

INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING VOL. 15 NO. 1 (2023) 213 - 225

© Universiti Tun Hussein Onn Malaysia Publisher’s Office

IJIE

http://penerbit.uthm.edu.my/ojs/index.php/ijie

The International

Journal of

Integrated

Engineering

 ISSN : 2229-838X e-ISSN : 2600-7916

*Corresponding author: sachinbhat88@gmail.com
2023 UTHM Publisher. All rights reserved.

penerbit.uthm.edu.my/ojs/index.php/ijie

213

Design and Evolution of Deep Convolutional Neural Networks

in Image Classification – A Review

Sachin S. Bhat1*, Alaka Ananth2, Venugopala P. S.2

1Shri Madhwa Vadiraja Institute of Technology and Management,

 Bantakal, Udupi - 574 115, Karnataka, INDIA

2NMAM Institute of Technology, Nitte - 574110, Karnataka, INDIA

*Corresponding Author

DOI: https://doi.org/10.30880/ijie.2023.15.01.019

Received 11 October 2021; Accepted 24 February 2023; Available online 28 February 2023

1. Introduction

Machine Vision is a specialized area of research in Artificial Intelligence, which gives intelligence to computer

systems to extract the features from data to make certain predictions without being programmed. Various Machine

Learning(ML) techniques were developed in the last twenty years with an ambition to equal or excel at the human level

of perception. But these systems are unsuccessful to give the human level of satisfaction [1-6]. The ambitious virtue of

ML algorithms has developed a unique type of Artificial Neural Networks(ANNs) by imitating the human neuron system

[7]. These algorithms are called Convolutional Neural Networks(CNNs).

The earliest CNN model was proposed by Hubel based on the cerebral cortex system [8]. But it became popular only

after LeCuN’s work on time series data in 1989[9]. CNNs are still considered to be the best method to empathize the

image data. They have surpassed almost all the ML algorithms in pattern recognition, classification, and extraction [10].

Every major company in the IT sector has its research team to explore the new models and possible options of CNN [11].

CNN models are hot favorites in most machine vision competitions.

The architecture of CNN consists of many learning layers like convolutional, activation, pooling, etc. [12].

Convolutional layers perform many convolution operations with the help of filter banks. This helps the model in

extracting and learning the local features of an image. The output of convolution layer is fed to the activation layer. This

introduces non-linearity and makes the network to learn separate features from individual filters. Activation also

facilitates differentiating the images based on local features. Output of activation is a sampling layer which reduces the

overall dimension of the input which will be passed through other similar convolutional blocks [13]. In general, CNN

Abstract: Convolutional Neural Network(CNN) is a well-known computer vision approach successfully applied for

various classification and recognition problems. It has an outstanding power to identify patterns in 1D and 2D data.

Though invented in 80’s, it became hugely successful after LeCun’s work on digit identification. Several CNN based

models have been developed to record splendid performance on ImageNet and other databases. Ability of the CNN

in learning complex features at different hierarchy from the data had made it the most successful among deep learning

algorithms. Innovative architectural designs and hyper parameter optimization have greatly improved the efficiency

of CNN in pattern recognition. This review majorly focuses on the evolution and history of CNN models. Landmark

CNN architectures are discussed with their categorization depending on various parameters. In addition, this also

explores the architectural details of different layers, activation function, optimizers and other hyperparameters used

by CNN. Review concludes by shedding the light on the applications and observations to be considered while

designing the network.

Keywords: Convolutional Neural Network, Image Classification, hyper parameter, ReLU, ImageNet

http://penerbit.uthm.edu.my/ojs/index.php/ijie

Sachin S Bhat et al., Int. Journal of Integrated Engineering Vol. 15 No. 1 (2023) p. 213 - 225

 214

extracts multiple features of the image without being explicitly specified. This ability eliminates the need of separate

feature extractors as in ML. Hence, deep learning(DL) models have a benefit over the ML algorithms to solve complex

problems. Multiple layered representation in CNN give it the power to learn complex features at different levels of

hierarchy [14]. The application of CNN in segmentation and classification has flourished after observing its performance

improvement with increased depth in AlexNet[15]. Also, the processors with higher computational power like GPUs and

TPUs have contributed immensely to the admiration of CNN in these years. Transfer learning approach proposed in 2015

is also another reason for the popularity of CNNs [16]. By this method, features learned for a large set of data belonging

to a generic class can be transferred to classify a smaller group with a few other classes. They can also learn through a

large amount of unlabeled data which makes it easy to classify thousands of different classes.

DCNN acts similar to the system of the human neuron. Information is first received in the retinotopic area. Lateral

geniculate nucleus carry’s out high-pass filtering and contrast normalization. V1-V4 parts of visual cortex perform

detection via several stages [17]. Here, V1 and V2 act similar to convolution and sampling layers [18,19]. Temporal

region of the cortex appears like the dense layers of CNN making illation about the scene. Backpropagation reduces the

error rate by changing the filter weight resembles the response-based learning of humans.

CNNs started booming in AI from 2012 onwards. Many new models were proposed to solve a variety of problems.

It is all because of the design of new-new blocks and the introduction of multiple hyperparameters to fine-tune. CNN

started predominating the research industry after the fantastic functioning of Alexnet in the ‘ImageNet Large Scale Visual

Recognition Challenge’(ILSVRC) competition. Zefnet enabled the visualization of layerwise features [20]. VGG was the

first network to use a small-sized filter window to extract features from low spatial resolution. Most of the new

architectures proposed these days are inspired by VGG. GoogleNet enclosed the idea of splitting the dataset first then

transforming and merging. InceptionV3 gave the idea of creating multiple branches within a layer [21]. ResNet

introduced jump the connection concept which later inspired many following networks. Densenet[22] and Xception[23]

have explored the option of piling hundreds of layers one after another to solve complex problems. Nowadays, the

objective has shifted from developing a new architecture to fine-tuning and adjusting the parameters to attain the highest

accuracy for the customized data.

