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When dealing with datasets comprising high-dimensional points, it is usually advantageous to discover some data structure.
A fundamental information needed to this aim is the minimum number of parameters required to describe the data while
minimizing the information loss. This number, usually called intrinsic dimension, can be interpreted as the dimension of the
manifold from which the input data are supposed to be drawn. Due to its usefulness in many theoretical and practical problems,
in the last decades the concept of intrinsic dimension has gained considerable attention in the scientific community, motivating
the large number of intrinsic dimensionality estimators proposed in the literature. However, the problem is still open since most
techniques cannot efficiently deal with datasets drawn from manifolds of high intrinsic dimension and nonlinearly embedded
in higher dimensional spaces. This paper surveys some of the most interesting, widespread used, and advanced state-of-the-art
methodologies. Unfortunately, since no benchmark database exists in this research field, an objective comparison among different
techniques is not possible. Consequently, we suggest a benchmark framework and apply it to comparatively evaluate relevant state-
of-the-art estimators.

1. Introduction

Since the 1950s, the rapid pace of technological advances
allows us to measure and record increasing amounts of
data, motivating the urgent need to develop dimensionality
reduction systems to be applied on real datasets comprising
high-dimensional points.

To this aim, a fundamental information is provided by
the intrinsic dimension (id) defined by Bennett [1] as the
minimum number of parameters needed to generate a data
description by maintaining the “intrinsic” structure charac-
terizing the dataset, so that the information loss isminimized.

More recently, a quite intuitive definition employed by
several authors in the past has been reported by Bishop in [2],
p. 314, where the author writes that “a set in 𝐷 dimensions is
said to have an id equal to 𝑑 if the data lies entirely within a
𝑑-dimensional subspace ofR𝐷.”

Though more specific and different id definitions have
been proposed in different research fields [3–5], throughout
the pattern recognition literature the presently prevailing id
definition views a point set as a sample set uniformly drawn

from an unknown smooth (or locally smooth) manifold
structure, eventually embedded in a higher dimensional
space through a nonlinear smooth mapping; in this case, the
id to be estimated is the manifold’s topological dimension.

Due to the importance of id in several theoretical and
practical application fields, in the last two decades a great
deal of research effort has been devoted to the development of
effective id estimators. Though several techniques have been
proposed in the literature, the problem is still open for the
following main reasons.

At first, it must be highlighted that though Lebesgue’s
definition of topological dimension [6] (see Section 3.2) is
quite clear, in practice its estimation is difficult if only a finite
set of points is available. Therefore, id estimation techniques
proposed in the literature are either founded on different
notions of dimension (e.g., fractal dimensions, Section 3.2.1)
approximating the topological one or on various techniques
aimed at preserving the characteristics of data-neighborhood
distributions, which reflect the topology of the underlying
manifold. Besides, the estimated id value markedly changes
as the scale used to analyze the input dataset changes [7] (see
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Figure 1: At very small scales (a) the dataset seems zero-dimensional; in this example, when the resolution is increased until including all
the dataset (b) the id looks larger and seems to equal the embedding space dimension; the same effect happens when it is estimated at noise
level (d); the correct id estimate is obtained at an intermediate resolution.

an example in Figure 1), and with the number of available
points being practically limited, several methods underesti-
mate id when its value is sufficiently high (namely, id ⩾ 10).
Other serious problems arisewhen the dataset is embedded in
higher dimensional spaces through a nonlinear map. Finally,
the too high computational complexity of most estimators
makes them unpractical when the need is to process datasets
comprising huge amounts of high-dimensional data.

In this work, after recalling the application domains of
interest, we survey some of the most interesting, widespread
used, and advanced id estimators. Unfortunately, since each
method has been evaluated on different datasets, it is difficult
to compare them by solely analyzing the results reported
by the authors. This highlights the need of a benchmark
framework, such as the one proposed in this work, to
objectively assess and compare different techniques in terms
of robustness with respect to parameter settings, high-
dimensional datasets, datasets characterized by a highid, and
noisy datasets.

The paper is organized as follows: in Section 2 the
usefulness of the id knowledge is motivated and interesting
id application domains profitably exploiting it are recalled;
in Section 3 we survey notable state-of-the-art id estimators,
grouping them according to the employed methods; in
Section 4 we summarize mostly used experimental settings,
we propose a benchmark framework, and we employ it
to objectively assess and compare relevant id estimators;
in Section 5 conclusions and open research problems are
reported.

2. Application Domains

In this section we motivate the increasing research interest
aimed at the development of automatic id estimators, and
we recall different application contexts where the knowledge
of the id of the available input datasets is a profitable
information.

In the field of pattern recognition, the id is one of the first
and fundamental pieces of information required by several
dimensionality reduction techniques [8–12], which try to
represent the data in a more compact, but still informative,
way to reduce the “curse of dimensionality” effects [13].

Furthermore, when using an autoassociative neural network
to perform a nonlinear feature extraction, the id value 𝑑

can suggest a reasonable value for the number of hidden
neurons [14]. Indeed, a network with a single hidden layer of
neuronswith linear activation functions has an error function
with a unique global minimum and, at this minimum, the
network performs a projection on the subspace spanned
by the first 𝑑 principal components [15] estimated on the
dataset (see 8.6.2 of [2]), with 𝑑 being the number of hidden
neurons. Besides, according to statistical learning theory [16],
the capacity and generalization capability of a given classifier
may depend on the id. More specifically, in the particular
case of linear classifiers where the data are drawn from a
manifold embedded through an identical map, the Vapnik-
Chervonenkis (VC) dimension of the separation hyperplane
is 𝑑 + 1 (see [16], pp. 156–158). Since the generalization
error depends on the VC dimension, it follows that the
generalization capability may depend on the id value 𝑑.
Moreover, in [17] the authors mark that, in order to balance
a classifier generalization ability and its empirical error, the
complexity of the classification model should also be related
to the id of the available dataset. Furthermore, since complex
objects can be considered as structures composed bymultiple
manifolds that must be clustered to be processed separately,
the knowledge of the local ids characterizing the considered
object is fundamental to obtain a proper clustering [18].

These observations motivate applications employing
global or local id estimates to discover some structure within
the data. In the followingwe summarize or simply recall some
interesting examples [19–25].

In [19] the authors introduce a fractal dimension esti-
mator, called correlation dimension (CD) estimator (see
Section 3.2.1), and show that the id estimate it computes is
a reliable approximation of the strange attractor dimension
in chaotic dynamical systems.

In the field of gene expression analysis, thework proposed
in [20] shows that the id estimate computed by the nearest
neighbor estimator (described in [26] and Section 3.2.2) is a
lower bound for the number of genes to be used in super-
vised and unsupervised class separation of cancer and other
diseases. This information is important since generally used
datasets contain large number of genes and the classification
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results strongly depend on the number of genes employed to
learn the separation criteria.

In [21], the authors show that id estimation methods
being derived from the basis theory of fractal dimensions
([7, 19, 27], see Section 3.2.1) can be successfully used to
evaluate the model order in signals and time series, which
is the number of past samples required to model the time
series adequately and is crucial to make reliable predictions.
This comparativework employs fractal dimension estimators,
since the domain of attraction of nonlinear dynamic systems
has a very complex geometric structure, which could be
captured by closely related studies on fractal geometry and
fractal dimensions.

A noteworthy research work in the field of crystallog-
raphy [22] employs the fractal CD estimator [19] followed
by a correction method [28] that, according to the authors,
“is needed because the CD estimator, to give correct esti-
mations of the id, requires an unrealistically large number
of points.” Anyway, the experimental results show that
id is a useful information to be exploited when analyz-
ing crystal structures. This study not only proves that id
estimates are especially useful when dealing with practical
tasks concerning real data, but also underlines the need to
compute reliable estimates on datasets drawn frommanifolds
characterized by high id and embedded in spaces of much
greater dimensionality.

The work of Carter et al. [23] is very interesting and
notable because it is one of the first considering that the input
data might be drawn from a multimanifold structure, where
each submanifold has a (possibly) different id. To separate
the manifolds, the authors compute local id estimates, by
applying both a fractal dimension estimator (namely, MLE
[27]; see Section 3.2.1) and a nearest neighbor-based esti-
mator (described in [29, 30]; see Section 3.2.2) on properly
defined data neighborhoods. The authors then show that
the computed local ids might be helpful for the following
interesting applications: (1) “Debiasing global id estimates”:
the negative bias caused both by the limited number of
available sample points and by the curse of dimensionality
is reduced by computing global id estimates through a
weighted average of the local ones, which assign greater
importance to the points away from the boundaries. However
the authors themselves note that this method is only applica-
ble for data with a relatively low id, since in high dimensions
the points lie nearby the boundaries [31]. (2) “Statistical
manifold learning”: the local id estimates are used to reduce
the dimension of statistical manifolds [32], that is, manifolds
whose points represent a pdf.When this step is applied as the
first step of document classification applications, and analysis
of patients’ samples acquired in the field of flow cytometry,
it allows us to obtain lower dimensional points showing
a good class separation. (3) “Network anomaly detection”:
considering that the overall complexity of a router network is
decreased when few sources account for a disproportionate
amount of traffic, a decrease in the id of the entire network is
searched for. (4) “Clustering”: problems of data clustering and
image segmentation are dealt with by assuming that different
clusters and image patches belong to manifold structures
characterized by different complexity (and ids).

In [24], to the aim of analyzing gene expression time
series, the authors compute id estimates by comparing the
fractal CD estimator and the nearest neighbor (NN) estimator
[26]. The results on both simulated and real data show that
NN seems to bemore robust than CDwith respect to nonlinear
embedding and the underlying time-series model.

In the field of geophysical signal processing, hyperspec-
tral images, whose pixels represent spectra generated by
the combination of an unknown set of independent con-
tributions, called endmembers, often require estimating the
number of endmembers. To this aim, the proposal in [25] is
to substitute state-of-the-art algorithms specifically designed
to solve this taskwith id estimators. Aftermotivating the idea
by describing the relation between the id of a dataset and the
number of endmembers, the authors choose to experiment
two fractal id estimators [7, 19] and a nearest neighbor-
based one [33]. They obtain the most reliable results with
the latest one after opportunely tuning the number of nearest
neighbors to be considered.

Finally, other noteworthy examples of research works
that profitably exploit id and estimate it by usually applying
fractal dimension estimators concern financial time series
prediction [34], biomedical signal analysis [35–37], analysis
of ecological time series [38], radar clutter identification
[39], speech analysis [40], data mining and low dimensional
representation of (biomedical) time series [41], and plant
traits representation [42].

3. Intrinsic Dimension Estimators

In this section we survey some of the most notable, recent,
and effective state-of-the-art id estimators, grouping them
according to the main ideas they are based on.

Specifically, in Section 3.1 we describe projective id esti-
mators, which basically process a dataset P

𝑁
≡ {p

𝑖
}
𝑁

𝑖=1 ⊆

R𝐷 to identify a somehow appealing lower dimensional
subspace where to project the data; the space dimension of
the identified subspace is viewed as the id estimate.

More recent projective id estimators exploit the assump-
tion of datasets P

𝑁
≡ {p

𝑖
}
𝑁

𝑖=1 ⊆ R𝐷 being uniformly
drawn from a smooth (or locally smooth) manifold M ⊆

R𝑑, embedded into a higher 𝐷-dimensional space through
a nonlinear map; this is also the basic assumption of all the
other groups of methods that will be referred to as topological
id estimators (see Section 3.2) and graph-based id estimators
(see Section 3.3).

