# Block Products and Nesting Negations in $\mathrm{FO}^{2}$ 

Lukas Fleischer ${ }^{1}$, Manfred Kufleitner ${ }^{1,2}$, and Alexander Lauser ${ }^{1}$<br>${ }^{1}$ Formale Methoden der Informatik, Universität Stuttgart, Germany*<br>${ }^{2}$ Fakultät für Informatik, Technische Universität München, Germany fleiscls@studi.informatik.uni-stuttgart.de<br>kufleitn@in.tum.de<br>lauser@fmi.uni-stuttgart.de


#### Abstract

The alternation hierarchy in two-variable first-order logic $\mathrm{FO}^{2}[<]$ over words was recently shown to be decidable by Kufleitner and Weil, and independently by Krebs and Straubing. In this paper we consider a similar hierarchy, reminiscent of the half levels of the dot-depth hierarchy or the Straubing-Thérien hierarchy. The fragment $\Sigma_{m}^{2}$ of $\mathrm{FO}^{2}$ is defined by disallowing universal quantifiers and having at most $m-1$ nested negations. One can view $\Sigma_{m}^{2}$ as the formulas in $\mathrm{FO}^{2}$ which have at most $m$ blocks of quantifiers on every path of their parse tree, and the first block is existential. Thus, the $m^{\text {th }}$ level of the $\mathrm{FO}^{2}$-alternation hierarchy is the Boolean closure of $\Sigma_{m}^{2}$. We give an effective characterization of $\Sigma_{m}^{2}$, i.e., for every integer $m$ one can decide whether a given regular language is definable by a two-variable first-order formula with negation nesting depth at most $m$. More precisely, for every $m$ we give $\omega$-terms $U_{m}$ and $V_{m}$ such that an $\mathrm{FO}^{2}$-definable language is in $\Sigma_{m}^{2}$ if and only if its ordered syntactic monoid satisfies the identity $U_{m} \leqslant V_{m}$. Among other techniques, the proof relies on an extension of block products to ordered monoids.


## 1 Introduction

The study of logical fragments over words has a long tradition in computer science. The seminal Büchi-Elgot-Trakhtenbrot Theorem from the early 1960s states that a language is regular if and only if it is definable in monadic secondorder logic [15|32]. A decade later, in 1971, McNaughton and Papert showed that a language is definable in first-order logic if and only if it is star-free [17]. Combining this result with Schützenberger's famous characterization of star-free languages in terms of finite aperiodic monoids [21] shows that it is decidable whether a given regular language is first-order definable. Since then, many logical fragments have been investigated, see e.g. 3[25] for overviews.

The motivation for such results is two-fold. First, restricted fragments often yield more efficient algorithms for computational problems such as satisfiability or separability. Second, logical fragments give rise to a descriptive complexity:

[^0]The simpler the fragment to define a language, the simpler the language. This approach can help in understanding the rich structure of regular languages.

Logical fragments are usually defined by restricting some resources in formulas. The three most natural restrictions are the quantifier depth (i.e., the number of nested quantifiers), the alternation depth (i.e., the number alternations between existential and universal quantification), and the number of variables. With respect to decidability questions regarding definability, quantifier depth is not very interesting since for fixed quantifier depth only finitely many languages are definable (which immediately yields decidability), see e.g. 4]. The situation with alternation in first-order logic is totally different: Only the very first level (i.e., no alternation) is known to be decidable 823. By a result of Thomas 31] the alternation hierarchy in first-order logic is tightly connected with the dotdepth hierarchy [2] or the Straubing-Thérien hierarchy 2429, depending on the presence or absence of the successor predicate. Some progress in the study of the dot-depth hierarchy and the Straubing-Thérien hierarchy was achieved by considering the half-levels. For example, the levels $1 / 2$ and $3 / 2$ in each of the two hierarchies are decidable 6|18|19. The half levels also have a counterpart in the alternation hierarchy of first-order logic by requiring existential quantifiers in the first block. Another point of view of the same hierarchy is to disallow universal quantifiers and to restrict the number of nested negations.

Regarding the number of variables, Kamp showed that linear temporal logic is expressively complete for first-order logic over words [7]. Since every modality in linear temporal logic can be defined using three variables, first-order logic with only three different names for the variables (denoted by $\mathrm{FO}^{3}$ ) defines the same languages as full first-order logic. This result is often stated as $\mathrm{FO}^{3}=\mathrm{FO}$. Allowing only two variable names yields the proper fragment $\mathrm{FO}^{2}$ of first-order logic. Thérien and Wilke [30] showed that a language is $\mathrm{FO}^{2}$ definable if and only if its syntactic monoid belongs to the variety $\mathbf{D A}$ and, since the latter is decidable, one can effectively check whether a given regular language is $\mathrm{FO}^{2}$-definable. For further information on the numerous characterizations of $\mathrm{FO}^{2}$ we refer to 3|28].

Inside $\mathrm{FO}^{2}$, the alternation depth is also a natural restriction. One difference to full first-order logic is that one cannot rely on prenex normal forms as a simple way of defining the alternation depth. Weil and the second author gave an effective algebraic characterization of the $m^{\text {th }}$ level $\mathrm{FO}_{m}^{2}$ of this hierarchy. More precisely, they showed that it is possible to ascend the $\mathrm{FO}^{2}$-alternation hierarchy using so-called Mal'cev products [15] which in this particular case preserve decidability. There are two main ingredients in the proof. The first one is a combinatorial tool known as rankers [33] or turtle programs [22], and the second is a relativization property of two-variable first-order logic. These two ingredients are then combined using a proof method introduced in [10. Krebs and Straubing gave another decidable characterization of $\mathrm{FO}_{m}^{2}$ in terms of identities of $\omega$-terms using completely different techniques [9|26]; their proof relies on so-called block products.

