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1. Introduction 

Machine Vision is a specialized area of research in Artificial Intelligence, which gives intelligence to computer 

systems to extract the features from data to make certain predictions without being programmed. Various Machine 

Learning(ML) techniques were developed in the last twenty years with an ambition to equal or excel at the human level 

of perception. But these systems are unsuccessful to give the human level of satisfaction [1-6]. The ambitious virtue of 

ML algorithms has developed a unique type of Artificial Neural Networks(ANNs) by imitating the human neuron system 

[7]. These algorithms are called Convolutional Neural Networks(CNNs).  

The earliest CNN model was proposed by Hubel based on the cerebral cortex system [8]. But it became popular only 

after LeCuN’s work on time series data in 1989[9]. CNNs are still considered to be the best method to empathize the 

image data. They have surpassed almost all the ML algorithms in pattern recognition, classification, and extraction [10]. 

Every major company in the IT sector has its research team to explore the new models and possible options of CNN [11]. 

CNN models are hot favorites in most machine vision competitions. 

The architecture of CNN consists of many learning layers like convolutional, activation, pooling, etc. [12]. 

Convolutional layers perform many convolution operations with the help of filter banks. This helps the model in 

extracting and learning the local features of an image. The output of convolution layer is fed to the activation layer. This 

introduces non-linearity and makes the network to learn separate features from individual filters. Activation also 

facilitates differentiating the images based on local features. Output of activation is a sampling layer which reduces the 

overall dimension of the input which will be passed through other similar convolutional blocks [13]. In general, CNN 
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extracts multiple features of the image without being explicitly specified. This ability eliminates the need of separate 

feature extractors as in ML. Hence, deep learning(DL) models have a benefit over the ML algorithms to solve complex 

problems. Multiple layered representation in CNN give it the power to learn complex features at different levels of 

hierarchy [14]. The application of CNN in segmentation and classification has flourished after observing its performance 

improvement with increased depth in AlexNet[15]. Also, the processors with higher computational power like GPUs and 

TPUs have contributed immensely to the admiration of CNN in these years. Transfer learning approach proposed in 2015 

is also another reason for the popularity of CNNs [16]. By this method, features learned for a large set of data belonging 

to a generic class can be transferred to classify a smaller group with a few other classes. They can also learn through a 

large amount of unlabeled data which makes it easy to classify thousands of different classes.  

DCNN acts similar to the system of the human neuron. Information is first received in the retinotopic area. Lateral 

geniculate nucleus carry’s out high-pass filtering and contrast normalization. V1-V4 parts of visual cortex perform 

detection via several stages [17]. Here, V1 and V2 act similar to convolution and sampling layers [18,19]. Temporal 

region of the cortex appears like the dense layers of CNN making illation about the scene. Backpropagation reduces the 

error rate by changing the filter weight resembles the response-based learning of humans.  

CNNs started booming in AI from 2012 onwards. Many new models were proposed to solve a variety of problems. 

It is all because of the design of new-new blocks and the introduction of multiple hyperparameters to fine-tune. CNN 

started predominating the research industry after the fantastic functioning of Alexnet in the ‘ImageNet Large Scale Visual 

Recognition Challenge’(ILSVRC) competition. Zefnet enabled the visualization of layerwise features [20]. VGG was the 

first network to use a small-sized filter window to extract features from low spatial resolution. Most of the new 

architectures proposed these days are inspired by VGG. GoogleNet enclosed the idea of splitting the dataset first then 

transforming and merging. InceptionV3 gave the idea of creating multiple branches within a layer [21]. ResNet 

introduced jump the connection concept which later inspired many following networks. Densenet[22] and Xception[23] 

have explored the option of piling hundreds of layers one after another to solve complex problems. Nowadays, the 

objective has shifted from developing a new architecture to fine-tuning and adjusting the parameters to attain the highest 

accuracy for the customized data. 

The remaining part of the paper is arranged in the following order: Part 2 discusses the historical aspect and evolution 

of CNN along with their innovative architectures. Part 3 sheds light on the layer wise details of the CNN. Some of the 

modern activation functions and optimizers are also briefed in this category. Part 4 briefs the applications of CNN and 

the challenges faced in the design. We conclude in part 5. 

