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Abstract— 

Purpose  

The gradual increase in geriatric issues and global imbalance of the ratio between patients and 

healthcare professionals has created a demand for intelligent systems with the least error-prone 

diagnosis results to be used by less medically trained persons and save clinical time. This paper aims at 

investigating the development of an image-based colourimetric analysis. The purpose of recognising 

such tests is to support wider users to begin a colourimetric test to be used at homecare settings, 

telepathology, etc. 

Design/methodology/approach 

The concept of an automatic colourimetric assay detection is delivered by utilising two cases. Training 

Deep Learning (DL) models on thousands of images of these tests using transfer learning, this paper i) 

classifies the type of the assay, and ii) classifies the colourimetric results.   

Findings  

This paper demonstrated that the assay type can be recognised using DL techniques with 100% accuracy 

within a fraction of a second. Some of the advantages of the pre-trained model over the calibration-

based approach are robustness, readiness and suitability to deploy for similar applications within a 

shorter period of time.     

Originality/value  

To the best of our knowledge, this is the first attempt to provide Colourimetric Assay Type 

Classification (CATC) using DL. Humans are capable to learn thousands of visual classifications in 

their life. Object recognition may be a trivial task for humans, due to photometric and geometric 
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variabilities along with the high degree of intra-class variabilities it can be a challenging task for 

machines. However, transforming visual knowledge into machines, as proposed, can support non-

experts to better manage their health and reduce some of the burdens on experts.         

Plain Language Summary for Kudos 

The colourimetric method can tell you valuable information about someone’s health status, quality of 

water, presence of chemical substances etc. by chemical and biochemical reactions. Bringing these 

frequently used techniques on to an intelligent and digital platform where a user can just take a 

photograph of the test using his/her mobile phone and attain a faster automatic result can assist the non-

experts to manage their health and save time. This research demonstrated such a system using advance 

algorithms that produce a highly accurate real-time result on the mobile platform by using two 

examples- 1) a deadly bacterium called tuberculosis (TB) and 2) a pH, i.e. potential of Hydrogen test 

that can tell if a biological or chemical sample is acidic or alkaline.  

Keywords 

Computer Vision; Machine Learning; Colourimetric Test; Pre-trained Model; Point-of-Care System; 

Diagnosis 

1. Introduction  

Deep Learning (DL) based pathological image analysis is employed in detecting diseases from cold to 

cancer (Arvaniti et al., 2018; Mane, Viraj; Yakub, 2018).  Among many DL methods, the high accuracy 

of  Convolutional Neural Network (CNN) based models trained over millions of images (ImageNet, 

2016) has opened the door to utilise transfer learning, expressed through pre-trained models (e.g., 

AlexNet (Krizhevsky, Sutskever and Hinton, 2012), GoogLeNet (Szegedy et al., 2015), Inception 

(Szegedy et al., 2016) and ResNet (He et al., 2016)) for a number of applications such as retinopathy 

(Sahlsten et al., 2019), musculoskeletal disease (Tiulpin et al., 2019), materials properties (Nash, 

Drummond and Birbilis, 2018) etc. CNNs also find its usefulness in classifying and detecting 

pathological images (Wang et al., 2018). However, very few research works have been reported with 

colour based focus on healthcare applications using pre-trained models, which is the main aim of this 

paper. 

Table 1: Application of colourimetric tests across disciplines 

Field Application Reference 

Drug discovery Structural relationship between 

materials 

Facchini et al. (2018) 

Environmental 

monitoring and 

quality control 

Mercury in water Chen et al. (2016), Wei et al. (2014) 

Indoor air quality Qin et al. (2015) 

Iron test in soil and water Choodum, Sriprom and Wongniramaikul 

(2019) 

Pesticides in water Sicard et al. (2015) 

pH and nitrate in water Lopez-Ruiz et al. (2014) 

Water hardness Bhattacharjee, Jiang and Behdad (2015) 
Food industry Antibiotics abuse in animals Yan et al. (2018) 

Bacteria in food Zheng et al. (2018) 

Food allergen Coskun, Ahmet F.Wong et al. (2012) 

Iron detection in white wine Santos Neto et al. (2018) 

Meat quality Magiati et al. (2019) 

Pasteurisation of milk Yu et al. (2015) 

Age of bloodstain Shin et al. (2017) 



Forensic science 

and criminal 

investigation 

Cocaine detection Smith et al. (2014), Cooper et al. (2012) 

Driving after alcohol intake Kim et al. (2017) 

Materials science Arc-welding Serrano et al. (2016) 
Medical 

diagnosis and 

healthcare 

 

Dengue Matthews et al. (2012) 

Diabetes Arnett et al. (2016), Wang et al. (2020) 

HIV de la Rica and Stevens (2012) 

Kidney diseases Akraa et al. (2018) 

Malaria Wongsrichanalai et al. (2007) 

Pregnancy and complications Bu et al. (2018), Konnaiyan et al. (2017) 

Prostate Cancer Koo, Wee and Trau (2016), Welch and 

Albertsen (2009), de la Rica and Stevens 

(2012) 

Urinalysis Smith et al. (2016) 

Textile Smart-textile Promphet et al. (2019) 

Colourimetric assays show quantifiable colour change using reagents and chemical constituent. These 

assays are utilised across a wide range of disciplines as exemplified in Table 1. Depending on the 

application, purpose and method, assay type can be of many forms. More variations can cause due to 

the manufacturer of the assay. Such variations, whether visually distinctive or not, can be challenging 

for less medically trained personnel. Various traditional machine learning approaches are utilised in 

colourimetric detection (Table 2). However, no DL-based approach, such as CNN, has been suggested 

for performing any colourimetric test.  

Table 2: Colourimetric classification algorithms and their performances 

Reference Classes ∆E ML Performance 

metrics 

Accuracy 

(%) 

Execution 

time (s) 

Alankus et 

al. (2018) 

6x4 Yes N/a Confusion matrix; 

detection accuracy; 

precision; recall; 

F1-score 

76-100 Rapid 

Solmaz et 

al. (2018) 

2; 6; 11 No LS-SVM, 

RF 

Cross validated 

accuracy, success 

rate 

90.3; 95  

Rahmat et 

al. (2018) 

10* Yes N/a Accuracy 95.45 N/m 

Kim et al. 

