8,563 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    A silent speech system based on permanent magnet articulography and direct synthesis

    Get PDF
    In this paper we present a silent speech interface (SSI) system aimed at restoring speech communication for individuals who have lost their voice due to laryngectomy or diseases affecting the vocal folds. In the proposed system, articulatory data captured from the lips and tongue using permanent magnet articulography (PMA) are converted into audible speech using a speaker-dependent transformation learned from simultaneous recordings of PMA and audio signals acquired before laryngectomy. The transformation is represented using a mixture of factor analysers, which is a generative model that allows us to efficiently model non-linear behaviour and perform dimensionality reduction at the same time. The learned transformation is then deployed during normal usage of the SSI to restore the acoustic speech signal associated with the captured PMA data. The proposed system is evaluated using objective quality measures and listening tests on two databases containing PMA and audio recordings for normal speakers. Results show that it is possible to reconstruct speech from articulator movements captured by an unobtrusive technique without an intermediate recognition step. The SSI is capable of producing speech of sufficient intelligibility and naturalness that the speaker is clearly identifiable, but problems remain in scaling up the process to function consistently for phonetically rich vocabularies

    Virtual acoustics displays

    Get PDF
    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events

    BatVision: Learning to See 3D Spatial Layout with Two Ears

    Full text link
    Many species have evolved advanced non-visual perception while artificial systems fall behind. Radar and ultrasound complement camera-based vision but they are often too costly and complex to set up for very limited information gain. In nature, sound is used effectively by bats, dolphins, whales, and humans for navigation and communication. However, it is unclear how to best harness sound for machine perception. Inspired by bats' echolocation mechanism, we design a low-cost BatVision system that is capable of seeing the 3D spatial layout of space ahead by just listening with two ears. Our system emits short chirps from a speaker and records returning echoes through microphones in an artificial human pinnae pair. During training, we additionally use a stereo camera to capture color images for calculating scene depths. We train a model to predict depth maps and even grayscale images from the sound alone. During testing, our trained BatVision provides surprisingly good predictions of 2D visual scenes from two 1D audio signals. Such a sound to vision system would benefit robot navigation and machine vision, especially in low-light or no-light conditions. Our code and data are publicly available

    Relating Objective and Subjective Performance Measures for AAM-based Visual Speech Synthesizers

    Get PDF
    We compare two approaches for synthesizing visual speech using Active Appearance Models (AAMs): one that utilizes acoustic features as input, and one that utilizes a phonetic transcription as input. Both synthesizers are trained using the same data and the performance is measured using both objective and subjective testing. We investigate the impact of likely sources of error in the synthesized visual speech by introducing typical errors into real visual speech sequences and subjectively measuring the perceived degradation. When only a small region (e.g. a single syllable) of ground-truth visual speech is incorrect we find that the subjective score for the entire sequence is subjectively lower than sequences generated by our synthesizers. This observation motivates further consideration of an often ignored issue, which is to what extent are subjective measures correlated with objective measures of performance? Significantly, we find that the most commonly used objective measures of performance are not necessarily the best indicator of viewer perception of quality. We empirically evaluate alternatives and show that the cost of a dynamic time warp of synthesized visual speech parameters to the respective ground-truth parameters is a better indicator of subjective quality
    • …
    corecore