 

2. Evolution of CNN 

Since their inception in 2012, dozens of surveys have been carried out on CNNs to compile their basic components 

[55]. Few papers have concentrated on their applications as well [24]. CNN has shown unparalleled efficiency in all 

computer vision-related applications. It is inspired by human neurons whose history begins with the experiments of Hubel 

in 1962. They developed many unsupervised models which collectively got the shape of CNN in the early 90’s. LeCun 

first applied the concept of neo-cognitions in identifying the shape of digits [25]. This supervised training using 

backpropagation was the earliest reported work on two-dimensional CNN [9, 26]. This exhibited the quality of auto-

feature extraction which was not present in the ML algorithms. Modified CNN was later developed by the name LeNet-

5 which incorporated feature detection from raw images and data augmentation. It had a total of 6 layers comprising of 

Convolutional, Pooling, and 2 Fully-connected(FC) layers. NNs so far treated individual pixels as separate features which 

used to elongate the computational time. A mechanism to speed up the processor was not available. But LeNet considered 

the correlation between the pixel and it’s neighboring to extract the features. This simultaneously boiled down the time 

and number of parameters. Even though this got a fame of being an inception model in CNN, its commercial ability was 

restricted to hand gesture recognition. 

After LeNet, not much research was carried out on CNN for next 10 years. Inability to decrease the training error 

was the main reason incorporated. Also, it was assumed that handcrafted features from ML techniques were more efficient 

than the features learned through backpropagation. Hence, Support Vector Machine (SVM) gained huge popularity and 

overtook CNN in this period [27, 28]. The only noticeable research in this decade was by Simard who implemented CNN 

on MNIST database [29]. This result outperformed many ML techniques available at that time. It also showed the 

possibility of CNN in many other areas such as text classification, segmentation, and computer vision.  

There were other problems in implementing deep learning algorithms. The architecture itself was too complex. It 

was taking weeks together to train the entire model on large datasets in normal computers. Fine-tuning parameters 

increased this time by multiple folds.  In 2006, Hinton offered to train the network in a layer wise manner [30]. Huang 

et. al proposed the use of maxpooling to learn the invariant features [31]. GPUs were released to the market in the next 

year. NVIDIA introduced CUDA platform in 2007[32,33]. This regenerated the interest of researchers in CNN. ImageNet 

dataset was introduced by Stanford research group in 2011, which contained millions of images with labels [34]. ILSVRC 

annual competitions were organized to classify this data. This competition was one of the toughest in object recognition 

and became a major break CNN ever anticipated.  

Landmark CNN architecture was contributed by AlexNet which bagged the first prize in ILSVRC2012. AlexNet 

surmounted the then all ML-DL algorithms. This showed the research community that the main drawback faced by CNN 
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so far was the absence of training data and a parallel computing process. The number of layers in AlexNet was increased 

to 7. The filter was an 11*11 mask. Activation functions were introduced. This helped the network to employ more 

diverse applications. The main problem associated with this network was overfitting. To overcome this problem, dropout 

layers were familiarized. Later, ZefNet[20] enabled the visualization of filter weights in individual layers. The motivation 

behind ZefNet was to understand the neurons in FC layers envisioning the information. Reduction in the convolution 

stride made more information to pass through the layers. In the later year, model of Vision Geometry Group (VGG) made 

the size of filters so small with increased number of layers. This development is considered one of its best in terms of 

research in CNN [35]. Depth is raised from 6 to 16 as well as 19 layers. Kernel mask was reduced from 11X11 and 7X7 

to 3X3. This cut down the computation time and raised the parameters calculated. Pooling and zero padding were added 

to the network. This network shot into renown with no time due to its architectural simplicity. GoogleNet changed the 

overall layer design to decrease the computational cost [36]. This introduced a split and merging technique to get both 

local and global features. Each layer was split into different sub-blocks. Multiple kernel sizes were used instead of a 

single one. Hence, this was also called Network-of-networks. Average pooling with RMSprop was utilized by this [37]. 

Primary hindrance with GoogleNet was its highly customized behaviour to a specific module. The research from 2012 to 

2016 showed that incrementing the number of layers helped CNN to discern more classes. This is mainly because of 

learning a variety of features at different layers and also splitting complex issues into smaller modules. 

