8 research outputs found

    Block products and nesting negations in FO2

    Get PDF
    The alternation hierarchy in two-variable first-order logic FO 2 [∈ < ∈] over words was recently shown to be decidable by Kufleitner and Weil, and independently by Krebs and Straubing. In this paper we consider a similar hierarchy, reminiscent of the half levels of the dot-depth hierarchy or the Straubing-Thérien hierarchy. The fragment of FO 2 is defined by disallowing universal quantifiers and having at most m∈-∈1 nested negations. One can view as the formulas in FO 2 which have at most m blocks of quantifiers on every path of their parse tree, and the first block is existential. Thus, the m th level of the FO 2 -alternation hierarchy is the Boolean closure of. We give an effective characterization of, i.e., for every integer m one can decide whether a given regular language is definable by a two-variable first-order formula with negation nesting depth at most m. More precisely, for every m we give ω-terms U m and V m such that an FO 2 -definable language is in if and only if its ordered syntactic monoid satisfies the identity U m ∈V m. Among other techniques, the proof relies on an extension of block products to ordered monoids. © 2014 Springer International Publishing Switzerland

    Piecewise Testable Languages and Nondeterministic Automata

    Get PDF
    A regular language is k-piecewise testable if it is a finite boolean combination of languages of the form Sigma^* a_1 Sigma^* ... Sigma^* a_n Sigma^*, where a_i in Sigma and 0 = 0, it is an NL-complete problem to decide whether the language L(A) is piecewise testable and, for k >= 4, it is coNP-complete to decide whether the language L(A) is k-piecewise testable. It is known that the depth of the minimal DFA serves as an upper bound on k. Namely, if L(A) is piecewise testable, then it is k-piecewise testable for k equal to the depth of A. In this paper, we show that some form of nondeterminism does not violate this upper bound result. Specifically, we define a class of NFAs, called ptNFAs, that recognize piecewise testable languages and show that the depth of a ptNFA provides an (up to exponentially better) upper bound on k than the minimal DFA. We provide an application of our result, discuss the relationship between k-piecewise testability and the depth of NFAs, and study the complexity of k-piecewise testability for ptNFAs

    The half-levels of the FO2 alternation hierarchy

    Get PDF
    © 2016, Springer Science+Business Media New York. The alternation hierarchy in two-variable first-order logic FO 2 [ < ] over words was shown to be decidable by Kufleitner and Weil, and independently by Krebs and Straubing. We consider a similar hierarchy, reminiscent of the half levels of the dot-depth hierarchy or the Straubing-Thérien hierarchy. The fragment Σm2 of FO 2 is defined by disallowing universal quantifiers and having at most m−1 nested negations. The Boolean closure of Σm2 yields the m th level of the FO 2 -alternation hierarchy. We give an effective characterization of Σm2, i.e., for every integer m one can decide whether a given regular language is definable in Σm2. Among other techniques, the proof relies on an extension of block products to ordered monoids

    AROUND DOT-DEPTH ONE

    No full text
    corecore