The remaining part of the paper is arranged in the following order: Part 2 discusses the historical aspect and evolution

of CNN along with their innovative architectures. Part 3 sheds light on the layer wise details of the CNN. Some of the

modern activation functions and optimizers are also briefed in this category. Part 4 briefs the applications of CNN and

the challenges faced in the design. We conclude in part 5.

2. Evolution of CNN

Since their inception in 2012, dozens of surveys have been carried out on CNNs to compile their basic components

[55]. Few papers have concentrated on their applications as well [24]. CNN has shown unparalleled efficiency in all

computer vision-related applications. It is inspired by human neurons whose history begins with the experiments of Hubel

in 1962. They developed many unsupervised models which collectively got the shape of CNN in the early 90’s. LeCun

first applied the concept of neo-cognitions in identifying the shape of digits [25]. This supervised training using

backpropagation was the earliest reported work on two-dimensional CNN [9, 26]. This exhibited the quality of auto-

feature extraction which was not present in the ML algorithms. Modified CNN was later developed by the name LeNet-

5 which incorporated feature detection from raw images and data augmentation. It had a total of 6 layers comprising of

Convolutional, Pooling, and 2 Fully-connected(FC) layers. NNs so far treated individual pixels as separate features which

used to elongate the computational time. A mechanism to speed up the processor was not available. But LeNet considered

the correlation between the pixel and it’s neighboring to extract the features. This simultaneously boiled down the time

and number of parameters. Even though this got a fame of being an inception model in CNN, its commercial ability was

restricted to hand gesture recognition.

After LeNet, not much research was carried out on CNN for next 10 years. Inability to decrease the training error

was the main reason incorporated. Also, it was assumed that handcrafted features from ML techniques were more efficient

than the features learned through backpropagation. Hence, Support Vector Machine (SVM) gained huge popularity and

overtook CNN in this period [27, 28]. The only noticeable research in this decade was by Simard who implemented CNN

on MNIST database [29]. This result outperformed many ML techniques available at that time. It also showed the

possibility of CNN in many other areas such as text classification, segmentation, and computer vision.

There were other problems in implementing deep learning algorithms. The architecture itself was too complex. It

was taking weeks together to train the entire model on large datasets in normal computers. Fine-tuning parameters

increased this time by multiple folds. In 2006, Hinton offered to train the network in a layer wise manner [30]. Huang

et. al proposed the use of maxpooling to learn the invariant features [31]. GPUs were released to the market in the next

year. NVIDIA introduced CUDA platform in 2007[32,33]. This regenerated the interest of researchers in CNN. ImageNet

dataset was introduced by Stanford research group in 2011, which contained millions of images with labels [34]. ILSVRC

annual competitions were organized to classify this data. This competition was one of the toughest in object recognition

and became a major break CNN ever anticipated.

Landmark CNN architecture was contributed by AlexNet which bagged the first prize in ILSVRC2012. AlexNet

surmounted the then all ML-DL algorithms. This showed the research community that the main drawback faced by CNN

Sachin S Bhat et al., Int. Journal of Integrated Engineering Vol. 15 No. 1 (2023) p. 213 - 225

 215

so far was the absence of training data and a parallel computing process. The number of layers in AlexNet was increased

to 7. The filter was an 11*11 mask. Activation functions were introduced. This helped the network to employ more

diverse applications. The main problem associated with this network was overfitting. To overcome this problem, dropout

layers were familiarized. Later, ZefNet[20] enabled the visualization of filter weights in individual layers. The motivation

behind ZefNet was to understand the neurons in FC layers envisioning the information. Reduction in the convolution

stride made more information to pass through the layers. In the later year, model of Vision Geometry Group (VGG) made

the size of filters so small with increased number of layers. This development is considered one of its best in terms of

research in CNN [35]. Depth is raised from 6 to 16 as well as 19 layers. Kernel mask was reduced from 11X11 and 7X7

to 3X3. This cut down the computation time and raised the parameters calculated. Pooling and zero padding were added

to the network. This network shot into renown with no time due to its architectural simplicity. GoogleNet changed the

overall layer design to decrease the computational cost [36]. This introduced a split and merging technique to get both

local and global features. Each layer was split into different sub-blocks. Multiple kernel sizes were used instead of a

single one. Hence, this was also called Network-of-networks. Average pooling with RMSprop was utilized by this [37].

Primary hindrance with GoogleNet was its highly customized behaviour to a specific module. The research from 2012 to

2016 showed that incrementing the number of layers helped CNN to discern more classes. This is mainly because of

learning a variety of features at different layers and also splitting complex issues into smaller modules.

Post 2016, the research community shifted its goal from designing the layers to improve the performance by fine-

tuning various parameters. One of the main concerns was dealing with the vanishing gradient problem. Cross channel

learning was introduced to tackle this issue [38]. A similar concept called skip-connection was acquainted [39]. This

regulated the motion of information from one layer to another. The same theme was borrowed by ResNet train till 150

layers [40]. Cross-channel connectivity was later extended to multilayer connectivity by DenseNet to enhance the

representation [41]. Hybrid models were also proposed using already existing models to improve the accuracy [42,43,44].

These diverse architectures can be broadly watershed into 7 different categories as shown in the figure 1. These branches

are mainly depending on the spatial exploitation, the number of layers, cross connectivity, width of individual layers,

features extracted, channel boosting, and selection of applicable features.

Spatial exploitation deals with the selection of filters, stride, and activation as CNN bears a huge number of

parameters to fine-tune. Depth related models tried to get more accuracy with higher depths. In conventional nets,

accuracy gradually decreased after the introduction of more than ten FC layers. But HighwayNet showed a steady

convergence rate till hundreds of layers [45]. ResNext tried to extend this concept with 152 layers and won ILSVRC15.

The third variety namely multipaths proposed cross connection between different layers. They skipped certain layers in

between while training. Dropouts were used to turn off a few nodes in each iteration. This types of networks like

DenseNet mainly helped in tackling diminishing gradient issue.