Post 2016, the research community shifted its goal from designing the layers to improve the performance by fine-

tuning various parameters. One of the main concerns was dealing with the vanishing gradient problem. Cross channel 

learning was introduced to tackle this issue [38]. A similar concept called skip-connection was acquainted [39]. This 

regulated the motion of information from one layer to another. The same theme was borrowed by ResNet train till 150 

layers [40]. Cross-channel connectivity was later extended to multilayer connectivity by DenseNet to enhance the 

representation [41]. Hybrid models were also proposed using already existing models to improve the accuracy [42,43,44]. 

These diverse architectures can be broadly watershed into 7 different categories as shown in the figure 1. These branches 

are mainly depending on the spatial exploitation, the number of layers, cross connectivity, width of individual layers, 

features extracted, channel boosting, and selection of applicable features. 

Spatial exploitation deals with the selection of filters, stride, and activation as CNN bears a huge number of 

parameters to fine-tune. Depth related models tried to get more accuracy with higher depths. In conventional nets, 

accuracy gradually decreased after the introduction of more than ten FC layers. But HighwayNet showed a steady 

convergence rate till hundreds of layers [45]. ResNext tried to extend this concept with 152 layers and won ILSVRC15. 

The third variety namely multipaths proposed cross connection between different layers. They skipped certain layers in 

between while training.  Dropouts were used to turn off a few nodes in each iteration. This types of networks like 

DenseNet mainly helped in tackling diminishing gradient issue. 

As the number of layers increased by multiple folds, it was observed that some layers in them were not learning the 

useful features at all. Though with increased complexity, this did not contribute much towards efficiency. WideNets 

helped to solve this problem [46]. Though WideNets used double the parameters as Resnet, they trained more effectively 

than the ResNets with twice the depth. Stochastic depths assisted in reducing vanishing gradients. In the later stage, 

researchers trained the CNNs to learn multiple types of features rather than one type. Features played an important 

discrimination factor in the performance of CNN. Based on the inputs, feature map CNNs infused diverse features from 

the data. SqueezeNets suppressed insignificant features and provided more weight factors to more significant ones [47]. 

All the CNN architectures designed so far are given in table 1. 
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Fig. 1 - Categories of DCNN 

 
Table 1 - Various CNN architectures 

Name Remark 
Params  

in lakhs 

Error Rate 

On 

ImageNet 

Depth Category 
Activation 

function 

LeNet[9] - 1st famous model 0.60 

0.80 

MNIST: 

0.94 

6 Spatial None 

AlexNet[15] 

- Deeper and wider 

- Used activation  and 

Dropout 

600 15.3 7 Spatial ReLU 

ZefNet[20] 
- layerwise feature 

visualisation 
600 14.7 8 Spatial ReLU 

VGG[35] 
- Most famous so far 

- Small kernel 
1380 7.4 16 -19 Spatial ReLU 

GoogLeNet 

[36] 

- Split and Merge 

- blocks introduced 
40 6.70 21 Spatial ReLU 

InceptionV3 

[48] 

- Replacement of larger 

filter by smaller one 

introduced 1D filter 

236 
3.58 

 
NA Depth ReLU 

Highway  

Networks [45] 
- Multiple Paths 23 7.8 19 

Depth + 

Cross 

connection 

ReLU and 

tanh 

InceptionV4 

[21] 

- Split and Merge 

-Uses asymmetric filter 
- 3.80 NA Depth ReLU 

Inception [36]  

- Split, Transform, 

Merge, and Residual 

Links 

- 3.11 NA 

Depth + 

Cross 

connection 

ReLU 

ResNet [40] 

- Residual Learning 

and Identity mapping 

based skip connection 

680 
3.57 

 

152 

 

Spatial + 

Depth + 

Cross 

connection 

ReLU 

DelugNet [49] 
- Allow cross layer 

data flow 
2020 3.76 146 

Cross 

connection 
ReLU 

FractalNet [50] - Multiple path lengths 3860 7.27 20 
Cross 

connection 
ReLU 

WideResNet 

[46] 

- More width, less 

depth 
3650 3.89 

28 

- 
Width ReLU 
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Xception [51] 

- Depth wise CN 

followed by point wise 

CN 

2280 0.06 36 Width ReLU, ELU 

RANN [52] 
- Introduces Attention 

Mechanism 
860 

3.90 

 
452 Attention Sigmoid 

ResNexT [22] 