In this paper we consider the half-levels $\Sigma_{m}^{2}$ of the $\mathrm{FO}^{2}$-alternation hierarchy. A language is definable in $\Sigma_{m}^{2}$ if and only if it is definable in $\mathrm{FO}^{2}$ without
universal quantifiers and with at most $m-1$ nested negations. It is easy to see that one can avoid negations of atomic predicates. One can think of $\Sigma_{m}^{2}$ as those $\mathrm{FO}^{2}$-formulas which on every path of their parse tree have at most $m$ quantifier blocks, and the outermost block is existential. The main contribution of this paper are $\omega$-terms $U_{m}$ and $V_{m}$ such that an $\mathrm{FO}^{2}$-definable language is $\Sigma_{m}^{2}$-definable if and only if its ordered syntactic monoid satisfies $U_{m} \leqslant V_{m}$. For a given regular language it is therefore decidable whether it is definable in $\Sigma_{m}^{2}$ by first checking whether it is $\mathrm{FO}^{2}$-definable and if so, then verifying whether $U_{m} \leqslant V_{m}$ holds in its ordered syntactic monoid. Moreover, for every $\mathrm{FO}^{2}$-definable language $L$ one can compute the smallest integer $m$ such that $L$ is definable in $\Sigma_{m}^{2}$.

The proof step from the identities to logic is a refinement of the approach of Weil and the second author [15] which in turn uses a technique from 10 , Section IV]. While the proof method in [10] is quite general and can be applied for solving various other problems [11|12|13|14, it relies on closure under negation. A very specific modification is necessary in order to get the scheme working in the current situation.

The proof for showing that $\Sigma_{m}^{2}$ satisfies the identity $U_{m} \leqslant V_{m}$ is an adaptation of Straubing's proof [26] to ordered monoids. Straubing's proof relies on two-sided semidirect products and the block product principle. We partially extend both tools to ordered monoids. To the best of our knowledge, this extension does not yet appear in the literature. The attribute partially is due to the fact that only the first factor in two-sided semidirect products (as used in this paper) is ordered while the second factor is an unordered monoid. As shown by Pin and Weil in the case of one-sided semidirect products [20], one could use ordered alphabets for further extending this approach. We refrain from this in order to focus on the presentation of our main result.

## 2 Preliminaries

The free monoid $A^{*}$ is the set of finite words over $A$ equipped with concatenation and the empty word $\varepsilon$ as neutral element. Let $u=a_{1} \cdots a_{k}$ with $a_{i} \in A$ be a finite word. The alphabet (also known as the content) of $u$ is $\operatorname{alph}(u)=\left\{a_{1}, \ldots, a_{k}\right\}$, its length is $|u|=k$, and the positions of $u$ are $1, \ldots, k$. We say that $i$ is an $a$-position of $u$ if $a_{i}=a$. The word $u$ is a (scattered) subword of $w$ if $w \in A^{*} a_{1} \cdots A^{*} a_{k} A^{*}$.

First-order logic. We consider first-order logic $\mathrm{FO}=\mathrm{FO}[<]$ over finite words. The syntax of FO-formulas is

$$
\varphi::=\top|\perp| \lambda(x)=a|x=y| x<y|\neg \varphi| \varphi \vee \varphi|\varphi \wedge \varphi| \exists x \varphi
$$

where $a \in A$ is a letter, and $x$ and $y$ are variables. We consider universal quantifiers $\forall x \varphi$ as an abbreviation of $\neg \exists x \neg \varphi$, and $x \leqslant y$ is a shortcut for $(x=y) \vee(x<y)$. The atomic formulas $\top$ and $\perp$ are true and false, respectively. Variables are interpreted as positions of a word, and $\lambda(x)=a$ is true if $x$ is an $a$-position. The semantics of the other constructs is as usual; in particular, $\exists x \varphi$ means that there exists a position $x$ which makes $\varphi$ true, and $x<y$ means that position $x$ is (strictly) smaller than position $y$. We write $\varphi\left(x_{1}, \ldots, x_{\ell}\right)$ for a formula $\varphi$ if at most
the variables $x_{i}$ appear freely in $\varphi$; and we write $u, p_{1}, \ldots, p_{\ell} \models \varphi\left(x_{1}, \ldots, x_{\ell}\right)$ if $\varphi$ is true over $u$ when $x_{i}$ is interpreted as $p_{i}$. A sentence is a formula without free variables. A first-order sentence $\varphi$ defines the language $L(\varphi)=\left\{u \in A^{*}|u|=\varphi\right\}$, and a language is definable in a first-order fragment $\mathcal{F}$ if it is defined by some sentence in $\mathcal{F}$.

The formulas $\varphi_{m}$ in the $m^{\text {th }}$ level $\Sigma_{m}$ of the negation nesting hierarchy in FO are defined as follows:

$$
\begin{aligned}
\varphi_{m} & ::=\varphi_{m-1}\left|\neg \varphi_{m-1}\right| \varphi_{m} \vee \varphi_{m}\left|\varphi_{m} \wedge \varphi_{m}\right| \exists x \varphi_{m} \\
\varphi_{0} & ::=\top|\perp| \lambda(x)=a|x=y| x<y\left|\neg \varphi_{0}\right| \varphi_{0} \vee \varphi_{0} \mid \varphi_{0} \wedge \varphi_{0}
\end{aligned}
$$

This means, for $m \geqslant 1$ the formulas in $\Sigma_{m}$ have at most $m-1$ nested negations over quantifier-free formulas $\varphi_{0}$. Using De Morgan's laws and the following equivalences, one can avoid negations in quantifier-free formulas for fixed alphabet $A$ :

$$
\begin{aligned}
\lambda(x) \neq a & \equiv \bigvee_{b \in A \backslash\{a\}} \lambda(x)=b \\
x \neq y & \equiv(x<y) \vee(y<x) \\
\neg(x<y) & \equiv(x=y) \vee(y<x)
\end{aligned}
$$

Also note that, up to logical equivalence, our definition of $\Sigma_{m}$ coincides with the more common definition in terms of formulas in prenex normal form with at most $m$ blocks of quantifiers which start with an existential block. This can be seen by the usual procedure of renaming the variables and successively moving quantifiers outwards.