We note that the taxonomy we are using to group the
reviewed methods is different from the one, commonly used
by several authors in the past (as an example, see [43]), that
viewed methods as global, when id estimation is performed
by considering a dataset as a whole, or local, when all the
data neighborhoods are analyzed separately and an estimate
is computed by combining all the local results. All the recent
methods have abandoned the global approach since it is
now clear that analyzing a dataset at its biggest scale cannot
produce reliable results. They thus estimate the global id by
somehow combining local ids.This way of proceeding comes
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from the assumption that the underlying manifold is locally
smooth.

3.1. Projective id Estimators. The first projective id esti-
mators introduced in the literature explicitly compute the
mapping that projects input points P

𝑁
∈ R𝐷 to the subspace

M ⊆ R𝑑 minimizing the information loss [27, 43] and
therefore view the id as the minimal number of vectors lin-
early spanning the subspaceM. It must be noted that, since
these methods were originally designed for exploratory data
analysis and dimensionality reduction, they often require the
dimensionality ofM (the id to be estimated) to be provided
as input parameter. However, their extensions and variants
include methodologies to automatically estimate id.

Most of the projective id estimators can be grouped into
twomain categories: projection techniques based onMultidi-
mensional Scaling (MDS) [44, 45] or its variants, which tend
to preserve as much as possible pairwise distances among the
data, and projection techniques based on Principal Compo-
nent Analysis (PCA) [15, 46] and its variants that search for the
best projection subspaceMminimizing the projection error.

Some of the best known examples of MDS algorithms
are MDSCAL [47–52], Bennett’s algorithm [1, 53], Sammon’s
mapping [54], Curvilinear Component Analysis (CCA) [55],
ISOMAP [56], and Local Linear Embedding (LLE) [57]. As
shown by experiments reported in [56, 57] ISOMAP and
variants of LLE compute the most reliable id estimates. We
believe that their better performance is due to the fact that
both ISOMAP and LLE have been the first projective methods
based on the assumption that the input points are drawn from
an underlying manifold, whose curvature might affect the
precision of data neighborhoods computed by employing the
Euclidean distance. However, as noted in [58, 59], these algo-
rithms have shown that they suffer of all themajor drawbacks
affecting MDS-based algorithms, which are too much tied by
the preservation of the pairwise distance values. Besides, as
highlighted in [30], ISOMAP as an id estimator, as well as
other spectral based methods like PCA, relies on a specific
estimated eigenstructure that may not exist in real data.
Regarding LLE, it either requires the id value to be known
in advance or may automatically estimate it by analyzing
the eigenvalues of the data neighborhoods [60]; however,
as outlined in [7, 27], id estimates computed by means of
eigenvalue analysis are as unreliable as those computed by
most PCA-based approaches.Moreover, in [46] it is noted that
methods such as LLE are based on the solution of a sparse
eigenvalue problem under the unit covariance constraint;
however, due to this imposed constraint, the global shape of
the embedded data cannot reflect the underlying manifold.

PCA [15, 46] is one of the most cited and well-known
projective id estimators, often used as the first step of several
pattern recognition problems, to compute low dimensional
representations of the available datasets.WhenPCA is used for
id estimation, the estimate is the number of “most relevant”
eigenvectors of the sample covariance matrix, also called
principal components (PCs). Due to the promising dimen-
sionality reduction results, several PCA-based approaches,
both deterministic and probabilistic, have been published.

Among deterministic approaches, we recall the Kernel PCA
(KPCA) [61] and the local PCA (LPCA) [62] and its extensions
to automatically select the number ofPCs [63, 64].Weobserve
that the work presented in [64] is one of the first works
that estimates id by considering an underlying topological
structure and therefore applies LPCA on data neighborhoods
represented by an Optimally Topology Preserving Map
(OTPM) built on clustered data (given an input dataset P

𝑁
,

its OTPM is usually computed through Topology Representing
Networks (TRNs); these are unsupervised neural networks
[65] developed to map P

𝑁
to a set of neurons whose learnt

connections define proximities in P
𝑁
. These proximities

correspond to the optimal topology preserving Voronoi
tessellation and the corresponding Delaunay triangulation.
In other words, TRNs compute connectivity structures that
define and perfectly preserve the topology originally present
in the data, forming a discrete path-preserving representa-
tion of the inner (topological) structure of the topological
manifold underlying the dataset P

𝑁
). The authors of this

method state that their approach is more efficient and less
sensitive to noise with respect to the PCA-based approaches.
However, they do not show any experimental comparison
and, besides, their algorithmemploys critical thresholds and a
data clustering technique whose result heavily influences the
precision of the computed estimate [27].

The usage of a probabilistic approach has been firstly
introduced by Tipping and Bishop in [66]. Considering that
deterministic methodologies lack an associated probabilistic
model for the observed data, their Probabilistic PCA (PPCA)
reformulates PCA as the maximum likelihood solution of a
specific latent variable model. PPCA and its extensions to
both mixture and hierarchical mixture models have been
successfully applied to several real problems, but they still
provide an id-estimation mechanism depending on critical
thresholds. This motivates its subsequent variants [67] and
developments, whose examples are Bayesian PCA (BPCA) [68]
and two Bayesian model order selection methods introduced
in [69, 70]. In [71] the asymptotic consistency of id estima-
tion by (constrained) isotropic version of PPCA is shown with
numerical experiments on simulated and real datasets.

While the aforementioned methods have been simply
recalled since their id estimation results have shown to be
unreliable [7, 27], in the following recent and promising
proposals are described with more details.

The Simple Exponential Family PCA (SePCA) [72] has
been developed to overcome the assumption of Gaussian-
distributed data that makes it difficult to handle all types
of practical observations, for example, integers and binary
values. SePCA achieves promising results by using exponen-
tial family distributions; however, it is highly influenced by
critical parameter settings and it is successful only if the data
distribution is known, which is often not the case, specially
when highly nonlinear manifold structures must be treated.

In [73] the authors propose the Sparse Probability PCA
(SPPCA) as a probabilistic version of the Sparse PCA (SPCA)
[74]. Precisely, SPCA selects id by forcing the sparsity of
the projection matrix that is the matrix containing the
PCs. However, based on the consideration that the level of
sparsity is not automatically determined by SPCA, SPPCA
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employs a Bayesian formulation of SPCA, achieving sparsity
by employing a different prior and automatically learning the
hyperparameter related to the constraint weight through Evi-
dence Approximation ([75] Section 3.5). The authors’ results
and also the results of the comparative evaluation proposed
in [76] show that this method seems to be less affected by the
problems of the aforementioned projective schemes.

An alternative method (MLSVD) [77] applies Singular
ValueDecomposition (SVD), basically a variant of PCA, locally
and in a multiscale fashion to estimate the id characterizing
𝐷-dimensional datasets drawn from nonlinearly embedded
𝑑-dimensional manifolds M corrupted by Gaussian noise.
Precisely, exploiting the same ideas of the theoretical PCA-
based id estimator presented in [78], the authors note that the
best way to avoid the effects of the curvature (induced by the
nonlinearity of the embedding) is to apply SVD locally, that
is, in hyperspheresB(p, 𝑟) centered on the data points p and
having radius 𝑟. However, the choice of 𝑟 is constrained by the
following considerations: (1) 𝑟 must be big enough to have at
least 𝑘 ≥ 𝑑 neighbors, (2) 𝑟 must be small enough to ensure
thatM∩B is linear (or at least smooth), and (3) 𝑟must be big
enough to ensure that the effects of noise are negligible.When
these three constraints are met, the tangent space 𝑇

𝑑

M(p, 𝑟),
computed by applying SVD on the 𝑘 neighbors, is a good
approximation of the tangent space of M ∩ B and the
number of its relevant eigenvalues corresponds to the (local)
id of M. To find a proper value for 𝑟, the authors propose
a multiscale approach that applies SVD on neighborhoods
B(p, 𝑟

𝑠
) whose radius varies in a range 𝑟

𝑠
∈ {𝑟

𝐿
, . . . , 𝑟

𝐻
}. This

allows us to compute𝐷 scale-dependent, local singular values
𝜆1(p, 𝑟𝑠) ≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝐷
(p, 𝑟

𝑠
); using a least squares fitting proce-

dure the SVs can be expressed as functions of 𝑟whose analysis
allows us to identify the range of scales [𝑟min, . . . , 𝑟max] not
influenced by either noise or curvature. Finally, in the range
𝑟
𝑠
= [𝑟min, . . . , 𝑟max] the squared SVs are analyzed to get the

id estimate 𝑑 that maximizes the gap Δ(𝑗) = 𝜆
𝑗
(p, 𝑟

𝑠
) −

𝜆
𝑗+1(p, 𝑟𝑠) for the largest range of 𝑟𝑠. The proposed algorithm

has been evaluated on unit 𝑑-dimensional hyperspheres and
cubes embedded inR100 and affected by Gaussian noise.The
reported results are very good, while other ten well-known
methods [19, 23, 27, 30, 79–81] show that the ids estimated on
the same datasets are unreliable also in the absence of noise.

3.2. Topological Approaches. Topological approaches for id
estimation consider a manifold M ⊆ R𝑑 embedded in
a higher dimensional space R𝐷 through a proper (locally)
smooth map 𝜙 : M → R𝐷 and assume that the given
dataset is P

𝑁
= {p

𝑖
}
𝑁

𝑖=1 = {𝜙(x
𝑖
)}

𝑁

𝑖=1 ⊂ R𝐷, where x
𝑖
are

independent identically distributed (i.i.d.) points drawn from
M through a smooth probability density function (pdf) 𝑓 :

M → R+.
Under this assumption the id to be estimated is the

manifold’s topological dimension, defined either through the
firstly proposed Brouwer Large Inductive Dimension [82]
or the equivalent Lebesgue Covering Dimension [83]. Since
Brouwer’s definition has been soon neglected by mathe-
maticians for its difficult proof [83], the commonly adopted

topological dimension definition is Lebesgue’s Covering
Dimension, reported in the following.

Definition 1 (cover). Given a topological spaceX, a cover of
a setY ⊆ X is a countable collectionC = {C

𝑖
} of open sets

such that eachC
𝑖
⊂ X and ⋃

𝑖
C

𝑖
⊇ Y.

Definition 2 (refinement of a cover). A refinement of a cover
C of a set Y is another coverC󸀠 such that each set inC󸀠 is
contained in some sets ofC.

Definition 3 (topological dimension (Lebesgue Covering
Dimension)). Given the aforementioned definitions, the
topological dimension of the topological spaceX, also called
Lebesgue Covering Dimension, is 𝑑 if every finite cover ofX
admits a refinement C󸀠 such that no subset of X has more
than 𝑑 + 1 intersecting open sets in C󸀠. If no such minimal
integer value exists, X is said to be of infinite topological
dimension.

To our knowledge, at the state of the art only two
estimators have been explicitly designed to estimate the
topological dimension.