As the number of layers increased by multiple folds, it was observed that some layers in them were not learning the

useful features at all. Though with increased complexity, this did not contribute much towards efficiency. WideNets

helped to solve this problem [46]. Though WideNets used double the parameters as Resnet, they trained more effectively

than the ResNets with twice the depth. Stochastic depths assisted in reducing vanishing gradients. In the later stage,

researchers trained the CNNs to learn multiple types of features rather than one type. Features played an important

discrimination factor in the performance of CNN. Based on the inputs, feature map CNNs infused diverse features from

the data. SqueezeNets suppressed insignificant features and provided more weight factors to more significant ones [47].

All the CNN architectures designed so far are given in table 1.

Sachin S Bhat et al., Int. Journal of Integrated Engineering Vol. 15 No. 1 (2023) p. 213 - 225

 216

Fig. 1 - Categories of DCNN

Table 1 - Various CNN architectures

Name Remark
Params

in lakhs

Error Rate

On

ImageNet

Depth Category
Activation

function

LeNet[9] - 1st famous model 0.60

0.80

MNIST:

0.94

6 Spatial None

AlexNet[15]

- Deeper and wider

- Used activation and

Dropout

600 15.3 7 Spatial ReLU

ZefNet[20]
- layerwise feature

visualisation
600 14.7 8 Spatial ReLU

VGG[35]
- Most famous so far

- Small kernel
1380 7.4 16 -19 Spatial ReLU

GoogLeNet

[36]

- Split and Merge

- blocks introduced
40 6.70 21 Spatial ReLU

InceptionV3

[48]

- Replacement of larger

filter by smaller one

introduced 1D filter

236
3.58

NA Depth ReLU

Highway

Networks [45]
- Multiple Paths 23 7.8 19

Depth +

Cross

connection

ReLU and

tanh

InceptionV4

[21]

- Split and Merge

-Uses asymmetric filter
- 3.80 NA Depth ReLU

Inception [36]

- Split, Transform,

Merge, and Residual

Links

- 3.11 NA

Depth +

Cross

connection

ReLU

ResNet [40]

- Residual Learning

and Identity mapping

based skip connection

680
3.57

152

Spatial +

Depth +

Cross

connection

ReLU

DelugNet [49]
- Allow cross layer

data flow
2020 3.76 146

Cross

connection
ReLU

FractalNet [50] - Multiple path lengths 3860 7.27 20
Cross

connection
ReLU

WideResNet

[46]

- More width, less

depth
3650 3.89

28

-
Width ReLU

Sachin S Bhat et al., Int. Journal of Integrated Engineering Vol. 15 No. 1 (2023) p. 213 - 225

 217

Xception [51]

- Depth wise CN

followed by point wise

CN

2280 0.06 36 Width ReLU, ELU

RANN [52]
- Introduces Attention

Mechanism
860

3.90

452 Attention Sigmoid

ResNexT [22]

- Cardinality

- Homogeneous

topology

- Convolution in group

6810
3.58

29

Spatial ReLU

SE Net [47]
-Dependency between

feature maps
- 3.60 154 Feature Map ReLU

DenseNet [41]
- Cross-layer

information flow
153 5.19 250

Cross

connection
ReLU

PolyNet [40]

- diversity in structure

- Poly Inception

Module

- 4.25
-

Width ReLU

PyramidNet

[23]

Gradual increase of

width
270 4.7 165 Width ReLU

Convolution

Block Attention

Module [23]

- combination of spatial

and feature map

information

4896 5.60 100 Attention ReLU

Squeezenet [47]
-Channelwise

excitation
-

12

- Attention ReLU

ChannelBooste

dCNN [53]

- Boosting with extra

information
- - -

Channel

Boost
-

Competitive

SEnet [54]

Channel rescaling 3692 3.58 28 Feature Map
ReLU,

Sigmoid

3. The Architecture of CNN Layers

In image analysis and classification, DCNN has shown unparalleled efficiency in detecting patterns. Convolutional

layers in the network differentiate CNN from other types of Neural Network algorithms. These layers receive the inputs,

transform them by performing convolution, and forwards these transformed outputs to subsequent layers.

DCNN is a most popular ANN in image analysis and classification having a specialization in detecting the patterns

and making sense of them. Convolutional layers hidden inside the network differentiate it from Multi-Layer Perceptron

and Recurrent Neural Network. Convolution operation in these layers receives the inputs, transforms them using certain

operation, and outputs the transformed input to the following layer. Apart from these layers, the network also contains

pooling and a sequence of FC layers. Different types of filters are used to record the features of the model. Kernel values

are updated according to the response of the model to find the best kernel value. Max pooling and activation functions

are utilized for this purpose.

CNN takes an order of three tensors as its input irrespective of the type of image. These input images will be

processed through a series of layers. Here, the layer denotes a single processing step. This can be a convolution layer, FC

layer, activation, or pooling layer. In a forward pass, CNN goes through layers as shown in Equation 1.

𝑥1 → 𝑝1 → 𝑥2 → · · · → 𝑥𝐿−1 → 𝑝𝐿−1 → 𝑥𝐿 → 𝑝𝐿 → 𝑧 (1)

The input x1 is processed in several layers and the outputs of these layers are termed as x2, x3 ... xL. Each layer's

output will be used as the input for the next. Parameters involved in the processing of these layers are denoted by tensors

p1, p2, pL. However, one extra layer ‘z’ is added for backpropagation. For the classification problem, the approach is

to output xL as a C dimensional vector, where ith entry encodes the prediction. If all the parameters in the CNN model

are learned, the network is run forward for prediction. In addition to this, various hyperparameters are also used to enhance

performance. Following section briefs these components used in CNN.

3.1 Convolutional Layer

This layer acts as a feature extractor. Each neuron in a feature or activation map contains a sensory field that is

connected to neurons in the previous layer through trainable weights called filter banks. The element performing the

convolution operation is referred to as kernel/filter. These filters are applied on each image and images are modified

according to the filter values. Subsequent feature map values hi,j are calculated according to equation 2 for input x,

convolution kernel k, kernel width m, convolution output h.

