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Relating Objective and Subjective Performance
Measures for AAM-Based Visual Speech Synthesis

Barry-John Theobald∗ and Iain Matthews

Abstract—We compare two approaches for synthesizing visual
speech using Active Appearance Models (AAMs): one that utilizes
acoustic features as input, and one that utilizes a phonetic
transcription as input. Both synthesizers are trained using the
same data and the performance is measured using both objec-
tive and subjective testing. We investigate the impact of likely
sources of error in the synthesized visual speech by introducing
typical errors into real visual speech sequences and subjectively
measuring the perceived degradation. When only a small region
(e.g. a single syllable) of ground-truth visual speech is incorrect
we find that the subjective score for the entire sequence is
subjectively lower than sequences generated by our synthesizers.
This observation motivates further consideration of an often
ignored issue, which is to what extent are subjective measures
correlated with objective measures of performance? Significantly,
we find that the most commonly used objective measures of
performance are not necessarily the best indicator of viewer
perception of quality. We empirically evaluate alternatives and
show that the cost of a dynamic time warp of synthesized visual
speech parameters to the respective ground-truth parameters is
a better indicator of subjective quality.

Index Terms—Visual speech synthesis, visual speech evalua-
tion, canonical correlation analysis, active appearance models.

I. INTRODUCTION

V ISUAL speech synthesis is the process of animating a
face model to provide visual speech gestures that match

an accompanying acoustic speech signal — see [1] for a broad
overview. This is a sub-field of the broader topic of facial an-
imation, and the typical graphics pipeline for animating faces
usually involves four components: 1) A geometric model of the
face, 2) an animation rig that parameterizes the deformation
of the face model, 3) a synthesis module that generates facial
animation parameters, and 4) an output module that renders
the face model to produce the output visual speech animation.

1) Model: The face model typically represents the surface
of a face as points which are connected to form the vertices
of a mesh either in two or three-dimensions. The number of
points varies from sparse sets containing only a few tens of
points, to dense sets containing hundreds or more points.

2) Rig: The animation rig provides the mechanism for
deforming the model either directly in terms of specific facial
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Fig. 1. An overview of: (top) feature-driven, and (bottom) unit-driven visual
speech synthesis. Training is marked by the (solid) black arrows, whilst
synthesis is marked by the (dotted) red arrows.

actions or gestures, where the parameters may be hand-
crafted [2]–[4], derived using a data-driven approach [5]–[7],
or computed indirectly via some form of underlying model,
often based on facial muscles [8]–[10].

3) Animate: For visual speech synthesis, the animation
parameter values are typically generated using either a feature-
driven or a unit-driven approach. Feature-driven approaches
[6], [11]–[21] generate animation parameter values as a direct
mapping from parameterized acoustic speech on a video
frame-by-frame basis. Unit-driven approaches [3], [22]–[30]
utilize an indirect mapping of auditory to visual speech,
where multi-frame animation curves are formed from typically
phoneme, diphone or triphone-level representations of an
utterance on a unit-by-unit basis. Both of these approaches
are illustrated in Figure 1.

4) Render: For visual speech synthesis, generally the ren-
derer will take one of two forms: an artist drawn computer
graphics (CG) model [31], or an image-based technique [22],
[25], [28], [32] that may also include a statistical model of the
appearance variation [12], [26], [29], [30], [33]. The choice
of renderer will largely be determined by the application.
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For example, a speaker-independent or a real-time computer
game system might adopt simple CG approaches as these offer
efficiency and flexibility. However, real-time graphics methods
generally lack videorealism — it is difficult to convince a
viewer the video sequence contains a real person. The ap-
pearance of the face may be improved using texture-mapping
and shading techniques, where an image of a face is texture-
mapped onto the geometric model. However, the static nature
of the texture becomes apparent as the model is animated.
This can be overcome using complex and computationally
expensive shading and lighting techniques [34], but these
require specialist capture equipment or artist input and do not
readily lend themselves to real-time synthesis of visual speech.
Conversely, image-based rendering approaches can achieve
close to videorealism, but they lack flexibility: often only the
face region is animated, the range of facial gestures may be
confined to examples seen during training, and unless complex
retargeting methods are employed the identity of the talker is
fixed. Hybrid approaches that utilize a statistical appearance
model offer a convenient compromise between efficiency and
realism [7], [29], [35], [36].

The Active Appearance Model (AAM) adopted in this paper
(see Section: IV) encapsulates the model, the animation rig and
the renderer in a single statistical model, meaning different
synthesis strategies can be evaluated independently of the rest
of the animation pipeline.

Despite the wealth of research into visual speech synthesis
over the last two decades, there still are no common standards
against which systems can be benchmarked. This is true for the
nature of the tests that should be conducted, the environmental
conditions in which the evaluation should be conducted, or
the metrics against which systems are rated. The notion of
evaluation of speech synthesizers (visual or otherwise) has
been a “hot topic” for almost a decade [37]. There have been
recent attempts to redress this issue, e.g. the introduction of
the LIPS Challenge [38], but broad uptake by the community
has been slow.

Part of the reason for the lack of standardized evaluation
is that the particular metric used to quantify the performance
of a synthesizer will largely depend on the application of the
system. For example, realism might be measured in terms of
the appearance of the face, the improvement in speech intelli-
gibility provided by the synthesized talking face, or it might be
measured more generally in terms of audiovisual coherence.
It is possible that a system that scored highly in terms of one
metric may score poorly with respect to another. For example,
a system that is perceived as looking very natural (human-like)
may not provide benefit in terms of intelligibility [39], yet a
system that is less natural in terms of appearance might be
significantly more intelligible [2].

Different measures of performance have been proposed that
are either objective in nature, where a synthesized sequence is
compared numerically in some way to a ground-truth repre-
sentation, or subjective in nature, which uses human viewers
to score the quality against some criteria. The advantage of
objective measures is they are repeatable, they can be com-
puted automatically, they are much less time consuming, and
the experiments are cheaper to conduct than subjective tests.

The advantage of subjective measures is that they measure the
perceived quality of the synthesizer.

In this paper we compare measures of performance for
two different synthesis approaches: one that maps acoustic
features to visual features, and one that utilizes only a phonetic
transcription of the acoustic speech. In addition, we also seek
to quantify the effect of likely sources of error on the perceived
naturalness of the synthesized sequences, and we consider the
relationship between objective performance measures and the
perceived naturalness, an issue that has largely been ignored.