(2017a) 

5,9 No LDA, 

SVM, 

ANN 

Cross validated 

accuracy, PPV, 

NPV 

80-100 ~9.3  

Mutlu et 

al. (2017) 

15 No LS-SVM Accuracy; ROC 

curve  

100 N/m 

Wang et al. 

(2016) 

13x6 Yes LDA, PLS Cross-validated 

accuracy 

100 Rapid 

Feng et al. 

(2014b) 

2 No SVM k-1 cross validated 

accuracy, correct 

vs incorrect 

100 8  

∆E: Colour difference; ML: Machine learning; N/a: Not applicable; N/m: Not mentioned; LS-SVM: Least-squares Support-

Vector Machines; RF: Random Forest; LDA: Linear Discriminant Analysis; SVM: Support-Vector Machines; ANN: 

Artificial Neural Networks; PLS: Partial Least Squares; PPV: Positive predictive value; NPV: Negative predictive value; 

ROC: Receiver operating characteristics  s: second 

*Each of the classes can be further categorised into different concentration levels or subclasses. 



To the best of our knowledge, Tania et al. (2019) have attempted to define colourimetric assay types 

from the eyes of a machine (i.e. computer vision) and perform any colourimetric test using CNN-based 

DL for the first time. In this work, pre-trained models have been chosen to determine the type of 

colourimetric pathological and chemical tests (Tania et al., 2019). The compatibility issue of the 

proposed detection method with the ASSURED (accuracy, specificity, sensitivity, user-friendliness, 

robust, rapid, deliverable) criteria is also taken into account. More details on the image-based 

ASSURED test are also provided in (Hoque Tania et al., 2020). 

The objective of this paper is to provide the DL-enabled pathological test type detection using the 

example of a wet-chemical based Enzyme-Linked ImmunoSorbent Assay or ELISA (Shabut et al., 

2018) and a dry chemical based Lateral Flow Assay or LFA (Hoque Tania et al., 2020). Followed by 

the binary classification of the assay type, this paper extends the experiment to provide the colourimetric 

classification of the assay. This phenomenon can be also considered as the intra-class classification. For 

the proof-of-concept, this paper utilises the intra-classes of the LFA used for the assay type detection 

and classifies it to eight sub-class labels.  

Drawing from the literature, at first, this paper provides an outline of the colourimetric pathological and 

chemical test types in Section 2. In Section 3, the research design and methods are explained. Section 

4 presents the findings of this paper, along with a critical analysis, which is then summarised in Section 

5.   

2. Literature Review and Research Synthesis  

An assay is an investigative procedure, especially in laboratory medicine and biochemistry, for 

qualitatively assessing or quantitatively measuring the presence, amount, or functional activity of a 

target entity (World Health Organization, 2009; Chang et al., 2019). Assays can be used to determine 

the components of a substance or object (Wen et al., 2019; Pena-Pereira et al., 2020).  

pH and nitrite test Litmus test
Universal pH 

indicator  

Figure 1: Paper-based pH tests using different approaches  

HCG detection Dengue Test
 (pregnancy test)

 

Figure 2: Brand to brand variation in colour and geometric shape. HCG: Human Chorionic 

Gonadotropin. 



   

Figure 3: Variation in well shape 

A colourimetric test provides decisive analysis of the present elements or concentration of the chemical 

compound facilitated by a colour agent. There is a wide range of pathological and colourimetric tests. 

The assay types, whether for a pathological test or not, can be defined in a number of ways, such as 

based on time-point, a number of analytes, signal amplification method, type of the substrate and format 

of the result (Tania et al., 2018). Even within the same test type, more variation could occur due to size, 

shape, material and colour component utilised to develop the test by different commercial brands. Such 

physical variations are demonstrated in Error! Reference source not found.-Error! Reference source 

not found.. For example, in Error! Reference source not found., the first picture shows an assay 

capable to test pH and nitrite in the water sample (Lopez-Ruiz et al., 2014). The next picture is of a 

litmus test, which is one of the oldest forms of pH indicator, used to test materials for acidity. The assay 

shown in the last picture within Error! Reference source not found. is a mixture of several indicators 

that can evaluate how strong a given acid or base is, in a semi-quantitative manner.  

The current practice to detect the assay type is by visual knowledge or bare-eye observation. Some key 

information about the test could be provided by the manufacturer. However, such type of detection can 

be challenging for naive users, especially due to lack of adequate knowledge within the domain 

including existing diversity (such as Error! Reference source not found.-Error! Reference source 

not found.). The focus of this paper involves the transformation of such visual knowledge regarding 

colourimetric pathological test type and chemical detection using DL as an alternative to bare-eye 

observation as shown in Figure 4.  

 

Figure 4: Two alternatives to DL-based approach for assay type detection 

The automation of the bare-eye observation process by transforming the visual knowledge can aid in 

fulfilling the ASSURED criteria of ‘user-friendliness’ by offering more convenience and ease-of-use 

for less medically trained users, including at home and community settings. Such automation also 

enables portability of visual knowledge, which can fulfil ‘accessibility’ issue within ASSURED criteria.  

The physical variabilities within the tests (such as Error! Reference source not found.-Error! 

Reference source not found.) are also worth exploring while developing an automatic image-based 

system to better manage the parameters involved. Such an understanding (Tania et al., 2019) will be 

useful in order to develop universal intelligent colourimetric tests. The conventional quantitative colour 

related data extraction using simple analytic model suffers from various challenges such as loss of 

information during data compression, methods to counterbalance the loss of information, requirement 

of extracting multiple analytical models to track each colour change, inter-inoperability, lack of 

robustness, etc. some of which are indicated in (Guyon, Elisseeff and De, 2003; Solmaz et al., 2018). 

Flat Round V-shapeFlat Round V-shapeFlat Round V-shape



Therefore, machine learning is more preferred for such cases, especially when the number of 

independent input parameters increases (Koydemir et al., 2015; Karisen and Dong, 2016; Kim et al., 

2017).  