Sachin S Bhat et al., Int. Journal of Integrated Engineering Vol. 15 No. 1 (2023) p. 213 - 225

 218

ℎ𝑖,𝑗 = ∑ ∑ 𝑤𝑘,𝑙 𝑥𝑖+𝑘,𝑗+𝑙−1
𝑚
𝑙=1

𝑚
𝑘=1 (2)

With the size of the filter being 𝑚 ∗ 𝑛, dimension of the image being 𝑙 and number of filters being 𝑘, parameters

generated in each layer(𝑝) with bias one are calculated as

𝑝 = [(𝑚 ∗ 𝑛 ∗ 𝑙) + 1] ∗ 𝑘 (3)

The pooling layer is applied to the feature maps generated by each convolution layer to compress the spatial size of

an image so that the final output of the network will be 1X1 feature vector.

3.2 Pooling Layer
Pooling layers were created to decrease the number of parameters expected to portray layers deeper in the network.

Pooling additionally decreases the number of calculations necessary for training the network, or simply running it forward

during a classification operation. Pooling layers give some restricted measures of translational and rotational invariance.

Three types of pooling can be generally used: average pooling, max pooling, and min pooling [46]. Pooling passes the

dominant information present in the neighborhood to the next layer depending on the type of pooling. This can be

mathematically expressed as in equation 4 where fp is a type of pooling.

ℎ𝑖,𝑗 = 𝑓𝑝 {𝑥𝑖+𝑘−1,𝑗+𝑙−1,∀1 ≤ 𝑘 ≤ 𝑚 𝑎𝑛𝑑 1 ≤ 𝑙 ≤ 𝑚} (4)

Some CNN architectures like GoogleNet have tried bigger strides in substitution of pooling.

3.3 Fully Connected (FC) Layer
FC layers are utilized in the last phases of the CNN to interface the yield of the convolution layer to the next level.

Usually, the output of the convolution layer will be in 3D whereas FC layer anticipates a 1D vector of numbers. Hence,

a flattened layer is used at the beginning of FC block to convert the output of the last pooling layer to a vector. FC layer

contains some dense layers with thousands of neurons. These neurons are trained according to the input weights. The

dense layers learn how to utilize the features created by convolutions to accurately classify the images. A dropout layer

is used between two dense layers for regularization and to forbid overfitting. The neurons of the last layer of FC block

are a linear classifier that the outputs of the network can be interpreted as posterior probabilities. This layer assigns a

probability value to each class for the input to perform classification.

3.4 Dropout
Dropout is a regularization method for precluding overfitting of a network [57]. It is done by expelling some nodes

in a layer with a defined probability p who do not take part in the training. Subsequent to training, they are supplanted in

the network with their original weights. This forestalls the FC layers from overfitting and betters the performance on a

validation set. The output of a convolution layer is a linear weighted sum of the inputs.

While looking at the ordinary LSM loss for this layer of a regular (5) and dropout network (6),

𝐸𝑁 =
1

2
 (𝑡 − ∑ 𝑝𝑖𝑤𝑖𝐼𝑖

𝑛
𝑖=1)2

 (5)

𝐸𝐷 =
1

2
 (𝑡 − ∑ 𝛿𝑖𝑤𝑖𝐼𝑖

𝑛
𝑖=1)2

 (6)

The dropout rate is 𝛿 with probability p, where

𝛿 ~ Bernoulli(p) (7)

The backpropagation for network training utilizes a gradient descent method. By taking the derivative of the gradient

of the dropout network in equation (5) we get,

𝜕𝐸𝑁

𝜕𝑤𝑖
= −𝑡𝑝𝑖𝐼𝑖 + 𝑤𝑖𝑝𝑖

2𝐼𝑖
2 + ∑ 𝑤𝑖𝑝𝑖𝑝𝑗𝐼𝑖𝐼𝑗

𝑛
𝑗=1,𝑗≠1 (8)

Now, we find the expectation of gradient of the dropout network,

Sachin S Bhat et al., Int. Journal of Integrated Engineering Vol. 15 No. 1 (2023) p. 213 - 225

 219

𝐸 [
𝜕𝐸𝐷

𝜕𝑤𝑖
] = −𝑡𝑝𝑖𝐼𝑖 + 𝑤𝑖𝑝𝑖

2𝐼𝑖
2 + 𝑤𝑖𝑉𝑎𝑟(𝛿𝑖)𝐼𝑖

2 + ∑ 𝑤𝑖𝑝𝑖𝑝𝑗𝐼𝑖𝐼𝑗

𝑛

𝑗=1,𝑗≠1

 =
𝜕𝐸𝑁

𝜕𝑤𝑖
 + 𝑤𝑖𝑉𝑎𝑟(𝛿𝑖)𝐼𝑖

2

 =
𝜕𝐸𝑁

𝜕𝑤𝑖
 + 𝑤𝑖𝑝𝑖(1-𝑝𝑖) 𝐼𝑖

2
 (9)

By looking at equation 9, the gradient with dropout has the same expectation as the gradient of a regularised network.

Therefore, minimising the dropout loss (in equation 6) is the same as minimising a regularised network shown in equation

10, and differentiating the regularized network will get the gradient of a dropout network.

𝐸𝑅 =
1

2
 (𝑡 − ∑ 𝑝𝑖𝑤𝑖𝐼𝑖

𝑛
𝑖=1)2 + ∑ 𝑤𝑖𝑝𝑖(1 − 𝑝𝑖)𝐼𝑖

2 𝑛
𝑖=1 (10)

To obtain the maximum regularization, p (1- p) in equation 10 should be maximum. This is possible only if p=0.5.

Hence, in general, a dropout ratio of 0.5 will be used in most of the networks.

3.5 Activation Function

An important task in designing any deep learning architecture is to fine tune its hyperparameters so that the

network attains maximum accuracy by incorporating the highest number of features from the data. Some of the

important hyperparameters to be tuned in the network are: activation function, padding, stride size of the input,

optimizer, and learning rate. A description of a few of these parameters with the incorporated methods of fine-tuning is

given below.