The two-variable fragment $\mathrm{FO}^{2}$ of first-order logic uses (and reuses) only two different variables, say $x$ and $y$. Combining $\mathrm{FO}^{2}$ and $\Sigma_{m}$ yields the fragment $\Sigma_{m}^{2}$. That is, we have $\varphi \in \Sigma_{m}^{2}$ if both $\varphi \in \Sigma_{m}$ and $\varphi \in \mathrm{FO}^{2}$. This also justifies the notation $\Sigma_{m}^{2}$ which inherits the symbol as well as the subscript from $\Sigma_{m}$ and the exponent from $\mathrm{FO}^{2}$. The Boolean closure of $\Sigma_{m}^{2}$ is the $m^{\text {th }}$ level $\mathrm{FO}_{m}^{2}$ of the alternation hierarchy within $\mathrm{FO}^{2}$.

Ordered monoids. Green's relations are an important tool in the study of finite monoids. For $x, y \in M$ let $x \leqslant_{\mathcal{R}} y$ if $x M \subseteq y M$, and let $x \leqslant_{\mathcal{L}} y$ if $M x \subseteq M y$. We write $x \mathcal{R} y$ if both $x \leqslant_{\mathcal{R}} y$ and $y \leqslant_{\mathcal{R}} x$; and we set $x<_{\mathcal{R}} y$ if $x \leqslant_{\mathcal{R}} y$ but not $x \mathcal{R} y$. The relations $\mathcal{L}$ and $<_{\mathcal{L}}$ are defined similarly. An element $x \in M$ is idempotent if $x^{2}=x$. For every finite monoid $M$ there exists an integer $\omega_{M} \geqslant 1$ such that $x^{\omega_{M}}$ is the unique idempotent power generated by $x \in M$. If the reference to $M$ is clear from the context, we simply write $\omega$ instead of $\omega_{M}$.

An ordered monoid $(M, \leqslant)$ is a monoid $M$ equipped with a partial order $\leqslant$ which is compatible with multiplication in $M$; that is, $x \leqslant x^{\prime}$ and $y \leqslant y^{\prime}$ implies $x y \leqslant x^{\prime} y^{\prime}$. Every monoid can be considered as an ordered monoid by using the identity relation as order. If no ambiguity arises, we subsequently use the notation $M$ without explicitly mentioning the order. An order ideal of $M$ is a subset $I \subseteq M$ such that $y \leqslant x$ and $x \in I$ implies $y \in I$.

A monotone homomorphism $h: M \rightarrow N$ is a monoid homomorphism of ordered monoids $M$ and $N$ such that $x \leqslant y$ implies $h(x) \leqslant h(y)$. Submonoids of ordered monoids naturally inherit the order. A monoid $N$ divides a monoid $M$ if
there exists a surjective homomorphism from a submonoid of $M$ onto $N$; moreover, if $M$ and $N$ are ordered, then we require the homomorphism to be monotone. The direct product of ordered monoids $M_{1}, \ldots, M_{k}$ is the usual direct product $M_{1} \times \cdots \times M_{k}$ equipped with the product order, i.e., $\left(x_{1}, \ldots, x_{k}\right) \leqslant\left(y_{1}, \ldots, y_{k}\right)$ if $x_{i} \leqslant y_{i}$ for all $i \in\{1, \ldots, k\}$. The empty direct product is the trivial monoid.

Varieties and identities. A variety (respectively, positive variety) is a class of finite monoids (respectively, finite ordered monoids) closed under division and finite direct products. By abuse of notation, we sometimes say that an ordered monoid ( $M, \leqslant$ ) belongs to a variety $\mathbf{V}$ of unordered monoids if $M \in \mathbf{V}$. Both varieties and positive varieties are often defined by identities of $\omega$-terms. We only describe the formal setting for positive varieties. The $\omega$-terms over the variables $X$ are defined inductively: The constant $1 \notin X$ is an $\omega$-term and every variable $x \in X$ is an $\omega$-term. If $u$ and $v$ are $\omega$-terms, then so are $u v$ and $u^{\omega}$. Here, $\omega$ is considered as a formal symbol instead of a fixed integer. Every mapping $h: X \rightarrow M$ to a finite monoid $M$ uniquely extends to $\omega$-terms by setting $h(1)=1, h(u v)=h(u) h(v)$ and $h\left(u^{\omega}\right)=h(u)^{\omega_{M}}$. An ordered monoid $M$ satisfies the identity $U \leqslant V$ for $\omega$-terms $U$ and $V$ if $h(U) \leqslant h(V)$ for all mappings $h: X \rightarrow M$. It satisfies $U=V$ if it satisfies both $U \leqslant V$ and $V \leqslant U$. Every class of ordered monoids defined by a set of identities of $\omega$-terms forms a positive variety. In this paper, we need the following varieties:

- The variety $\mathbf{J}$ is the class of all so-called $\mathcal{J}$-trivial finite monoids. There are several well-known characterizations of this class, the most popular being Simon's Theorem on piecewise testable languages [23]. One can define $\mathbf{J}$ by the identities $(x y z)^{\omega} y=(x y z)^{\omega}=y(x y z)^{\omega}$.
- The positive variety $\mathbf{J}^{+}$is defined by the identity $x \leqslant 1$. There is a language theoretic characterization similar to Simon's Theorem in terms of so-called shuffle ideals [18].
- The variety DA is defined by $(x y z)^{\omega} y(x y z)^{\omega}=(x y z)^{\omega}$. Suppose $M \in \mathbf{D A}$ and let $u, v, a \in M$. If $v \mathcal{R} u \mathcal{R} u a$, then $v \mathcal{R} v a$; and symmetrically, if $v \mathcal{L} u \mathcal{L} a u$, then $v \mathcal{L} a v$, see e.g. [12, Lemma 1].

Languages and syntactic monoids. A language $L \subseteq A^{*}$ is recognized by a homomorphism $h: A^{*} \rightarrow M$ to some ordered monoid $M$ if $L=h^{-1}(I)$ for some order ideal $I$ of $M$. An ordered monoid $M$ recognizes a language $L \subseteq A^{*}$ if there exists a homomorphism $h: A^{*} \rightarrow M$ which recognizes $L$. The syntactic preorder $\leqslant_{L}$ on words is defined as follows: We set $u \leqslant_{L} v$ for $u, v \in A^{*}$ if $p v q \in L$ implies $p u q \in L$ for all $p, q \in A^{*}$. We write $u \equiv_{L} v$ if both $u \leqslant_{L} v$ and $v \leqslant_{L} u$. The syntactic monoid $M_{L}$ of $L$ is the quotient $A^{*} / \equiv_{L}$ consisting of the equivalence classes of $\equiv_{L}$; it is the unique minimal recognizer of $L$ and it is effectively computable from any reasonable presentation of a given regular language. The syntactic preorder induces a partial order on the $\equiv_{L}$-classes such that $M_{L}$ becomes an ordered monoid. The syntactic homomorphism $h_{L}: A^{*} \rightarrow M_{L}$ is the natural quotient map.

## 3 Two-Sided Semidirect Products of Ordered Monoids

The two-sided semidirect product of finite monoids is a useful tool for studying decompositions and hierarchies of varieties, see e.g. 25. In this section, we partially extend the definition to ordered monoids. Let $M$ be an ordered monoid and let $N$ be a monoid. We write the operation in $M$ additively to improve readability, which does not mean that $M$ is commutative. A left action of $N$ on $M$ is a mapping $(n, m) \mapsto n \cdot m$ from $N \times M$ to $M$ such that for all $m, m_{1}, m_{2} \in M$ and all $n, n_{1}, n_{2} \in N$ the following axioms hold:

$$
\begin{aligned}
n \cdot\left(m_{1}+m_{2}\right) & =n \cdot m_{1}+n \cdot m_{2} \\
\left(n_{1} n_{2}\right) \cdot m & =n_{1} \cdot\left(n_{2} \cdot m\right) \\
1 \cdot m & =m \\
n \cdot 0 & =0 \\
n \cdot m_{1} & \leqslant n \cdot m_{2} \text { whenever } m_{1} \leqslant m_{2}
\end{aligned}
$$

To shorten notation, we usually write $n m$ instead of $n \cdot m$. A right action of $N$ on $M$ is defined symmetrically. A left and a right action are compatible if $\left(n_{1} m\right) n_{2}=n_{1}\left(m n_{2}\right)$ for all $m \in M$ and all $n_{1}, n_{2} \in N$. For compatible left and right actions of $N$ on $M$ we define the two-sided semidirect product $M * * N$ as the ordered monoid on the set $M \times N$ with the multiplication

$$
\left(m_{1}, n_{1}\right)\left(m_{2}, n_{2}\right)=\left(m_{1} n_{2}+n_{1} m_{2}, n_{1} n_{2}\right),
$$

and the order given by

$$
\left(m_{1}, n_{1}\right) \leqslant\left(m_{2}, n_{2}\right) \text { if and only if } m_{1} \leqslant m_{2} \text { and } n_{1}=n_{2} .
$$

It is straightforward to verify that $M * * N$ indeed is an ordered monoid for each pair of compatible actions. The two-sided semidirect product with left action $(n, m) \mapsto m$ and right action $(m, n) \mapsto m$ yields the direct product of $M$ and $N$. In this sense the two-sided semidirect product generalizes the usual direct product.

We now define the so-called block product as a particular two-sided semidirect product. Let $M^{N \times N}$ be the ordered monoid of all functions from $N \times N$ to the ordered monoid $M$ with componentwise operation. These functions are ordered by $f_{1} \leqslant f_{2}$ if $f_{1}\left(n_{1}, n_{2}\right) \leqslant f_{2}\left(n_{1}, n_{2}\right)$ for all $n_{1}, n_{2} \in N$. One can view $M^{N \times N}$ as the direct product of $|N|^{2}$ copies of $M$. The block product $M \square N$ is the two-sided semidirect product $M^{N \times N} * * N$ induced by the following pair of left and right actions. For $f \in M^{N \times N}$ and $n, n_{1}, n_{2} \in N$ let

$$
(n f)\left(n_{1}, n_{2}\right)=f\left(n_{1}, n n_{2}\right) \quad \text { and } \quad(f n)\left(n_{1}, n_{2}\right)=f\left(n_{1} n, n_{2}\right) .
$$

The relationship between two-sided semidirect products and block products is the same as in the unordered case; see e.g. [27].