Table 3: Variability regarding imaging (Tania et al., 2019) 

Premise  Parameter Specifics 

Camera 

parameter 

Resolution 

(MP) 

Low: 3.2 (Cooper et al., 2012) 

High: 20.7 (Kim et al., 2017) 

Sensitivity to 

light (ISO) 

Varying from 50 (Alankus et al., 2018) to  

800 (Lopez-Ruiz et al., 2014; Karlsen, 2018) 

Auto (Karlsen, 2018; Shabut et al., 2018)  

Other 

parameters 

Constant (Mutlu et al., 2017) 

Auto (Shabut et al., 2018; Solmaz et al., 2018) 

Camera to 

sample 

position 

Distance Low: 5cm (Yetisen et al., 2014)  

High: 2 feet (Feng et al., 2014) 

Exposure 

(Angle) 

Parallel (Alankus et al., 2018; Shabut et al., 

2018) 

Tilted (Karlsen, 2018) 

On the other hand, the challenges within the image-based system include diverse real-world ambient 

conditions, variations in imaging conditions (Error! Reference source not found.), invariances 

(Error! Reference source not found.) etc. For an image-based system, as opposed to bare-eye 

observation, the data pre-processing steps would include image processing while utilising Traditional 

Machine Learning (TML) techniques. An illustration of such detection is shown in Figure 4. In such a 

case, one would require to separate the Region of Interest (ROI), which would be highly affected by the 

variabilities (such as in Error! Reference source not found.), some of the challenges apply to 

colourimetric detection as well. 

Several approaches have been taken in the literature to circumvent these challenges and to produce a 

reliable colourimetric decision. The routes taken as an alternative to image segmentation are listed in 

Error! Reference source not found..  

Table 4: Alternatives to image segmentation  

Application Additional 

hardware 

Full 

image  

Referencing Cropping  QR 

code 

Virtual 

guideline 

Reference  

H2O2 No No No Yes No No Solmaz et 

al. (2018) 

Urinalysis Yes Yes No No No No Akraa et 

al. (2018) 

Yes No No Yes No No Rahmat et 

al. (2018) 

pH test No No No Yes No No Mutlu et 

al. (2017) 

Saliva 

alcohol 

Yes No No Yes No No Kim et al. 

(2017a) 

Blood test Yes No No Yes No No Kim et al. 

(2017c) 



Water test No No No Yes No Yes Sicard et 

al. (2015) 

Wet-

chemicals 

Yes No No No No Yes Vashist et 

al. (2015) 

Alkaline 

phosphate 

Yes/No No Yes No No No Yu et al. 

(2015) 

Blood test Yes/No No No No Yes Yes Feng et al. 

(2014) 

Each of these approaches (Error! Reference source not found.) has its benefit and downside. Inclusion 

of additional hardware would mean a contradiction to the criteria of ‘equipment-free’ within ASSURED 

criteria. Also, the addition of hardware can increase cost and reduce ease-of-use. As evident in Error! 

Reference source not found., the existing literature often compromises automation by expecting the 

user to manually crop the image for better recognition of ROI.  

An alternative approach to ease the process of test type detection could be the utilisation of virtual 

overlays (Figure 5). Currently, virtual plates are frequently used in the literature and also by the 

commercial applications to detect the sample, or the ROI, easing the traditional image processing steps  

(Alidans srl, 2015; Enzo Life Sciences inc., 2015; Vashist et al., 2015; Sicasys Software GmbH, 2017). 

Such utilisations restrict the user with specific dimensions of the assay and sample positioning. Thus, 

these works lack in capacity to deal with assay-to-assay variations (Error! Reference source not 

found.-Error! Reference source not found.). For example, instead of intelligent sensing, the Spotxel® 

Reader (Sicasys Software GmbH, 2017) uses a virtual plate which can be laid over the assay plate 

image.  The application expects the wells to be aligned with the virtual plate.  The user is required to 

match the corner and centre wells with the grid. The virtual plate or grid can be scaled and rotated. 

However, aligning the wells with the grid requires some image capturing skills, which reduces the ease 

of use. The software developers also acknowledged the limitations of their image processing scheme 

(Sicasys Software GmbH, 2017). 

 

Figure 5: High-level architecture of the proposed virtual overlay based on the type of the assay  

Therefore, one may adopt an intelligent virtual plate as proposed in (Tania et al., 2019). However, this 

paper aims to explore the strength and capabilities of DL algorithms in detecting the test type as well 

as to provide a colourimetric classification, rather than using any augmented reality as shown in Error! 

Reference source not found.. Although machine learning has been investigated for colourimetric tests 

in the past (Feng et al., 2014; Wang et al., 2016; Kim et al., 2017; Mutlu et al., 2017), advanced machine 

learning techniques such as DL has not been explored for such cases yet which has the higher potential 

to produce an enhanced outcome.  



 

Figure 6: Invariances 

The physical variations, demonstrated in Error! Reference source not found.-Error! Reference 

source not found., can play a significant role in an image-based system, which can be mitigated to a 

certain extent through deep neural networks  (Tania et al., 2018). One of the advantages of using DL 

algorithms in colourimetric pathological test type and chemical detection is a mechanism to deal with 

many of the variabilities. DL techniques for computer vision received a great response recently due to 

its capability of identifying objects even if it appears in a different form. For example, an apple is an 

apple whether red or green; a cat is a cat even if it tries to hide in a basket. This ability to recognise an 

object despite its different attire or appearance is called invariance. The invariance can be regarding 

position, rotation, size and even illumination, which is one of the most challenging issues for systems 

using traditional image processing algorithms. The diversities caused by invariances, along with other 

variabilities, can induce more hardship during handcrafted feature engineering while utilising TML. 

Few examples are shown in Error! Reference source not found., which can be more convincingly 

handled by the pre-trained models that justify the use of DL algorithms in this work.  

Figure 4 shows two alternatives of DL-based assay type detection; a DL-based approach can automate 

both the processes shown in the figure. Manual feature engineering, as shown in Figure 4, is a labour 

extensive process, limited by human time constraints and imagination. Moreover, the wide range 

diversity among assays (Tania et al., 2019), variability due to ambient condition (Shabut et al., 2018), 

variations due to manufacturers (Error! Reference source not found.), imaging condition (Error! 