Activation functions(AFs) decide the output of CNN like yes or no. It converts the learned linear mappings into a

nonlinear type for propagation. Most of the networks suffer from either vanishing or exploding gradient problems

because of the repeated multiplication of derivative terms with the values. Hence, AFs restrict the values of these

gradients in a specific range. Despite the depth of CNNs, one of the important features in the architecture is the use of

AFs. Many new functions have been proposed ever since the discovery of Tanh [58].

Image class and image data have a non-linear relationship. The activation function must be nonlinear for a neural

network to construct this relationship. In absence of non-linearity, a neural network would be capable of only linear

classification. Rectified Units family is the most notable one in this. ReLu is a piecewise linear function which clips the

–ve part to zero while retaining the +ve part [63]. In contrast to this, a variation of ReLu called leakyReLu assigns a

non-zero slop to –ve part [64]. In Parameterized ReLu or PReLU, coefficients of the –ve parts are adaptively learned

rather than predefined [66]. In the third variant randomised ReLU or RReLU, slopes of –ve part are randomised within

a range in the training phase and are fixed in testing [67]. Exponential Linear Units or ELUs have -ve values, which

allows the network to push the mean activations more like zero [65]. Properties of some of the linear AFs with variants

of ReLU are given in table 2.

Table 2 - Description of different activation functions

Function Description Function representation Error Rate

TanH[58]

Hyperbolic tangent

suffers from Vanishing gradient problem

Limitation of tanH birthed ReLu

𝑓(𝑥) =
1

1 + exp (−1)

with range (-1,1)

NA

Hard

Tanh[62]

Hard hyperbolic function

Computationally more efficient

𝑓(𝑥)
= max(−1, min(1, 𝑥))

CIFAR10: 0.1064

Sigmoid [59]

More generalized logistic activation

function used for multiclass problem

suffers from backpropagation error

𝑓(𝑥) =
1

1 + 𝑒𝑥

for x being input

NA

Hardsigmoid[

60]

Used when approximation output is

sufficient

Variation of sigmoid with lesser

computation cost

Preferred when speed is more important

than precision

𝑓(𝑥) = max(0, min(1, 𝑥))

NA

ReLU[63]
Most popular so far

No backpropagation errors

𝑓(𝑥) = max (𝑥, 0)

CIFAR10:0.1245

CIFAR00: 0.429

Sachin S Bhat et al., Int. Journal of Integrated Engineering Vol. 15 No. 1 (2023) p. 213 - 225

 220

Suffers from vanishing gradient

problem

with range (0, ∞)

LeakyReLU[6

4]

ReLu with increased range

Both function and its derivatives are

monotonic in nature

𝑓(𝑥) = max (𝑥, 𝑎𝑥)
a=0.01 with range (-∞ to

+∞)

For a=100

CIFAR10:0.1266

CIFAR00: 0.4205

PReLU[66]

Parametric ReLU

multiplies the negative input by a small

value and keeps the positive input as is

f(x)=x if x>0, else ax

acts like ReLU for a=0

and as LeakyReLu for a>0

CIFAR10:0.1179

CIFAR00: 0.4163

RReLU[67] Randomized version of leaky ReLU

In training,

f(x)=x if x>0, else ax

In testing

f(x)=x/a

CIFAR10:0.1119

CIFAR00: 0.4025

ELU[65]

Can produce negative outputs unlike

Relu

Range(-infinity to infinity)

f(x)=x, if x>0, else a(ex –

1)

CIFAR10:0.1804

CIFAR00: 0.4580

3.6 Optimizer

During the training, we change the weights of the network to attempt to limit the loss function (E), and improve the

accuracy of the predictions(X). Optimizers are used to discover the optimized value for the model weights (W). These

are one of the two categories. First order optimizers like Gradient descent use Gradient values that minimize or maximize

the loss function with respect to the parameters. Second order optimizers like Hessian use second order derivatives to

minimize the loss function. Due to computational cost, second order optimizers are not widely used. Gradient Descent is

the most significant method and the foundation to train and optimize DL systems. It updates the weights by controlling

the variance and tunes the parameters in the direction of decreasing the loss function. It is a method of minimizing the

objective function J(θ) by updating the parameters in the opposite direction of the gradient of the objective function ∇ θ.

J(θ). Properties of different gradient based optimizers are given in table 3.

Table 3 - Optimizers

Optimizer Property
Accuracy

on MNIST
Loss

Stochastic

Gradient

Descent

(SGD)[68]

Function fluctuates heavily

Computes gradient of cost function

Performs parameter(θ) updation for every training example xi and label yi

with a learning rate η

θ=θ−η.∇θ .J(θ, x(i),y(i))

0.8903 1.886

Adagrad

[69]

Deals well with sparse data.

Learning rate is always decaying

g(t,i) is the gradient of the loss function with respect to the

parameter θ(i) at time step t

θ(t + 1) = θ(t) −
η

√Gt,i

gt,i

Gt,i is a diagonal matrix which is the sum of the squares of the past

gradients.

0.4086 2.048

RMSProps

[70]

Special version of Adagrad

Accumulates gradients in a fixed window.

The only difference RMSProp has with Adagrad is that the gt term is

calculated by exponentially decaying average E[g2]t and not the sum of

gradients.

- θ(t + 1) = θ(t) −
η

√E[g2]t
gt,i

0.458 1.649

Adadelta

[71]

Robust extension of Adagrad where denominator is RMS error criterion

of the gradient

θ(t + 1) = θ(t) −
η

√RMS[gt]
gt,i

0.272 2.20

Adam [72]
Adagrad+RMSProps

Requires less memory and less tuning
0.72 0.919

Sachin S Bhat et al., Int. Journal of Integrated Engineering Vol. 15 No. 1 (2023) p. 213 - 225

 221

Rectifies every problem that is faced in other optimization techniques

θt+1 = θt −
η

√vt̂ + ε
mt̂

Where vt and mt are estimates of mean and uncentered variance

Adamax

[72]

Variant of Adam based on the infinity norm constrained vt denoted by ut

θt+1 = θt −
η

ut

mt̂
0.6263 1.188

Nadam [73]
RMSprops with Nesterov momentum mt̂ and decay rate 𝛽1

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣�̂� +𝜀
(𝛽1𝑚�̂�

(1− 𝛽1)𝑔𝑡

(1− 𝛽𝑡
1)

)
0.7196 0.942

3.7 Padding

Padding is a group of zeros placed around the image. This is done to prevent the reduction of the image dimension

after performing convolution. With repeated convolution, size of the output image will gradually shrink which can cause

a problem of losing the information at image boundaries. This can be tackled by adding zeros in the input before

convolution as shown in figure 2. This helps in maintaining the input dimension at the output. The padding width should

meet equation 11, where p is padding and f is the filter dimension.