Proposition 1. Let $M, M^{\prime}, N, N^{\prime}$ be monoids and suppose that $M$ and $M^{\prime}$ are ordered. The following properties hold:

1. Both $M$ and $(N,=)$ divide every two-sided semidirect product $M * * N$.
2. Every two-sided semidirect product $M * * N$ divides $M \square N$.
3. If $M$ divides $M^{\prime}$ and $N$ divides $N^{\prime}$, then $M \square N$ divides $M^{\prime} \square N^{\prime}$.

We now extend the notion of two-sided semidirect products to varieties. For a positive variety $\mathbf{V}$ and a variety $\mathbf{W}$ we let $\mathbf{V} * * \mathbf{W}$ consist of all ordered monoids dividing a two-sided semidirect product $M * * N$ for some $M \in \mathbf{V}$ and $N \in \mathbf{W}$. For two-sided semidirect products $M * * N$ and $M^{\prime} * * N^{\prime}$, we define a new two-sided semidirect product $\left(M \times M^{\prime}\right) * *\left(N \times N^{\prime}\right)$ by the actions

$$
\begin{aligned}
& \left(n, n^{\prime}\right)\left(m, m^{\prime}\right)=\left(n m, n^{\prime} m^{\prime}\right) \\
& \left(m, m^{\prime}\right)\left(n, n^{\prime}\right)=\left(m n, m^{\prime} n^{\prime}\right)
\end{aligned}
$$

for all $m \in M, m^{\prime} \in M^{\prime}, n \in N$, and $n^{\prime} \in N^{\prime}$. An elementary verification shows that this two-sided semidirect product is isomorphic to $(M * * N) \times\left(M^{\prime} * * N^{\prime}\right)$, and $\mathbf{V} * * \mathbf{W}$ forms a positive variety. By Proposition 1 we see that $\mathbf{V} * * \mathbf{W}$ is identical to the positive variety generated by all block products $M \square N$ with $M \in \mathbf{V}$ and $N \in \mathbf{W}$.

For a homomorphism $h_{N}: A^{*} \rightarrow N$ we consider the alphabet $A_{N}=N \times A \times N$ and the length-preserving mapping $\sigma_{h_{N}}: A^{*} \rightarrow A_{N}^{*}$ defined by $\sigma_{h_{N}}\left(a_{1} \cdots a_{n}\right)=$ $b_{1} \cdots b_{n}$, where

$$
b_{i}=\left(h_{N}\left(a_{1} \cdots a_{i-1}\right), a_{i}, h_{N}\left(a_{i+1} \cdots a_{n}\right)\right)
$$

for all $i \in\{1, \ldots, n\}$. The following proposition uses such mappings to characterize the languages recognized by two-sided semidirect products. It is known as the block product principle.

Proposition 2. Let $\mathbf{V}$ be a positive variety, let $\mathbf{W}$ be a variety, and let $L \subseteq A^{*}$. The following conditions are equivalent.

1. $L$ is recognized by an ordered monoid in $\mathbf{V} * * \mathbf{W}$.
2. There exists a homomorphism $h_{N}: A^{*} \rightarrow N$ with $N \in \mathbf{W}$ such that $L$ is a finite union of languages of the form $\sigma_{h_{N}}^{-1}\left(L_{K}\right) \cap L_{N}$ with $L_{K} \subseteq A_{N}^{*}$ being recognized by a monoid in $\mathbf{V}$ and $L_{N} \subseteq A^{*}$ being recognized by $h_{N}$.

## 4 Decidability of Negation Nesting in $\mathrm{FO}^{2}$

In this section we give two algebraic characterizations of the languages definable in the fragment $\Sigma_{m}^{2}$ of two-variable first-order logic with a restricted number of nested negations. The first description is in terms of (weakly) iterated two-sided semidirect products with $\mathcal{J}$-trivial monoids. For this we define a sequence of positive varieties by setting $\mathbf{W}_{1}=\mathbf{J}^{+}$and $\mathbf{W}_{m}=\mathbf{W}_{m-1} * * \mathbf{J}$. As for the second characterization, we define sequences of $\omega$-terms $U_{m}$ and $V_{m}$ by setting

$$
\begin{array}{ll}
U_{1}=z, & U_{m}=\left(U_{m-1} x_{m}\right)^{\omega} U_{m-1}\left(y_{m} U_{m-1}\right)^{\omega}, \\
V_{1}=1, & V_{m}=\left(U_{m-1} x_{m}\right)^{\omega} V_{m-1}\left(y_{m} U_{m-1}\right)^{\omega},
\end{array}
$$

where $x_{2}, y_{2}, \ldots, x_{m}, y_{m}, z$ are variables.
Theorem 1. Let $L \subseteq A^{*}$ and let $m \geqslant 1$. The following conditions are equivalent:

1. $L$ is definable in $\Sigma_{m}^{2}$.
2. The ordered syntactic monoid of $L$ is in $\mathbf{W}_{m}$.
3. The ordered syntactic monoid of $L$ is in DA and satisfies $U_{m} \leqslant V_{m}$.

Since condition 3 in Theorem 1 is decidable for any given regular language $L$, this immediately yields the following corollary.

