269 research outputs found

    Hybrid optical and magnetic manipulation of microrobots

    Get PDF
    Microrobotic systems have the potential to provide precise manipulation on cellular level for diagnostics, drug delivery and surgical interventions. These systems vary from tethered to untethered microrobots with sizes below a micrometer to a few microns. However, their main disadvantage is that they do not have the same capabilities in terms of degrees-of-freedom, sensing and control as macroscale robotic systems. In particular, their lack of on-board sensing for pose or force feedback, their control methods and interface for automated or manual user control are limited as well as their geometry has few degrees-of-freedom making three-dimensional manipulation more challenging. This PhD project is on the development of a micromanipulation framework that can be used for single cell analysis using the Optical Tweezers as well as a combination of optical trapping and magnetic actuation for recon gurable microassembly. The focus is on untethered microrobots with sizes up to a few tens of microns that can be used in enclosed environments for ex vivo and in vitro medical applications. The work presented investigates the following aspects of microrobots for single cell analysis: i) The microfabrication procedure and design considerations that are taken into account in order to fabricate components for three-dimensional micromanipulation and microassembly, ii) vision-based methods to provide 6-degree-offreedom position and orientation feedback which is essential for closed-loop control, iii) manual and shared control manipulation methodologies that take into account the user input for multiple microrobot or three-dimensional microstructure manipulation and iv) a methodology for recon gurable microassembly combining the Optical Tweezers with magnetic actuation into a hybrid method of actuation for microassembly.Open Acces

    Modular Hydraulic Propulsion: A Robot that Moves by Routing Fluid Through Itself

    Get PDF
    This paper introduces the concept of Modular Hydraulic Propulsion, in which a modular robot that operates in a fluid environment moves by routing the fluid through itself. The robot’s modules represent sections of a hydraulics network. Each module can move fluid between any of its faces. The modules (network sections) can be rearranged into arbitrary topologies. We propose a decentralized motion controller, which does not require modules to communicate, compute, nor store information during run-time. We use 3-D simulations to compare the performance of this controller to that of a centralized controller with full knowledge of the task. We also detail the design and fabrication of six 2-D prototype modules, which float in a water tank. Results of systematic experiments show that the decentralized controller, despite its simplicity, reliably steers modular robots towards a light source. Modular Hydraulic Propulsion could offer new solutions to problems requiring reconfigurable systems to move precisely in 3-D, such as inspection of pipes, vascular systems or other confined spaces

    Kendi kendini konfigüre edebilen bir sistemdeki tekil modül için dış manyetik eyleyiciler kullanılarak hareket mekanizmasının geliştirilmesi

    Get PDF
    In microrobotics field, self-reconfigurable modular robots (SRMRs) offer several advantages including adaptation to uneven environments, the capability of handling various sets of tasks, and continuous operation in the case of a malfunction of a single module. The current research direction in self-reconfigurable robotic systems is towards reaching million level number of modules working in coherence by means of locomotion, self-reconfiguration, and information flow. This research direction comes with new challenges such as miniaturizing the modules. One should consider looking for alternative ways of locomotion and self-reconfiguration when dealing with SRMRs having million level number of modules. Externally actuating the modules can be a good alternative to micro SRMRs. In this study, we developed a novel motion mechanism for a single module in a micro SRMR system by using external magnetic actuators. An assembly of elastic microtubes and permanent magnets is attached inside a cube-shaped module and periodic motion of the assembly is applied. The motion of a single microtube with permanent magnets inside is generated by using COMSOL Multiphysics software. The results of the simulations are compared with theoretical values to validate the motion mechanism that is introduced in the study.Mikro robotik alanında, kendi kendini konfigüre edebilen modüler robotlar (KKMR) düzensiz çevreye uyum sağlayabilme, birçok değişken görevi yerine getirebilme ve tekil modüllerin arızalanması durumunda operasyonu sürdürebilme gibi avantajlar sunmaktadır. Kendi kendini konfigüre edebilen robotik sistemlerdeki son güncel araştırmalar, milyon seviyesinde modül sayısına sahip sistemlerin hareket, kendi kendini konfigüre etme ve bilgi akışı gözetilerek geliştirilmesi yönündedir. Bu araştırma yönelimi beraberinde modüllerin minyatürleştirilmesi gibi sınamalar getirmektedir. Milyon mertebesinde modüle sahip bir KKMR sistemi göz önünde bulundurulduğunda, hareket ve kendi kendini konfigüre etme mekanizmaları için alternatif metotların araştırılması gerekmektedir. Modüllerin dış eyleyiciler ile harekete geçirilmesi mikro KKMR sistemleri için iyi bir seçenek oluşturmaktadır. Bu çalışmada mikro KKMR sistemindeki tekil bir modül için dış manyetik eyleyiciler kullanılarak özgün bir hareket mekanizması geliştirilmiştir. Esnek mikro tüp ve kalıcı mıknatıslardan oluşan bir yapı modülün içerisine yerleştirilmiş ve yapıya periyodik bir hareket uygulanmıştır. Tekil bir mikro tüp kalıcı mıknatıs yapısının hareketi COMSOL Multiphysics yazılımı kullanılarak canlandırılmıştır. Simülasyon sonuçları teorik değerler ile karşılaştırılarak önerilen hareket mekanizmasının doğrulaması gerçekleştirilmiştir