𝑝 =
𝑓−1

2
 (11)

3.8 Stride

Fig. 2 - Convolution with zero padding and stride = 2

Stride(S) is a parameter portrays what number of pixels a filter will be interpreted horizontally. For example,

GoogleNet uses stride value 2. For S=2, filter horizontally moves across the image two pixels at a time as shown in Figure

6. The dimensions of the output matrix(𝑛𝑝) - taking into account padding(p) and stride(s) can be calculated as

𝑛𝑝 =
𝑛𝑖𝑛 + 2𝑝−𝑓

𝑠
+ 1 (12)

4. Applications and Observations

CNN is fortunately implemented in diverse DL applications like pattern recognition, classification, segmentation

and, many more. But, like any other DL technique CNN too requires a large dataset. It has shown enormous achievement

on labelled data. It is hugely popular in natural language processing. Many CNN-based applications are popular in

Language modelling and information retrieval. Researches in [74,75] have used CNN to find word relations and matching

of two lines. CNN is also having a notable contribution in face and action detection [76]. Zang et. al proposed cascaded

CNN for pose estimation [77]. Sijin had shown that perceptrons in hidden layers can learn local features of the body [78].

3D CNNs are also developed to extract features from different channels of input frames [79]. Newly region-based CNNs

are extensively used for object identification. Ren et. al developed full RCNN to detect the boundary of an object at

different places [80]. Region based CNNs are employed for object detection in PASCALVOC dataset. CNNs are also

used in medical field for the diagnosis of lung cancer or breast cancer. Externally labelled data is used to train the network

through which CNN will be able to learn the features and predict accordingly [81,82]. Apart from these, a few other

major areas where CNNs have shown state of art performance are traffic detection [83], Twitter sentiment analysis [84],

speech recognition [85], and vocabulary recognition [86].

CNN has attained great functioning on different types of data. However, particularly in image classification, the

results are not promising with respect to the identification of pose and orientation. Data augmentation proposed by

Sachin S Bhat et al., Int. Journal of Integrated Engineering Vol. 15 No. 1 (2023) p. 213 - 225

 222

Alexnet has solved this issue. Data augmentation assists with improving the performance of CNN in two ways. On one

side it increases the number of images in the training dataset. On the other hand, it learns more features by means of

rotation, scaling, replicating, and mirroring the labelled images. Features learnt by the lower layers will be passed on to

the higher layers in capsule networks. Another challenge CNN faces are the noisy data. Even a small amount of noisy

data is enough to confuse the network to classify the same type of images with and without noise as two separate classes.

Some of the main observations to be considered while designing a network are listed below:

 As the features are automatically extracted by the CNN layers without human intervention, it is sometimes

important to know their nature. Feature map visualization helps to a large extent in this direction.

 Unlike humans, CNN needs a huge amount of data to learn things. So, it is always essential to have enough

labelled training data while handling DL problems.

 Selection of hyperparameter is the most important thing to take care of when designing the architecture. An

inappropriate selection of hyperparameter will degrade the performance of CNN in a great magnitude. Also, a

small change in the value of above said parameter can cost dearly. So, it is the main design issue to be addressed

with the utmost care during the network design.

 CNN has a huge potential in handling semantic data. Meta-algorithmic techniques such as ensembles are

successfully sued to a wide range of situations.

 With the advancement in GPUs and parallel computing, the learning limit of CNN is upgraded. However, the

depth of the network causes a substantial overhead on memory and other resources. The primary worry with

CNNs is the run-time relevance. Also, utilization of CNN is blockaded in small types of equipment like mobile

in light of its high computational expense.

 Hyperparameter tuning is a repetitive and instinct-driven task, which cannot be characterized by means of

explicit formulation.

5. Conclusion

CNN has gained exceptional ground in pattern recognition and has regenerated interest in neural networks. It has a

great ability to extract the features in one and two-dimensional data. A lot of research has been done to improve the

performance of CNN architectures in image classification tasks. Innovative architectural designs and hyper parameter

optimizations have greatly improved the efficiency of CNN in pattern recognition. This study examines improvement in

CNN architectures based on processing unit design patterns and their details. This overview covers the evolutionary

history of CNNs, its applications, problems, and architectural aspects, in addition to categorizing CNNs into several

classes.

This is a new step, maybe a very huge and crucial step, in the ongoing effort to improve the capabilities of computer

machines so that they can solve problems that are vital to us humans. Clearly, the new CNN models have a lot of potential

for making our lives easier and reducing our reliance on unreliable and expensive human resources to complete routine

jobs efficiently.

Acknowledgement

This work is supported by VTU under VTU Research Grants Scheme 2021 and Karnataka Science and Technology

Academy under Short Term Studies 2022.

References

[1] Chapelle, Olivier. "Support vector machines for image classification", 1998.

[2] Lowe, D. G. (1999, September). Object recognition from local scale-invariant features. In Proceedings of the

seventh IEEE international conference on computer vision (Vol. 2, pp. 1150-1157). IEEE.

[3] Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (SURF). Computer vision and

image understanding, 110(3), 346-359.

[4] Dalal, N., & Triggs, B. (2005, June). Histograms of oriented gradients for human detection. In 2005 IEEE computer

society conference on computer vision and pattern recognition (CVPR'05) (Vol. 1, pp. 886-893). Ieee.

[5] Ojala, Timo, Matti Pietikäinen, and David Harwood. "A comparative study of texture measures with classification

based on featured distributions." Pattern recognition Vol. 29, no. 1, pp. 51-59, 1996.

