A N Y-debris against all GR N

N Y N Y Y N Y

4 4 2 2 4 12 6

0.097560976 0.097560976 0.048780488 0.048780488 0.097560976 0.292682927 0.146341463
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sub structure

Material defects General

Scour holes in bed piles/columns/braces/walesWalls/stems Head stocks Forward movements of abuments/wingsDebirs on shelf/bearingscour/erotion of spill through

N N N/A N N N N

N N N Y-P1-H cracking in bottom face N N N

N N N Y-P1/H 2M2 shallface N N N

Y-S1/W 400M3 scour N N N N N Y-A1/PRO settled/cracked,A2/PRO settled/cracked

N N Y-A1/A barrier wall broken N N N N

N N N N N N N

N N N N Y-movement and cracking A1/WW1 N Y-Embankment erotion water way A1

Y-localised scour at P2/P3 N N N N N N

Y-in water way mainly span 2 N N N N N N

Y-ABS/A1-large scour N/A N N Y-Cracking and settlement A1,A/ABSN/A N

N N N N N N Y-settlement both ABS PRO

N N N N N N N

N N N N N N Y-A2/side1 spill throughheavy scouring

N N N N N N N

N N N N Y-settlement A1/ABS N N

Y Y-severly damaged Y Y Y Y Y

N Y-cracked N Y N N N

N N N N Y-settlement of ABS N N

N Y N Y Y N Y

Y-localised scour P3/Column 1 N N N N N Y-Spill through  erotion at A2

Y-scour around P1.scour at base of A1 spill throughN N/A N N N N

N N N N Y N Y

N N N N N N Y-both voiding

Y-scour infront of A1 PRO N N N N N Y-A1 Pro severly damaged.A2 PRO damaged side2

N N N N N N N

N N N N N N N

N N N N N N N

N N N N N N N

N N N Y-P2/H diagonal stress cracks N N N

Y-S1/W 160M3 bed scour,S3/W 90M3 bed scourN Y-A2/ABS bases exposed by bed scourN N N N

Y-S1/W 160M3 bedscour,S3 50M3 bedscourN Y-ABS footing voided by bedscourN N N N

N N N/A N N N/A N

Y-Span1 N N N N N N

Y-Scour in S1/W near sill through baseN N N Y-spalling at base of A1/PRO side1 N N

Y-scouring under pier2 N N N N N N

N N N N Y-minor settlement A2/PRO N Y-A1 spill through

N N Y N Y N N

N N/A N N/A N N/A N/A

N N N/A N N N N

N N N/A N N N N

Y N N N N N N

14 3 5 6 10 1 11

0.341463415 0.073170732 0.12195122 0.146341463 0.243902439 0.024390244 0.268292683
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super structure

Material defects General

Dampeness/leakage from deck Girders deck Debris/dirt build up impact damage

N N N N N

Y-P1/H evidence of leaking typicalY-S1-D ASR cracking Y-S1/K1 ASR crackingN N

N N N N N

N N N N N

N N N N N

N N/A N N N

N N/A N Y-At A1 N

N N N N N

N N N N N

N N/A N N N

N Y N N N

N N N N N

N N N N N

N N/A Y-S4/D1 ASR crackingN N

N N/A N N N

Y Y Y Y Y

N N Y N N

N N N N N

N N N N N

N N N N N

N N N N N

Y Y Y N N

N N N Y-both water way spans at ABS need shapingN

N N N N N

N N N N N

N N N N N

N N N N N

N N N Y-GR.ABUT A2 N

N N N N N

N N Y-S2/D1 small spall end,ASR crack at S1/D2 typicalN N

N N Y-S3/D/ASR cracks up to 0.6MM typicalN N

N N N N N

N N N N N

N Y N N N

N N/A N N N

N N N N N

N N N N N

N/A N/A N Y-Dirt and Rock built up in cellN

N N N N N

N N/A N N N

N N N N N

3 5 7 5 1

0.073170732 0.12195122 0.170731707 0.12195122 0.024390244
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Road drainage Road surface