One of them, the Tensor Voting Framework (TVF) [84]
and its variants [85], relies on the usage of an iterative
information diffusion process based on Gestalt principles of
perceptual organization [86]. TVF iteratively diffuses local
information describing, for each p

𝑖
∈ P

𝑁
, the tangent space

approximating the underlying neighborhood of M. To this
aim, the information diffused at each iteration is second-
order symmetric positive definite tensors whose eigenvectors
span the local tangent space. Practically, during the initial-
ization step a ball tensor T0

𝑖
, which is an identity matrix

representing the absence of orientation, is used to initialize
a token 𝑝

𝑖
for each point p

𝑖
as {𝑝

𝑖
= (p

𝑖
,T0

𝑖
)}

𝑁

𝑖=1. During
iteration 𝑡 each token 𝑝

𝑖
“generates” the set of tensors {T𝑡

𝑖,𝑗
}
𝑗 ̸=𝑖

that enact as votes cast to neighboring tokens; precisely,
T𝑡

𝑖,𝑗
is sent to the 𝑗th neighbor, and it encodes information

related to the local tangent space estimate in p
𝑖
at time 𝑡

and decays as the curvature and the distance from the 𝑗th
neighbor increase. On the other side, at iteration 𝑡 each token
𝑝
𝑗
receives votes that are summed to update the 𝑝

𝑗
’s tensor

as T𝑡+1
𝑗

= ∑
𝑖 ̸=𝑗

T𝑡

𝑖,𝑗
; this essentially refines the estimate of

the local tangent space in p
𝑗
. Based on the definition of

topological dimension provided by Brouwer [82], in [87] it
is noted that TVF can be employed to estimate the local ids
by identifying the number of most relevant eigenvalues of the
computed second-order tensors. Although interesting, this
method has a too high computational cost, which makes it
unfeasible for spaces of dimension 𝐷 ≥ 4.

From the definition of Lebesgue Covering Dimension
it can be derived [88] that the topological dimension of
any M ⊆ R𝑑 coincides with the affine dimension 𝑑 of a
finite simplicial complex (a simplicial complex in R𝑑 has
affine dimension 𝑑 if it is a collection of affine simplexes
in R𝑑, having at most dimension 𝑑 or having at most 𝑑 +

1 vertices) covering M. This essentially means that a 𝑑-
dimensional manifold could be approximated by a collection
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of 𝑑-dimensional simplexes (each having at most 𝑑 + 1
vertices); therefore, the topological dimension of M could
be practically estimated by analyzing the number of vertices
of the collection of simplexes estimated on P

𝑁
. To this aim,

in [89] a method is proposed to find the number of relevant
positive coefficients that are needed to reconstruct each p

𝑖
∈

P
𝑁

from a linear combination of its 𝑘 neighbors, where 𝑘

is a parameter to be manually set in the range 𝑑 < 𝑘 ≤

𝐷 + 1. This algorithm is based on the fact that neighbors
with positive reconstruction coefficients are the vertices of a
simplex with dimension equal to the topological dimension
of M. Practically, to ensure that 𝑘 > 𝑑, its value is set to
𝐷, the reconstruction coefficients are calculated by means
of an optimization problem constrained to be nonnegative,
and the coefficients bigger than a user-defined threshold are
considered as the relevant ones. The id estimate is then
computed by employing two alternative approaches: the first
one simply computes the mode of the number of relevant
coefficients for each neighborhood and the second one sorts
in descending order the coefficients computed for each neigh-
borhood, computes the mean c of the sorted coefficients, and
estimates id as the number of relevant values in c. Note that,
since 𝑘 > 𝑑, this method is strongly affected by the curvature
of themanifold when the id is big enough. Indeed, the results
of the reported experimental evaluation make the authors
assert that the method works well only on noisy-free data of
low id (id ≤ 6), under the assumption that the sampling
process is uniform and the data points are sufficient.

Though interesting, both approaches have shown to be
effective only for manifolds of low curvature as well as low
id values.

In the following we survey other id estimators employing
two different estimation approaches, which allow us to cate-
gorize them. More precisely, in Section 3.2.1 fractal id esti-
mators are described, which estimate different fractal dimen-
sions since they are good approximations of the topological
one; in Section 3.2.2 nearest neighbors-based (𝑁𝑁) id estima-
tors are recalled, which are often based on the statistical anal-
ysis of the distribution of points within small neighborhoods.

3.2.1. Fractal id Estimators. Since topological dimension
cannot be practically estimated, several authors implicitly
assume thatM has a somehow fractal structure (see [90] for
an exhaustive description of fractal sets) and estimate id by
employing fractal dimension estimators, the most relevant of
which are surveyed in this section.

Very roughly, since the basis concept of all fractal dimen-
sions is that the volume of a 𝑑-dimensional ball of radius
𝑟 scales with its size 𝑠 as 𝑟

𝑑 [90, 91], all fractal dimension
estimators are based on the idea of counting the number of
observations in a neighborhood of radius 𝑟 to (somehow)
estimate the rate of growth of this number. If the estimated
growth is 𝑟𝑑, then the estimated fractal dimension of the data
is considered to be equal to 𝑑.

Note that all the derived estimators have the fundamental
limitation that, in order to get an accurate estimation, the size
𝑁 of the dataset with id 𝑑 has to satisfy the inequality proved

by Eckmann and Ruelle in [92] for the correlation dimension
estimator (CD [19], see below):

𝑑 <
2

log (1/𝜌)
∗ log𝑁,

being 𝜌 =
𝑟

𝐷
≪ 1, 1

2
𝑁

2
(

𝑟

𝐷
)

𝑑

≫ 1.

(1)

This will lead to a large value of 𝑁, even for a dataset with
lower id.

Among fractal dimension estimators, one of the most
cited algorithms is presented in [19] and will be referred to
as CD in the following. It is an estimator of the correlation
dimension (dimCorr), whose formal definition is as follows.

Definition 4 (correlation dimension). Given a finite sample
set P

𝑁
, let

𝐶
𝑁 (𝑟) =

2
𝑁(𝑁 − 1)

𝑁

∑

𝑖=1,𝑖<𝑗
𝐼 (𝑟 −

󵄩󵄩󵄩󵄩󵄩
p
𝑖
− p

𝑗

󵄩󵄩󵄩󵄩󵄩
) , (2)

where ‖ ⋅ ‖ is the Euclidean norm and 𝐼(⋅) is the step function
used to simulate a closed ball of radius 𝑟 centered on each
p
𝑖
(𝐼(𝑦) = 0 if 𝑦 < 0, and 𝐼(𝑦) = 1 otherwise). Then, for a

countable set, the correlation dimension dimCorr is defined as

dimCorr = lim
𝑟→ 0

lim
𝑁→∞

log𝐶
𝑁 (𝑟)

log 𝑟
. (3)

In practice CD computes an estimate, 𝑑, of dimCorr by
computing 𝐶

𝑁
(𝑟) for different 𝑟

𝑖
and applying least squares

to fit a line through the points (log 𝑟
𝑖
; log𝐶

𝑁
(𝑟

𝑖
)). It has to

be noted that, to produce correct id estimates, this estimator
needs a very large number of data points [22], which is never
available for practical applications; however, the computed
unreliable estimations can be corrected by the correction
method proposed in [28].

The relevance of the CD estimator is shown by its several
variants and extensions. An example is the work proposed in
[91], where the authors propose a normalized CD estimator
for binary data and achieve estimates approximating those
computed by CD.

Since CD is heavily influenced by the setting of the scale
parameters, in [93] the authors estimate the id by computing
the expectation value of dimCorr through maximum likeli-
hood estimate of the distribution of distances among points.
The estimated 𝑑 is computed as

𝑑 = −(
1
|𝑄|

|𝑄|

∑

𝑘=1
𝑟
𝑘
)

−1

, (4)

where 𝑄 is the set 𝑄 = {𝑟
𝑘

| 𝑟
𝑘

< 𝑟} and 𝑟
𝑘
is the Euclidean

distance between two generic data points and 𝑟 is a real value,
called cut-off radius.

To develop an estimator more efficient than CD, in [94]
the authors choose a different notion of Fd, namely, the
Information Dimension dim

𝐼
:

dim
𝐼
= − lim

𝛿→ 0

∑
N(𝛿)

𝑖=1 𝑝𝑟
𝑖
(log𝑝𝑟

𝑖
)

log 𝛿
, (5)
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whereN(𝛿) is the minimum number of 𝛿-sized hypercubes
covering a topological space and 𝑝𝑟

𝑖
is the probability of find-

ing a point in the 𝑖th hypercube. Noting that when the scale
𝛿 in (5) is big enough the different coverings used to estimate
dim

𝐼
could produce different values for N(𝛿), the authors

look for the covering composed by the minimum number
Nmin(𝛿) of nonempty sets. Similar to the CD algorithm, the
id is the average slope of the curve obtained by fitting the
points with coordinates (log 𝛿;∑

Nmin(𝛿)
𝑖=1 𝑝𝑟

𝑖
log𝑝𝑟

𝑖
).

This algorithm is comparedwith the CD estimator, and the
experimental tests show that bothmethods compute the same
estimates. However, the achieved computation time is much
lower than that of CD.

Considering that CD can severely underestimate the
topological dimension if the data distribution on the man-
ifold is nearly nonuniform, in [7] the author proposes the
Packing Number (PN), a fractal dimension estimator that
approximates the Capacity Dimension (dimCap). This choice
is motivated by the fact that dimCap does not depend on the
data distribution on the manifold and, if both dimCap and
the topological dimension exist (which is certainly the case
in machine learning applications), the two dimensions agree.
To formally define dimCap, the 𝜖-covering numberN(𝜖) of a
setS ⊂ Xmust be defined;N(𝜖) is theminimumnumber of
open ballsB(x0, 𝜖) = {x ∈ X : ‖x0−x‖ < 𝜖}whose union is a
covering ofS, where ‖ ⋅ ‖ is a distance metric. The definition
of dimCap of S ⊂ X is based on the observation that the
covering numberN(𝜖) of a𝑑-dimensional set is proportional
to 𝜖

−𝑑:

dimCap = − lim
𝜖→ 0

logN (𝜖)

log 𝜖
. (6)

Since the estimation of N(𝜖) is computationally expen-
sive, based on the relation N(𝜖) ≤ NPack(𝜖) ≤ N(𝜖/2),
the authors employ the 𝜖-Packing NumberNPack(𝜖), defined
in [95] as the maximum cardinality of an 𝜖-separated set.
Employing a greedy algorithm to compute NPack(𝜖), the
estimate, 𝑑, of dimCap is computed as

𝑑 (𝜖1, 𝜖2) = −
logNPack (𝜖1) − logNPack (𝜖2)

log 𝜖1 − log 𝜖2
. (7)

To estimate 𝑑 a greedy algorithm is used; however, as noted
by the author, the dependency of 𝑑 with respect to the order
in which the points are visited by the greedy algorithm intro-
duces a high variance. To avoid this problem, the algorithm
iterates the procedure 𝑀 times on random permutations of
the data and considers the average as the final id estimate.
The comparative evaluation with the CD estimator makes the
authors assert that PN “seems more reliable if data contains
noise or the distribution on the manifold is not uniform.”
Unfortunately, also this method is scale-dependent.