[6] Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification

based on featured distributions. Pattern recognition, 29(1), 51-59.

[7] LeCun, Y., Kavukcuoglu, K., & Farabet, C. (2010, May). Convolutional networks and applications in vision.

In Proceedings of 2010 IEEE international symposium on circuits and systems (pp. 253-256). IEEE.

[8] Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The

Journal of physiology, 195(1), 215-243.

[9] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989).

Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551.

Sachin S Bhat et al., Int. Journal of Integrated Engineering Vol. 15 No. 1 (2023) p. 213 - 225

 223

[10] Ciresan, D., Giusti, A., Gambardella, L., & Schmidhuber, J. (2012). Deep neural networks segment neuronal

membranes in electron microscopy images. Advances in neural information processing systems, 25.

[11] Deng, L., & Yu, D. (2014). Deep learning: methods and applications. Foundations and trends® in signal

processing, 7(3–4), 197-387.

[12] Jarrett, K., Kavukcuoglu, K., Ranzato, M. A., & LeCun, Y. (2009, September). What is the best multi-stage

architecture for object recognition? In 2009 IEEE 12th international conference on computer vision (pp. 2146-

2153). IEEE.

[13] Scherer, D., Müller, A., & Behnke, S. (2010). Evaluation of pooling operations in convolutional architectures for

object recognition. In Artificial Neural Networks–ICANN 2010: 20th International Conference, Thessaloniki,

Greece, September 15-18, 2010, Proceedings, Part III 20 (pp. 92-101). Springer Berlin Heidelberg.

[14] Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends® in Machine Learning, 2(1), 1-127.

[15] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural

networks. Communications of the ACM, 60(6), 84-90.

[16] Qureshi, A. S., Khan, A., Zameer, A., & Usman, A. (2017). Wind power prediction using deep neural network based

meta regression and transfer learning. Applied Soft Computing, 58, 742-755.

[17] Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on knowledge and data

engineering, 22(10), 1345-1359.

[18] Laskar, M. N. U., Giraldo, L. G. S., & Schwartz, O. (2018). Correspondence of deep neural networks and the brain

for visual textures. arXiv preprint arXiv:1806.02888.

[19] Grill-Spector, K., Weiner, K. S., Gomez, J., Stigliani, A., & Natu, V. S. (2018). The functional neuroanatomy of

face perception: from brain measurements to deep neural networks. Interface Focus, 8(4), 20180013.

[20] Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision–

ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13 (pp.

818-833). Springer International Publishing.

[21] Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017, February). Inception-v4, inception-resnet and the impact

of residual connections on learning. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No.

1).

[22] Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural

networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1492-1500).

[23] Han, D., Kim, J., & Kim, J. (2017). Deep pyramidal residual networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 5927-5935).

[24] Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep

learning applications and challenges in big data analytics. Journal of big data, 2(1), 1-21.

[25] Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a mechanism of

visual pattern recognition. In Competition and Cooperation in Neural Nets: Proceedings of the US-Japan Joint

Seminar held at Kyoto, Japan February 15–19, 1982 (pp. 267-285). Springer Berlin Heidelberg.

[26] Linnainmaa, S. (1970). The representation of the cumulative rounding error of an algorithm as a Taylor expansion

of the local rounding errors (Doctoral dissertation, Master’s Thesis (in Finnish), Univ. Helsinki).

[27] Joachims, T. (2005, June). Text categorization with support vector machines: Learning with many relevant features.

In Machine Learning: ECML-98: 10th European Conference on Machine Learning Chemnitz, Germany, April 21–

23, 1998 Proceedings (pp. 137-142). Berlin, Heidelberg: Springer Berlin Heidelberg.

[28] Decoste, Dennis, and Bernhard Schölkopf. "Training invariant support vector machines." Machine learning, Vol.

46, no. 1, pp. 161-190, 2002.

[29] Deng, L. (2012). The mnist database of handwritten digit images for machine learning research [best of the

web]. IEEE signal processing magazine, 29(6), 141-142.

[30] Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural

computation, 18(7), 1527-1554.

[31] Ranzato, M. A., Huang, F. J., Boureau, Y. L., & LeCun, Y. (2007, June). Unsupervised learning of invariant feature

hierarchies with applications to object recognition. In 2007 IEEE conference on computer vision and pattern

recognition (pp. 1-8). IEEE.

[32] Lindholm, E., Nickolls, J., Oberman, S., & Montrym, J. (2008). NVIDIA Tesla: A unified graphics and computing

architecture. IEEE micro, 28(2), 39-55.

[33] Nickolls, J., Buck, I., Garland, M., & Skadron, K. (2008). Scalable parallel programming with cuda: Is cuda the

parallel programming model that application developers have been waiting for? Queue, 6(2), 40-53.

[34] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556.

[35] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with

convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).

[36] Dauphin, Y., De Vries, H., & Bengio, Y. (2015). Equilibrated adaptive learning rates for non-convex

optimization. Advances in neural information processing systems, 28.

Sachin S Bhat et al., Int. Journal of Integrated Engineering Vol. 15 No. 1 (2023) p. 213 - 225

 224

[37] Karpathy, A., Johnson, J., & Fei-Fei, L. (2015). Visualizing and understanding recurrent networks. arXiv preprint

arXiv:1506.02078.

[38] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on

sequence modeling. arXiv preprint arXiv:1412.3555.

[39] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition (pp. 770-778).

[40] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks.

In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708).

[41] Yamada, Y., Iwamura, M., & Kise, K. (2016). Deep pyramidal residual networks with separated stochastic

depth. arXiv preprint arXiv:1612.01230.

[42] Huang, G., Sun, Y., Liu, Z., Sedra, D., & Weinberger, K. Q. (2016). Deep networks with stochastic depth.

In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016,

Proceedings, Part IV 14 (pp. 646-661). Springer International Publishing.

[43] Targ, S., Almeida, D., & Lyman, K. (2016). Resnet in resnet: Generalizing residual architectures. arXiv preprint

arXiv:1603. 08029..

[44] Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Highway networks. arXiv preprint arXiv:1505.00387.

