31 research outputs found

    Design and Evolution of Deep Convolutional Neural Networks in Image Classification – A Review

    Get PDF
    Convolutional Neural Network(CNN) is a well-known computer vision approach successfully applied for various classification and recognition problems. It has an outstanding power to identify patterns in 1D and 2D data. Though invented in 80's, it became hugely successful after LeCun's work on digit identification. Several CNN based models have been developed to record splendid performance on ImageNet and other databases. Ability of the CNN in learning complex features at different hierarchy from the data had made it the most successful among deep learning algorithms. Innovative architectural designs and hyperaparameter optimization have greatly improved the efficiency of CNN in pattern recognition. This review majorly focuses on the evolution and history of CNN models. Landmark CNN architectures are discussed with their categorization depending on various parameters. In addition, this also explores the architectural details of different layers, activation function, optimizers and other hyperparameters used by CNN. Review concludes by shedding the light on the applications and observations to be considered while designing the network

    Design and Evolution of Deep Convolutional Neural Networks in Image Classification – A Review

    Get PDF
    Convolutional Neural Network(CNN) is a well-known computer vision approach successfully applied for various classification and recognition problems. It has an outstanding power to identify patterns in 1D and 2D data. Though invented in 80's, it became hugely successful after LeCun's work on digit identification. Several CNN based models have been developed to record splendid performance on ImageNet and other databases. Ability of the CNN in learning complex features at different hierarchy from the data had made it the most successful among deep learning algorithms. Innovative architectural designs and hyperaparameter optimization have greatly improved the efficiency of CNN in pattern recognition. This review majorly focuses on the evolution and history of CNN models. Landmark CNN architectures are discussed with their categorization depending on various parameters. In addition, this also explores the architectural details of different layers, activation function, optimizers and other hyperparameters used by CNN. Review concludes by shedding the light on the applications and observations to be considered while designing the network

    Fine-tuning U-net for medical image segmentation based on activation function, optimizer and pooling layer

    Get PDF
    U-net convolutional neural network (CNN) is a famous architecture developed to deal with medical images. Fine-tuning CNNs is a common technique used to enhance their performance by selecting the building blocks which can provide the ultimate results. This paper introduces a method for tuning U-net architecture to improve its performance in medical image segmentation. The experiment is conducted using an x-ray image segmentation approach. The performance of U-net CNN in lung x-ray image segmentation is studied with different activation functions, optimizers, and pooling-bottleneck-layers. The analysis focuses on creating a method that can be applied for tuning U-net, like CNNs. It also provides the best activation function, optimizer, and pooling layer to enhance U-net CNN’s performance on x-ray image segmentation. The findings of this research showed that a U-net architecture worked supremely when we used the LeakyReLU activation function and average pooling layer as well as RMSProb optimizer. The U-net model accuracy is raised from 89.59 to 93.81% when trained and tested with lung x-ray images and uses the LeakyReLU activation function, average pooling layer, and RMSProb optimizer. The fine-tuned model also enhanced accuracy results with three other datasets

    Mauro Roisenberg

    Get PDF

    Intrinsic Dimension Estimation: Relevant Techniques and a Benchmark Framework

    Get PDF
    When dealing with datasets comprising high-dimensional points, it is usually advantageous to discover some data structure. A fundamental information needed to this aim is the minimum number of parameters required to describe the data while minimizing the information loss. This number, usually called intrinsic dimension, can be interpreted as the dimension of the manifold from which the input data are supposed to be drawn. Due to its usefulness in many theoretical and practical problems, in the last decades the concept of intrinsic dimension has gained considerable attention in the scientific community, motivating the large number of intrinsic dimensionality estimators proposed in the literature. However, the problem is still open since most techniques cannot efficiently deal with datasets drawn from manifolds of high intrinsic dimension and nonlinearly embedded in higher dimensional spaces. This paper surveys some of the most interesting, widespread used, and advanced state-of-the-art methodologies. Unfortunately, since no benchmark database exists in this research field, an objective comparison among different techniques is not possible. Consequently, we suggest a benchmark framework and apply it to comparatively evaluate relevant stateof-the-art estimators

    Security in Computer and Information Sciences

    Get PDF
    This open access book constitutes the thoroughly refereed proceedings of the Second International Symposium on Computer and Information Sciences, EuroCybersec 2021, held in Nice, France, in October 2021. The 9 papers presented together with 1 invited paper were carefully reviewed and selected from 21 submissions. The papers focus on topics of security of distributed interconnected systems, software systems, Internet of Things, health informatics systems, energy systems, digital cities, digital economy, mobile networks, and the underlying physical and network infrastructures. This is an open access book

    Attention Mechanisms in Medical Image Segmentation: A Survey

    Full text link
    Medical image segmentation plays an important role in computer-aided diagnosis. Attention mechanisms that distinguish important parts from irrelevant parts have been widely used in medical image segmentation tasks. This paper systematically reviews the basic principles of attention mechanisms and their applications in medical image segmentation. First, we review the basic concepts of attention mechanism and formulation. Second, we surveyed over 300 articles related to medical image segmentation, and divided them into two groups based on their attention mechanisms, non-Transformer attention and Transformer attention. In each group, we deeply analyze the attention mechanisms from three aspects based on the current literature work, i.e., the principle of the mechanism (what to use), implementation methods (how to use), and application tasks (where to use). We also thoroughly analyzed the advantages and limitations of their applications to different tasks. Finally, we summarize the current state of research and shortcomings in the field, and discuss the potential challenges in the future, including task specificity, robustness, standard evaluation, etc. We hope that this review can showcase the overall research context of traditional and Transformer attention methods, provide a clear reference for subsequent research, and inspire more advanced attention research, not only in medical image segmentation, but also in other image analysis scenarios.Comment: Submitted to Medical Image Analysis, survey paper, 34 pages, over 300 reference
    corecore