157,907 research outputs found

    Image-based Decision Support Systems: Technical Concepts, Design Knowledge, and Applications for Sustainability

    Get PDF
    Unstructured data accounts for 80-90% of all data generated, with image data contributing its largest portion. In recent years, the field of computer vision, fueled by deep learning techniques, has made significant advances in exploiting this data to generate value. However, often computer vision models are not sufficient for value creation. In these cases, image-based decision support systems (IB-DSSs), i.e., decision support systems that rely on images and computer vision, can be used to create value by combining human and artificial intelligence. Despite its potential, there is only little work on IB-DSSs so far. In this thesis, we develop technical foundations and design knowledge for IBDSSs and demonstrate the possible positive effect of IB-DSSs on environmental sustainability. The theoretical contributions of this work are based on and evaluated in a series of artifacts in practical use cases: First, we use technical experiments to demonstrate the feasibility of innovative approaches to exploit images for IBDSSs. We show the feasibility of deep-learning-based computer vision and identify future research opportunities based on one of our practical use cases. Building on this, we develop and evaluate a novel approach for combining human and artificial intelligence for value creation from image data. Second, we develop design knowledge that can serve as a blueprint for future IB-DSSs. We perform two design science research studies to formulate generalizable principles for purposeful design — one for IB-DSSs and one for the subclass of image-mining-based decision support systems (IM-DSSs). While IB-DSSs can provide decision support based on single images, IM-DSSs are suitable when large amounts of image data are available and required for decision-making. Third, we demonstrate the viability of applying IBDSSs to enhance environmental sustainability by performing life cycle assessments for two practical use cases — one in which the IB-DSS enables a prolonged product lifetime and one in which the IB-DSS facilitates an improvement of manufacturing processes. We hope this thesis will contribute to expand the use and effectiveness of imagebased decision support systems in practice and will provide directions for future research

    Reasoning about river basins: WaWO+ revisited

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper characterizes part of an interdisciplinary research effort on Artificial Intelligence (AI) techniques and tools applied to Environmental Decision-Support Systems (EDSS). WaWO+ the ontology we present here, provides a set of concepts that are queried, advertised and used to support reasoning about and the management of urban water resources in complex scenarios as a River Basin. The goal of this research is to increase efficiency in Data and Knowledge interoperability and data integration among heterogeneous environmental data sources (e.g., software agents) using an explicit, machine understandable ontology to facilitate urban water resources management within a River Basin.Peer ReviewedPostprint (author's final draft

    Model-Based Decision Support for Industry-Environment Interactions

    Get PDF
    Applied systems analysis is -- or should be -- a tool in the hands of planners and decision makers who have to deal with the complex and growing problems of modern society. There is, however, an obvious gap between the ever-increasing complexity and volume of scientific and technological information and tools of analysis relevant to large socio-technical and environmental systems, and the information requirements at a strategic planning and policy level. The Advanced Computer Applications (ACA) project builds on IIASA's traditional strength in the methodological foundations of operations research and applied systems analysis, and its rich experience in numerous application areas including the environment, technology, and risk. The ACA group draws on this infrastructure and combines it with elements of AI and advanced information and computer technology. Several completely externally-funded research and development projects in the field of model-based decision support and applied Artificial Intelligence (AI) are currently under way. As an example of this approach to information and decision support systems, one of the components of an R&D project sponsored by the CEC's EURATOM Joint Research Centre (JRC) at Ispra, Italy, in the area of hazardous substances and industrial risk management, is described in this paper. The PDA (Production Distribution Area) is an interactive optimization code (based on DIDASS, one of a family of multicriteria decision support tools developed at IIASA) and a linear problem solver, for chemical industry structures, configured for the pesticide industry of a hypothetical region. The user can select optimization criteria, define allowable ranges or constraints on these criteria, define reference points for the multi-criteria trade-off, and display various levels of model output, including the waste streams generated by the different industrial structure alternatives. These waste streams can then be used to provide input conditions for the environmental impact models. With the emphasis on a directly understandable problem representation and dynamic color graphics, and the user interface as a key element of interactive decision support systems, this is a step toward increased direct practical usability of IIASA's research results