Reference source not found.), variations caused by user behaviour and preference (Error! Reference 

source not found.) can be discouraging for the traditional image-based approaches, including TML, 

restricting the literature to rely on the human eyes, rather automating the process of the assay type 

detection.  To the best of our knowledge, there is no existing work in the literature that detect the assay 

using DL techniques. Calibration techniques such as Yetisen et al. (2014) is often used to detect the 

assay or the sample, which can be time-consuming. The use of ‘control’ to detect the assay type has 

also been reported (Sicard et al., 2015). The major advantage of DL techniques as demonstrated in this 

paper over the existing work using traditional approaches is the scale of flexibility to be deployed on 

similar assays.  



3. Method  

3.1 Dataset Preparation  

This work used the same dataset as described in (Tania et al., 2019). The dataset for test type detection 

contains 1600 samples or images, with an equal distribution of two different assay type, as illustrated 

in Figure 7.  

Result:

Assay Type

ELISA LFA

Pre-trained 

model

(Deep 

Learning)

800

In
p
u

t

800
Sample 

Size

Total: 1,600
 

Figure 7: Framework for assay type detection using inductive transfer learning 

The pathological test of the Gold Nanoparticles (AuNP) based plasmonic ELISA for TB-antigen 

specific antibody detection, referred to as the TB-test, is one of the case studies for assay type detection 

in this paper. The description of the sample preparation for the TB-test is provided in (Abuhassan et al., 

2017; Tania et al., 2017; Bakhori et al., 2018). However, the development of biosensor is not the focus 

of this work.  

The other assay type utilised in this paper is pH indicator universal test strips, ranging from 3.0 to 10.0. 

It is a widely used dry-chemical based LFA, which is stable at room temperature and suitable for field 

operations as well. More details regarding the sample preparation procedure can be obtained from 

(Hoque Tania, 2018).  

Both of these assay types are visually different in terms of size, shape and colour. These assays are also 

different due to the materials and functionality. The images of both assay types were captured by using 

iOS and Android-based mobile devices, and illumination conditions also varied greatly to create a 

robust dataset. 

Result:

Colourimetric 

Classification

pH 3 pH 10

Pre-trained 

model

(Deep 

Learning)

. . .

In
p

u
t

1,000
Sample 

Size

Total: 8,000

1,000

 

Figure 8: Framework for colourimetric classification using inductive transfer learning 

The example of LFA was also chosen for the colourimetric classification using DL with a dataset of 

1000 samples per class (Figure 8). The rationale for choosing this example is widespread usage, 

accessibility, suitability to be used within community settings, etc.  



 

Figure 9: Example of data-augmentation for assay type detection.  

Data augmentation techniques were utilised for both cases, i.e. dataset for assay type detection and 

colourimetric classification to manage the data partitioning for training, validation, testing, and 

prediction as illustrated in Figure 9, depicted from (MATLAB & Simulink, 2018b). In this way, the 

models were prevented to memorise the exact specifics of the training image that aids in reducing the 

overfitting problem. 

3.2 Deep Learning-based Models  

In this paper, the state-of-the-art DL models for visual recognition problems were critically explored to 

recognise the test or assay type utilising a Windows Intel(R) Xeon(R) Gold 6130 CPU at 2× 2.10 GHz, 

96GB with x64-based processor. The models were trained using MATLAB 2019b on a single Graphical 

Processing Unit (GPU).  

The AlexNet (Krizhevsky, Sutskever and Hinton, 2012) is trained on more than a million images. It 

contains five convolutional layers and three Fully Connected (FC) layers which are marked in Figure 

10. The concept of convolution is well described in Ng (2018).  
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Figure 10: Eight layers of AlexNet 

The fully connected layer utilises the output of the convolutional, activation or pooling layer (Scherer, 

Müller and Behnke, 2010) as the input volume and provides an N-dimensional vector, where N= 

number of classes. In the case of the softmax approach, FC considers the output of the previous layer 

and estimates which of the high-level features of the previous layer are the mostly correlated features 

for a specific class. By multiplying the input and the weight matrix and adding a bias vector, FC seeks 

to attain the correct probability for the classes. Using AlexNet in Figure 10, final layer, fl=25 and nth 

layer before the final layer, nl=2 (n∈Z+ ; n< fl). AlexNet uses Rectified Linear Activation or ReLU 

function (Nair and Hinton, 2010). 



In the Large-Scale Visual Recognition Challenge (ILSVRC2012), the AlexNet, containing two parallel 

convolutional neural network lines, showed 15.3% Top-5 error rate. The Top-5 error rate is the 

percentage of test examples for which the correct class was not in the top 5 predicted classes.  

Few other pre-trained models were also explored in this work such as two versions of Inception 

(Szegedy et al., 2015, 2016) and residual connections based ResNets (He et al., 2016) allowing us to 

train the model with less number of samples and faster computation.  

The inception layer aims to scan a bigger area while retaining a fine resolution for small information of 

the images. The network architecture (Szegedy et al., 2015, 2016) presented more freedom regarding 

the specifics of the convolution. Each inception module can perform a number of parallel convolutional 

computations and concatenate. With a hope that a series of Gabor filters of different sizes will be able 

to provide better management of multiple object scales, the parallel convolution of different sizes starts 

from the most accurate detailing, i.e. 1×1, continues to the bigger ones (Figure 11).  
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(b) 

Figure 11: Architecture of GoogLeNet. (a) Basic idea of inception modules, (b) Final layers of fine-

tuned GoogLeNet  

A 1x1 convolution maps an input pixel along with the associated channels to an output pixel, not looking 

at anything around itself. It is often used to reduce the number of depth channels since it is often very 

slow to multiply volumes with extremely large depths. Theoretically, the neural network can 'choose' 



which input 'colours' to look at while using this mapping, instead of multiplying everything, which 

would be extensively expensive. 

Unlike the traditional Gabor filters, the filters of the inception layers are learnable. In order to prevent 

overfitting due to a huge number of parameters involved, the Inception exploited bottleneck approaches 

while rebuilding the inception module with more non-linearities and fewer parameters, followed by a 

max-pooling layer to summarise the content of the previous layer. The results obtained are concatenated 

one after the other and passed on to the next layer (Figure 11). 