Blocked inlets/outletsscour of outlet,embankment matarial defects surfacingsSettlements/Depressions

679 Valentine Creek Timber N N N N

695 Banana Creek Timber N N Y Y

701 North Kariboe Creek Timber Y-All drains blocked N N N

702 Poor Mans Gully Timber N N N Y-AP2 settled 50mm

716 Banana Creek Timber N N N Y-minor depressioj at AP2

718 Roundstone Creek Timber Y-AP1/PRO MATERIAL BLOCKS DRAINAGE SIDE 1Y-AP2/PRO 1M3 SCOUR SIDE 1 Y-AP1/AP PUSHING/CRACKING SIDE 2Y-AP2/AP 9M2 DEPRESSION SIDE 1

724 Alma Creek Timber N N Y-AP2-AP debris and silt N

725 Dee River Timber N Y-AP2/PRO rivebank errosion Y-AP1/AP silt built up N

743 Nine Mile Creek Timber N Y-AP1/PRO1/21M3 scour,AP/PRO 1m3 scour N Y-AP2/AP 30M2 depression

749 Maxwellton Creek Timber N Y-AP1/PRO SCOURED AT A1 SIDE1 TYPICAL #4 AP1/PROY-15M2 BROKEN AWAY N

752 Doutful Creek Timber Y-AP1/PRO blocked by debrisY-AP1/PRO  scour side2,AP2/PRO scour 2M3 N N

767 Marble Creek Timber N Y-GR,near WS Y-AP1 side 2  bitument movement near road edgeN

768 Delcalgil Creek Timber N Y-0.5M scour side1 Y-AP2 has silt built up,AP2 2m rolledN

769 Ridler Creek Timber Y-AP2  pro blocked N N N

770 Boyne River (No1) Timber Y-AP1/PRO side 1-0.5M scourY-side2 N N

771 Boyne River (NO 2) Timber Y-5M silted side 2.5m scour side1Y-AP1+AP2 5M scour on side Y-4M missing span 1,50MM thickN

774 Limestone Creek Timber N N Y-holes in AP2,wearing surface near transitionN

791 Stringy Bark Creek Timber N N N N

6 0.5 9 5

0.333333333 0.5 0.277777778
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Expansion joints water way

Rough joint transittoins material defects-surfacing Impact damage Damaged missing seals trees  under bridge Debris against structure River bank/embankment erotions

N N N N/A N Y N

Y Y-All typical degraded N/A N/A N/A N N/A

N N N N N N N

Y-AP2 settled 60MM N N N N N N

N N N N/A N N N

Y-AP2/AP 50MM TRANSITION Y-S1/WS CRACKING/PEELING/PUSHING TYPICALN/A N/A N N N

N N N/A N/A N Y-S1/W N

N Y Y-S2-BR1 N/A N Y-S5-W N

Y-AP2/AP 40MM transition N N/A N/A N N N

N N/A N/A N/A N Y-S4/W FALLEN TREE/DEBRIS N

N Y-S1/WS extensive crackingN/A N/A N Y-S1/W N

N N N/A N/A N Y N

N Y-pavement cracked N/A N/A N Y-large logs N

N N N/A N/A N Y N

N N N/A N/A N Y-Large debris AP2 GR and span side 2N

N N N N/A N Y-up to 5m side1,Large log BR 2 span 3N

N N N N N Y-AGAINST A2 N

N N N/A N/A N Y-S1/W DEBRIS N

4 5 1 0 0 12 0

0.222222222 0.277777778 0.055555556 0.666666667 0
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Scour holes in bed piles/columns/braces/walesWalls/stems Head stocks Forward movements of abuments/wingsDebirs on shelf/bearingscour/erotion of spill through Dampeness/leakage from deck Girders deck Debris/dirt build up impact damage

Y-scouring around P1 and P2 N N N N N N N N N N N

N/A Y-cracked/rotten splicesN/A Y-P1/H2 rotating at pile seat N N Y-both a1/A2 Y-All typical Y-S1/G2vwell degraded Y-breaking,minor rotN/A N/A