To avoid any scale-dependency in [79] the authors
propose an estimator (Hein) based on the asymptotes of
a smoothed version of (2), obtained by replacing the step

function 𝐼(⋅) with a suitable kernel function. Precisely, they
define

𝑈 (𝑁, ℎ, 𝑑) =
2

𝑁(𝑁 − 1)

𝑁

∑

1≤𝑖<𝑗≤𝑁

1
ℎ𝑑

𝐾
ℎ
(

󵄩󵄩󵄩󵄩󵄩
p
𝑖
− p

𝑗

󵄩󵄩󵄩󵄩󵄩

ℎ2
) , (8)

where 𝐾
ℎ

is a kernel function with bandwidth ℎ and
𝑑 is the assumed dimensionality of the manifold from
which the points are sampled. Note that, to guarantee the
converge of (8), the bandwidth ℎ has to fulfill the constraint
lim

𝑁→∞
(𝑁ℎ

𝑑
) = ∞. For this reason the authors formalize

ℎ as a function of 𝑁 and, to achieve scale-independency,
propose a method that estimates the id by analyzing the con-
vergence of𝑈(𝑁, ℎ, 𝑑)when varying the parameters𝑁 and 𝑑.
Precisely, the dataset is subsampled to create sets of different
cardinalities 𝑛sub ∈ Nsub = {𝑁,𝑁/2, 𝑁/3, 𝑁/4, 𝑁/5} and the
𝐷 curves whose points have coordinates (𝑈(𝑛sub, ℎ(𝑛sub), 𝑑),
𝑛sub) are considered. Employing this information the
following id estimator is proposed:

Slope (𝑑) = max
𝑛sub∈Nsub

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑈 (𝑛sub, ℎ (𝑛sub) , 𝑑)

𝜕𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝑑 = arg min
𝑑∈{1,...,𝐷}

Slope (𝑑) .
(9)

This work is notable since the empirical tests are performed
on synthetic datasets specifically designed to study the
influence of high curvature as well as noise on the proposed
estimator. The usefulness of these datasets is confirmed by
the fact that they have been also employed to assess several
subsequent methods [76, 96].

In [97] the authors present a fractal dimension estimator
derived by the analysis of a vector quantizer applied to
datasets P

𝑁
⊆ R𝐷. Considering the codebook Y = {y1, . . . ,

y
𝑘
} ⊂ R𝐷 containing 𝑘 code-vectors y

𝑖
, a k-point quantizer

is defined by a measurable function 𝑄
𝑘

: R𝐷
→ Y, which

brings each data point to one of the code-vectors in Y. This
partitions the dataset into 𝑘 so-called quantizer cells S

𝑖
=

{p
𝑖
∈ P

𝑁
: 𝑄

𝑘
(p

𝑖
) = y

𝑖
}, where log2(𝑘) is called the rate of the

quantizer. Being X a random vector distributed according to
a probability distribution ], the quantization error is 𝑒

𝑟
(𝑄

𝑘
|

]) = (𝐸][‖X − 𝑄
𝑘
(X)‖

𝑟
])
1/𝑟, where 𝑟 ∈ [1,∞) and ‖ ⋅ ‖ is the

Euclidean norm inR𝐷. Given the setQ
𝑘
of all𝐷-dimensional

𝑘-point quantizers, the performance achieved by an optimal
𝑘-point quantizer on X is 𝑒

∗

𝑟
(𝑄

𝑘
| ]) = inf

𝑄𝑘∈Q𝑘
(𝑒

𝑟
(𝑄

𝑘
| ])).

When the quantizer rate is high, the quantizer cells can bewell
approximated by 𝐷-dimensional hyperspheres with radius
equal to 𝜖 and centered on each code-vector y

𝑖
∈ Y. In

this case, the regularity of ] ensures that the probability of
such balls is proportional to 𝜖

1/𝑑, and it can be shown [98]
that 𝑒

∗

𝑟
(𝑄

𝑘
| ]) ≈ 𝑘

−1/𝑑. This is referred to as the high-rate
approximation and motivates the definition of quantization
dimension of order 𝑟:

𝑑
𝑟 (]) = − lim

𝑘→∞

log 𝑘

log 𝑒∗
𝑟
(𝑘 | ])

. (10)
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The theory of high-rate quantization [98] confirms that, for
a regular ] supported on the manifold M, 𝑑

𝑟
(]) exists for

each 1 ≤ 𝑟 ≤ ∞ and equals the intrinsic dimension of M.
Furthermore, the limit 𝑘 → ∞ allows us to motivate the
relation between the quantization dimension and the Capac-
ity Dimension. Indeed, according to the theory of high-rate
quantization [98, 99], there exists a decreasing sequence {𝜖

𝑘
},

such that for sufficiently large values of 𝑘 (i.e., in the high-rate
regime that is when 𝑘 → ∞) the ratio −(log 𝑘)/(log 𝑒

∗

𝑟
(𝑘 |

])) can be approximated increasingly finely, both from below
and from above, by quantities converging to the common
value dimCap. To practically compute an estimate of the quan-
tization dimension, having fixed the value of 𝑟, the authors
select a range 𝑘1 ≤ 𝑘 ≤ 𝑘2 of codebook sizes and design
a set of quantizers {𝑄

𝑘
}
𝑘2
𝑘=𝑘1

giving good approximations
𝑒
𝑟
(𝑘 | ]) of 𝑒

∗

𝑟
(𝑘 | 𝑝) over the chosen range of 𝑘. An id

estimate is obtained by fitting the points with coordinates
(log(𝑘); − log 𝑒

𝑟
(𝑘 | ])) and measuring the average slope

over the chosen range 𝑘. Though the authors mention that
their algorithm is less affected by underestimation biases than
neighborhood-basedmethods (see Section 3.2.2), in [23] this
statement is confuted with theoretical arguments.

3.2.2. Nearest Neighbors-Based id Estimators. In this section
we consider estimators, referred to as 𝑁𝑁 estimators in the
following, that describe data-neighborhoods’ distributions as
functions of 𝑑. They usually assume that close points are uni-
formly drawn from small 𝑑-dimensional balls (hyperspheres)
B

𝑑
(x, 𝑟) having radius (a small radius 𝑟 → 0 ∈ R+ guar-

antees that samples included into B
𝑑
(x, 𝑟), being less influ-

enced by the curvature induced by the map 𝜙, are approxi-
mating well enough the intrinsic structure of the underlying
portion ofM) 𝑟 → 0 ∈ R+ and being centered on x ∈ M.

Practically, given an input dataset P
𝑁
, the value of

functions 𝑓(𝑑) is computed by approximating the sampling
process related to B

𝑑
through the 𝑘-nearest neighbor algo-

rithm (kNN).
Among𝑁𝑁 id estimators, Trunk’s method [100] is often

cited as one of the firstmethods. It formulates the distribution
function, 𝑓(𝑑), with an ad hoc statistic based on geometric
considerations concerning angles; in practice, having fixed a
threshold 𝛾 and a starting value for the parameter 𝑘, it applies
kNN to find the neighbors of each p

𝑖
∈ P

𝑁
and calculates

the angle ]
𝑖
between the (𝑘 + 1)th-nearest neighbor and the

subspace spanned by the 𝑘-nearest neighbors. Considering
a threshold parameter 𝛾, if (1/𝑁)∑

𝑁

𝑖=1 ]𝑖 ≤ 𝛾, then 𝑘 is
considered as the id estimate; otherwise, 𝑘 is incremented
by 1 and the process is repeated. The main limitation of this
method is the difficult choice of a proper value for 𝛾.

The work presented by Pettis et al. [26] is notable since it
is one of the first works providing a mathematical motivation
for the use of nearest-neighbor distances.

Indeed, for an i.i.d. sample P
𝑁

⊆ R𝐷 drawn from a
density distribution 𝑝(x) inR𝑑, the following approximation
holds:

𝑘

𝑁
≃ 𝑝 (x) 𝑉 (𝑑) 𝑟

𝑑
, (11)

where 𝑘 is the number of nearest neighbors to x within the
hypersphereB

𝑑
(x, 𝑟) of radius 𝑟 and centered on x and𝑉(𝑑)

is the volume of the (unit 𝑑-dimensional) ball inR𝑑.
Thismeans that the proportion of sample points falling in

B
𝑑
(x, 𝑟) is roughly approximated by𝑝(x) times the volumeof

B
𝑑
(x, 𝑟). Since this volume grows as 𝑟𝑑, assuming the density

𝑝(𝑥) to be a constant, it follows that the number of samples
in B

𝑑
(x, 𝑟) is proportional to 𝑟

𝑑. From the relationship in
(11), and assuming that the samples are locally uniformly
distributed, the authors derive an id estimator for 𝑑:

𝑑 =
𝑟
𝑘

𝑘 (𝑟
𝑘+1 − 𝑟

𝑘
)
, (12)

where 𝑟
𝑘
is the average of the distances from each sample

point to its 𝑘th nearest neighbors; defining 𝑟
(𝑘)

𝑖
as the distance

between x
𝑖
and its 𝑘th-nearest neighbor, 𝑟

𝑘
is expressed as

𝑟
𝑘
= (1/𝑁)∑

𝑁

𝑖=1 𝑟
(𝑘)

𝑖
.

Since this algorithm is limited by the choice of a suitable
value for parameter 𝑘, in [63] the authors propose a variant
which considers a range of neighborhood sizes [𝑘min, 𝑘max].
However, in the same work the authors themselves show that
this technique generally yields an underestimate of the id
when its value is high.

Taking into account relation (11), in [101] the number𝑁B𝑑
of data points inB

𝑑
(x, 𝑟) is described by a polynomial𝑓(𝑟) =

∑
𝑑

𝑠=0 𝛽𝑠
𝑟
𝑠 of degree 𝑑. In practice, considering p

𝑖
, p

𝑘
∈ P

𝑁
,

calling 𝑟
𝑖𝑘

= ‖p
𝑖
− p

𝑘
‖ the interpoint distances, and being 𝑟 =

min𝑁

𝑖,𝑘=1𝑟𝑖𝑘, 𝑅 a parameter adaptively estimated (to estimate
𝑅 by means of P

𝑁
, the radius value corresponding to the first

significant peak of the histogramof the 𝑟
𝑖𝑗
s is found), a set of 𝑛

radius values r = {𝑟
𝑗
= 𝑟+𝑗(𝑅−𝑟)/𝑛}

𝑛

𝑗=1 is selected and used to
calculate 𝑛 pairs {(𝑟

𝑗
, 𝑓(𝑟

𝑗
))}

𝑛

𝑗=1, where 𝑓(𝑟
𝑗
) = #[𝑟

𝑖𝑘
< 𝑟

𝑗
]
𝑁

𝑖,𝑘=1
is the number of interpoint distances strictly lower than 𝑟

𝑗
. To

estimate the coefficients {𝛽
𝑗
}
𝐷

𝑗=1, the computed pairs are fit by
a least squares fitting procedure that estimates exactly 𝐷 + 1
coefficients. Since by hypothesis the degree of 𝑓 is 𝑑, the sig-
nificance test described in [17] is used to estimate the degree 𝑑
of𝑓, which is considered as the id estimate.The comparative
evaluation of this algorithm with the well-known Maximum
Likelihood Estimator (MLE) [27] and its improved version
[102], both described below, has shown that it is more robust
than them when dealing with high-dimensional datasets.

MLE [27], one of the most cited estimators, treats the
neighbors of each pointp

𝑖
∈ P

𝑁
as events in a Poisson process

and the distance 𝑟
(𝑗)

(p
𝑖
) between the query point p

𝑖
and its

𝑗th nearest neighbor as the event’s arrival time. Since this
process depends on 𝑑, MLE estimates id by maximizing the
log-likelihood of the observed process. In practice a local id
estimate is computed as

𝑑 (p
𝑖
, 𝑘) = (

1
𝑘

𝑘

∑

𝑗=1
log

𝑟
(𝑘+1)

(p
𝑖
)

𝑟(𝑗) (p
𝑖
)

)

−1

. (13)

Averaging the 𝑑(p
𝑖
, 𝑘)s, the global id estimate is 𝑑(𝑘) =

(1/𝑁)∑
𝑁

𝑖=1 𝑑(p𝑖
, 𝑘).
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The theoretical stability of the proposed id estimator for
data living in 𝐶

1 submanifold of R𝐷, 𝑑 ≤ 𝐷, and for data
in an affine subspace of R𝐷 has been proved, respectively,
in [103, 104]. Though the authors’ comparative evaluation
shows the superior performance of the proposed estimator
with respect to the CD estimator [19] (see Section 3.2.1) and
the NN estimator [26], they further improve it by removing its
dependency from the parameter 𝑘; to this end, different val-
ues for 𝑘 are adopted and the computed results are averaged
to obtain the final id estimate: 𝑑 = (1/𝑡) ∑

𝑘∈{𝑘1 ,...,𝑘𝑡}
𝑑(𝑘).