To fine-tune the model, in the case of inception modules based GoogLeNet, the final three layers of the 

network have to be replaced to retrain the model with our dataset. These three layers are 1000 fully 

connected layer called 'loss3-classifier', softmax and the output layer. These layers embrace the 

mechanism to train the model from the extracted features into class probabilities and labels. The final 

layers can be visualised in Figure 11. 

In the case of an advanced version of GoogLeNet, i.e. Inception-v3, the final three layers are replaced 

and connected to the 313th connection that performs average pooling.  

This paper also explored ResNets. The ResNet (He et al., 2016) investigated that if larger function 

classes contain the smaller ones, then can it be guaranteed that increasing them strictly increases the 

expressive power of the network. The basic idea of ResNet includes the identity function as one of the 

elements while progressing through the network (Figure 12). Therefore, when a newly added layer is 

trained into an identity mapping, 𝑓(𝑥) =input (= 𝑥), the new model is supposed to be as effective as 

the original model. 

The new model can potentially provide a better solution to fit the training dataset, hence the added layer 

may aid in reducing training errors. Using ResNets, the gradients can flow directly through the skip-

connections (Figure 12) backward from later layers to initial filters. 
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Figure 12: Architecture of ResNet. (a) Basic idea of residual network, (b) Final layers of fine-tuned 

ResNet-50 

Similarly to GoogLeNet, the final layers have to be replaced to fine-tune the model of 50 layers deep 

ResNet-50 (Figure 12) and 101 layers deep ResNet-101.   

3.3 Fine-tuning the Models  

Despite the advantages of DL techniques in advanced analysis and feature extraction in supporting the 

non-vision experts (Krizhevsky, Sutskever and Hinton, 2012; Szegedy et al., 2015; He et al., 2016), it is 

a data-hungry, resource-demanding technology, which contradicts with our attention towards the 

ASSURED criteria (Hoque Tania et al., 2020). 

Table 5: Specifications of the pre-trained models 

Model Model 

size 

(MB)  

Image 

Input 

Size 

Depth Frozen 

layers 

(up to) 

Parameters 

(Millions)  

Network 

AlexNet 227 227×227 8 0 61.0 Series 

GoogLeNet 27 224×224 22 10 7.0 DAG 

Inception v-3 89 299×299 48 18 23.9 DAG 

ResNet-18 44 224×224 18 5 11.7 DAG 

ResNet-50 96 224×224 50 10 25.6 DAG 

ResNet-101 167 224×224 101 4 44.6 DAG 

DAG: Directed Acyclic Graph 

Alternatively, the success stories of ImageNet project (ImageNet, 2016), trained on million images, has 

opened the door for faster implementation of DL via inductive transfer using limited resources (such as 

smaller dataset), especially when there is a substantial amount of large data and similarity between the 

tasks is also high. Therefore, this paper utilised the following models as described in Table 5 using 

Stochastic Gradient Descent with Momentum (SDGM) as for their solver training network (Murphy, 

2012).  

 𝜃𝑙+1 = 𝜃𝑙 − 𝛼𝛻𝐸(𝜃𝑙) + 𝛾(𝜃𝑙 − 𝜃𝑙−1)          (1) 



where 𝜃 = parameter vector, 𝑙 = iteration number, 𝐸(𝜃) = cost function, initial learning rate = 𝛼 and 

momentum 𝛾=0.9 (Brownlee, 2018). Equation 1 aids the solver networks of Table 5 to accelerate 

gradients vectors in the right directions, ensuring a faster convergence. Gradient clipping was utilised to 

prevent gradient explosion.   

𝐸𝑅(𝜃𝑙) = 𝐸(𝜃𝑙) +λΩ(𝑤)          (2)  

A weight decay was added to the cost function (Equation 2) to reduce overfitting (Bishop, 2006; Murphy, 

2012), where 𝑤 = weight vector, λ= regularisation co-efficient and Ω(𝑤) = regularisation function.  

𝐸𝑅(𝜃𝑙) = 1x10-4 (Hoque Tania, 2018).  

One of the benefits of pre-trained models is, the pre-trained weights can be better than randomly 

initialised weights. Therefore, one should aim at retaining the essence of the traits of the original models, 

so that the pre-trained weights are not highly altered instantly. Therefore, the common practice is to use 

an initial learning rate ten times smaller than the actual model. Although a smaller learning rate would 

elongate the convergence time, this hyperparameter can assist in tracking all the local minima by 

controlling the weights-adjustment with regarding the loss gradient. In this paper, 𝛼 =  0.001 for 

AlexNet, whereas 𝛼 =  0.0001 for the rest of the models.  

The features extracted in the initial layers of DL-based models (such as Table 5) focus on the basic 

information that can be extracted from the images. For example, the same edges and arcs that form the 

image of a dog or a cat in the original dataset (ImageNet, 2016) can make up a well in Figure 7: Framework 

for assay type detection using inductive transfer learning. Therefore, it is possible to leverage the knowledge 

of meaningful general features at initial layers to be used for another problem, as the generic information 

often would be the same, whereas the later layers are more specific to the particular task. Based on the 

problem of this paper, some layers were chosen to be frozen, which are indicated in Table 5.  

The size of the dataset and the similarity between the datasets with the original dataset used to train the 

model can help to repurpose the pre-trained models, which is the rationale for choosing the rectangular 

box in  Figure 13 as the training method. Figure 13 is inspired by Marcelino (2018). 

The datasets utilised in this paper are relatively small, containing 800-1000 images per class as shown in 

Figure 7: Framework for assay type detection using inductive transfer learning and Figure 8. For a small dataset 

with higher similarity with the original dataset, one could freeze the convolutional base, leaving only the 

last fully connected layer – which is not the case in this paper. The datasets of this paper are different 

than the original, i.e. pre-trained dataset (ImageNet, 2016). Therefore, it is important to find a balance 

between the layers to train and to freeze to avoid under- or overfitting.  

 



 

Figure 13: Thumb-rule to fine-tune pre-trained models.  