N N N N N N N N N N N N

Y-MS PROPS  scoured side 1 N N N N N N N N N N N

N N N N N N Y-A2 N N/A N/A N N

N N Y-A1/ABS DROPPED 100MM/ Y-P1/H1 PITTING N N N N

Y-P1/COR7 

PUSHING/CRUSHING,P1/COR 1 N N N

N N N N N N Y-A1-ABS not supported N N N N N

N N N N N N N N N N Y-AP1-AP N

N N Y-A1/ABS dropped 200MM/A2/ww2 scouredY-A2/H2 15MM gap from A2/P4 Y-A2/WW2 220MM FORWARD AT TOPN Y-A2/A 300MM X 400MM FULL WIDTH VOIDY N/A N/A N N

N N N N N Y N N N N N N

N Y-A2/WW1 pile loose and leaningY-A2/WW1 top plsnk displacedN N Y-A1/H debris Y-A2/A scour voids,1.5M3 scour voids A1 side2N N N N N

N N N/A N N N Y-on bearing shelf N N N N N

N N/A N N/A N N N N N/A N/A N N

N N N/A N N N N N N N N N

N N N/A N N N N N N N N/A N/A

N N N N N N N N N N N N

Y-MINOR SCOUR AT BASE A1/ABSN N N N N N N N N N N

N Y N N N N N N Y N N N

3 3 3 3 1 2 6 2 3 1 1

0.166666667 0.166666667 0.166666667 0.166666667 0.055555556 0.111111111 0.333333333 0.111111111 0.166666667 0.055555556 0.055555556
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APPENDIX E:Primary data analysis using level 2 inspection reports 

 

 

 

 

 

 

 

 

Proability Probability Probability

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

5 5 0 N/A N/A

5 5 0 5 5 0 5 5 0

4 4 0 4 4 0 N/A

2 2 2 1 1 0.25 2 2 4 0 1 2 1 3 1 0

3 1 3 1 0 3 1 3 1 0.25 4 1 3 0.13

5 1 1 7 0.358333333 5 2 7 0.342857143 1 3 3 7 0.331428571

1 2 1 1 2 1 0 1 3 2 2 0 1 3 1 3 0

3 2 5 0.05 5 5 0.05 N/A

Span3 (B) Span3(A) Span4(B) Span 4(A)Span 2(After)Span 2(Before)

Struture ID Name Material ProbabilityNo of Girders Change of probability

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

743 Nine Mile Creek Timber X X 0.25 5 4 1 4 1 0

752 Doutful Creek Timber X X 0.25 5 5 5 0

768 Delcalgil Creek Timber X X 0 4 4 4 0

769 Ridler Creek Timber X X 0.25 4 3 1 4 0

770 Boyne River No 1 Timber X X 0 4 4 4 0.13

718 Roubdstone CreekTimber X X 0 7 5 2 7 0.342857143

771 Boyne River No 2 Timber X X 0 4 2 2 2 2 0

695 Banan Creek Timber X X 0.25 5 3 1 1 4 1 0.05

0.125

Original Struture(B) Original Struture(A) Span1(Before) Span1 (After)
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Probability Probability Probability of girder fauilure

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

N/A N/A 0

N/A N/A 0

N/A N/A 0

3 1 3 1 0 4 4 0 0.010416667

N/A N/A 0.031875

N/A N/A 0.049364286

N/A N/A 0

N/A N/A 0.01

0.012706994

Span 5(B) Span 5(A) Span 6(B) Span 6(A)

Probability Probability Probability

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

59 59 0 57 57 0 N/A

69 69 0 60 60 0 63 63 0

39 5 34 10 0.38 39 5 34 10 0.38 40 5 35 10 0.38

14.4 14.4 0 23.6 23.6 0 25.4 25.4 0

37.4 37.4 0 30.4 30.4 0 32.6 32.6 0

54 17 54 17 0 71 61 10 0.13 63 53 10 0.13

33 33 0 29.6 29.6 0 30.4 30.4 0

71 71 0.05 62 62 0 70 70 0.05

S2(B)S1(B M2) S1(A) S3(B) S3(A)S2(A)
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No of piles Probability No of piles Probability No of piles Probability