II. RELATED WORK

Acoustic features used in feature-driven synthesis of vi-
sual speech have included Mel frequency cepstral coefficients
(MFCCs) [14]–[16], [18]–[20]; filter-bank outputs [6]; line
spectral pairs/frequencies (LSPs/LSFs) [17], [40]; formant
frequencies [21]; linear prediction coefficients (LPCs) [12],
[13] or perceptual LPCs (RASTA-PLP) [11]; and several forms
of mapping function have been proposed, including vector-
quantisation or a nearest neighbour look up [6]; regression
[17], [19]; artificial neural networks [12], [13], [15], [18], [41];
hidden Markov models (HMMs) [11], [42]; and switching
linear dynamical systems [14].

Rather than generating parameter values on a frame-by-
frame basis, unit-driven synthesis instead forms trajectories of
parameter values corresponding to a unit of interest (typically
phones, diphones or triphones). The required input information
might be derived from an automatic speech recognition (ASR)
system if the corresponding acoustic speech is available, or
existing (acoustic) text-to-speech synthesis rules can generate
the required phoneme and timing sequence. Trajectory forma-
tion models have included concatenation [22], [24], [28]–[30],
[43]–[46]; interpolation [3], [25], [26], [47]–[49]; probabilistic
approaches [20], [23], [50]; and hybrid approaches [27], [51].

An advantage of unit-driven synthesis is that longer-term
coarticulation effects can be estimated using phonetic context.
For example, knowledge of the context might allow the best
candidate sample to be selected from a corpus of real data.
This enables subtle variation in natural speech production to be
retained in the synthesized visual speech. The main disadvan-
tages are that the corpus from which speech units are selected
will not include all possible contexts, a phonetic transcription
is required a priori, and a large corpus may result in a lengthy
search, making a real-time system difficult to implement. The
advantage of mapping directly from acoustic speech features
is that the speech articulators are physically positioned to form
the speech sounds, so the underlying relationship between
the acoustic features and the articulatory movements can be
learned and exploited. However, only short-term information
is exploited — typically frames are considered in isolation, or
immediately surrounding frames are concatenated to provide
minimal temporal context. It is thus difficult to model the
longer-term coarticulation effects that are apparent in natural
speech production. Also, learning the mapping from acoustic
features to visual features is not trivial.
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A. Evaluating Visual Speech Synthesizers

One approach for objectively measuring the performance
of a synthesizer is to re-synthesize a set of test sentences for
which the original visual speech is available and measure the
distance between key points located about the face [6], [17],
[44], [46], [52], [53], within the parameters used to model
the visual speech [20], [23], [43], [54]–[56], or in the image
pixels [12]. Although this approach is intuitive and simple
to compute, there are two main limitations. Firstly, the error
typically is computed assuming all components of the model
are equally significant and it might be appropriate to take into
account the natural range of variation [57], and secondly only
the magnitude of the difference is usually considered, and
differences in direction might also need to be penalized [11].

A more general criticism of measuring performance using
the error is that it involves computing the distance between
individual frames, then averaging over time. Instead one
might consider the extent to which the real and synthesized
visual speech signals covary [6], [18], [27], [52], [54]–[56],
[58]–[60]. However, this is usually measured by computing
the correlation coefficient for each parameter (and possibly
averaging over parameters), so this perhaps does not provide
the full picture since the visual speech signal itself is the
variation in the combination of these parameters over time.

Other objective measures include the smoothness and the
synchronicity [28], which penalize a concatenative synthesizer
when selecting either non-consecutive frames from a training
sequence, or selecting frames from an incorrect phoneme.
Limitations of these measures are that there might be several
equally valid paths through the training data that do not
require consecutive frames (equally smooth), but these would
be scored differently, secondly it is the realisation of the
sequence that is important, which does not depend only on
the associated phone labels, and thirdly they are applicable
only to concatenative synthesizers. ASR has also been used
to measure synthesis quality by comparing the differences in
phone transcriptions output by a recognizer for both real and
synthesized visual speech [61]. Problems with this approach
are that the types of error are important, and that phone-
based recognition is notoriously difficult for visual-only data.
Instead, one might measure the degree of synchrony between
a real acoustic signal and an accompanying synthesized visual
signal [62]. However, there is a natural degree of asynchrony
between the acoustic and visual speech modalities, and this
asynchrony must be accounted for in the distance measure.
Furthermore, reliable acoustic features are required and pre-
viously pitch was used [62]. A limitation is that regions of
speech that are unvoiced do not have accompanying pitch, and
this affects many significant regions of visual speech, e.g. the
lip closure in a bilabial stop.

Care is required in the interpretation of objective measures
to ensure that relatively small errors in perceptually significant
regions of the visual speech are not overshadowed by larger
errors in perceptually less important regions [40]. Furthermore,
since the score is measured using a reference signal and
humans cannot repeat the same utterance in exactly the same
way, it is important to determine if any differences between the

ground-truth and synthesized sequences are perceptually sig-
nificant. They might result from natural variation observed in
speech production, so are not perceived by viewers.

Ultimately it is viewer perception of quality that is im-
portant, so subjective assessment using human viewers is
preferable. This could be measured indirectly by estimating
the cognitive load on the user by measuring the time taken
to perform a task [63], or it could be measured more directly
either as the improvement in the intelligibility of noisy acous-
tic speech provided by the synthesized visual speech, or by
scoring viewer opinion of particular aspects of the system.

For intelligibility assessment, the type of stimuli used
varies from isolated bisyllabic words [42], [64], multi-syllable
nonsense words [65], isolated real words [39], [66], or sen-
tences [2], [39]. Accuracy can be measured using the word,
syllable or phone recognition rate, or it might involve keyword
spotting in synthesized sentences [55]. The advantage of
shorter stimuli for intelligibility testing is that the accuracy of
particular speech gestures can be measured, but it is difficult
to gauge the accuracy of modelling the longer term aspects
of speech articulation. Sentence-level stimuli overcome this
somewhat, but care is required to ensure that any gain in
intelligibility arises from the speech model and not knowledge
of the language. One way to overcome this is to use semanti-
cally unpredictable sentences [67]. Alternative intelligibility
measures include comparing viewer responses to McGurk
stimuli [68] for both real and synthesized sequences [69],
or using a modified rhyme test to measure errors in the
discrimination of the articulation of words [70]–[72].

A problem with intelligibility as a measure of performance
is that over-articulated speech can emphasize the place of
articulation and improve the intelligibility, but the resultant
sequences will look less natural. Instead, one might use a form
of Turing test, where a viewer is asked to classify sequences
as either real or synthesized [11], [39], [73], or they might be
asked to state their preference between pairs of stimuli [14],
[74]. Perhaps the most common method for obtaining a nu-
merical measure of performance using subjective assessment
involves asking viewers to score their opinion of a particular
aspect of the system on a (typically) five point Likert scale,
then reporting the mean opinion score averaged across viewers.
Specific aspects that have been tested in this way include the
coherency between the audio and visual signals [59], [75],
[76], and, more commonly, the naturalness of the talking
face [15], [20], [29], [42], [46], [56], [70], [76], [77].