The learning rate in the frozen layer is zero. Freezing initial layers can prevent those earlier layers from 

overfitting to the presented dataset, whereas freezing all the layers will prevent the models to learn 

anything meaningful, as the network would not update the parameters of the frozen layers. Therefore, 

this paper freezes the initial 𝑘 layers of the pre-trained models (Table 5) and train the later 𝑛 − 𝑘 layers 

using the concept of the rectangular box in Figure 13. The first 𝑘 layers form the initial 'stem' of the 

networks  –  which was our selection criteria to choose the number of frozen layers in Table 5. One of 

the direct impacts of such a training method is on the computation time as, in contrast to backpropagating 

and updating the weights of all the layers of the network, we now needed to backpropagate the gradient 

and update the weights of the last 𝑛 − 𝑘 layers. More detailed concept of the rationale behind the thumb-

rule can be well perceived from the literature such as Marcelino (2018) and Mathisen et al. (2019).  

Using these pre-trained models, i.e. AlexNet, a number of Inception and ResNet models, with the 

aforementioned parameters, this paper at first aimed at providing the classification of the assay using the 

case study of Enzyme-Linked ImmunoSorbent Assay or ELISA (Shabut et al., 2018) and Lateral Flow 

Assay or LFA (Hoque Tania et al., 2020).  The paper was further extended to provide an interclass 

classification of the assay using the example of colourimetric classification of the LFA (Hoque Tania et 

al., 2020).  

The training cycle of AlexNet had 340 iterations, distributed among 20 epochs during the assay type 

classification, and 1740 iterations, equally divided among the similar number of epochs during the 

intraclass classification. An epoch is one learning cycle where the learner sees the whole training dataset. 

Since one epoch is too big for computation at once it is divided into smaller batches. One epoch being 

the entire dataset passed forward and backwards through the network only once, and gradient descent 

being an iterative process that optimises the learning rate− updating the weights with one epoch during 

training is not enough. Hence, the training cycles require an adequate number of epochs. Due to the 

nature of the networks, Inception and ResNet models had 672 iterations, distributed among 6 epochs 

during the assay type classification, and 3360 iterations, equally divided among the similar number of 



epochs during the intraclass classification. As the dataset of colourimetric classification is larger than the 

assay types’, the number of iteration and iteration per epochs were understandably higher for the former. 

4. Result and Discussion  

4.1 Assay Type Detection   

All the models listed in Table 5 showed 100% accuracy to classify the type of the assay (Figure 14). 

Therefore, convergence time, memory occupancy and network complexity were taken into account to 

select which model to utilise (Table 5, Figure 14 and Figure 15).  

 
Figure 14: Comparative performance in terms of accuracy and elapsed convergence time for assay 

type and colourimetric classification 

In addition to accuracy, Figure 14 also portrays the comparative position of the models (AlexNet, 

Inceptions, ResNets) in terms of elapsed convergence time for assay type and colourimetric 

classification using the entire dataset, which can also be perceived from the computation method, as 

discussed in Section 3.  

As shown in Section 3.2 and also in Table 5, the layers of AlexNet are arranged one after the other, 

forming a series network, whereas the layers of the rest of the models hold more complex architecture 

using Directed Acyclic Graph (DAG). However, in terms of memory occupancy, AlexNet is not the 

smallest one is the size (Table 5 and Figure 15). The network, as well as the performance, can be 

optimised for some DAG network-based models such as ResNet-18. ResNet-18 provided 100% 

accurate classification of the assay types taking around 2 minutes to train on 1600 images occupying 

less memory space. Therefore, ResNet-18 is a preferred choice of pre-trained model for the task of 

classification of assay types.  

4.2 Colourimetric Detection   

The intention behind using pre-trained models was to determine the type of assay, where the type of 

assay signified the class label. This paper extended the experiments on the pre-trained models for intra-

class classification of the assays, i.e. colourimetric classification. The LFA example was chosen for this 

extension to evaluate the scope of using pre-trained models for a complete colourimetric classification.  

Using 1000 images for each pH in between 3.0 to 10.0, the best accuracy was achieved by AlexNet 

(Figure 14). In Section 4.1, the classification accuracy was found to be 100% for the assay type 

classification, whereas, for colourimetric detection, it is over 92% for AlexNet, ResNet-18/50/101.   
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Figure 15: Comprehensive comparative performance for colourimetric classification 

Figure 15 shows a comprehensive comparison among the models, especially for the intra-class 

classification. The statistical results obtained by a two-tailed t-test at a 0.05 level of significance are 

also given in the figure. The result of Algorithm 1 ↔ Algorithm 2 stated as “↑”, “↓”, or “∼” can be read 

as- Algorithm 1 is significantly better than, worse than, or statistically equivalent to Algorithm-2, 

respectively. For example, AlexNet performed significantly better than GoogLeNet, in terms of 

accuracy, however, it took significantly longer time to be trained than the later. As the accuracy of intra-

class classification was not as high as the assay type classification, this issue was further investigated. 

As AlexNet showed the best performance for the colourimetric classification of pH levels using 

universal pH indicator paper, i.e. 93.75%, the output of the convolution layers were critically 

investigated. Figure 16 shows an arbitrary input image of pH 7 as an example.  

The 1st convolutional layers of AlexNet are consist of 96 11x11x3 convolutions with [4 4] stride and [0 

0 0 0] padding (Krizhevsky, Sutskever and Hinton, 2012). The output of activations can be represented 

by a 3D array, where the 3rd dimension is a representation of the channel of the 1st convolutional layer. 

As activations are colour blind, subsequent to normalisation and scaling, the output of the activation is 

shown as grey images in Figure 16, where minimum activation=0 and maximum activation=1. For 

better visualisation, Figure 16 only shows the strongest activations at each convolution layer. The 

features at the final fully connected layer, i.e. 23rd layer of AlexNet are also shown in Figure 16 using 

Deep Dream Images (Mordvintsev, Alexander; Olah and Tyka, 2015; Mordvintsev, Alexander; Olah, 

Christopher; Tyka, 2015; MATLAB & Simulink, 2018a). With an increase in the number of pyramid 

levels as well as the iterations per pyramid level, enlarged output with strong activation at the 23rd and 

24th layer are also shown in Figure 16. These detailed output images of each layer failed to provide any 

significant information regarding the low classification accuracy. These layers of AlexNet were 

supposed to search for only colours of each block of the pH test strip and block to block colour 

difference. Considering the strong activations at the convolutional layers, it can be estimated that the 

most massive activations in the deeper layers may not be the point of interest. The point of interest may 

have been buried in some other channels. Furthermore, the deeper layers of AlexNet in Figure 16 

implicated both positive and negative activations that was later rectified in the ReLU layers. 