Considering that, in practice, MLE is highly biased for
both large and small values of 𝑘, a variant of MLE is proposed
in [102], where the arithmetic mean is substituted with the
harmonic average, leading to the following estimator: 𝑑(𝑘) =

((1/𝑁)∑
𝑁

𝑖=1(1/𝑑(p𝑖
, 𝑘)))

−1.
Though the proposal in [102] seems to achievemore accu-

rate results, it is based on the assumption that neighbors sur-
rounding each p

𝑖
are independent, which is clearly incorrect.

To cope with this problem, in [105] an interesting regularized
version of MLE applies a regularized maximum likelihood
technique to distances between neighbors. The comparative
evaluation with the aforementioned MLE methods [27, 102]
makes the authors state that, though the method might be
the first to converge to the actual estimate given enough data
points, its estimation accuracy is comparable to that achieved
by the competing schemes.

In [59, 106] a further improvement of MLE is presented;
it achieves a better performance by substituting euclidean
distances with geodesic ones.

Despite the good results achieved by MLE-based
approaches, these techniques have shown to be affected by
the curvature induced by 𝜙 on the manifold neighborhoods
approximated by kNN. To reduce this effect, various id
estimators have been proposed in [76, 107]; here, we review
those achieving the most promising experimental results.

In [107] the authors firstly propose a family of id esti-
mators (MiNDML∗), which exploit the pdf 𝑔(𝑟; 𝑘, 𝑑) describing
the distance 𝑟

(1)
(x) between the center x of B

𝑑
(x, 𝑟), x ∈

M, 𝑟 → 0+ and its nearest neighbor. Briefly, formulating
𝑔(𝑟; 𝑘, 𝑑) as a function of the id value 𝑑 (𝑔(𝑟; 𝑘, 𝑑) =

𝑘𝑑𝑟
𝑑−1

(1 − 𝑟
𝑑
)
𝑘−1), the id estimator is computed by a

maximum likelihood approach.
After noting that this algorithm is still affected by a bias

causing underestimations when the dataset dimensionality
becomes sufficiently high (i.e., 𝑖𝑑 ≥ 10), the authors present
theoretical considerationswhich relate the bias to the fact that
id estimators based on nearest-neighbor distances are often
founded on statistics derived under the assumption that the
amount of available data is unlimited, which is never the case
in practical applications. Based on these considerations, two
different estimators, named MiNDKL and IDEA, are presented.

MiNDKL compares the empirical pdf of the neighborhood
distances computed on the dataset (𝑔Data) with the distribu-
tion of the neighborhood distances computed from points
uniformly drawn from hyperspheres of known increasing
dimensionality (𝑔𝑑

Sphere). The id estimate is the dimen-
sionality that minimizes their Kullback-Leibler divergence

KL(𝑔Data, 𝑔
𝑑

Sphere), which is evaluated by means of the data-
driven technique proposed in [108].

IDEA relies on the authors’ observation that the quantities
1 − 𝑟

(𝑗)
(p

𝑖
)/𝑟

(𝑘+1)
(p

𝑖
) are distributed according to the beta

distribution 𝛽1,𝑑 with parameters 1 and 𝑑, respectively.
Therefore, since E[𝛽1,𝑑] = 𝑚 = 1/(1 + 𝑑), a consistent id
estimator 𝑑 ≃ 𝑑 equals

𝑑 =
𝑚̂

1 − 𝑚̂
≃ 𝑑 =

𝑚

1 − 𝑚
,

where 𝑚̂ =
1

𝑁𝑘

𝑁

∑

𝑖=1

𝑘

∑

𝑗=1

𝑟
(𝑗)

(p
𝑖
)

𝑟(𝑘+1) (p
𝑖
)

≃ 𝑚.

(14)

To reduce the effect of the aforementioned bias, IDEA finally
applies an asymptotic correction step that, inspired by the
correction method presented in [28], models the underesti-
mation error by considering both the base algorithm and the
given dataset.

Motivated by the promising results achieved by MiNDKL,
in [76] the authors propose its extension, namely, DANCo; it
further reduces the underestimation effect by combining an
estimator employing normalized nearest-neighbor distances
with one employing mutual angles. More precisely, DANCo
compares the statistics estimated on P

𝑁
with those estimated

on (uniformly drawn) synthetic datasets of known id. The
comparisons are performed by two Kullback-Leibler diver-
gences applied to the distribution of normalized nearest-
neighbor distances 𝑔(𝑟; 𝑘, 𝑑), having 𝑔(𝑟; 𝑘, 𝑑) = 𝑘𝑑𝑟

𝑑−1
(1 −

𝑟
𝑑
)
𝑘−1, and the distribution of pairwise angles 𝑞(x; ^, 𝜏),

𝑞(x; ^, 𝜏) being the von Mises-Fisher distribution (VMF) [109]
with parameters ^ and 𝜏.

The id estimate 𝑑 is the one minimizing the sum of the
two divergences:

𝑑 = arg min
𝑑∈{1,...,𝐷}

KL (𝑔Data, 𝑔
𝑑

Sphere)

+KL (𝑞Data, 𝑞
𝑑

Sphere) .

(15)

A fast implementation of DANCo (Fast-DANCo) is also devel-
oped. Comparative evaluations show that this algorithm
achieves promising results (as shown in [76] and Section 4).

Another work, which is notable because the authors not
only prove the consistency in probability of the presented
estimators but also derive upper bounds (see (19) below) on
the probability of the estimation-error for finite, and large
enough, values of 𝑁, is proposed in [33]. More precisely,
the authors introduce two estimators by firstly defining a
function 𝜂 : R𝐷

× R → R+ slowly varying near the
origin (see [33] for a detailed description and motivation
of this assumption). The function 𝜂 is then used to express
the logarithm of the probability of a point p of being
in the hypersphere B

𝐷
(p

𝑖
, 𝑟): log(P(p ∈ B

𝐷
(p

𝑖
, 𝑟))) =

log(𝜂(p, 𝑟)) + 𝑑log(𝑟), having P(p ∈ B
𝐷
(p

𝑖
, 𝑟)) = 𝜂(p, 𝑟)𝑟𝑑.
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Considering that P(p ∈ B(p
𝑖
, 𝑟

(𝑘)
(p

𝑖
))) ≈ 𝑘/𝑛 for 𝑁 big

enough, the authors derive the following system of equations:

log(
𝑘

𝑛
) ≈ log (𝜂 (p

𝑖
, 𝑟)) + 𝑑 (p

𝑖
) log (𝑟

(𝑘)
(p

𝑖
)) ,

log(
𝑘

(2𝑛)
) ≈ log (𝜂 (p

𝑖
, 𝑟))

+ 𝑑 (p
𝑖
) log (𝑟

(⌈𝑘/2⌉)
(p

𝑖
)) ,

(16)

and solve it for 𝑑(p
𝑖
) to obtain a local id estimate:

𝑑 (p
𝑖
) =

log (2)
log (𝑟(𝑘) (p

𝑖
) /𝑟(⌈𝑘/2⌉) (p

𝑖
))

. (17)

The two proposed estimators are then computed either by
averaging (𝑑avg) or by voting (𝑑vote):

𝑑avg =
1
𝑁

𝑁

∑

𝑖=1
𝑑 (p

𝑖
) ,

𝑑vote = arg max
𝑑
󸀠
∈N+

# [𝑑 (p
𝑖
) = 𝑑

󸀠
]
𝑁

𝑖=1
,

(18)

where #[cond]𝑁
𝑖=1 denotes the number of points p

𝑖
for which

cond is verified.
Under differentiability assumptions on the function 𝜂

and regularity assumptions on M the authors prove the
consistency in probability of their estimators and provide
upper bounds (see (19)) on the probability of the estimation-
error for finite, and large enough, values of 𝑁. However,
the derived bounds depend on unknown universal constants
𝑐, 𝑐

󸀠
, 𝑐

󸀠󸀠
> 0:

P (𝑑avg ̸= 𝑑) ≤ exp(−
𝑐
󸀠
𝑁

(𝐷𝑐𝑑𝑘)
2) ,

P (𝑑vote ̸= 𝑑) ≤ exp(−
𝑐
󸀠󸀠
𝑁

(𝑐𝑑𝑘)
2) .

(19)

3.3. Graph-Based id Estimators. As noted in [96], the work
of [110] has cleared up the fact that theories underlying
graphs can be applied to solve a variety of statistical problems;
indeed, also in the field of id estimation various types
of graph structures have been proposed [29, 96, 111, 112]
and used for id estimation. Examples are the kNN graph
(kNNG) [30], the Minimum Spanning Tree (MST) [113] and
its variation, the geodesic MST (GMST) [29]; and the sphere
of influence graph (SIG) [114] and its generalization, the
𝑘−sphere of influence graph (kSIG) [96].

Given a sample set P
𝑁

= {p
𝑖
}
𝑁

𝑖=1 a graph built on P
𝑁
,

usually denoted by 𝐺(P
𝑁
) = ({p

𝑖
}
𝑁

𝑖=1, {𝑒𝑖,𝑗}𝑖,𝑗∈{1,...,𝑁}
), employs

the sample points p
𝑖
as nodes (vertices) of the graph and

connects them with weighted arcs (edges) {𝑒
𝑖,𝑗
}
𝑖,𝑗∈{1,...,𝑁}

.
A kNNG

𝑁
(P

𝑁
) is built by employing a distance function,

which commonly is the Euclidean one, to weight the arcs
connecting each p

𝑖
to its kNNs.

A MST(P
𝑁
) is the spanning tree minimizing the sum of

the edge weights. When the weights approximate Geodesic
distances [56], a GMST

𝑁
(P

𝑁
) is obtained.

A SIG
𝑁
(P

𝑁
) is defined by connecting nodes p

𝑖
and p

𝑗
iff

‖p
𝑖
− p

𝑗
‖ ≤ 𝜌(𝑖) + 𝜌(𝑗), where 𝜌(𝑖) is the distance between

p
𝑖
and its nearest neighbor in P

𝑁
. Essentially, two vertices p

𝑖

and p
𝑗
are connected if the corresponding NN hyperspheres

intersect. A generalization of SIG
𝑁
(P

𝑁
) is kSIG(P

𝑁
), where

nodes p
𝑖
and p

𝑗
are connected iff ‖p

𝑖
−p

𝑗
‖ ≤ 𝜌

𝑘
(𝑖)+𝜌

𝑘
(𝑗), 𝜌

𝑘
(𝑖)

being the distance between p
𝑖
and its kNN in P

𝑁
. This means

that the kNN hyperspheres centered on p
𝑖
and p

𝑗
intersect.

In the following we recall interesting id estimators based
on GMST(P

𝑁
), kNNG(P

𝑁
), and kSIG(P

𝑁
).