- Cardinality 

- Homogeneous 

topology 

- Convolution in group 

6810 
3.58 

 

29 

 
Spatial ReLU 

SE Net [47] 
-Dependency between 

feature maps 
- 3.60 154 Feature Map ReLU 

DenseNet [41] 
- Cross-layer 

information flow 
153 5.19 250 

Cross 

connection 
ReLU 

PolyNet [40] 

- diversity in structure 

- Poly Inception 

Module 

- 4.25 
- 

 
Width ReLU 

PyramidNet 

[23] 

Gradual increase of 

width 
270 4.7 165 Width ReLU 

Convolution 

Block Attention 

Module [23] 

- combination of spatial 

and feature map 

information 

4896 5.60 100 Attention ReLU 

Squeezenet [47] 
-Channelwise 

excitation 
- 

12 

 
- Attention ReLU 

ChannelBooste

dCNN [53] 

- Boosting with extra 

information 
- - - 

Channel 

Boost 
- 

Competitive 

SEnet [54] 

  

Channel rescaling 3692 3.58 28 Feature Map 
ReLU, 

Sigmoid 

 

3. The Architecture of CNN Layers 

In image analysis and classification, DCNN has shown unparalleled efficiency in detecting patterns. Convolutional 

layers in the network differentiate CNN from other types of Neural Network algorithms. These layers receive the inputs, 

transform them by performing convolution, and forwards these transformed outputs to subsequent layers. 

DCNN is a most popular ANN in image analysis and classification having a specialization in detecting the patterns 

and making sense of them. Convolutional layers hidden inside the network differentiate it from Multi-Layer Perceptron 

and Recurrent Neural Network. Convolution operation in these layers receives the inputs, transforms them using certain 

operation, and outputs the transformed input to the following layer. Apart from these layers, the network also contains 

pooling and a sequence of FC layers. Different types of filters are used to record the features of the model. Kernel values 

are updated according to the response of the model to find the best kernel value. Max pooling and activation functions 

are utilized for this purpose.  

CNN takes an order of three tensors as its input irrespective of the type of image. These input images will be 

processed through a series of layers. Here, the layer denotes a single processing step. This can be a convolution layer, FC 

layer, activation, or pooling layer. In a forward pass, CNN goes through layers as shown in Equation 1. 

 

𝑥1  →  𝑝1  →  𝑥2  → · · · →  𝑥𝐿−1  →  𝑝𝐿−1  →  𝑥𝐿  →  𝑝𝐿  →  𝑧   (1) 

 

The input x1 is processed in several layers and the outputs of these layers are termed as x2, x3 ... xL. Each layer's 

output will be used as the input for the next. Parameters involved in the processing of these layers are denoted by tensors 

p1, p2, .... pL. However, one extra layer ‘z’ is added for backpropagation. For the classification problem, the approach is 

to output xL as a C dimensional vector, where ith entry encodes the prediction. If all the parameters in the CNN model 

are learned, the network is run forward for prediction. In addition to this, various hyperparameters are also used to enhance 

performance. Following section briefs these components used in CNN. 

 

3.1 Convolutional Layer 

This layer acts as a feature extractor. Each neuron in a feature or activation map contains a sensory field that is 

connected to neurons in the previous layer through trainable weights called filter banks. The element performing the 

convolution operation is referred to as kernel/filter. These filters are applied on each image and images are modified 

according to the filter values. Subsequent feature map values hi,j are calculated according to equation 2 for input x, 

convolution kernel k, kernel width m, convolution output h.  
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ℎ𝑖,𝑗 =  ∑ ∑ 𝑤𝑘,𝑙 𝑥𝑖+𝑘,𝑗+𝑙−1
𝑚
𝑙=1

𝑚
𝑘=1           (2) 

 

With the size of the filter being 𝑚 ∗ 𝑛, dimension of the image being 𝑙 and  number of filters being 𝑘, parameters 

generated in each layer(𝑝) with bias one are calculated as 

 

𝑝 =  [(𝑚 ∗ 𝑛 ∗ 𝑙) + 1] ∗ 𝑘       (3) 

 

The pooling layer is applied to the feature maps generated by each convolution layer to compress the spatial size of 

an image so that the final output of the network will be 1X1 feature vector. 