Corollary 1. It is decidable whether a given regular language is definable in $\Sigma_{m}^{2}$.
Note that in condition 3. of Theorem 1 one cannot drop requiring that the syntactic monoid is in DA. For example, the syntactic monoid of $A^{*} \backslash A^{*} a a A^{*}$ over $A=\{a, b\}$ satisfies the identity $U_{m} \leqslant V_{m}$ for all $m \geqslant 2$. It is nonetheless not $\Sigma_{m}^{2}$-definable, because it is not even $\mathrm{FO}^{2}$-definable (and thus its syntactic monoid is not in DA). The remainder of this section proves Theorem 1. We begin with the direction (1) $\Rightarrow$ (22). The arguments are similar to Straubing's for characterizing $\mathrm{FO}_{m}^{2}$ in terms of unordered two-sided semidirect products [26].
Lemma 1. Let $m \geqslant 1$. If $L$ is definable in $\Sigma_{m}^{2}$, then $M_{L} \in \mathbf{W}_{m}$.
Proof. Let $\varphi$ be a sentence in $\Sigma_{m}^{2}$ such that $L=L(\varphi)$. We may assume that quantifier-free subformulas of $\varphi$ do not contain negations.

The proof proceeds by induction on $m$. For the base case $m=1$, the language $L$ is a finite union of languages of the form $A^{*} a_{1} \cdots A^{*} a_{k} A^{*}$ and thus $p q \in L$ implies $p u q \in L$ for all $p, u, q \in A^{*}$. This means that $M_{L}$ satisfies $x \leqslant 1$ and therefore, $M_{L} \in \mathbf{J}^{+}$, see 18.

Let now $m \geqslant 2$. An innermost block of $\varphi$ is a maximal negation-free subformula $\psi(x)$ of $\varphi$. As in the unordered case, one can show that each block is equivalent to a disjunction of formulas of the form

$$
\begin{aligned}
\lambda(x)=a \wedge & \left(\exists y_{1} \cdots \exists y_{r} \bigwedge_{i=1}^{r}\left(y_{i}<x \wedge \lambda\left(y_{i}\right)=a_{i}\right) \wedge \pi\left(y_{1}, \ldots, y_{r}\right)\right) \wedge \\
& \left(\exists z_{1} \cdots \exists z_{s} \bigwedge_{i=1}^{s}\left(z_{i}>x \wedge \lambda\left(z_{i}\right)=a_{i}^{\prime}\right) \wedge \pi^{\prime}\left(z_{1}, \ldots, z_{s}\right)\right)
\end{aligned}
$$

where $\pi$ and $\pi^{\prime}$ are quantifier-free formulas defining an order on their parameters. Hence, each innermost block $\psi(x)$ requires that $x$ is an $a$-position and that certain subwords appear to the left and to the right of position $x$. Let $k$ be the maximum of all $r$ and $s$ occurring in these blocks. By Simon's Theorem [23], there exists an unordered monoid $N \in \mathbf{J}$ and a homomorphism $h_{N}: A^{*} \rightarrow N$ such that $h_{N}(u)=h_{N}(v)$ if and only if $u$ and $v$ agree on subwords of length at most $k$. Now, the aforementioned blocks can be replaced by a disjunction of formulas $\lambda(x)=\left(n, a, n^{\prime}\right)$ with $n, n^{\prime} \in N$ and $a \in A$ to obtain an equivalent formula over the alphabet $A_{N}$.

After replacing each innermost block, the resulting formula $\varphi^{\prime}$ is in $\Sigma_{m-1}^{2}$. By induction, the corresponding language $L\left(\varphi^{\prime}\right)$ is recognized by a monoid $K \in \mathbf{W}_{m-1}$. We have $L=L(\varphi)=\sigma_{h_{N}}\left(L\left(\varphi^{\prime}\right)\right)$ by construction. Proposition 2 finally yields $M_{L} \in \mathbf{W}_{m-1} * * \mathbf{J}=\mathbf{W}_{m}$.

The following lemma can be seen by a similar reasoning as in the unordered case due to Straubing [26].

Lemma 2. Let $m \geqslant 1$. If $M \in \mathbf{W}_{m}$, then $M \in \mathbf{D A}$ and $M$ satisfies $U_{m} \leqslant V_{m}$.

We turn to the implication $(3) \Rightarrow$ (1) in Theorem 1, from $U_{m} \leqslant V_{m}$ back to $\operatorname{logic} \Sigma_{m}^{2}$. On a high-level perspective, we want to use induction on $m$, then use the identity $U_{m-1} \leqslant V_{m-1}$ to get to $\Sigma_{m-1}^{2}$, and finally lift this back to $\Sigma_{m}^{2}$. An important part of this argument is the ability to restrict (or relativize) the interpretation of $\Sigma_{m}^{2}$-formulas to certain factors of the model which are given by first and last occurrences of letters.

In the following we also have to take the quantifier depth of a formula into account, i.e., the maximal number of nested quantifiers. For an integer $n \geqslant 0$ let $\Sigma_{m, n}^{2}$ be the fragment of $\Sigma_{m}^{2}$ of formulas with quantifier depth at most $n$.

Lemma 3. Let $\varphi \in \Sigma_{m, n}^{2}$ for $m, n \geqslant 0$, and let $a \in A$. There exist formulas $\langle\varphi\rangle_{>\mathrm{X}_{a}} \in \Sigma_{m, n+1}^{2}$ and $\langle\varphi\rangle_{<\mathrm{X} a} \in \Sigma_{m+1, n+1}^{2}$ such that for all $u=u_{1} a u_{2}$ with $a \notin \operatorname{alph}\left(u_{1}\right)$ and $i=\left|u_{1} a\right|$ we have:
$u, p, q \models\langle\varphi\rangle_{<\mathrm{X}_{a}}$ if and only if $u_{1}, p, q \models \varphi$ for all $1 \leqslant p, q<i$,
$u, p, q \models\langle\varphi\rangle_{>\mathrm{X} a} \quad$ if and only if $u_{2}, p-i, q-i \models \varphi$ for all $i<p, q \leqslant|u|$.
Proof. Let $\langle\varphi\rangle_{<\mathrm{X} a} \equiv \varphi$ if $\varphi$ is an atomic formula. For conjunction and disjunction, and negation we inductively take $\langle\varphi\rangle_{<x_{a}} \wedge\langle\psi\rangle_{<x_{a}}$ and $\langle\varphi\rangle_{<x_{a}} \vee\langle\psi\rangle_{<x_{a}}$, and $\neg\langle\varphi\rangle_{<\mathrm{X}_{a}}$, respectively. For existential quantification let