    Robotics for Natural Orifice Transluminal Endoscopic Surgery: A Review

    Get PDF
    Natural Orifice Transluminal Endoscopic Surgery (NOTES) involves accessing the abdominal cavity via one of the bodies’ natural orifices, for example, mouth, anus, or vagina. This new surgical procedure is very appealing from patients’ perspectives because it eliminates completely abdominal wall aggression and promises to reduce postoperative pain, in addition to all other advantages brought by laparoscopic surgery. However, the constraints imposed by both the mode of access and the limited technology currently available make NOTES very challenging for the surgeons. Redesign of the instruments is imperative in order to make this emerging operative access safe and reproducible. In this paper, we survey on the state-of-the-art devices used in NOTES and introduce both the flexible instruments based on improvement of current endoscopic platforms and the revolutionary concept of robotic platforms based on the convergence of communication and micromechatronics technologies. The advantages and limitations of each category are addressed. Potential solutions are proposed to improve the existing designs and develop robust and stable robotic platforms for NOTES

    An autonomous self-reconfigurable modular robotic system with optimised docking connectors

    Get PDF
    Includes bibliographical references.Self-Reconfigurable Modular Robots are robotic systems consisting of a number of self-contained modules that can autonomously interconnect in different positions and orientations thereby varying the shape and size of the overall modular robot. This ground breaking capability is what in theory, makes self-reconfigurable modular robots more suitable for use in the navigation of unknown or unstructured environments. Here, they are required to reconfigure into different forms so as to optimise their navigation capabilities, a feat that is rendered impossible in conventional specialised robots that lack reconfiguration capabilities. However, the frequent development and use of self-reconfigurable modular robots in everyday robotic navigation applications is significantly hampered by the increased difficulty and overall cost of production of constituent robotic modules. One major contributor to this is the difficulty of designing suitably robust and reliable docking mechanisms between individual robotic modules. Such mechanisms are required to be mechanically stable involving a robust coupling mechanism, and to facilitate reliable inter-module power sharing and communication. This dissertation therefore proposes that the design and development of a functional low cost self-reconfigurable modular robot is indeed achievable by optimising and simplifying the design of a robust and reliable autonomous docking mechanism. In this study, we design and develop such a modular robot, whose constituent robotic modules are fitted with specialised docking connectors that utilise an optimised docking mechanism. This modular robot, its robotic modules and their connectors are then thoroughly tested for accuracy in mobility, electrical and structural stability, inter-module communication and power transfer, self-assembly, self-reconfiguration and self-healing, among others. The outcome of these testing procedures proved that it is indeed possible to optimise the docking mechanisms of self-reconfigurable modular robots, thereby enabling the modular robot to more easily exhibit efficient self-reconfiguration, self-assembly and self-healing behaviours. This study however showed that the type, shape, functionality and structure of electrical contacts used within the docking connectors for inter-module signal transfer and communication play a major role in enabling efficient self-assembly, self-reconfiguration and self-healing behaviours. Smooth spring loaded metallic electrical contacts incorporated into the docking connector design are recommended. This study also highlights the importance of closed loop control in the locomotion of constituent robotic modules, especially prior to docking. The open loop controlled locomotion optimisations used in this project were not as accurate as was initially expected, making self-assembly rather inaccurate and inconsistent. It is hoped that the outcomes of this research will serve to improve the docking mechanisms of self-reconfigurable modular robots thereby improving their functionality and pave the way for future large scale use of these robots in real world applications

    Realization of a Self-Reconfigurable Modular Robot

    Get PDF
    This project realized a self-reconfigurable modular robot for search & rescue applications. The module was designed to move independently and connect with other modules. A single module was roughly 3x3x6” and weighed 2lbs. The module had three degrees of freedom, giving it individual mobility and high system configurability. The small module size and untethered operation necessitated an innovative design and strategic placement of the microcontroller, wireless communication, motors & control systems, sensors, and battery. An external magnetic connection mechanism using electrically switchable permanent magnets was designed, allowing the modules to connect and disconnect repeatedly
    corecore