The rest of this paper is organized as follows: Section III
describes the data capture and pre-processing, Section IV
discusses the model that forms the basis of our visual speech
representation, Sections V considers the choice of acoustic fea-
ture for predicting visual speech features, Section VI discusses
the synthesizers used in this work, and Section VII discusses
the evaluation of these synthesizers and investigates the impact
of different forms of synthesis error on the perceived quality.

III. DATA CAPTURE

The training data used in this work consists of a single
speaker reciting the 279 sentences forming the Messiah corpus,
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see [78] for a transcript. To ensure that the pose of the head is
as constant as possible, the training sentences were collected
using a head mounted camera. The resolution of the video
frames was 360x288 pixels (one quarter DV-PAL) at 25 Hz.
The audio was digitized at 11,025 Hz and 16 bits/sample
stereo. The video sequences were recorded in a single sitting
to ensure constant lighting throughout the training video. The
speaker was instructed to maintain a neutral facial expression
(no emotion) to confine, as far as possible, the variation of the
facial features to only speech gestures.

IV. ACTIVE APPEARANCE MODELS

The model used throughout this work is an Active Appear-
ance Model (AAM) [36] trained on the face of the speaker in
the training video. An AAM is a generative parametric model
and is commonly used to track and synthesize faces in video
sequences. The model is comprised of two components: a
model of shape variation and a model of appearance variation.
This makes the use of such models attractive in visual speech
synthesis as both the geometry and the texture of the face are
captured jointly.

The shape, s, of an AAM is defined by the concate-
nation of the x and y-coordinates of n vertices: s =
(x1, y1, . . . , xn, yn)

T . A compact model that allows a linear
variation in the shape is given by,

s = s0 +

m∑
i=1

sipi, (1)

where the coefficients pi are the shape parameters. Such a
model is usually computed by applying principal component
analysis (PCA) to a set of shapes hand-labelled in a cor-
responding set of images [36]. The base shape s0 is the
mean shape and the vectors si are the (reshaped) eigenvectors
corresponding to the m largest eigenvalues.

The appearance, A(x), of an AAM is defined by the pixels
that lie inside the base mesh, x = (x, y)

T ∈ s0. AAMs allow
linear appearance variation, so A(x) can be expressed as a base
appearance A0(x) plus a linear combination of l appearance
images Ai(x):

A(x) = A0(x) +

l∑
i=1

λiAi(x) ∀ x ∈ s0, (2)

where the coefficients λi are the appearance parameters. The
base appearance A0 and appearance images Ai are usually
computed by applying PCA to the shape-normalized training
images [36]. A0 is the mean and the vectors Ai are the (re-
shaped) eigenvectors corresponding to the largest eigenvalues.

To render a face image from a set of AAM parameters,
first the shape parameters, p = (p1, . . . , pm)T, are used to
generate the shape, s, of the AAM using Eq. (1). Next the
appearance parameters λ = (λ1, . . . , λl)

T are used to generate
the AAM appearance image, A(x), using Eq. (2). Finally a
piece-wise affine warp is used to warp A(x) from s0 to s. In
the context of AAMs, a single image maps to a point in AAM
space at location {p; λ}, thus the task of the synthesizers is
to generate the time-varying trajectory of model parameters
through AAM space such that the resultant image sequence

contains the correct movement of the facial features given a
novel utterance. Example images rendered using an AAM are
shown in Figure 2.

Fig. 2. Face images rendered using an AAM.

V. ACOUSTIC FEATURES FOR SYNTHESIS

We first investigate the degree of correlation between the
acoustic features commonly used previously in synthesis and
the corresponding AAM features. It follows that the better
correlated the features, the easier it will be to accurately
predict AAM features for novel speech.

The acoustic speech from the training video is divided into
non-overlapping frames of 40 ms duration to match the frame-
rate of the video. Empirical evidence [19], [23] suggests that
this over smoothes the acoustic features, but improves the
correlation with the slower sampled AAM parameters. The
acoustic speech in each frame is parameterized as formant
frequencies, MFCCs, LPCs and LSFs, and the video is en-
coded in terms of the AAM parameters. The acoustic training
data are thus represented as four r × 33, 575 matrices, where
r = {3, 13, 16, 15} for formant frequencies, MFCCs, LPCs
and LSFs respectively and 33, 575 is the number of frames.
The visual data are represented as two s × 33, 575 matrices,
where s = {5, 23} for shape and appearance respectively. It
is customary to append the first and second derivatives to the
audio and visual features to incorporate temporal information,
but empirical evidence suggests that this does not significantly
improve the mapping between these spaces [19], [79].

Corresponding auditory and visual feature vectors are sam-
pled randomly from the training data 100 times for sample
sizes of N = {50, 100, 150, . . . , 2500} and canonical correla-
tion analysis (CCA), as described in [19], is used to measure
the extent to which the feature subspaces are correlated. The
correlation for each N is then averaged over the 100 trials.

A. Results

The mean correlation for each acoustic feature type and the
AAM features is shown in Figure 3. The shape and appearance
components of the AAM are reasonably strongly correlated
with MFCCs and LSFs (ρ1 > 0.8, where ρ1 is the correlation
captured by the first canonical basis vector), but this quickly
falls off in the higher dimensions [19]. LPCs are less well
correlated (ρ1 ≈ 0.75) and formant frequencies are poorly
correlated (ρ1 ≈ 0.5). For small sample sizes (N ≤ 50) the
correlation for both the shape and appearance between the
MFCCs, LSFs and LPCs is very strong (ρ1 > 0.97), but in
this instance a model generated from these features will not
generalize well to unseen examples. Increasing the sample size
decreases the canonical correlation, but allows the model to
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Fig. 3. The effect of the number of training frames on the first canonical
correlation coefficient for shape (top) or appearance (bottom) and the acoustic
features. The acoustic features are MFCCs (red), LSFs (black), LPCs (blue)
and F0 (magenta). Each point is the mean correlation averaged over 100 trails.

better generalize. The estimate of the correlation appears to
stabilize after training on approximately 200 (non-consecutive)
frames.

For all parameter types, it is the appearance information
rather than shape that is better correlated with the auditory
parameters. Generally, the correlation with the appearance
is at least 0.1 higher. The shape-free appearance captures
detail such as tongue and teeth visibility, whilst the shape
model captures information that relates to mouth opening, lip-
rounding, etc.

VI. SYNTHESISING VISUAL SPEECH

We consider two approaches to synthesising visual speech
on an AAM: mapping directly from acoustic features, and a
concatenative system that uses a phonetic transcription.