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

4 3 1 2 2 0.05 4 3 1 1 2 1 0.16 N/A

7 4 1 2 4 3 0.066 4 2 2 2 1 1 0.255 4 3 1 3 1 0

3 not visible not visible NV 3 2 1 2 1 0 3 3 3 0

3 3 2 1 0.38 3 3 2 1 0.38 3 2 1 2 1 0

3 2 1 2 1 0.25 3 2 1 2 1 0 3 3 3 0

7 3 2 1 1 5 1 1 0.05 5 5 3 2 0.102 5 4 1 5 0.05

3 3 3 0.25 3 1 2 2 1 0.25 3 3 3 0

6 1 5 6 0 4 1 2 1 1 3 0.1033333 4 1 1 1 1 1 3 0.27

P1(A) P2(B) P2(A)P1(B)A1(B) A1(A)

Probability Probability Probability og deck failure

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 4 1 2 3 4

N/A N/A N/A 0

70 70 0 N/A N/A 0

N/A N/A N/A 0.38

24.5 24.5 0.05 24.6 24.6 0.05 25.5 25.5 0.05 0.027028986

31.2 31.2 0 N/A N/A 0

71 61 10 0.13 N/A N/A 0.014130435

30.8 30.8 0 N/A N/A 0

N/A N/A N/A 0.034729064

0.056986061

S5B) S5(A) S6(B) S6(A)S4(B) S4(A)
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No of piles Probability No ofpiles Probability No of piles Probability No of piles ProbabilityProbability of pile failure

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

N/A N/A N/A 9 2 2 2 3 2 2 2 3 0 0.012352941

4 3 1 3 1 0.1325 N/A N/A 8 1 5 2 5 3 0.215 0.024759259

N/A N/A N/A 3 not visible not visible 0 0

3 2 1 1 2 0.315 3 1 2 2 1 0.215 3 3 2 1 0.38 3 1 2 1 1 1 0.186666667 0.088412857

3 2 1 1 2 0.253333333 N/A N/A 3 1 2 1 2 0 0.033553333

5 4 1 4 1 0 N/A N/A 7 1 3 3 5 1 1 0.15 0.012137931

3 2 1 1 2 0.25 N/A N/A 4 2 1 1 2 1 1 0 0.046875

N/A N/A N/A 8 6 2 8 0.05 0.019227273

0.029664824

P4(B) P4(A)P3(A) P5(B) P5 (A) A2(B) A2(A)P3(B)

Probability Probability No of sheeting ProbabilityNo of sheeting Probability of abutment sheeting failure

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

N/A N/A 0 14 13 1 13 1 0 58 52 6 52 6 0 0

N/A N/A 0 15 15 15 0 14 14 14 0 0

1 1 0 1 1 0 0 3.6 3.6 3.6 0 3.6 3.6 3.6 0 0

N/A N/A 0 5 5 5 0 16 16 14 2 0.016 0.012380952

N/A N/A 0 5 5 5 0.13 4 4 4 0 0

N/A N/A 0 18 18 18 0 20 20 20 0 0

N/A N/A 0 12.6 12.6 12.6 0 18 18 18 0.13 0.076470588

N/A N/A 0 26 26 26 0 26 6 19 1 26 0.05 0.025

0 0.014231443

Abutment ( Aprroah 1(A)) Abutment Sheeting (A2-B) Abutment Sheeting(A2-A)Abutment (Approh1 B) Abutment Sheeting (A2-A)Abutment 2 (Approh2 B)Abutment 2 (Approh2 B) Abutment Sheeting(A1-B)
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No of head stock No of head stock Noof head stock No of head stock  No of head stock