In [29, 30], after defining the length functional
L(𝐺

𝑁
(P

𝑁
)) = ∑ |𝑒

𝑖,𝑗
|
𝛾, 𝛾 ∈ (0, 𝑑), to build either the

GMST(P
𝑁
) or the MST(P

𝑁
) of kNNG(P

𝑁
), graph theories are

exploited to estimate both the id of the underlying manifold
structureM and its intrinsic Rènyi 𝛼-entropyHM. To this
aim, the authors derive the linear model: logL(MST(P

𝑁
)) =

𝑎 log 𝑑+𝑏, 𝑎 = (𝑑−𝛾)/𝑑, 𝑏 = log𝑐+HM, 𝑐 being an unknown
constant, and exploit it to define an estimator of both 𝑑 and
HM. Briefly, a set of cardinalities {𝑛

𝑘
}
𝐾

𝑘=1 is chosen and, for
each 𝑛

𝑘
, the MST(P

𝑛𝑘
) is constructed on the set P

𝑛𝑘
, which

contains 𝑛
𝑘
points randomly sampled from P

𝑁
, to obtain

a set of 𝐾 pairs (logL(MST(P
𝑛𝑘
)), 𝑛

𝑘
). Fitting them with a

least squares procedure the estimates 𝑎 ≃ 𝑎 and 𝑏̂ ≃ 𝑏 are
computed. Recalling that 𝑎 = (𝑑−𝛾)/𝑑, the id is calculated as
𝑑 = round{𝛾/(1 − 𝑎)} ≃ 𝑑. This process is iterated to produce
the final estimate as the average of the obtained results.

The aforementioned kNNG based algorithm [29, 30]
is exploited in [112], where the authors consider datasets
sampled from a union of disjoint manifolds with possibly
different ids. To estimate the local ids, the authors propose
a heuristic, which is not described here, to automatically
determine the local neighborhoods with similar geometric
structures without any prior knowledge on the number of
manifolds, their ids, and their sampling distributions.

In [96] the authors present three id estimation
approaches, defined as “graph theoretic methods” since
the statistics they compute are functions only of graph prop-
erties (such as vertex degrees and vertex eccentricities) and
do not directly depend on the interpoint distances.

The first statistic, denoted by 𝑆
1
𝑁
(P

𝑁
) = 𝑟

𝑗
(kNNG(P

𝑁
))

in the following, is based on the reach (the reach 𝑟
𝑗,𝑖
(p

𝑖
, 𝐺),

in 𝑗 steps of a node p
𝑖
∈ 𝐺, is the total number of vertices

which are connected to p
𝑖
by a path composed of 𝑗 arcs

or less in 𝐺) of vertices in the kNNG(P
𝑁
). Considering that

the reach of each vertex p
𝑖

∈ kNNG(P
𝑁
) grows as the id

increases, in [115] the average reach 𝑟
𝑗
(kNNG) in 𝑗 steps of

vertices in kNNG(P
𝑁
) is employed: 𝑆1

𝑁
(P

𝑁
) = 𝑟

𝑗
(kNNG(P

𝑁
)) =

(1/𝑁)∑
𝑁

𝑖=1 𝑟𝑗,𝑖(p𝑖
, kNNG(P

𝑁
)).

The second statistic, denoted by 𝑆
2
𝑁
(P

𝑁
) =

𝑀
𝑁
(MST(P

𝑁
)), is computed by considering the degree

of vertices in the MST(P
𝑁
). Recalling that, for datasets P

𝑁

obtained from a continuous distribution on R𝑑, the ratio
of nodes with a given degree 𝑗 in MST

𝑁
(P

𝑁
) converges a.s.
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to a limit depending only on 𝑗 and 𝑑 [116] and that the
average degree in a tree is a constant depending only on
the number of vertices, the authors empirically observe a
dependency between the average degree and the id. This
leads to the definition of an id estimator employing the
statistic 𝑆

2
𝑁

= 𝑀
𝑁
(MST(P

𝑁
)) = (1/𝑁)∑

𝑁

𝑖=1(degMST(P𝑁)(p𝑖
))
2.

The third statistic, denoted by 𝑆
3
𝑁
(P

𝑁
) = 𝑈

𝑘

𝑁
(kSIG(P

𝑁
)),

is motivated by studies in the literature [117] showing that the
expectednumber of neighbors shared by a given pair of points
depends on the id of the underlying manifold. Accordingly,
calling 𝑁

𝑖,𝑗
the number of samples in the intersection of

the two kNN hyperspheres centered on p
𝑖
and p

𝑗
, intuitions

similar to those considered for 𝑟
𝑗
(kNNG) lead to defining of

𝑆
3
𝑁
(P

𝑁
) = 𝑈

𝑘

𝑁
(kSIG(P

𝑁
)) = (1/𝑛)∑

𝑖≤𝑗
𝑁

𝑖,𝑗
.

Based on their theoretical results and empirical tests on
synthetically generated datasets characterized by id values 𝑑

𝑗

in a finite range F ⊆ 𝑁
+ (where F = {𝑑

𝑗
}
12
𝑑𝑗=2 in the reported

experiments), the authors propose an approximate Bayesian
estimator that could indistinctly employ each of the three
statistics 𝑆

1
𝑁
, 𝑆2

𝑁
, and 𝑆

3
𝑁
, denoted by 𝑆

∗

𝑁
in the following. To

this aim, they assume that each statistic can be approximated
by a Gaussian density 𝑓

𝑑𝑗
(⋅) = N(𝜇(𝑑

𝑗
), 𝜎

2
(𝑑

𝑗
)); to estimate

𝜇(𝑑
𝑗
) and 𝜎

2
(𝑑

𝑗
), for each 𝑑

𝑗
∈ F, 𝐿 datasets of large size

are synthetically generated by random sampling from the
uniform distribution on the unit 𝑑

𝑗
-cube. These datasets

are then used to estimate the parameters 𝜇(𝑑
𝑗
) ≃ 𝜇(𝑑

𝑗
)

and 𝜎̃
2
(𝑑

𝑗
) ≃ 𝜎

2
(𝑑

𝑗
) that define the approximation 𝑓

𝑑𝑗
(⋅),

computed on a generic sample set with size 𝑁 and id = 𝑑
𝑗
,

of the Gaussian density 𝑓
𝑑𝑗
(⋅) of 𝑆∗

𝑁
.

At this stage, given a new input dataset P
𝑁

having
unknown id, the statistic 𝑆

∗

𝑁
(P

𝑁
) = 𝑠P is computed and

used to calculate the approximated value𝑓
𝑑𝑗
(𝑠P) = N(𝜇

2
(𝑑

𝑗
),

𝜎̃
2
(𝑑

𝑗
)/𝑁) ≃ 𝑓

𝑑𝑗
(𝑠P). Assuming equal a priori probability for

all the 𝑑
𝑗
∈ F, the posterior probability 𝑃[𝑑

𝑗
| 𝑆

∗

𝑁
] is given by

𝑃 [𝑑
𝑗
𝑆
∗

𝑁
] =

𝑓
𝑑𝑗

(𝑠P)

∑
𝑑𝑗∈F 𝑓

𝑑𝑗
(𝑠P)

, 𝑑
𝑗
∈ F, (20)

and employed to compute an “a posteriori expected value” of
the id:

𝑑 = round
{

{

{

∑

𝑑𝑗∈F
𝑑
𝑗
𝑃 [𝑑

𝑗
𝑆
∗

𝑁
]

}

}

}

. (21)

The authors evaluate the performance of their methods on
synthetic datasets, some of which have been used by similar
studies in the literature [79], while the others (challenging
ones) are proposed by the authors to have manifolds with
nonconstant curvature. The comparison of the achieved
results with those obtained by the estimators proposed in [27,
33, 112, 118] has led to the conclusion that none of themethods
has a good performance on all the tested datasets. However,
graph theoretic approaches would appear to behave better
when manifolds of nonconstant curvature are processed.

This interesting comparison strengthens the need of
defining a benchmark framework to allow an objective and
reproducible comparative evaluation of id estimators. For
this reason, in Section 4 we describe our proposal in this
direction.

4. A Benchmark Proposal

At the present, an objective comparison of different id
estimators is not possible due to the lack of a standard-
ized benchmark framework; therefore, in this section, after
recalling experimental datasets and evaluation procedures
introduced in the literature (see Sections 4.1 and 4.2), we
choose some of them to propose a benchmark framework
(see Section 4.3) that allows for reproducible and comparable
experimental setups. The usefulness of the proposed bench-
mark is then shownby employing it to compare relevant state-
of-the-art id estimators whose code is publicly available (see
Section 4.4).

4.1. Datasets. The datasets employed in the literature are
both synthetically generated datasets and real ones. In the
following sections we describe those we choose to use in our
benchmark study.

4.1.1. Synthetic Datasets. Synthetic datasets are generated by
drawing samples frommanifolds (M) linearly or nonlinearly
embedded in higher dimensional spaces.

The publicly available tool (http://www.mL.uni-saarland
.de/code/IntDim/IntDim.htm) proposed byHein andAudib-
ert in [79] allows us to generate 13 kinds of synthetic datasets
by uniformly drawing samples from 13 manifolds of known
id; they are schematically described in Table 1, where they
are referred to as M𝐻

∗
. These manifolds are embedded in

higher dimensional spaces through both linear and nonlinear
maps and are characterized by different curvatures. We note
that manifold M𝐻

8 is particularly challenging for its high
curvature; indeed, when it is used for testing, most relevant
id estimators compute pronounced id overestimates (see
also the results reported in [107]).

Another interesting dataset [96] is generated by sampling
a 𝑑-dimensional paraboloid, M

𝑃𝑑
, nonlinearly embedded

in a higher (3(𝑑 + 1)) dimensional space, according to a
multivariate Burr distribution with parameter 𝛼 = 1. Tests on
this dataset are particularly challenging since the underlying
manifold is characterized by a nonconstant curvature.

To perform tests on datasets generated by employing
a smooth nonuniform pdf, we propose the dataset Mbeta,
obtained as follows: we sample𝑁 points in [0, 1)10, according
to a beta distribution 𝛽0.5,10 with parameters 0.5 and 10,
respectively (high skewness), and store them in a matrix
X

𝑁
∈ R𝑁×10; multiply each point of X

𝑁
(X

𝑁
(𝑖, 𝑗)) by

sin(cos(2𝜋X
𝑁
(𝑖, 𝑗))), thus obtaining a matrix D1 ∈ R𝑁×10;

multiply each point of X
𝑁

by cos(sin(2𝜋X
𝑁
(𝑖, 𝑗))), thus

obtaining another matrixD2 ∈ R𝑁×10; appendD1 andD2 to
generate a matrix D3 ∈ R2500×20; append D3 to its duplicate
to finally generate a test dataset containing 𝑁 points inR40.



12 Mathematical Problems in Engineering

(a)

(b)

Figure 2: (a) Samples from ISOMAP face database. (b) Samples from digit “0” to digit “9” in MNIST database.

Table 1: The 13 types of synthetic datasets generated with the tool
proposed in [79].