A. Unit-driven synthesis

Our concatenative unit-driven synthesizer [30] selects AAM
parameter subsequences from a training corpus by maximising
for each phoneme:

κj =

C∑
i=1

Slij
i+ 1

+

C∑
i=1

Srij
i+ 1

, (3)

where κj is the similarity between the desired context and the
jth context previously seen for the target phoneme, C is the
context width and Slij and Srij are the similarity between
phonemes forming the desired and observed left and right
contexts. The similarity between phonemes is computed using:

Sij = e
−γ
(∑m+l

k=1

∑5
n=1[(viP

i
kn−vjP

j
kn)]

2
)
. (4)

P i and P j are the mean AAM parameter trajectories for
phonemes i and j. The first summation is over the dimensions
of the AAM and the second over (five) samples equally spaced
over the phoneme. vi is inversely proportional to the variance

of the AAM parameters for the ith phoneme, which penalizes
poorly represented phonemes. The parameter γ controls the
spread (not the order) of the similarities over the range (0−1).
The similarities obtained using this measure match intuitive
expectation. For example, {/b/, /p/, /m/}, {f/, /v/}, {/tS/, /dZ/,
/S/, /Z/}, etc., are all considered most similar to one another.

The selected sub-trajectories for the best examples (largest
κ) for each phoneme are temporally normalized to the desired
duration, concatenated, smoothed using a cubic smoothing
spline [80] and applied to the model (Eqs 1 and 2).

B. Feature-driven synthesis

Following [18], a feed-forward artificial neural network
(ANN) is used to map from acoustic to visual parameters.
The difference here is that we are mapping to AAM features
rather than the 37 parameters used to animate Baldi [3].

The acoustic speech from the training corpus is encoded
as MFCCs and the corresponding AAM parameters are up-
sampled to match the audio frame-rate using cubic (interpo-
lating) splines. Each network has three-layers: an input layer,
a 50-node hidden layer, and the output layer. The number of
nodes in the hidden layer is selected such that on average
the best performance is achieved. As described in [18] at each
time step the MFCC feature vectors for 11 consecutive frames
(five either side of the current frame) provide the input, and
a separate network is used to map from MFCCs to the shape
and appearance parameters.

Given a trained network, visual speech is synthesized by
first computing the MFCCs from novel acoustic speech and
providing these as input to the network to generate a sequence
of AAM parameters, which are smoothed using a cubic
smoothing spline before being applied to the model. Smooth-
ing splines rather than simple temporal averaging, described
in [18], are used to ensure consistency with the unit-driven
synthesizer. Thus the two approaches we will compare differ
only in the parameter synthesis. All other aspects are identical.

VII. EVALUATION

We consider both objective and subjective quality measures
for our synthesizers, and we are interested in the relationship
between the two. If an objective measure exists that relates
directly to subjective opinion, this objective measure need only
be used in the future. We test the objective measures used most
commonly within the community, and extend the measures
we reported in [81]. Somewhat surprisingly, the relationship
between objective and subjective measures has largely been
ignored, and we demonstrate that objective quality is not
necessarily a good indicator of subjective opinion.

A. Subjective evaluation

The aim of this experiment was to compare the perceived
naturalness of a feature-driven and unit-driven synthesizer.
Naturalness is one of the most widely reported subjective
measures [15], [20], [29], [42], [46], [56], [70], [76], [77],
and it has the advantage that viewers can take all aspects of
the synthesizer into account and form an opinion of the overall
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sense of the synthesis quality. A limitation is that it does not
inform about specific aspects of the system (e.g. synchrony),
but these can be later investigated with further subjective tests.

1) Methodology: Videos for 15 sentences not included in
training were generated using both synthesizers, and all were
synchronized to real acoustic speech. In addition, the original
sequences were re-rendered using the AAM to provide a
benchmark against which to compare the synthesizer scores.
The audiovisual sequences were presented in a randomized
order to 18 participants, who were asked to use a slider to
score (0 − 50) the naturalness of each sequence. Participants
were told that they would see only the face in the video,
as illustrated in Figure 2, and that in some sequences the
face may have undergone some form of processing. They were
told to ignore image quality and focus their attention only on
the naturalness of the talking face. Participants were free to
repeat the sequences as many times as required.

2) Results: The naturalness scores for a sequence are
averaged over participants and the resulting scores are subject
to a Kruskal-Wallis test [82] to determine if the difference
between conditions is statistically significant. The responses
are summarized in Table I. We see that AAM re-rendered
video is perceived as more natural than both synthesis methods
(p < 0.005) and the unit-driven synthesizer is perceived as
more natural than the feature-driven synthesizer (p < 0.015).
It is difficult to draw broad conclusions about feature-driven
versus unit-driven synthesis given that we have considered
only one of each synthesizer type, but a similar trend has
been observed elsewhere for different visual parameters and
different synthesis methods [54]. This, we believe, is because
unit-driven synthesizers are better able to incorporate longer-
term influences of the surrounding gestures, whereas feature-
driven approaches tend to have only minimal context available.

TABLE I
MEDIAN AND MEDIAN ABSOLUTE DEVIATION FROM THE MEDIAN

NATURALNESS SCORES FOR RE-RENDERED VIDEO, A FEATURE-DRIVEN
SYNTHESIZER AND A UNIT-DRIVEN SYNTHESIZER. H IS THE

KRUSKAL-WALLIS TEST STATISTIC, AND p THE SIGNIFICANCE LEVEL.

Treatment n Median MAD
Video-Driven 15 38.71 1.12
Unit-Driven 15 27.47 3.99

Feature-Driven 15 22.35 2.25
H = 31.97 p < 0.005

The overall perception of the naturalness of the synthesizers
is disappointingly low. We note that the synthesized sequences
are synchronized to real acoustic speech, and it has been noted
that viewers will therefore expect higher quality synthesized
visual speech to match the quality of the acoustic speech [59].
Inspection of the video sequences generated by the synthe-
sizers suggests two possible causes for the low scores. Firstly,
the parameter trajectories generated by the synthesizers require
smoothing, so the resulting synthesized visual speech appears
somewhat under-articulated. Secondly, the visual gestures are,
on the whole, well re-produced, but occasionally there are
isolated gestures that appear to stand-out as being obviously
incorrect. A typical example is shown in Figure 4, where the
syllable over frames 60–68 is very under-articulated. We next

describe experiments carried out to determine the significance
of these forms of error.
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Fig. 4. The first shape parameter for a sentence: (A) as measured in the video
(black, solid line), and (B) synthesized by the feature-driven synthesizer (red,
dashed line). Overall the synthesized trajectory is well reproduced, except the
visual gesture between frames 60–68 (mouth closure).