 

3.2 Pooling Layer 
Pooling layers were created to decrease the number of parameters expected to portray layers deeper in the network. 

Pooling additionally decreases the number of calculations necessary for training the network, or simply running it forward 

during a classification operation. Pooling layers give some restricted measures of translational and rotational invariance. 

Three types of pooling can be generally used: average pooling, max pooling, and min pooling [46]. Pooling passes the 

dominant information present in the neighborhood to the next layer depending on the type of pooling. This can be 

mathematically expressed as in equation 4 where fp is a type of pooling. 

 

ℎ𝑖,𝑗 = 𝑓𝑝 {𝑥𝑖+𝑘−1,𝑗+𝑙−1,∀1 ≤ 𝑘 ≤ 𝑚 𝑎𝑛𝑑 1 ≤ 𝑙 ≤ 𝑚}     (4) 

 

Some CNN architectures like GoogleNet have tried bigger strides in substitution of pooling. 

 

3.3 Fully Connected (FC) Layer 
FC layers are utilized in the last phases of the CNN to interface the yield of the convolution layer to the next level. 

Usually, the output of the convolution layer will be in 3D whereas FC layer anticipates a 1D vector of numbers. Hence, 

a flattened layer is used at the beginning of FC block to convert the output of the last pooling layer to a vector. FC layer 

contains some dense layers with thousands of neurons. These neurons are trained according to the input weights. The 

dense layers learn how to utilize the features created by convolutions to accurately classify the images. A dropout layer 

is used between two dense layers for regularization and to forbid overfitting. The neurons of the last layer of FC block 

are a linear classifier that the outputs of the network can be interpreted as posterior probabilities. This layer assigns a 

probability value to each class for the input to perform classification. 

 

3.4 Dropout  
Dropout is a regularization method for precluding overfitting of a network [57]. It is done by expelling some nodes 

in a layer with a defined probability p who do not take part in the training. Subsequent to training, they are supplanted in 

the network with their original weights. This forestalls the FC layers from overfitting and betters the performance on a 

validation set. The output of a convolution layer is a linear weighted sum of the inputs. 

While looking at the ordinary LSM loss for this layer of a regular (5) and dropout network (6), 

 

𝐸𝑁 =  
1

2
 (𝑡 − ∑ 𝑝𝑖𝑤𝑖𝐼𝑖

𝑛
𝑖=1 )2

      (5) 

 

𝐸𝐷 =  
1

2
 (𝑡 − ∑ 𝛿𝑖𝑤𝑖𝐼𝑖

𝑛
𝑖=1 )2

       (6) 

 

The dropout rate is 𝛿 with probability p, where  

 

𝛿 ~ Bernoulli(p)        (7) 

 

The backpropagation for network training utilizes a gradient descent method. By taking the derivative of the gradient 

of the dropout network in equation (5) we get, 

 
𝜕𝐸𝑁

𝜕𝑤𝑖
=  −𝑡𝑝𝑖𝐼𝑖 +  𝑤𝑖𝑝𝑖

2𝐼𝑖
2 + ∑ 𝑤𝑖𝑝𝑖𝑝𝑗𝐼𝑖𝐼𝑗

𝑛
𝑗=1,𝑗≠1        (8) 

 

Now, we find the expectation of gradient of the dropout network,  
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𝐸 [
𝜕𝐸𝐷

𝜕𝑤𝑖
] = −𝑡𝑝𝑖𝐼𝑖 +  𝑤𝑖𝑝𝑖

2𝐼𝑖
2 + 𝑤𝑖𝑉𝑎𝑟(𝛿𝑖)𝐼𝑖

2 + ∑ 𝑤𝑖𝑝𝑖𝑝𝑗𝐼𝑖𝐼𝑗

𝑛

𝑗=1,𝑗≠1

 

                                         =  
𝜕𝐸𝑁

𝜕𝑤𝑖
 + 𝑤𝑖𝑉𝑎𝑟(𝛿𝑖)𝐼𝑖

2
      

                      = 
𝜕𝐸𝑁

𝜕𝑤𝑖
 + 𝑤𝑖𝑝𝑖(1-𝑝𝑖) 𝐼𝑖

2
                                   (9) 

 

By looking at equation 9, the gradient with dropout has the same expectation as the gradient of a regularised network. 