Among the pre-trained models, Inception based network showed poor performance- GoogleNet 

achieved only ~65% accuracy. Despite the use of deeper layers, Inception v-3 reached up to 81.25% 

accuracy. Further exploration into the convergence pattern could not reveal any indication if only a 

longer training cycle or a bigger dataset would have offered a better accuracy or not.  
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Figure 16: Layer by layer investigation of the performance of AlexNet for intra-class classification 

ResNets attained similar accuracy as AlexNet, as shown in Figure 14. Originally, ResNet gained 

popularity due to the counter-intuitive method of randomly dropping layers during training, while using 



the full network in testing, circumventing the struggle of longer training period for using deeper layers 

in other models such as Inception (Huang et al., 2016). Analysing the performance in Figure 14, it can 

be seen that deeper layers did not significantly improve the performance of ResNets either.  

As compared to the assay type detection, the networks required considerably higher time (Figure 15) to 

be trained on due to the computational complexity of the algorithms for the colourimetric classification 

as shown in Figure 14. Understandably, the increase in the dataset, as well as the number of classes, 

affected the training time. Similar to assay type detection, ResNet-18 was found to be the fastest model 

to be trained on.  

Based on the accuracy (Figure 15), AlexNet was chosen to be further explored to investigate the 

accuracy attained and the scope of further improvements. The convergence rate (Figure 17) indicates a 

longer training cycle may improve the performance of the network, which would also expose the model 

to the risk of overfitting problem. The need for a significantly large dataset and longer training cycle 

would effectively require more enhanced resources, e.g. higher computational power, which contradicts 

with our research goal. 

 

 

 

 

 

 

 

Figure 17: Convergence of AlexNet for assay type detection and colourimetric detection 

However, to test our hypothesis that a larger dataset may improve the performance, in the absence of a 

larger dataset, we have downscaled the size of the dataset, while maintaining equal class-balance, and 

tracked the performance in terms of accuracy with respect to the increase in data. The dataset split ratio 

for training and testing were also varied for both datasets, for the same purpose, i.e. to observe the 

model’s ability to learn from more data.  

 
Figure 18: Increase in accuracy with respect to increment in data size 

The dataset was downsized up to the dataset of Hoque Tania et al. (2020), consisting of 65 images for 

each of the 8 chosen pH levels. The classification accuracy for Hoque Tania et al. (2020) dataset, using 

70% of them for training, was 86.86%. The result in Figure 18 shows, the AlexNet was able to learn 

more from new data, as the accuracy increased up to ~7% when more data were added.  
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Figure 19: Increase in elapsed time with respect to increment in data size 

More data, of course, require more computation, resulting in higher computation time, which can be 

observed in Figure 19. Interpolation techniques have been utilised for better visualisation of the trend 

(Figure 19).  

On the other hand, the intra-class classification was conducted for LFA only, not ELISA due to the 

following reasons. 

− For proof-of-concept, we found only one intra-classification would be sufficient because the 

intra-class classification accuracy obtained by the pre-trained models was unsatisfactory. 

Therefore, the approach would have had to be rejected for the final colourimetric classification, 

despite the outcome of the case study of ELISA.  

− The case study of LFA is a stable assay. The dataset possesses consistency. A large number of 

images were fed to the network. The classification accuracy was still poor. The case study of 

ELISA contains less stable samples. Moreover, it is sensitive to temperature and geo-location. 

Therefore it would be more difficult to understand and explain the underlying reasons for the 

hypothetical poor performance of the pre-trained models.   

− The analysis of the classification accuracy for LFA dataset indicated towards the requirement of 

more samples. The available ELISA dataset was already smaller than the LFA dataset. 

Therefore, the number of images would be insufficient for these data-hungry pre-trained models. 

4.3 Smartphone-based Detection   

For both assay type and colourimetric detection, in addition to the desktop, the prediction was delivered 

on the mobile platform. The models were trained offline as mentioned in Section 3, before deploying 

them on the mobile platform.   

Although the proposed method in this paper involves pre-trained models with initial frozen layers 

training these CNN-based algorithms mostly rely on powerful computation resources and large amounts 

of training data, which can be more convincingly achieved using high-performance CPUs, GPUs, etc. 

Thus, the DL-based models are heavy for mobile devices. Mobile devices can be restricted in terms of 

storage and processing capability. Most smart mobile devices also suffer from the power consumption 

issue with limited battery capacity. On the other hand, once the model is built or trained on a high-

powered computer or a cloud, it can be deployed on a mobile device with much less computation power.  
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Figure 20: Mobile-enabled server-based pathological test type and chemical detection using deep 

learning 

This paper utilised a third-party application that enables on-site image capturing on a server connected-

MATLAB mobile. The server can take about a minute to establish a connection with a mobile phone, 

which may vary based on internet quality and mobile device. The result can be provided on a mobile 

platform as shown in Figure 20: Mobile-enabled server-based pathological test type and chemical 

detection using deep learning. 

This paper utilised more affordable mobile devices, such as the Samsung Galaxy S6. Due to the limited 

storage and processing capabilities of mobile devices, the server was utilised to retain the accuracy of 

the system. Identical prediction accuracy was achieved on the server connected mobile platform as well. 

The prediction was delivered in real-time, however, taking slightly more time than the desktop 

environment, which supports the finding of Kim et al. (2017) that indicated that a server-based approach 

could make a colourimetric classification system two times slower. 

4.4 Discussion 

Based on the analysis of the results obtained by the pre-trained models, considering the accuracy, 

training time, memory occupancy, network structure ResNet-18 can be chosen to determine the type of 

test to assist a less medically trained person such as home users, aid workers, to begin a colourimetric-

based pathological test without any prior knowledge about the nature of the assay (Figure 14). 