B. Effect of smoothing on perceived naturalness

Parameter trajectories generated using both the unit-driven
and feature-driven synthesizers require smoothing. The unit-
based system has no smoothness constraints in the unit
selection, and the feature-driven system has no knowledge
of past/future (visual) frames. Consequently the parameter
trajectories are noisy, which results in jitter in the facial
features in the synthesized video sequences. To help overcome
this the parameters are smoothed before being applied to the
model. Several methods have been proposed for smoothing
synthesized sequences, which include using a cost term based
on the distance to a prediction of the next frame [23], using
local blending functions between key shapes [43], using some
form of low-pass filter based on the geometric mean [6],
triangular averaging windows [41] or the spectral energy in
synthesized sequences [74], or finally smoothing using cubic
spline filters [46]. The approach adopted here is to smooth by
fitting a cubic smoothing spline to the parameters [80] that
minimizes the functional:

L = ζ

k∑
i=0

(pi−S(si))2+(1− ζ)
k−1∑
i=0

∫ si+1

si

(
d2

ds2
Si(s)

)2

ds,

(5)
where the smoothing parameter, ζ, trades-off a natural cubic
spline interpolation of the data, or no smoothing (ζ = 1) and
the least squares fit, or maximally smoothed trajectory (ζ = 0).
Informal comparisons with low-pass filtering using a Gaussian
suggest the smoothing spline is preferred by viewers [78].

1) Methodology: The unit-driven synthesizer requires
greater smoothing than the feature-driven approach, and typ-
ical values for the smoothing parameter are ζ = 0.5 and
ζ = 0.9 for the unit-driven and feature-driven synthesizers
respectively. To test the significance of the affect of smoothing
on synthesis quality, videos for 30 sentences were generated
in three conditions for ζ = 1.0 (no smoothing), ζ = 0.9
and ζ = 0.5. Thus, the sequences were derived from real
parameters (as measured in video), the parameters had just
undergone different degrees of smoothing for the different con-
ditions. The same 18 participants from the previous experiment
(Section VII-A) were given the same instructions regarding
rating the naturalness of the talking face.
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2) Results: The naturalness scores for a sequence are
averaged over participants and the resulting scores are sub-
ject to a Kruskal-Wallis test to determine if the difference
between conditions is statistically significant. The responses
are summarized in Table II. There is no significant effect
on naturalness when smoothing using ζ = 0.9 (p > 0.86),
although smoothing using ζ = 0.5 does have a significant
impact on naturalness (p < 0.005). Thus, we conclude that
even if the unit-driven synthesizer was to generate exactly
the required visual parameters, the perceived realism of the
sequences would be severely impacted after smoothing. Note
that on average the scores for the sequences generated by the
unit-driven synthesizer in Section VII-A are comparable to
the smoothed (ζ = 0.5) sequences presented here, yet the
sequences here were derived from real data measured directly
from video. This suggests that future effort for improving the
quality of the synthesizer should focus on the unit selection
(Eq. 3) — generating smoother parameter trajectories from the
outset will require less post-processing, which in turn will be
less likely to impact on realism.

TABLE II
Naturalness results for re-rendered video before and after smoothing.

Treatment n Median MAD
ζ = 1 30 34.1 2.6
ζ = 0.9 30 33.4 2.1
ζ = 0.5 30 27.9 1.3
H = 0.04 p < 0.005

C. Effect of errors in isolated visual gestures

To determine the impact on naturalness of the type of error
highlighted in Figure 4, the effect of other potential sources
of error must be removed. For example, although the overall
shape of the trajectories in Figure 4 are broadly similar, some
gestures are slightly under-articulated whilst others are slightly
over-articulated (e.g. at frames 34 and 50 respectively). These
subtle differences must be removed so that the only error is
an isolated erroneous visual speech gesture.

1) Methodology: Videos for 10 sentences were generated
in two conditions: Firstly by re-rendering using the AAM
parameters measured from the original video, and secondly
using the same parameters after substituting the parameters
for one syllable with those of another chosen randomly from
elsewhere in the corpus. Note that prior to rendering, the
parameters of the selected syllable were normalized to the
duration of the original syllable and smoothed appropriately at
the boundary to ensure a seamless blend with the background
video. The impact of this will of course depend on the
class of phonemes forming the two syllables, but the aim
of this experiment is not to determine the specific impact
of substituting different classes of phonemes for one another,
rather it is designed to obtain a broad estimate of the typical
synthesis errors highlighted in Figure 4, where the mouth
gesture is obviously wrong. That is, if only a single speech
gesture appears incorrect, how much impact can this have on
the perception of realism of an entire utterance?

2) Results: The naturalness scores for a given sequence are
averaged over all participants and a Kruskal-Wallis test is used

to determine if the differences between treatments is signifi-
cant. The responses are summarized in Table III. Introducing
only a single erroneous visual speech gesture does significantly
degrade the perceived naturalness of the entire sequence
(p < 0.0002). Note, there is no significant difference in the
perceived naturalness of the processed sequences presented
here and the perceived naturalness ratings of the feature-
driven synthesizer (p > 0.34), and the sequences generated
by the unit-driven synthesizer are perceived as significantly
more natural than processed sequences presented here. Again,
we note that the type of error is important and some are
perceptually more significant than others. But what this result
shows is that an entire sequence can be judged as poor when
only a small section is bad even if the rest is otherwise perfect.

TABLE III
NATURALNESS RESULTS FOR: (T1) AAM RE-RENDERED VIDEO, AND (T2)

THE SAME SEQUENCES WITH AN INCORRECTLY RENDERED SYLLABLE.

Treatment n Median MAD
T1 10 42.6 1.48
T2 10 23.5 4.15
H = 41.32 p < 0.0002

D. Objective evaluation

To maximize the use of the limited available training data
in the objective evaluation, leave-one-out cross validation
was used. A separate synthesizer was trained for each of
the 279 sentences, where each sentence under test was not
included in the training data for the respective synthesizer.
Five objective measures of performance were computed be-
tween the synthesized and ground-truth parameters. Two of
these measures were selected because of their common use
elsewhere. Namely: 1) Correlation (ρ) computed between
individual parameters, then averaged over parameters [6], [18],
[27], [52], [54]–[56], [58]–[60], which gives a single score
per sentence rather than multiple scores, as presented in [81].
2) Normalized RMS error (ε) at each frame averaged over
the utterance [20], [23], [43], [54]–[56]. Following [54] the
error is normalized to be a percentage of the total variation
in the parameters. This allows a more meaningful comparison
between different systems as the absolute value of the error is
dependent on the unit and the scale of the features.