Therefore, minimising the dropout loss (in equation 6) is the same as minimising a regularised network shown in equation 

10, and differentiating the regularized network will get the gradient of a dropout network. 

 

𝐸𝑅 =  
1

2
 (𝑡 − ∑ 𝑝𝑖𝑤𝑖𝐼𝑖

𝑛
𝑖=1 )2 + ∑ 𝑤𝑖𝑝𝑖(1 − 𝑝𝑖)𝐼𝑖

2 𝑛
𝑖=1      (10) 

 

To obtain the maximum regularization, p (1- p) in equation 10 should be maximum. This is possible only if p=0.5. 

Hence, in general, a dropout ratio of 0.5 will be used in most of the networks. 

 

3.5 Activation Function 

An important task in designing any deep learning architecture is to fine tune its hyperparameters so that the 

network attains maximum accuracy by incorporating the highest number of features from the data. Some of the 

important hyperparameters to be tuned in the network are: activation function, padding, stride size of the input, 

optimizer, and learning rate. A description of a few of these parameters with the incorporated methods of fine-tuning is 

given below. 

Activation functions(AFs) decide the output of CNN like yes or no. It converts the learned linear mappings into a 

nonlinear type for propagation. Most of the networks suffer from either vanishing or exploding gradient problems 

because of the repeated multiplication of derivative terms with the values. Hence, AFs restrict the values of these 

gradients in a specific range. Despite the depth of CNNs, one of the important features in the architecture is the use of 

AFs. Many new functions have been proposed ever since the discovery of Tanh [58]. 

Image class and image data have a non-linear relationship. The activation function must be nonlinear for a neural 

network to construct this relationship. In absence of non-linearity, a neural network would be capable of only linear 

classification. Rectified Units family is the most notable one in this. ReLu is a piecewise linear function which clips the 

–ve part to zero while retaining the +ve part [63]. In contrast to this, a variation of ReLu called leakyReLu assigns a 

non-zero slop to –ve part [64]. In Parameterized ReLu or PReLU, coefficients of the –ve parts are adaptively learned 

rather than predefined [66]. In the third variant randomised ReLU or RReLU, slopes of –ve part are randomised within 

a range in the training phase and are fixed in testing [67]. Exponential Linear Units or ELUs have -ve values, which 

allows the network to push the mean activations more like zero [65]. Properties of some of the linear AFs with variants 

of ReLU are given in table 2. 
 

Table 2 - Description of different activation functions 

Function Description Function representation Error Rate 

TanH[58] 

Hyperbolic tangent 

suffers from Vanishing gradient problem 

Limitation of tanH birthed ReLu 

𝑓(𝑥) =  
1

1 + exp (−1)
 

with range (-1,1) 

NA 

Hard 

Tanh[62] 

Hard hyperbolic function 

Computationally more efficient 

𝑓(𝑥)
= max(−1, min(1, 𝑥)) 

 

CIFAR10: 0.1064 

Sigmoid [59] 

More generalized logistic activation 

function used for multiclass problem 

suffers from backpropagation error 

𝑓(𝑥) =  
1

1 + 𝑒𝑥
 

for x being input 

NA 

Hardsigmoid[

60] 

Used when approximation output is 

sufficient 

Variation of sigmoid with lesser 

computation cost 

Preferred when speed is more important 

than precision 

𝑓(𝑥) = max(0, min(1, 𝑥)) 

 
NA 

ReLU[63] 
Most popular so far 

No backpropagation errors 

 

𝑓(𝑥) = max (𝑥, 0) 

CIFAR10:0.1245 

CIFAR00: 0.429 
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Suffers from vanishing gradient 

problem 

with range (0, ∞) 

 

LeakyReLU[6

4] 

ReLu with increased range 

Both function and its derivatives are 

monotonic in nature 

𝑓(𝑥) = max (𝑥, 𝑎𝑥) 
a=0.01 with range (-∞ to 

+∞) 

 

For a=100 

CIFAR10:0.1266 

CIFAR00: 0.4205 

 

PReLU[66] 

Parametric ReLU 

multiplies the negative input by a small 

value and keeps the positive input as is 

f(x)=x if x>0, else ax 

acts like ReLU for a=0 

and as LeakyReLu for a>0 

CIFAR10:0.1179 

CIFAR00: 0.4163 

RReLU[67] Randomized version of leaky ReLU 

In training, 

f(x)=x if x>0, else ax 

In testing 

f(x)=x/a 

CIFAR10:0.1119 

CIFAR00: 0.4025 

ELU[65] 