[45] Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. arXiv preprint arXiv:1605.07146.

[46] Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 7132-7141).

[47] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for

computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818-

2826).

[48] Kuen, J., Kong, X., Wang, G., & Tan, Y. P. (2017). DelugeNets: deep networks with efficient and flexible cross-

layer information inflows. In Proceedings of the IEEE International Conference on Computer Vision

Workshops (pp. 958-966).

[49] Larsson, G., Maire, M., & Shakhnarovich, G. (2016). Fractalnet: Ultra-deep neural networks without

residuals. arXiv preprint arXiv:1605.07648.

[50] Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 1251-1258).

[51] Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., ... & Tang, X. (2017). Residual attention network for

image classification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3156-

3164).

[52] Khan, A., Sohail, A., & Ali, A. (2018). A new channel boosted convolutional neural network using transfer

learning. arXiv preprint arXiv:1804.08528.

[53] Hu, Y., Wen, G., Luo, M., Dai, D., Ma, J., & Yu, Z. (2018). Competitive inner-imaging squeeze and excitation for

residual network. arXiv preprint arXiv:1807. 08920..

[54] Khan, Asifullah, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. "A survey of the recent architectures of

deep convolutional neural networks." arXiv preprint arXiv:1901.06032, 2019.

[55] Lee, C. Y., Gallagher, P. W., & Tu, Z. (2016, May). Generalizing pooling functions in convolutional neural

networks: Mixed, gated, and tree. In Artificial intelligence and statistics (pp. 464-472). PMLR.

[56] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to

prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958.

[57] LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. R. (1998). Neural networks: Tricks of the trade. Springer Lecture

Notes in Computer Sciences, 1524(5-50), 6.

[58] Han, J., & Moraga, C. (1995). The influence of the sigmoid function parameters on the speed of backpropagation

learning. In from Natural to Artificial Neural Computation: International Workshop on Artificial Neural Networks

Malaga-Torremolinos, Spain, June 7–9, 1995 Proceedings 3 (pp. 195-201). Springer Berlin Heidelberg.

[59] Courbariaux, M., Bengio, Y., & David, J. P. (2015). Binaryconnect: Training deep neural networks with binary

weights during propagations. Advances in neural information processing systems, 28.

[60] Elfwing, S., Uchibe, E., & Doya, K. (2018). Sigmoid-weighted linear units for neural network function

approximation in reinforcement learning. Neural Networks, 107, 3-11.

[61] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language

processing (almost) from scratch. Journal of machine learning research, 12(ARTICLE), 2493-2537.

[62] Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of

the 27th international conference on machine learning (ICML-10) (pp. 807-814).

[63] Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013, June). Rectifier nonlinearities improve neural network acoustic

models. In Proc. icml (Vol. 30, No. 1, p. 3).

[64] Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network learning by exponential

linear units (elus). arXiv preprint arXiv:1511.07289.

Sachin S Bhat et al., Int. Journal of Integrated Engineering Vol. 15 No. 1 (2023) p. 213 - 225

 225

[65] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural

networks. Communications of the ACM, 60(6), 84-90.

[66] Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations in convolutional

network. arXiv preprint arXiv:1505.00853.

[67] Schaul, Tom, Ioannis Antonoglou, and David Silver. "Unit tests for stochastic optimization." arXiv preprint

arXiv:1312.6055, 2013.

[68] Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic

optimization. Journal of machine learning research, 12(7).

[69] Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent

magnitude. COURSERA: Neural networks for machine learning, 4(2), 26-31.

[70] Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.

[71] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

[72] Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013, May). On the importance of initialization and momentum

in deep learning. In International conference on machine learning (pp. 1139-1147). PMLR.

[73] Collobert, R., & Weston, J. (2008, July). A unified architecture for natural language processing: Deep neural

networks with multitask learning. In Proceedings of the 25th international conference on Machine learning (pp.

160-167).

[74] Xue, X., & Yin, X. (2011, October). Topic modeling for named entity queries. In Proceedings of the 20th ACM

international conference on Information and knowledge management (pp. 2009-2012).

[75] Farfade, S. S., Saberian, M. J., & Li, L. J. (2015, June). Multi-view face detection using deep convolutional neural

networks. In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval (pp. 643-650).

[76] Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded

convolutional networks. IEEE signal processing letters, 23(10), 1499-1503.

[77] Lee, S., & Nirjon, S. (2020, June). Fast and scalable in-memory deep multitask learning via neural weight

virtualization. In Proceedings of the 18th International Conference on Mobile Systems, Applications, and

Services (pp. 175-190).

[78] Ji, S., Xu, W., Yang, M., & Yu, K. (2012). 3D convolutional neural networks for human action recognition. IEEE

transactions on pattern analysis and machine intelligence, 35(1), 221-231.

[79] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal

networks. Advances in neural information processing systems, 28.

[80] Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2016, July). Breast cancer histopathological image

classification using convolutional neural networks. In 2016 international joint conference on neural networks

(IJCNN) (pp. 2560-2567). IEEE.

[81] Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2015). A dataset for breast cancer histopathological

image classification. Ieee transactions on biomedical engineering, 63(7), 1455-1462.

[82] Cireşan, D., Meier, U., Masci, J., & Schmidhuber, J. (2012). Multi-column deep neural network for traffic sign

classification. Neural networks, 32, 333-338.

[83] Lin, H., Jia, J., Qiu, J., Zhang, Y., Shen, G., Xie, L, & Chua, T. S. (2017). Detecting stress based on social

interactions in social networks. IEEE Transactions on Knowledge and Data Engineering, 29(9), 1820-1833.

[84] Abdel-Hamid, O., Mohamed, A. R., Jiang, H., & Penn, G. (2012, March). Applying convolutional neural networks

concepts to hybrid NN-HMM model for speech recognition. In 2012 IEEE international conference on Acoustics,

speech and signal processing (ICASSP) (pp. 4277-4280). IEEE.

[85] Mohamed, A. R., Dahl, G. E., & Hinton, G. (2011). Acoustic modeling using deep belief networks. IEEE

transactions on audio, speech, and language processing, 20(1), 14-22.