Additional objective measures were investigated in light of
specific issues with the two more common measures above. In
particular: 3) Normalized Peak RMS Error (εp) computed
by selecting the largest magnitude frame-wise error over the
sequence (rather than averaging over frames). Section VII-C
showed that isolated errors can significantly affect the per-
ceived naturalness, so the peak error is included in these
tests to determine how well this score relates to perceived
naturalness. 4) Dynamic time warp cost (D) measured as the
cost of warping the synthesized parameters onto the ground-
truth parameters, where the cost is normalized for path length.
This score was used as it incorporates the notion of the
temporal relationship between the two signals and not just the
frame-wise error. Also, this measure should be less sensitive
to isolated errors than is, say, the correlation. 5) Phone-based
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Mahalonabis distance computed using:

dk =
1

n

n∑
i=1

(pi − vi)S
−1
j (pi − pi)

′ (6)

where dk is the score for the kth utterance of length n
video frames. The parameters generated by the synthesizer
are denoted as p and those measured from the video as
v. The matrix Sj is the scatter matrix for the phoneme to
which the ith video frame belongs. The arguments for this
form of error are that the higher variance (back of mouth)
sounds are down-weighted and considered less important than
sounds with lower variance visual parameters, and the score
is invariant to scale.

The scores for our systems in terms of both the shape and
the appearance parameters are presented in Table IV.

TABLE IV
Mean (± standard deviation) objective measures computed between original
(held-out) AAM parameters and the corresponding synthesized parameters.

Measure Shape Appearance
Feat. Unit Feat Unit

ρ 0.74± 0.07 0.70± 0.07 0.77± 0.05 0.72± 0.06
ε 9.70± 1.46 9.66± 1.30 24.9± 6.72 11.6± 8.20
εp 22.4± 2.88 23.0± 3.59 39.3± 6.45 26.7± 3.85
D 0.32± 0.18 0.33± 0.15 0.42± 0.08 0.04± 0.04
d 1.66± 0.09 1.48± 0.09 5.84± 1.60 1.47± 0.09

To place these objective scores into context, typical correla-
tion values reported elsewhere vary from reasonable correla-
tion (ρ ≤ 0.70) [18], [23], [54], [56], [58], to higher correlation
(ρ > 0.70) [27], [52], [59]. It is worth noting that different
systems use different parameters and it has been shown that a
different representation of the same visual speech sequences
can result in a different (correlation) score [59]. Thus without
direct access to the underlying systems, any comparison is
only indirect and should be regarded with some degree of
caution. Interestingly, the performance of both the feature-
driven and the unit-driven synthesis methods here are better
than those reported in [54] in terms of the correlation, but are
at about the same level in terms of the normalized error. This
raises an interesting question about the relationship between
objective and subjective scores: is an objective measure a good
indicator of naturalness? This is an issue that surprisingly
has been ignored. Since naturalness is the overall sense of
realism in terms of viewer perception, then we argue that an
objective score that more closely relates to the naturalness
is a more meaningful measure. It is difficult to comment on
the remaining objective scores (εp, D and d) relative to other
systems as these have not been used in the context of synthesis
evaluation — they are included here to determine if they are
likely better indicators of subjective performance than the two
more typical measures.

E. Comparing Objective and Subjective Scores

To quantify the relationship between the subjective and
objective scores for the unit-driven synthesizer, the absolute
value of the correlation coefficient between the respective
scores is computed. These are shown in Table V.

TABLE V
The absolute value of the correlation between the subjective ratings of
naturalness for the unit-driven synthesizer and the respective objective

measures of performance.

Feature Measure
ρ ε εp D d

Shape 0.55 0.55 0.67 0.76 0.36
Appearance 0.20 0.63 0.60 0.72 0.67

The objective scores for both the shape and the appear-
ance are, on average, equally well correlated with perceived
naturalness. However, the correlation is different for specific
parameters. Significantly, we find that the two most commonly
used objective measures of performance (ρ and ε) are not
necessarily the most informative in terms of expected sub-
jective quality. In fact, the objective score that correlates best
with the subjective scores is the DTW cost. This is likely
because it incorporates the notion of both a ‘distance’ (as does
ε) and the temporal relationship between the parameters (as
does ρ). Also, what is particularly interesting is that the peak
error correlates better with subjective quality than the average
error. This supports the finding in Section VII-C, where it was
shown that a single synthesis error can significantly degrade
the perception of the naturalness of an otherwise correct
utterance: the larger the peak error, the lower the perceived
quality.

VIII. SUMMARY AND CONCLUSIONS

In this paper we first considered the choice of feature
type for input to a feature-driven visual speech synthesizer.
We used CCA to compute the degree of correlation between
the (visual) AAM space and several acoustic subspaces and
found that, on average, MFCCs generally covary most with
the AAM parameters. MFCCs were then used as input features
to a feed forward ANN-based visual speech synthesizer and
the performance was compared with that of a unit-driven
synthesizer using both subjective and objective tests. In terms
of objective measures both systems appear to perform equally
well. However, using formal subjective testing we found that
the unit-driven approach was perceived as significantly more
natural than the feature-driven approach. A similar finding was
outlined in [54] although their subjective performance was
measured in terms of intelligibility. It is difficult to compare
more formally the results reported by others without direct
access to the underlying systems themselves, but the objective
scores that we report here are similar to those that others report
in terms of correlation and (normalized) RMS error.

We conducted a series of experiments designed to quantify
the likely reasons for the low naturalness ratings obtained
by both synthesizers. In particular we investigated the errors
introduced by both smoothing and by parameter trajectory
formation. The results of these experiments show that taken
in isolation, these naturalness measures are not entirely infor-
mative of absolute performance. For example, the perceived
naturalness of an entire utterance (sentence) is significantly
impacted when only a single syllable is erroneous, even
if the rest of the sequence is perfect (as produced by the
speaker). While evaluating naturalness using sentence level
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units is useful, after all the longer-term properties of the visual
speech must ultimately be considered, they should not be
used in isolation. The accuracy of short-term properties of the
production of speech gestures can also be measured to give a
more localized measure of performance.

The objective measures used in this work included two that
are commonly used within the community (correlation and
RMS error) and three that (to the best of our knowledge)
have not been used elsewhere for this task (peak error, DTW
cost, phone-based Mahalonabis distance). A surprisingly over-
looked question has been how reliably do objective measures
of performance relate to subjective quality? By measuring
the correlation between the various objective scores and the
subjective scores we have found that the DTW cost correlates
better with subjective opinion of naturalness than do the two
most common objective measures, and so this potentially is
a better indicator of performance. Comparing the ordering of
the sequences in terms of the two common objective measures
suggests that one objective measure is not necessarily a good
indicator of others — so the measured quality of the visual
speech in an objective sense is dependent on the score that is
chosen. An open issue is how the objective measures might
be combined to give a yet more reliable indication of likely
perceived quality. With a larger sample size of naturalness
scores, this could be done by re-weighting scores for segments
of utterances where they are more reliable. This is an issue
currently under investigation.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Nick Wilkinson for his
assistance with the neural network based synthesis system.