Dataset
Underlying
manifold
name

Description d D

Synthetic

M𝐻

1

𝑑-dimensional
sphere linearly
embedded

D − 1 User-defined

M𝐻

2 Affine space 3 5

M𝐻

3

Concentrated
figure, mistakable
with a
3-dimensional one

4 6

M𝐻

4
Nonlinear
manifold 4 8

M𝐻

5
2-dimensional
helix 2 3

M𝐻

6
Nonlinear
manifold 6 36

M𝐻

7 Swiss-Roll 2 3

M𝐻

8
Nonlinear (highly
curved) manifold 12 72

M𝐻

9 Affine space D User-defined

M𝐻

10
𝑑-dimensional
hypercube D − 1 User-defined

M𝐻

11
Möebius band
10-times twisted 2 3

M𝐻

12

Isotropic
multivariate
Gaussian

D User-defined

M𝐻

13
1-dimensional helix
curve 1 User-defined

To further test estimators’ performance on nonlinearly
embedded manifolds of high id, we propose to generate two
datasets, referred to as M

𝑁1 and M
𝑁2 in the following (a

tool to generate the datasets sampled from 𝑑-dimensional
paraboloids, theMbeta dataset, theM𝑁1 dataset, and theM𝑁2
dataset, is available at http://security.di.unimi.it/∼fox721/
dataset generator.m). Precisely, to generate M

𝑁1 we uni-
formly draw 𝑁 points in [0, 1]18, we transform each point
by means of tan(x𝑖cos(x18−𝑖+1)) where 𝑖 = 1, . . . , 18, we
obtain points in R36 by appending each transformed x to
arctan(x18−𝑖+1sin(x𝑖)), and we duplicate the coordinates of
each point to finally generate points in R72. The id of M

𝑁1

is 18, and its points are drawn from a manifold nonlinearly
embedded in R72. To generate M

𝑁2 containing 𝑁 points in
R96, we applied the same procedure on vectors sampled in
[0, 1]24.

4.1.2. Real Datasets. Real datasets employed in the literature
generally concern problems in the fields of image analysis,
signal processing, time series prediction, and biochemistry.
Among them, the most known and used datasets are ISOMAP
face database [56], MNIST database [119], Isolet dataset
[120],𝐷2 Santa Fe [121] dataset, and DSVC1 time series [21].
Recently, the Crystal Fingerprint space for the chemical com-
pound silicon dioxide dataset has also been proposed [22].

ISOMAP face database consists in 698 gray-level images of
size 64 × 64 depicting the face of a sculpture. This dataset has
three degrees of freedom: two for the pose and one for the
lighting direction (see Figure 2(a)).

MNISTdatabase consists in 70000 gray-level images of size
28 × 28 of hand-written digits (see Figure 2(b)). The real id
of this database is not actually known, but some works [79,
122] propose similar estimates for the different digits; as an
example, the proposed id values for the digit “1” are in the
range {8, . . . , 11}.

Isolet dataset has been generated as follows: 150 sub-
jects spoke the name of each letter of the alphabet twice, thus
producing about 52 training examples from each speaker, for
a total of 7797 samples. The speakers are grouped into 5 sets
of 30 speakers each and are referred to as 𝑖𝑠o𝑙𝑒𝑡1, 𝑖𝑠𝑜𝑙𝑒𝑡2,
𝑖𝑠𝑜𝑙𝑒𝑡3, 𝑖𝑠𝑜𝑙𝑒𝑡4, and 𝑖𝑠𝑜𝑙𝑒𝑡5. The real id value characterizing
this dataset is not actually known, but a study reported in
[123] shows that the correct estimate could be in the range
{16, . . . , 22}.

The version 𝐷2 of Santa Fe dataset is a time series of
50000 one-dimensional points having nine degrees of free-
dom (id = 9) and being generated by a simulation of particle
motion. In order to estimate the attractor dimension of this
time series, it is possible to employ the method of delays
described in [124], which generates 𝐷-dimensional vectors
by partitioning the original dataset in blocks containing 𝐷

consecutive values; as an example, by choosing 𝐷 = 50 a
dataset containing 1000 points inR50 is obtained.

DSVC1 is a time series composed by 5000 samples
measured from a hardware realization of Chua’s circuit
[125]. Employing the method of delays with 𝐷 = 20, a
dataset containing 250 points in R20 is obtained. The id
characterizing this dataset is ∼2.26 [21].
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Table 2: Synthetic datasets and real datasets suggested by the benchmark; N is the dataset cardinality, d is the id, and D is the embedding
space dimension.

Dataset Dataset name N d D

Synthetic

M1 2500 10 11
M2 2500 3 5
M3 2500 4 6
M4 2500 4 8
M5 2500 2 3
M6 2500 6 36
M7 2500 2 3
M9 2500 20 20
M10𝑎 2500 10 11
M10𝑏 2500 17 18
M10𝑐 2500 24 25
M10𝑑 2500 70 71
M11 2500 2 3
M12 2500 20 20
M13 2500 1 13
M

𝑁1 2500 18 72
M

𝑁2 2500 24 96
Mbeta 2500 10 40
M

𝑃3 2500 3 12
M

𝑃6 2500 6 21
M

𝑃9 2500 9 30

Real

MDSCV1 250 2.26 20
MISOMAP 698 3.00 4096
MSanta Fe 1000 9.00 50
MMNIST1 70000 8.00–11.00 784
MSiO2 4738 12.00 1800
MIsolet 7797 16.00–22.00 617

Crystal Fingerprint spaces, or Crystal Finger spaces, have
been recently proposed in crystallography [22] with the aim
of representing crystalline structures; these spaces are built
starting from the measured distances between atoms in the
crystalline structure.The theoretical id of one Crystal Finger
space consists in 3𝑁

𝑎
+ 3 crystal degrees of freedom, where

𝑁
𝑎
is the number of atoms in the crystalline unitary cell.

4.2. Experimental Procedures and Evaluation Measures. At
the state of the art, two approaches have been mainly used
to assess id estimators on datasets of known id.

The first one subsamples the test dataset to obtain 𝑇

subsets of fixed cardinality and computes the percentage
of correct estimations. To analyze estimators’ behavior with
respect to the cardinality of input datasets, this procedure
may be repeated by using different cardinality values [29, 30,
79, 122], thus obtaining a distinct performance evaluation
measure for each cardinality.

The second approach estimates the id on 𝑇 permutations
of the same dataset and averages the 𝑇 id estimates to obtain
the final one [27, 76, 107, 126]. This value is then compared
with the real one to assess the id estimator.

To also test the estimator’s robustness with respect to
its parameter settings, in [27, 107, 126] the authors apply

a further test, originally proposed by Levina and Bickel in
[27]. Precisely, sample sets with different cardinalities are
drawn from the standard Gaussian pdf in R5 and, for
each set, the estimator is applied varying the values of its
parameters in fixed ranges; this allows us to analyze the
behavior of the id estimate as a function of both the dataset’s
cardinality and the parameter settings.

Note that, since id estimators are usually tested on
different datasets to evaluate their reliability when confronted
by different dataset structures and configurations, in [126]
an overall evaluation measure is proposed. This indicator,
called Mean Percentage Error (MPE), summarizes all the
obtained results in a unique value computed as MPE =

(100/#M) ∑M(|𝑑M − 𝑑M|/𝑑M), where #M is the number of
tested datasets, 𝑑M is the id estimated on the dataset M,
and 𝑑M is the real id of M. To apply this technique to real
datasets whose id belongs to the range {𝑑min, . . . , 𝑑max}, the
same authors propose to calculate the associated MPE’s term
asmin

𝑑∈{𝑑min,...,𝑑max}
(|𝑑M−𝑑|/𝑑M), where 𝑑M is themean of the

range.

4.3. Benchmark. In this section we propose an evaluation
approach which can be used as a standard framework to
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assess estimators performance, comparing it to relevant id
estimatorswhose code is publicly available. In this benchmark,
we suggest to use the following estimators (see Section 3):
Hein, MLE, kNNG, MLSVD, BPCA, CD, MiNDKL, and DANCo (the
source code of the mentioned methods is available at Hein:
http://www.mL.uni-saarland.de/code.shtml, MLE: http://dept
.stat.lsa.umich.edu/∼elevina/mledim.m, kNNG: http://web
.eecs.umich.edu/∼hero/IntrinsicDim/, MLSVD: http://www
.math.duke.edu/∼mauro/code.html#MSVD, BPCA: http://
research.microsoft.com/en-us/um/cambridge/projects/infer-
net/blogs/bayesianpca.aspx, CD: http://cseweb.ucsd.edu/
lvdmaaten/dr/download.php, MiNDKL, and DANCo: http://www
.mathworks.it/matlabcentral/fileexchange/40112-intrinsic-
dimensionality-estimation-techniques). Note that these esti-
mators cover all the groups described in Section 3, that is,
Projective, Fractal, Nearest-Neighbors-based, and Graph-
based estimators.

The benchmark is composed by following steps:

(1) Test all the considered estimators on both the syn-
thetic and real datasets described below.We highlight
that the synthetic datasets whose id is a user-defined
parameter should be created with sufficiently high id
values (id ≥ 10).

(2) Comparative evaluation steps are as follows:

(a) compute the MPE indicator both for synthetic
and real datasets,

(b) compute a ranking test with control methods;
to this aim, we suggest the Friedman test with
Bonferroni-Dunn post hoc analyses [127],

(c) perform the tests proposed in [27] to evaluate
the robustness, with respect to different cardi-
nalities and parameter settings.

The 21 synthetic datasets used in the benchmark, referred
to as M

∗
in the following, are listed in Table 2 with their

relevant characteristics (𝑁, 𝑑, and 𝐷). The first 15 datasets
are generated with the tool proposed in [79]; they include 4
instances,M10∗, of dataset M10, which are drawn fromM𝐻

10
after its embedding in R𝐷 by setting 𝐷 = {11, 18, 25, 71}.
Note that we did not include the dataset sampled from M𝐻

8
(see Table 1) since relevant and recent id estimators have
similarly produced highly overestimated results when tested
on it [107]. Indeed, dealing with highly curved manifolds is
still a quite challenging problem in the field.

The last six synthetic datasets are M
𝑁1, M𝑁2, Mbeta,

and 3 instances of dataset M
𝑃∗
, which are sampled from

paraboloidsM
𝑃𝑑

whose id is, respectively, 𝑑 = {3, 6, 9}.
To perform multiple tests, 20 instances of each dataset

have been generated, and the achieved results have been
averaged.

Regarding the real datasets we used the DSVC1 time series
[21] (MDSVC1, id ∼ 2.26), the ISOMAP face database [56]
(MISOMAP, id = 3), the Santa Fe dataset [121] (MSanta Fe,
id = 9), the MNIST database [119] (MMNIST1, id ∈ {8, . . . , 13}),
the Isoletdataset [120] (MIsolet, id ∈ {16, . . . , 22}), and the
Crystal Fingerprint space for the chemical compound silicon

Table 3: Parameter settings for the different estimators: 𝑘 represents
the number of neighbors, 𝛾 represents the edge weighting factor
for kNN, 𝑀 represents the number of Least Square (LS) runs,
𝑁 represents the number of resampling trials per LS iteration, 𝛼
and 𝜋 represent the parameters (shape and rate) of the Gamma
prior distributions, which describe the hyperparameters and the
observation noise model of BPCA, and 𝜇 contains the mean and
the precision of the Gaussian prior distribution describing the bias
inserted in the inference of BPCA.