Can produce negative outputs unlike 

Relu 

Range(-infinity to infinity) 

f(x)=x, if x>0, else a(ex – 

1) 

CIFAR10:0.1804 

CIFAR00: 0.4580 

 

3.6 Optimizer 

During the training, we change the weights of the network to attempt to limit the loss function (E), and improve the 

accuracy of the predictions(X). Optimizers are used to discover the optimized value for the model weights (W). These 

are one of the two categories. First order optimizers like Gradient descent use Gradient values that minimize or maximize 

the loss function with respect to the parameters. Second order optimizers like Hessian use second order derivatives to 

minimize the loss function. Due to computational cost, second order optimizers are not widely used. Gradient Descent is 

the most significant method and the foundation to train and optimize DL systems. It updates the weights by controlling 

the variance and tunes the parameters in the direction of decreasing the loss function. It is a method of minimizing the 

objective function J(θ) by updating the parameters in the opposite direction of the gradient of the objective function ∇ θ. 

J(θ). Properties of different gradient based optimizers are given in table 3. 

 

Table 3 - Optimizers 

Optimizer Property 
Accuracy 

on MNIST 
Loss 

Stochastic 

Gradient 

Descent   

(SGD)[68] 

Function fluctuates heavily 

Computes gradient of cost function 

Performs parameter(θ) updation for every training example xi and label yi 

with a learning rate η 

θ=θ−η.∇θ .J(θ, x(i),y(i)) 

0.8903 1.886 

Adagrad 

[69] 

Deals well with sparse data. 

Learning rate is always decaying 

g(t,i) is the gradient of the loss function with respect to the 

parameter θ(i) at time step t 

θ(t + 1) = θ(t) −  
η

√Gt,i

gt,i 

Gt,i is a diagonal matrix which is the sum of the squares of the past 

gradients. 

0.4086 2.048 

RMSProps 

[70] 

Special version of Adagrad 

Accumulates gradients in a fixed window. 

The only difference RMSProp has with Adagrad is that the gt term is 

calculated by exponentially decaying average E[g2]t and not the sum of 

gradients. 

- θ(t + 1) = θ(t) −  
η

√E[g2]t
gt,i 

0.458 1.649 

Adadelta 

[71] 

Robust extension of Adagrad where denominator is RMS error criterion 

of the gradient 

θ(t + 1) = θ(t) − 
η

√RMS[gt]
gt,i 

0.272 2.20 

Adam [72] 
Adagrad+RMSProps 

Requires less memory and less tuning 
0.72 0.919 
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Rectifies every problem that is faced in other optimization techniques 

θt+1 = θt − 
η

√vt̂ + ε
mt̂ 

Where vt  and mt are estimates of mean and uncentered variance 

Adamax 

[72] 

Variant of Adam based on the infinity norm constrained vt denoted by ut 

θt+1 = θt − 
η

ut

mt̂ 
0.6263 1.188 

Nadam [73] 
RMSprops with Nesterov momentum mt̂ and decay rate 𝛽1 

𝜃𝑡+1 = 𝜃𝑡 − 
𝜂

√𝑣�̂� +𝜀
(𝛽1𝑚�̂�

(1− 𝛽1)𝑔𝑡

(1− 𝛽𝑡
1)

) 
0.7196 0.942 

 

3.7 Padding 

Padding is a group of zeros placed around the image. This is done to prevent the reduction of the image dimension 

after performing convolution. With repeated convolution, size of the output image will gradually shrink which can cause 

a problem of losing the information at image boundaries. This can be tackled by adding zeros in the input before 

convolution as shown in figure 2. This helps in maintaining the input dimension at the output. The padding width should 

meet equation 11, where p is padding and f is the filter dimension. 