REFERENCES

[1] G. Bailly, M. Bérar, F. Elisei, and M. Odisio, “Audiovisual speech
synthesis,” in International Journal of Speech Technology, vol. 6, 2003,
pp. 331–346.

[2] J. Beskow, I. Karlsson, J. Kewley, and G. Salvi, “SYNFACE - a talking
head telephone for the hearing-impaired,” in Computers Helping People
with Special Needs, 2004, pp. 1178–1186.

[3] D. Massaro, Perceiving Talking Faces. The MIT Press, 1998.
[4] F. Parke, “Parametric models for facial animation,” Computer Graphics

and Applications, vol. 2, no. 9, pp. 61–68, 1982.
[5] G. Bailly, F. Elisei, P. Badin, and C. Savariaux, “Degrees of freedom of

facial movements in face-to-face conversational speech,” in International
Workshop on Multimodal Corpora, 2006, pp. 33–36.

[6] R. Gutierrez-Osuna, P. Kakumanu, A. Esposito, O. Garcia, B. A., and
I. Rudomin, “Speech-driven facial animation with realistic dynamics,”
IEEE Transactions on Multimedia, vol. 7, no. 1, pp. 33–42, 2005.

[7] B. Theobald, I. Matthews, M. Mangini, J. Spies, T. Brick, J. Cohn, and
S. Boker, “Mapping and manipulating facial expression,” Language and
Speech, vol. 52, no. 2/3, pp. 369–386, 2009.

[8] K. Kähler, J. Haber, and H. Seidel, “Geometry-based muscle modelling
for facial animation,” in Graphics Interface, 2001, pp. 27–36.

[9] Y. Lee, D. Terzopoulos, and K. Waters, “Realistic modeling for facial
animation,” in Proceedings of SIGGRAPH, 1995, pp. 55–62.

[10] L. Nedel and D. Thalmann, “Real time muscle deformations using mass-
spring systems,” in Computer Grahpics International, 1998, pp. 156–
165.

[11] M. Brand, “Voice puppetry,” in Proceedings of SIGGRAPH, Los Ange-
les, California, 1999, pp. 21–28.

[12] Y. Du and X. Lin, “Realistic mouth synthesis based on shape appearance
dependence mapping,” Pattern Recognition Letters, vol. 23, no. 14, pp.
1875–1885, 2002.

[13] P. Eisert, S. Chaudhuri, and B. Girod, “Speech driven synthesis of talking
head sequences,” in Proceedings of the Workshop 3D Image Analysis and
Synthesis, 1997, pp. 51–56.

[14] G. Englebienne, T. Cootes, and M. Rattray, “A probabilistic model for
generating realistic speech movements from speech,” in Proceedings of
Advances in Neural Information Processing Systems, 2007.

[15] G. Feldhoffer, A. Tihanyi, and O. Balázs, “A comparative study of direct
and asr-based modular audio to visual speech systems,” The Phonetician,
vol. 97/98, pp. 15–24, 2008.

[16] P. Hong, Z. Wen, and T. Huang, “Real-time speech-driven expressive
synthetic talking faces using neural networks,” IEEE Transaction on
Neural Networks, vol. 13, no. 4, pp. 916–927, 2002.

[17] C. Hsieh and Y. Chen, “Partial linear regression for speech-driven talking
head application,” Signal Processing: Image Communication, vol. 21,
pp. 1–12, 2006.

[18] D. Massaro, J. Beskow, M. Cohen, and T. Fry, C.and Rodriguez,
“Picture my voice: Audio to visual speech synthesis using artificial
neural networks,” in Proceedings of the International Conference on
Auditory Visual Speech Processing, 1999.

[19] B. Theobald and N. Wilkinson, “Real-time visual speech synthesis
using active appearance models,” in Proceedings of the International
Conference on Auditory Visual Speech Processing, 2007.

[20] L. Wang, W. Han, X. Qian, and F. Soong, “Synthesizing photo-real
talking head via trajectory-guided sample selection,” in Proceedings of
Interspeech, 2010.

[21] Z. Wen, P. Hong, and T. Huang, “Real time speech driven facial
animation using formant analysis,” in Proceedings of the International
Conference on Multimedia and Expo, 2001, pp. 817–820.

[22] C. Bregler, M. Covell, and M. Slaney, “Video rewrite: Driving visual
speech with audio,” in Proceedings of SIGGRAPH, 1997, pp. 353–360.

[23] S. Deena, S. Hou, and A. Galata, “Visual speech synthesis by modelling
coarticulation dynamics using a non-parametric switching state-space
model,” in International Conference on Multimodal Interfaces, 2010,
pp. 1–8.

[24] J. Edge and A. Hilton, “Visual speech synthesis from 3D video,” in IET
European Conference on Visual Media Production, 2006, pp. 174–179.

[25] T. Ezzat and T. Poggio, “Miketalk: A talking facial display based
on morphing visemes,” in Proceedings of the Computer Animation
Conference, 1998, pp. 96–103.

[26] T. Ezzat, G. Geiger, and T. Poggio, “Trainable videorealistic speech
animation,” in Proceedings of SIGGRAPH, 2002, pp. 388–398.

[27] O. Govokhina, G. Bailly, G. Breton, and P. Bagshaw, “TDA: A new
trainable trajectory formation system for facial animation,” in Proceed-
ings of Interspeech, 2006, pp. 2474–2477.

[28] F. Huang, E. Cosatto, and H. Graf, “Triphone based unit selection for
concatenative visual speech synthesis,” in Proceedings of the Interna-
tional Conference on Acoustics, Speech and Signal Processing, 2002,
pp. 2037–2040.

[29] W. Mattheyses, L. Latacz, and W. Verhelst, “Active appearance models
for photorealistic visual speech synthesis,” in Proceedings of Inter-
speech, 2010.

[30] B. Theobald, J. Bangham, I. Matthews, and G. Cawley, “Near-
videorealistic synthetic talking faces: Implementation and evaluation,”
Speech Communication, vol. 44, pp. 127–140, 2004.

[31] F. Parke and K. Waters, Computer Facial Animation. A K Peters, 1996.
[32] E. Cosatto and H. Graf, “Photo-realistic talking-heads from image

samples,” IEEE Transactions on Multimedia, vol. 2, no. 3, pp. 152–163,
2000.

[33] F. Elisei, M. Odisio, G. Bailly, and P. Badin, “Creating and control-
ling video-realistic talking heads,” in Proceedings of the International
Conference on Auditory Visual Speech Processing, 2001, pp. 90–97.

[34] T. Hawkins, A. Wenger, C. Tchou, A. Gardner, F. . Goransson, and
P. Debevec, “Animatable facial reflectance fields,” in Eurographics
Symposium on Rendering, June 2004.