    Smart built-in test

    Get PDF
    The work which built-in test (BIT) is asked to perform in today's electronic systems increases with every insertion of new technology or introduction of tighter performance criteria. Yet the basic purpose remains unchanged -- to determine with high confidence the operational capability of that equipment. Achievement of this level of BIT performance requires the management and assimilation of a large amount of data, both realtime and historical. Smart BIT has taken advantage of advanced techniques from the field of artificial intelligence (AI) in order to meet these demands. The Smart BIT approach enhances traditional functional BIT by utilizing AI techniques to incorporate environmental stress data, temporal BIT information and maintenance data, and realtime BIT reports into an integrated test methodology for increased BIT effectiveness and confidence levels. Future research in this area will incorporate onboard fault-logging of BIT output, stress data and Smart BIT decision criteria in support of a singular, integrated and complete test and maintenance capability. The state of this research is described along with a discussion of directions for future development

    Decision Support and Geographical Information Systems

    Get PDF
    Geographical Information Systems (GIS) are gaining increasing importance and widespread acceptance as tools for decision support in land, infrastructure, resources, environmental management and spatial analysis, and in urban and regional development planning. GIS assist in the preparation, analysis, display, and management of geographical data. It is in the analysis and display functions that GIS meet Decision Support Systems (DSS). DSS analyse and support decisions through the formal analysis of alternative options, their attributes vis-a-vis evaluation criteria, goals or objectives, and constraints. DSS functions range from information retrieval and display, filtering and pattern recognition, extrapolation, inference and logical comparison, to complex modelling. The use of model-based information and DSS, and in particular of interactive simulation and optimization models that combine traditional modelling approaches with new expert systems techniques of Artificial Intelligence (AI), dynamic computer graphics and geographical information systems, is demonstrated in this report with application examples from technological risk assessment, environmental impact analysis, and regional development planning. With the emphasis on an easy-to-understand visual problem representation, using largely symbolic interaction and dynamic images that support understanding and insight, these systems are designed to provide a rich and directly accessible information basis for decision support and planning

    Application of Artificial Intelligence in IoT Security for Crop Yield Prediction

    Get PDF
    This research explores the application of Artificial Intelligence (AI) in the Internet of Things (IoT) for crop yield prediction in agriculture. IoT devices, like sensors and drones, collect data on temperature, humidity, soil moisture, and crop health. AI algorithms process and integrate this data to provide a comprehensive view of the agricultural environment.AI-driven anomaly detection helps identify threats to crop yield, such as pests, diseases, and adverse weather conditions. Predictive analytics, based on historical and real-time data, forecast crop yield for informed decision-making in irrigation and fertilization.AI-powered image recognition detects early signs of pests and diseases, aiding timely treatment to prevent crop losses. Resource optimization allocates water and fertilizers efficiently, minimizing waste and environmental impact.AI-driven decision support systems offer personalized recommendations for ideal planting schedules and crop rotations, maximizing yield. Autonomous farming integrates AI into machinery for precision tasks like planting and monitoring.Secure communication protocols protect sensitive agricultural data from cyber threats, ensuring data integrity and privacy

    Novel Model Based on Artificial Neural Networks to Predict Short-Term Temperature Evolution in Museum Environment

    Get PDF
    The environmental microclimatic characteristics are often subject to fluctuations of considerable importance, which can cause irreparable damage to art works. We explored the applicability of Artificial Intelligence (AI) techniques to the Cultural Heritage area, with the aim of predicting short-term microclimatic values based on data collected at Rosenborg Castle (Copenhagen), housing the Royal Danish Collection. Specifically, this study applied the NAR (Nonlinear Autoregressive) and NARX (Nonlinear Autoregressive with Exogenous) models to the Rosenborg microclimate time series. Even if the two models were applied to small datasets, they have shown a good adaptive capacity predicting short-time future values. This work explores the use of AI in very short forecasting of microclimate variables in museums as a potential tool for decision-support systems to limit the climate-induced damages of artworks within the scope of their preventive conservation. The proposed model could be a useful support tool for the management of the museums

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Data mining as a tool for environmental scientists

    Get PDF
    Over recent years a huge library of data mining algorithms has been developed to tackle a variety of problems in fields such as medical imaging and network traffic analysis. Many of these techniques are far more flexible than more classical modelling approaches and could be usefully applied to data-rich environmental problems. Certain techniques such as Artificial Neural Networks, Clustering, Case-Based Reasoning and more recently Bayesian Decision Networks have found application in environmental modelling while other methods, for example classification and association rule extraction, have not yet been taken up on any wide scale. We propose that these and other data mining techniques could be usefully applied to difficult problems in the field. This paper introduces several data mining concepts and briefly discusses their application to environmental modelling, where data may be sparse, incomplete, or heterogenous
    corecore