 

𝑝 =  
𝑓−1

2
            (11) 

 

3.8 Stride 

 

Fig. 2 - Convolution with zero padding and stride = 2 

 

Stride(S) is a parameter portrays what number of pixels a filter will be interpreted horizontally. For example, 

GoogleNet uses stride value 2. For S=2, filter horizontally moves across the image two pixels at a time as shown in Figure 

6. The dimensions of the output matrix(𝑛𝑝) - taking into account padding(p) and stride(s) can be calculated as 

 

𝑛𝑝 =  
𝑛𝑖𝑛 + 2𝑝−𝑓

𝑠
+  1        (12) 

 

4. Applications and Observations 

CNN is fortunately implemented in diverse DL applications like pattern recognition, classification, segmentation 

and, many more. But, like any other DL technique CNN too requires a large dataset. It has shown enormous achievement 

on labelled data. It is hugely popular in natural language processing. Many CNN-based applications are popular in 

Language modelling and information retrieval. Researches in [74,75] have used CNN to find word relations and matching 

of two lines. CNN is also having a notable contribution in face and action detection [76]. Zang et. al proposed cascaded 

CNN for pose estimation [77]. Sijin had shown that perceptrons in hidden layers can learn local features of the body [78]. 

3D CNNs are also developed to extract features from different channels of input frames [79]. Newly region-based CNNs 

are extensively used for object identification. Ren et. al developed full RCNN to detect the boundary of an object at 

different places [80]. Region based CNNs are employed for object detection in PASCALVOC dataset. CNNs are also 

used in medical field for the diagnosis of lung cancer or breast cancer. Externally labelled data is used to train the network 

through which CNN will be able to learn the features and predict accordingly [81,82]. Apart from these, a few other 

major areas where CNNs have shown state of art performance are traffic detection [83], Twitter sentiment analysis [84], 

speech recognition [85], and vocabulary recognition [86].   

CNN has attained great functioning on different types of data. However, particularly in image classification, the 

results are not promising with respect to the identification of pose and orientation. Data augmentation proposed by 
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Alexnet has solved this issue. Data augmentation assists with improving the performance of CNN in two ways. On one 

side it increases the number of images in the training dataset. On the other hand, it learns more features by means of 

rotation, scaling, replicating, and mirroring the labelled images. Features learnt by the lower layers will be passed on to 

the higher layers in capsule networks. Another challenge CNN faces are the noisy data. Even a small amount of noisy 

data is enough to confuse the network to classify the same type of images with and without noise as two separate classes. 

Some of the main observations to be considered while designing a network are listed below: 

 As the features are automatically extracted by the CNN layers without human intervention, it is sometimes 

important to know their nature. Feature map visualization helps to a large extent in this direction.  

 Unlike humans, CNN needs a huge amount of data to learn things. So, it is always essential to have enough 

labelled training data while handling DL problems. 

 Selection of hyperparameter is the most important thing to take care of when designing the architecture. An 

inappropriate selection of hyperparameter will degrade the performance of CNN in a great magnitude. Also, a 

small change in the value of above said parameter can cost dearly. So, it is the main design issue to be addressed 

with the utmost care during the network design. 

 CNN has a huge potential in handling semantic data. Meta-algorithmic techniques such as ensembles are 

successfully sued to a wide range of situations. 

 With the advancement in GPUs and parallel computing, the learning limit of CNN is upgraded. However, the 

depth of the network causes a substantial overhead on memory and other resources. The primary worry with 

CNNs is the run-time relevance. Also, utilization of CNN is blockaded in small types of equipment like mobile 

in light of its high computational expense. 

 Hyperparameter tuning is a repetitive and instinct-driven task, which cannot be characterized by means of 

explicit formulation. 

 

5. Conclusion 

CNN has gained exceptional ground in pattern recognition and has regenerated interest in neural networks. It has a 

great ability to extract the features in one and two-dimensional data. A lot of research has been done to improve the 

performance of CNN architectures in image classification tasks. Innovative architectural designs and hyper parameter 

optimizations have greatly improved the efficiency of CNN in pattern recognition. This study examines improvement in 

CNN architectures based on processing unit design patterns and their details. This overview covers the evolutionary 

history of CNNs, its applications, problems, and architectural aspects, in addition to categorizing CNNs into several 

classes.  

This is a new step, maybe a very huge and crucial step, in the ongoing effort to improve the capabilities of computer 

machines so that they can solve problems that are vital to us humans. Clearly, the new CNN models have a lot of potential 

for making our lives easier and reducing our reliance on unreliable and expensive human resources to complete routine 

jobs efficiently. 
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