$$
\langle\exists x \varphi\rangle_{<\mathrm{X} a} \equiv \exists x\left(\neg(\exists y \leqslant x: \lambda(y)=a) \wedge\langle\varphi\rangle_{<\mathrm{X} a}\right)
$$

As usual, swapping the variables $x$ and $y$ yields the corresponding constructions for $y$. Atomic formulas and Boolean combinations in the construction of $\langle\varphi\rangle_{>X a}$ are as above. For existential quantification let

$$
\langle\exists x \varphi\rangle_{>\mathrm{X} a} \equiv \exists x\left((\exists y<x: \lambda(y)=a) \wedge\langle\varphi\rangle_{>\times a}\right)
$$

The notation in the indices of the formulas mean that we restrict to the positions smaller (respectively, greater) than the first $a$-position (the neXt $a$-position, thence $\mathrm{X}_{a}$ ). Of course there are dual formulas $\langle\varphi\rangle_{<\mathrm{Y} b} \in \Sigma_{m, n+1}^{2}$ as well as $\langle\varphi\rangle_{>\mathrm{Y} b} \in \Sigma_{m+1, n+1}^{2}$ for the last $b$-position (i.e., the Yesterday $b$-position). The next lemma handles the case of the first $a$-position lying beyond the last $b$-position.

Lemma 4. Let $\varphi \in \Sigma_{m, n}^{2}$ for $m, n \geqslant 0$, and let $a, b \in A$. There exists a formula $\langle\varphi\rangle_{(\mathrm{Y} b ; \times a)}$ in $\Sigma_{m+1, n+1}^{2}$ such that for all words $u=u_{1} b u_{2} a u_{3}$ with $b \notin \operatorname{alph}\left(u_{2} a u_{3}\right)$ and $a \notin \operatorname{alph}\left(u_{1} b u_{2}\right)$ and for all $\left|u_{1} b\right|<p, q \leqslant\left|u_{1} b u_{2}\right|$ we have:

$$
u, p, q \models\langle\varphi\rangle_{(\mathrm{Y} b ; \mathrm{X} a)} \quad \text { if and only if } u_{2}, p-\left|u_{1} b\right|, q-\left|u_{1} b\right| \models \varphi \text {. }
$$

Proof. Atomic formulas and Boolean combinations are straightforward. Let the macro $\mathrm{Y}_{b}<x<\mathrm{X}_{a}$ stand for $\neg(\exists y \leqslant x: \lambda(y)=a) \wedge \neg(\exists y \geqslant x: \lambda(y)=b)$. Using this shortcut, we set $\langle\exists x \varphi\rangle_{(\mathrm{Y} b ; \mathrm{X} a)} \equiv \exists x\left(\left(\mathrm{Y}_{b}<x<\mathrm{X}_{a}\right) \wedge\langle\varphi\rangle_{(\mathrm{Y} b ; \mathrm{X} a)}\right)$.

Let $h: A^{*} \rightarrow M$ be a homomorphism. The $\mathcal{L}$-factorization of a word $u$ is the unique factorization $u=s_{0} a_{1} \cdots s_{\ell-1} a_{\ell} s_{\ell}$ with $s_{i} \in A^{*}$ and so-called markers $a_{i} \in A$ such that $h\left(s_{\ell}\right) \mathcal{L} 1$ and $h\left(s_{i} a_{i+1} \cdots s_{\ell-1} a_{\ell} s_{\ell}\right)>_{\mathcal{L}} h\left(a_{i} s_{i} \cdots a_{\ell} s_{\ell}\right) \mathcal{L}$ $h\left(s_{i-1} a_{i} \cdots s_{\ell-1} a_{\ell} s_{\ell}\right)$ for all $i$. Note that $\ell<|M|$. Furthermore, if $M \in \mathbf{D A}$, then $a_{i} \notin \operatorname{alph}\left(s_{i}\right)$. Let $D_{\mathcal{L}}(u)$ consist of the positions of the markers, i.e., let
$D_{\mathcal{L}}(u)=\left\{\left|s_{0} a_{1} \cdots s_{i-1} a_{i}\right| \mid 1 \leqslant i \leqslant \ell\right\}$. The $\mathcal{R}$-factorization is defined left-right symmetrically, and the set $D_{\mathcal{R}}(u)$ consists of all positions $|p a|$ for prefixes $p a$ of $u$ such that $h(p)>_{\mathcal{R}} h(p a)$ for some $a \in A$. The following lemma combines the $\mathcal{R}$-factorization with the $\mathcal{L}$-factorization for monoids in DA such that, starting with $\Sigma_{m}^{2}$, one can express $\Sigma_{m-1}^{2}$-properties of the factors. To formulate this feature we set $u \underset{m, n}{\mathrm{FO} 2} v$ for words $u, v \in A^{*}$ if $v \models \varphi$ implies $u \models \varphi$ for all $\varphi \in \Sigma_{m, n}^{2}$.