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

2 2 2 0 2 2 2 0.05 N/A N/A

2 2 2 0.05 2 2 1 1 0.255 2 2 1 1 0.15 2 1 1 1 1 0.09

0 N/A 1 1 1 0.25 1 1 1 0 N/A

2 1 1 1 1 0.215 2 1 1 2 0.05 2 2 2 0 2 1 1 1 1 0.19

2 2 2 0 2 1 1 1 1 0.25 2 2 2 0 2 2 1 1 0.38

2 2 2 0.05 2 2 1 1 0 4 4 3 1 0.0825 4 4 4 0.05

2 1 1 1 1 0.13 2 1 1 1 1 0.19 2 2 2 0.25 3 1 2 1 2 0

2 1 1 2 0.05 2 1 1 2 0.05 2 2 2 0 2 1 1 2 0.05

Head stock (Pile 3 A)Head stock (Pile 3 B)Head stock (Pile 1 A) Head stock (Pile 2 B) Head stock (Pile 2 A)A1 (B) A1(A) Head stock (Pile 1 B)

 No of head stock No Of HS No of HS Probability of head stock failure

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

N/A N/A 2 2 2 0 0.008333333

N/A N/A 2 2 1 1 0.115 0.066

N/A N/A N/A 0.125

2 1 1 2 0.05 2 1 1 1 1 0 2 1 1 2 0.05 0.04625

N/A N/A 2 2 1 1 0.25 0.088

N/A N/A 4 3 1 3 1 0 0.0578125

N/A N/A 2 2 1 1 0 0.051818182

N/A N/A 2 1 1 2 0.05 0.025

0.058526752

Head Stock (A2 B) Head Stock (A2 A)Head stock (pile 5 B)Hesad stock (pile 4  B) Hesad stock (pile 4  A) Head stock (pile 5 B)



88 | P a g e  

 

 

 

 

 

 

 

 

No of Corbels No of corbels No of corbels No of corbels

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

5 5 5 0 N/A N/A

5 4 1 4 1 0.25 5 5 5 0 5 5 4 1 0.13

4 4 4 0 4 4 4 0 N/A

4 4 1 3 0.13 4 4 4 0.13 4 4 4 0.13

4 2 2 4 0.25 4 3 1 2 1 1 0.13 4 3 1 3 1 0.13

7 1 3 1 2 7 0.364 7 1 1 3 2 7 0.312 7 2 4 1 7 0.29333

4 4 3 1 0.13 4 4 4 0 4 4 4 0

5 2 3 5 0.05 5 1 4 4 1 0.09 N/A

 Pile 1 corbles (B) Pile 1 corbels(A) Pile 2 corbels (B) Pile 3 corbels (A)Pile 3 corbels (B)Pile 2 Corbels (A)

No of corbels No of corbels Probability of corbels failure

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

N/A N/A 0

N/A N/A 0.025333333

N/A N/A 0

4 2 1 1 3 1 0.1167 4 2 2 1 3 0.13 0.0316875

N/A N/A 0.0425

N/A N/A 0.046142857

N/A N/A 0.010833333

N/A N/A 0.014

0.021312128

Pile 4 coels (B) Pile 5 coels (B) Pile 5 cobels (A)
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Struture ID Name Material ProbabilityNo of Girders Change of probability

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 708 Collard Creek NO3Pre streesed cocrete X X 0.25 8 4 4 4 4 0

2 650 Ramsay Creek Pre streesed cocrete X X 0 N/A N/A

3 674 Middle Creek Pre streesed cocrete X X 0.13 N/A N/A

4 680 Seastopol Creek o1Pre streesed cocrete X X 0.13 N/A N/A

5 707 Collard Creek No4Pre streesed cocrete X X 0 8 4 4 8 0.05

6 756 Hedlow Creek Pre streesed cocrete X X 0 N/A N/A

0.085

Original Struture(B) Original Struture(A) Span1(Before) Span1 (After)

Proability Probability Probability

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

4 4 1 4 3 0.09 4 4 2 6 0.05 N/A

N/A N/A N/A

N/A N/A N/A

N/A N/A N/A

4 4 8 0.05 3 4 1 8 0.05 N/A

N/A N/A N/A

Span 2(Before) Span 2(After) Span3 (B) Span3(A) Span4(B) Span 4(A)
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Probability Probability Probability