[35] V. Blanz, C. Basso, T. Poggio, and T. Vetter, “Reanimating faces in
images and video,” in Proceedings of Eurographics, 2003, pp. 641–650.

[36] T. Cootes, G. Edwards, and C. Taylor, “Active appearance models,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 23,
no. 6, pp. 681–685, 2001.

[37] G. Bailly, N. Campbell, and M. Mbius, “ISCA special session: Hot topics
in speech synthesis,” in Proceedings of Eurospeech, 2003, pp. 37–40.

[38] B. Theobald, S. Fagel, F. Elsei, and G. Bailly, “LIPS2008: Visual speech
synthesis challenge,” in Proceedings of Interspeech, 2008, pp. 1875–
1878.

[39] G. Geiger, T. Ezzat, and T. Poggio, “Perceptual evaluation of video-
realistic speech,” MIT, Cambrige, MA, Tech. Rep. CBCL Paper 224/AI
Memo 2003-003, 2003.

[40] H. Yehia, R. P., and E. Vatikiotis-Bateson, “Quantitative association of
vocal-tract and facial behaviour,” Speech Communication, vol. 26, pp.
23–43, 1998.



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. Y, XXXX 2012 10

[41] P. Hong, Z. Wen, T. Huang, and H. Shum, “Real-time speech-driven 3D
face animation,” in Proceedings of the 3D Data Processing Visualization
and Transmission Symposium, 2002, pp. 713–716.

[42] E. Yamamoto, S. Nakamura, and K. Shikano, “Lip movement synthesis
from speech based on hidden Markov models,” in Proceedings of
International Conference on Face and Gesture, 1998, pp. 154–159.

[43] Z. Deng, U. Neumann, J. Lewis, T. Kim, and S. Narayanan, “Expres-
sive facial animation synthesis by learning speech coarticulation and
expression spaces,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 6, pp. 1523–1534, 2006.

[44] O. Engwall, “Evaluation of a system for concatenative articulatory visual
speech synthesis,” in Proceedings of the International Conference on
Spoken Language Processing, 2002, pp. 665–668.

[45] K. Liu and J. Ostermann, “Realistic facial animation system for inter-
active services,” in Proceedings of Interspeech, 2008, pp. 2330–2333.

[46] J. Ma, R. Cole, B. Pellom, W. Ward, and B. Wise, “Accurate visible
speech synthesis based on concatenating variable length motion capture
data,” IEEE Transactions on Visualization and Compuer Graphics,
vol. 12, no. 2, pp. 266–276, 2006.

[47] E. Bevacqua and C. Pelachaud, “Expressive audio-visual speech,” Com-
puter Animation and Virtual Worlds, vol. 15, pp. 297–304, 2004.

[48] S. King and R. Parent, “Creating speech-synchronized animation,” IEEE
Transactions on Visualization and Compuer Graphics, vol. 11, no. 3, pp.
341–352, 2005.

[49] J. Melenchon, E. Martinez, F. De la Torre, and J. Montero, “Emphatic
visual speech synthesis,” IEEE Transactions on Audio, Speech and
Language Processing, vol. 17, no. 3, pp. 459–468, 2009.

[50] B. Theobald and N. Wilkinson, “A probabilistic trajectory synthesis
system for synthesising visual speech,” in Proceedings of Interspeech,
2008, pp. 2310–2313.

[51] J. Tao, L. Xin, and Y. Panrong, “Realistic visual speech synthesis based
on hybrid concatenation method,” IEEE Transactions on Audio, Speech
and Language Processing, vol. 17, no. 3, pp. 469–477, 2009.

[52] S. Fu, R. Gutierrez-Osuna, A. Esposito, P. Kakumanu, and O. Garcia,
“Audio/visual mapping with cross-modal hidden markov models,” IEEE
Transactions on Multimedia, vol. 7, no. 2, pp. 243–252, 2005.

[53] S. Nakamura and E. Yamamoto, “Speech-to-lip movement synthesis by
maximizing audio-visual joint probability based on the EM algorithm,”
Journal of VLSI Signal Processing, vol. 27, pp. 119–126, 2001.

[54] J. Beskow, “Trainable articulatory control models for visual speech
synthesis,” Journal of Speech Technology, vol. 4, no. 7, pp. 335–349,
2004.

[55] R. Carlson and B. Granström, “Data-driven multimodal synthesis,”
Speech Communication, vol. 47, pp. 182–193, 2005.

[56] X. Zhuang, L. Wang, F. Soong, and M. Hasegawa-Johnson, “A minimum
converted trajectory error (mcte) approach to high quality speech-to-lips
conversion,” in Proceedings of Interspeech, 2010.

[57] D. Cosker, D. Marshall, P. Rosin, and Y. Hicks, “Speech driven facial
animation using a hidden markov coarticulation model,” in Proceedings
of the International Conference on Pattern Recognition, 2004, pp. 128–
131.

[58] L. Arslan and D. Talkin, “3D face point trajectory synthesis using an
automatically derived visual phoneme similarity matrix,” in Proceedings
of the International Conference on Auditory-Visual Speech Processing,
1998, pp. 175–180.

[59] G. Bailly, G. Gibert, and M. Odisio, “Evaluation of movement generation
systems using the point-light technique,” in IEEE Workshop on Speech
Synthesis, 2002, pp. 27–30.

[60] T. Kuratate, K. Munhall, P. Rubin, E. Vatikiotis-Bateson, and H. Yehia,
“Audio-visual synthesis of talking faces from speech production corre-
lates,” in Proceedings of Eurospeech, vol. 3, 1999, pp. 1279–1282.

[61] J. Dongmei, X. Lei, Z. Rongchun, W. Verhelst, I. Ravyse, and H. Sahli,
“Acoustic viseme modelling for speech driven animation: A case study,”
in Workshop on Model-based Processing and Coding of Audio, 2002,
pp. 49–52.

[62] S. Cadavid, M. Abdel-Mottaleb, D. Messinger, M. Mahoor, and
L. Bahrick, “Detecting local audio-visual synchrony in monologues
utilizing vocal pitch and facial landmark trajectories,” in Proceedings
of the British Machine Vision Conference, 2009.

[63] I. Pandzic, J. Ostermann, and D. Millen, “User evaluation: Synthetic
talking faces for interactive services,” The Visual Computer, vol. 15, pp.
330–340, 1999.

[64] S. Fagel, G. Bailly, and F. Elisei, “Intelligibility of natural and 3D-
cloned german speech,” in Proceedings of the International Conference
on Auditory-Visual Speech Processing, 2007.

[65] C. Benoît and B. Le Goff, “Audio-visual speech synthesis from french
text: Eight years of models, designs and evaluation at the ICP,” Speech
Communication, vol. 26, pp. 117–129, 1998.
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