The accuracies of the final colourimetric test by the pre-trained models were below 95%. The geometric 

shape of the assay and location of the coloured samples are easily distinguishable for these pre-trained 

models using the standard kernels with a reasonable amount of dataset. However, the intra-class 

classification would require the model to search for only the colours even when the rest of the geometric 

features are similar, and the occurrence of those colours are in the same location. The accuracy of the 

colourimetric classification may improve with a higher number of data, deeper layer or longer training 

cycle (Figure 18). Alternatively, better accuracy may result from building the model from scratch. Either 

of the routes would be computationally expensive (Figure 19).  
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Figure 21: Proposed framework for assay type detection and corresponding colourimetric 

classification 

Therefore, based on the aforementioned discussion, subsequent to the assay type detection, it is more 

logical to use a simpler machine learning model (Figure 21: Proposed framework for assay type 

detection and corresponding colourimetric classification) for the colourimetric classification, instead of 

building more deep layers which would require more processing capacity, memory size, larger dataset 

and more dependency on the cloud-based approach. In the literature, Hoque Tania et al. (2020) and 

Mutlu et al. (2017) utilised the same case study of LFA to perform colourimetric classification as this 

paper. Both of these reported studies vary in compatibility with the ASSURED criteria. Taking a 

different approach to feature extraction, both Hoque Tania et al. (2020) and Mutlu et al. (2017) settled 

for utilising Least-squares Support-Vector Machine (LS-SVM) to classify the pH levels, achieving 

100% classification accuracy. The important considerations to perceive the comparative performance 

between the DL-based models in this paper and TMLs in the literature is shown in Table 6. Although 

the dataset utilised by  Hoque Tania et al. (2020) and Mutlu et al. (2017) were much smaller in size, as 

compared to the dataset utilised in this paper, the colourimetric classification accuracy attained by the 

traditional approaches (Table 6) shows a higher prospect if a combination of DL and TML is utilised 

as proposed in our framework (Figure 21: Proposed framework for assay type detection and 

corresponding colourimetric classification).  

Table 6: Comparative performance of colourimetric classification of the LFA 

 Algorithm Sample 

per 

Class 

Number 

of Class 

Invariances Data 

Aug. 

Prior 

Feature 

Extraction 

Accuracy 

(%) 

Reference  

DL AlexNet 1000 8 ✓ ✓ x 93.75 This paper 

GoogLeNet ✓ ✓ x 65.17 

Inception 

v-3 
✓ ✓ x 81.25 

ResNet-18 ✓ ✓ x 92.38 

ResNet-50 ✓ ✓ x 92.71 

ResNet-

101 
✓ ✓ x 92.98 

TML LS-SVM 65 ✓ x ✓ 100 Hoque 

Tania et 

al. (2020) 

 

KNN ✓ x ✓ 98.5 

LDA    ✓ x ✓ 98.3 



LS-SVM 18 15 ✓ x ✓ 100 Mutlu et 

al. (2017) 

Based on the aforementioned discussion, this paper suggests (Figure 21: Proposed framework for assay 

type detection and corresponding colourimetric classification) to utilise pre-trained model-based DL 

algorithms for the assay type and to process the outcome using traditional machine techniques to 

produce the colourimetric decision as proposed in (Shabut et al., 2018; Hoque Tania et al., 2020).  In 

this way, the image-based intelligent colourimetric test would provide more automation while 

processing the pathological test or colourimetric chemical detection while maintaining high accuracy 

and reliability, faster computation, and retaining more autonomy to users.  

5. Conclusion  

The colourimetric assays have been utilised for a wide range of applications ranging from 

environmental monitoring to disease diagnosis. This paper presented the transfer learning methods to 

build the CATC model which can be used by novice users such as patient or their caregiver to begin a 

colourimetric test at homecare settings, community settings, telepathology etc. To the best of our 

knowledge, no similar work has been reported until now.  

Some of the mostly used pre-trained models such as AlexNet, GoogLeNet, Inception and ResNet were 

utilized in this paper for classification of the assay types. The use of the pre-trained model can help with 

faster training for similar applications with a relatively small dataset (<1000 samples per class). The 

use of DL techniques also aids in tackling physical variability such as brand-to-brand variations, 

illumination conditions, etc. Such an image-based intelligent system also enables convenient portability 

of the results that can be used in telemedicine, digital healthcare and m-health services.  

Exploring the relevant pre-trained models, ResNet-18 was found to be the most suitable DL technique 

for detecting pathological tests in terms of low computational complexity, high accuracy, and low 

memory occupancy. Based on the current feasibility at resource-limited settings, our research suggests 

to utilise the pre-trained models for the test type detection, and then pass the outcome to a linear model 

using traditional machine learning algorithms to produce the colourimetric detection, enabling higher 

visual knowledge transformation and to make the overall process more intelligent, rapid and robust. 

Furthermore, the work has been extended by developing a low-cost handheld colourimetric assay 

detection device to determine assay types for various applications (Figure 20: Mobile-enabled server-

based pathological test type and chemical detection using deep learning).   

This work attained 100% accuracy for assay type detection using transfer learning approach, which can 

be deployed for any similar assays and applications. One of the key considerations of this paper was 

ASSURED criteria, by retaining ease-of-use and accessibility of the computational technology to the 

end-users. Therefore, this paper has not explored develop-model approach, which can be more data-

hungry and resource-demanding.  

However, our future work will utilise developed-model approach, while complying with ASSURED 

criteria for further advancement of the system as the pre-trained models achieved <95% accuracy in 

this paper for the intra-class colourimetric classification. In order to employ the developed-model 

approach, our future efforts will require to generate a larger dataset. Henceforth, we will aim at a further 

extension of samples per class and variability to increase the reliability of the system. Additionally, 

inducing more diversity in the assay will demonstrate and evident our claim which can ultimately result 

in a universal model for image-based colourimetric testing. In such a situation, consideration of the 

universal applicability can verify the adaptability of the presenting system as well. Integration of 

reinforcement learning can update the system based on environmental factors (e.g. geo-location, 

climate) and change in the pattern of the assay. Realising the potential of the presented system, future 



work will also seek opportunities for commercialisation of the comprehensive framework as proposed 

in Figure 21: Proposed framework for assay type detection and corresponding colourimetric 

classification.  
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