Dataset Method Parameters

Synthetic

MLE 𝑘1 = 6, 𝑘2 = 20
DANCo 𝑘 = 10
kNNG

1 𝑘1 = 6, 𝑘2 = 20, 𝛾 = 1,𝑀 = 1, 𝑁 = 10
kNNG

2 𝑘1 = 6, 𝑘2 = 20, 𝛾 = 1,𝑀 = 10, 𝑁 = 1

BPCA
iters = 2000, 𝛼 = (2.0, 2.0),
𝜋 = (2.0, 2.0), 𝜇 = (0.0, 0.01)

Hein 𝑁𝑜𝑛𝑒

CD 𝑁𝑜𝑛𝑒

MLSVD 𝑁𝑜𝑛𝑒

MiNDKL 𝑘 = 10

Real

MLE 𝑘1 = 3, 𝑘2 = 8

DANCo 𝑘 = 5
kNNG

1 𝑘1 = 3, 𝑘2 = 8, 𝛾 = 1,𝑀 = 1, 𝑁 = 10
kNNG

2 𝑘1 = 3, 𝑘2 = 8, 𝛾 = 1,𝑀 = 10, 𝑁 = 1

BPCA
iters = 2000, 𝛼 = (2.0, 2.0),
𝜋 = (2.0, 2.0), 𝜇 = (0.0, 0.01)

Hein 𝑁𝑜𝑛𝑒

CD 𝑁𝑜𝑛𝑒

MLSVD 𝑁𝑜𝑛𝑒

MiNDKL 𝑘 = 5

dioxide SiO2 structure with 3 atoms (this allows us to obtain
theMSiO2 dataset containing 4738 points embedded inR1800

and being characterized by an id equal to 12).
To runmultiple tests also onMMNIST1,MSiO2, andMIsolet,

for each of them we generated 5 instances by extracting
random subsets containing 2500 points each andwe averaged
the achieved results.

Table 3 summarizes the parameter values we employed
for different estimators. Note that, to relax the dependency
of the kNNG algorithm from the setting of its parameter 𝑘, we
performed multiple runs with 𝑘1 ≤ 𝑘 ≤ 𝑘2 and we averaged
the achieved results. Furthermore, we tested two versions of
the algorithm (referred to as kNNG

1
and kNNG

2
) obtained by

varying the parameters 𝑀 and 𝑁.

4.4. Experimental Results. Table 4 summarizes the results
obtained by the compared estimators on the synthetic
datasets, while in Table 5 the results obtained on the real
datasets are reported.

Looking at the number of correct estimations computed
by each algorithm (highlighted in boldface), we have the
following ranking: MLSVD is correct on 13 out of 21 synthetic
datasets, DANCo (correct on 10 out of 21 datasets), Hein
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Table 4: Results achieved on the synthetic datasets.The bottom row reports the MPE achieved by each algorithm; anyhow, for each test dataset
the best approximation results are highlighted in boldface.

Dataset 𝑑 MLE kNNG
1

kNNG
2

BPCA Hein CD MiNDKL DANCo MLSVD

M1 10.00 9.10 9.16 9.89 5.45 9.45 9.12 10.30 10.09 10.00
M2 3.00 2.88 2.95 3.03 3.00 3.00 2.88 3.00 3.00 3.00
M3 4.00 3.83 3.75 3.82 4.00 4.00 3.23 4.00 4.00 2.08
M4 4.00 3.95 4.05 4.76 4.25 4.00 3.88 4.15 4.00 8.00
M5 2.00 1.97 1.96 2.06 2.00 2.00 1.98 2.00 2.00 2.00
M6 6.00 6.39 6.46 11.24 12.00 5.95 5.91 6.50 7.00 12.00
M7 2.00 1.96 1.97 2.09 2.00 2.00 1.93 2.07 2.00 2.35
M9 20.00 14.64 15.25 10.59 13.55 15.50 13.75 19.15 19.71 20.00
M10𝑎 10.00 8.26 8.62 10.21 5.20 8.90 8.09 9.85 9.86 10.00
M10𝑏 17.00 12.87 13.69 15.38 9.46 13.85 12.30 16.25 16.62 17.00
M10𝑐 24.00 16.96 17.67 21.42 13.3 17.95 15.58 22.55 24.28 24.00
M10𝑑 70.00 36.49 39.67 40.31 71.00 38.69 31.4 64.38 70.52 70.00
M11 2.00 2.21 1.95 2.03 1.55 2.00 2.19 2.00 2.00 1.00
M12 20.00 15.82 16.40 24.89 13.7 15.00 11.26 19.35 19.90 20.00
M13 1.00 1.00 0.97 1.07 5.70 1.00 1.14 1.00 1.00 1.00
M

𝑁1 18.00 12.25 14.26 19.8 36.00 14.10 10.40 17.76 18.76 18.00
M

𝑁2 24.00 14.72 17.62 26.87 48.00 17.76 12.43 23.76 25.76 24.00
Mbeta 10.00 6.36 6.45 14.77 19.7 4.00 3.05 7.00 7.00 10.00
M

𝑃3 3.00 2.89 2.93 3.12 7.00 2.00 2.43 3.00 3.00 1.00
M

𝑃6 6.00 4.96 4.98 5.82 7.00 2.66 3.58 5.04 6.00 1.00
M

𝑃9 9.00 6.35 6.89 8.04 10.95 2.85 4.55 7.00 8.00 1.00
MPE 17.29 14.50 16.79 62.62 19.92 25.96 5.55 3.70 26.34

Table 5: Results achieved on the real datasets by the compared approaches. The bottom row reports the MPE achieved by each algorithm;
anyhow, for each test dataset the best approximation results are highlighted in boldface (when the realid takes values in a range,we highlighted
the results that best approximate the mean value of the range).

Dataset id MLE kNNG
1

kNNG
2

BPCA Hein CD MiNDKL DANCo MLSVD

MDSCV1 2.26 2.03 1.77 1.86 6.00 3.00 1.92 2.50 2.26 1.75
MISOMAP 3.00 4.05 3.60 4.32 4.00 3.00 3.37 3.9 4.00 1.00
MSanta Fe 9.00 7.16 7.28 7.43 18.00 6.00 4.39 7.60 8.19 1.00
MMNIST1 8.00–11.00 10.29 10.37 9.58 11.00 8.00 6.96 11.00 9.98 1.00
MSiO2 12.00 39.28 10.24 10.36 3.00 4.80 1.05 17.20 12.60 1.00
MIsolet 16.00–22.00 15.78 6.50 8.32 19.00 3.00 3.65 20.00 19.00 1.00

MPE 53.83 27.41 26.76 71.68 34.50 43.34 27.00 15.14 75.17

Table 6: Friedman ranking results achieved on all the datasets. The
null hypothesis that the algorithms perform comparably is rejected
with 𝑝 value < 0.00001.

Method Ranking
DANCo 2.40
MiNDKL 3.46
Hein 4.67
kNNG

2
5.11

MLSVD 5.17
kNNG

1
5.17

MLE 5.70
CD 6.63
BPCA 6.68

(correct on 6 out of 21), MiNDKL (6 out of 21), BPCA (4 out of
21), and MLE (1 out of 21). It can be further noted that kNNG

∗
,

CD, MLE, and Hein obtain good estimates only for low id

manifolds, while they produce underestimated values when
processing datasets of high id.

By observing the MPE indicator, which accounts for the
precision of the achieved estimates, we obtain a different
ranking: DANCo, MiNDKL, and kNNG

1
and kNNG

2
, MLE, Hein,

CD, and MLSVD. This difference is due to the fact that
algorithms, such as kNNG

1
and kNNG

2
, MLE, and Hein, most

of the times produce results close to the correct value.
Regarding the real datasets, all the algorithms achieve

a much worse MPE indicator, and again DANCo is best
performing method.

Furthermore, we compute the Friedman ranking test
with the Bonferroni-Dunn post hoc analysis as proposed in
Section 4.3 to state the quality of the achieved results on both
the synthetic and real datasets. Tables 6 and 7 summarize the
ranking results.
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Figure 3: Behavior of (a) MLE, (b) DANCo, (c) kNNG
1
, (d) kNNG

2
, and (e) MiNDKL applied to points drawn from a 5-dimensional standard

normal distribution; in this test 𝑁 ∈ {200, 500, 1000, 2000} and 𝑘 ∈ {5, . . . , 100}.

Finally, we performed the tests proposed in [27] to eval-
uate the robustness of MiNDKL, MLE, DANCo, and kNNG

∗
with

respect to the settings of their 𝑘 parameter. Precisely, these
tests employ synthetic datasets subsampled from the standard
Gaussian pdf in R5 (id = 5). As proposed in Section 4.2,
we repeated the tests for datasets with cardinalities

𝑁 ∈ {200, 500, 1000, 2000} varying the parameter 𝑘 in
the range {5, . . . , 100}.

As shown in Figure 3 many of the tested techniques
are strongly influenced by the parameter settings; therefore,
studying the variability of the algorithms’ behavior when
changing their parameter settings is of utmost importance.
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Table 7: Hypothesis testing of significance between techniques. Bonferroni-Dunn’s procedure rejects those hypotheses that have a 𝑝 value ≤

0.0125.

MiNDKL Hein kNNG
1

kNNG
2

MLE CD MLSVD BPCA

DANCo 0.1567 0.0024 0.0003 0.0002 0.0002 0.0000 0.0000 0.0000
MiNDKL ∗ ∗ ∗ 0.0801 0.0303 0.0244 0.0055 0.0020 0.0000 0.0000
Hein ∗ ∗ ∗ ∗ ∗ ∗ 0.7528 0.6366 0.1564 0.1474 0.0034 0.0018
kNNG

1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.8557 0.3443 0.2301 0.0164 0.0071

kNNG
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.9314 0.3894 0.1113 0.0282
MLE ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.3428 0.1876 0.0307
CD ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.7337 0.1961

5. Conclusions and Open Problems

This work presents the base theories of state-of-the-art id
estimators and surveys the most relevant and recent among
them, highlighting their strengths and their drawbacks.

Unfortunately, performing an objective comparative eval-
uation among the surveyed methods is difficult because,
to our knowledge, no benchmark framework exists in
this research field; therefore, in Section 4 we propose an
evaluation approach that employs both real and synthetic
datasets and suggests experiments to evaluate the estimators’
robustness with respect to their parameter settings. Note
that, the benchmark is designed to evaluate the performance
achieved by id estimators when both low and high id data
must be processed; this consideration is due to the fact
that, to our knowledge, only few methods [28, 76, 107, 126]
have empirically investigated the problem of datasets drawn
frommanifolds nonlinearly embedded in higher dimensional
spaces and characterized by a sufficiently high id (i.e., id ⩾

10). However, due to the continuous technological advances,
high id datasets are becoming more and more common,
and the construction of a theoretically well-formed and
robust id estimator able to deal with high id data and
limited amount of points remains one of the open research
challenges inmachine learning. Besides,id estimators should
be developed by also considering datasets drawn through
nonuniform smooth pdfs from manifolds M characterized
by a nonconstant curvature; indeed, most of the algorithms
are tested by only employing data drawn bymeans of uniform
pdf.

We further note that, though the aforementioned prob-
lems still need further investigations, most researches in
this field are presently focusing on tasks that require to
estimate the id as the first step. Examples are “multimanifold
learning,” whose aim is to process datasets drawn from
multiple manifolds, each characterized by different id, to
identify the underlying structures (see [128] for an example);
“nonlinear dimensionality reduction”; or “manifold recon-
struction,” whose aim is to find the mapping that projects
the data (embedded in a higher𝐷-dimensional space) on the
lower 𝑑-dimensional subspace, 𝑑 being the id estimated on
the input dataset (as examples, see [9, 11, 129]).
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