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

160 160 0 160 160 0 160 160 0

16 14 2 0.00625 16 14 2 0.00625 16 16 0

15 1 15 1 0.008666667 16 16 0 16 16 0

19 19 0 18 18 0 19 19 0

176 176 0 175 1 176 0 175.5 0.5 176 0

14 1 1 14 2 0.027142857 15 1 13 2 1 0.01533333 15 1 14 1 1 0.00333333

S1(A) S2(B) S2(A) S3(B)S1(B M2) S3(A)
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Probability Probability Probabilty Of Deck failure

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 4 1 2 3 4

N/A N/A N/A 0

N/A N/A N/A 0.004166667

N/A N/A N/A 0.002083333

19 19 0 N/A N/A 0

N/A N/A N/A 0

N/A N/A N/A 0.015269841

0.00358664

S6(A)S4(B) S4(A) S5B) S5(A) S6(B)

No of piles Probability No of piles Probability No of piles Probability No of piles

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

N/A N/A 2 not visible 0

5 not visible NV 4 4 3 1 0.05 4 4 4 0

5 not visible not visile NV N/A N/A

6 6 2 4 0.05 6 6 6 0 6 6 5 1 0.25 6

N/A 2 buried buried 0 2 buried buried 0

5 not visible not visible NV 5 5 5 0 5 5 5 0

P2(B) P2(A)A1(B) A1(A) P1(B) P1(A)
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Probability No ofpiles Probability No of piles Probability No of piles ProbabilityProbability of pile failure

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

N/A N/A N/A N/A 0

N/A N/A N/A 5 5 5 0 0.002777778

N/A N/A N/A N/A 0

6 5 1 0.25 N/A N/A 6 6 6 0 0.018333333

N/A N/A 0 N/A N/A 0

N/A N/A 0 N/A 5 not visible not visible NV 0

0.003518519

A2(B) A2(A)P3(B) P3(A) P4(B) P4(A) P5(B) P5 (A)

Probability No of sheeting ProbabilityNo of sheeting Probability Of abutment sheeting failure

1 2 3 4 1 2 3 4 Probability 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 1 0 1 1 0 0 10 10 10 0 N/A 0

1 1 0 1 1 0 0 12 12 12 0 N/A 0

1 1 0 1 1 0.05 0.025 14 13 1 14 0.23214286 N/A 0.232142857

2* 2* 0 2* 1 1 0.25 0.063 18 16.5 1.5 16.5 1.5 0 8 7 1 7 1 0 0

1 1 0 1 1 0 0 10 10 10 0 15 14 1 15 0.371 0.2228

1 1 0 1 1 0.05 0.025 16 15 1 16 0.234375 10 10 2 8 0.2 0.221153846

0.019 0.112682784

Abutment Sheeting(A2-A)Abutment (Approh1 B) Abutment ( Aprroah 1(A)) Abutment 2 (Approh2 B)Abutment 2 (Approh2 B) Abutment Sheeting(A1-B) Abutment Sheeting (A2-A) Abutment Sheeting (A2-B)
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No of head stock Noof head stock No of head stock  No of head stock

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

N/A 1 1 1 0 1 1 1 0 N/A

N/A 1 1 1 0 1 1 1 0 N/A

N/A 1 1 1 0 1 1 1 0.05 N/A

N/A 2 2 2 0 2 2 2 0 2 2 2 0

N/A 1 1 1 0 1 1 1 0 N/A

N/A 1 1 1 0 1 1 1 0 N/A

Head stock (Pile 3 A)Head stock (Pile 1 B) Head stock (Pile 1 A) Head stock (Pile 2 B) Head stock (Pile 2 A) Head stock (Pile 3 B)

 No of head stock No Of HS No of HS Probability of head stock failure

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

N/A N/A N/A 0

N/A N/A N/A 0

N/A N/A N/A 0.025

N/A N/A N/A 0

N/A N/A N/A 0

N/A N/A N/A 0

0.004166667

Head Stock (A2 B) Head Stock (A2 A)Hesad stock (pile 4  B) Hesad stock (pile 4  A) Head stock (pile 5 B) Head stock (pile 5 B)
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