Lemma 5. Let $h: A^{*} \rightarrow M$ be a homomorphism with $M \in \mathbf{D A}$, let $m \geqslant 2$ and $n \geqslant 0$ be integers, and let $u, v \in A^{*}$ with $u \leqslant_{m, 2|M|+n}^{\mathrm{FO}^{2}} v$. There exist factorizations $u=s_{0} a_{1} \cdots s_{\ell-1} a_{\ell} s_{\ell}$ and $v=t_{0} a_{1} \cdots t_{\ell-1} a_{\ell} t_{\ell}$ with $a_{i} \in A$ and $s_{i}, t_{i} \in A^{*}$ such that the following properties hold for all $i \in\{1, \ldots, \ell\}$ :

1. $s_{i} \leqslant{ }_{m-1, n}^{\mathrm{FO}^{2}} t_{i}$,
2. $h\left(s_{0}\right) \mathcal{R} 1$ and $h\left(t_{0} a_{1} \cdots t_{i-1} a_{i}\right) \mathcal{R} h\left(t_{0} a_{1} \cdots t_{i-1} a_{i} s_{i}\right)$,
3. $h\left(s_{\ell}\right) \mathcal{L} 1$ and $h\left(a_{i} s_{i} \cdots a_{\ell} s_{\ell}\right) \mathcal{L} h\left(s_{i-1} a_{i} \cdots a_{\ell} s_{\ell}\right)$.

Proof. Note that in property 2, the suffix is $s_{i}$ and not $t_{i}$. We want to prove the claim by an induction, for which we have to slightly generalize the claim. Apart from the words $u$ and $v$ from the premises of the lemma we also consider an additional word $p$ which serves as a prefix for $v$. The proof is by induction on $\left|D_{\mathcal{R}}(p v) \backslash D_{\mathcal{R}}(p)\right|$. The assumptions are $u \leqslant{ }_{m, n^{\prime}}^{\mathrm{FO}^{2}} v$, where $n^{\prime}=$ $n+\left|D_{\mathcal{R}}(p v) \backslash D_{\mathcal{R}}(p)\right|+\left|D_{\mathcal{L}}(u)\right|+1$. We shall construct factorizations $u=$ $s_{0} a_{1} \cdots s_{\ell-1} a_{\ell} s_{\ell}$ and $p v=p t_{0} a_{1} \cdots t_{\ell-1} a_{\ell} t_{\ell}$ such that properties 1 and 3 hold, but instead of 2 we have $h\left(p t_{0} a_{1} \cdots t_{i-1} a_{i}\right) \mathcal{R} h\left(p t_{0} a_{1} \cdots t_{i-1} a_{i} s_{i}\right)$ and $h\left(p s_{0}\right) \mathcal{R}$ $h(p)$. We thus recover the lemma using an empty prefix $p$.

Let $u=s_{0}^{\prime} c_{1} \cdots s_{\ell^{\prime}-1}^{\prime} c_{\ell^{\prime}} s_{\ell^{\prime}}^{\prime}$ be the $\mathcal{L}$-factorization (in particular $c_{i} \notin \operatorname{alph}\left(s_{i}^{\prime}\right)$ ) and let $v=t_{0}^{\prime} c_{1} \cdots t_{\ell^{\prime}-1}^{\prime} c_{\ell^{\prime}}^{\prime} t_{\ell^{\prime}}^{\prime}$ where $c_{i} \notin \operatorname{alph}\left(t_{i}^{\prime}\right)$ for all $i$. The factorization of $v$ exists because by assumption $u$ and $v$ agree on subwords of length $\ell^{\prime}$. The dual of Lemma 3 yields $s_{0}^{\prime} c_{1} \cdots c_{\ell^{\prime}-i} s_{\ell^{\prime}-i}^{\prime} \leqslant{ }_{m-1, n^{\prime}-i}^{\mathrm{FO}^{2}} t_{0}^{\prime} c_{1} \cdots c_{\ell^{\prime}-i} t_{\ell^{\prime}-i}^{\prime}$ as well as $s_{i}^{\prime} \leqslant{ }_{m-1, n}^{\mathrm{FO}^{2}} t_{i}^{\prime}$ for all $i$.

First suppose $D_{\mathcal{R}}(p)=D_{\mathcal{R}}(p v)$. In this case $h(p) \mathcal{R} h(p v)$, and therefore, $h(p) \mathcal{R} h(p x)$ for all $x \in B^{*}$, where $B=\operatorname{alph}(v)$. So in particular we have that $h\left(p t_{0}^{\prime} c_{1} \cdots t_{i-1}^{\prime} c_{i}\right) \mathcal{R} h\left(p t_{0}^{\prime} c_{1} \cdots t_{i-1}^{\prime} c_{i} s_{i}^{\prime}\right)$ because alph $(u)=B$. Setting $a_{i}=c_{i}$, $s_{i}=s_{i}^{\prime}$, and $t_{i}=t_{i}^{\prime}$ yields a factorization with the desired properties.

Suppose now $D_{\mathcal{R}}(p) \subsetneq D_{\mathcal{R}}(p v)$, and let $s$ be the longest prefix of $u$ such that $h(p) \mathcal{R} h(p s)>_{\mathcal{R}} h(p s a)$ for some $a \in A$. Such a prefix exists as alph $(u)=\operatorname{alph}(v)$. We have $a \notin \operatorname{alph}(s)$ by $M \in \mathbf{D A}$. Let $t$ be the longest prefix of $v$ with $a \notin \operatorname{alph}(t)$. Using Lemma 3 we see $\operatorname{alph}(t) \subseteq \operatorname{alph}(s)$. Let $k$ and $k^{\prime}$ be maximal such that $s_{0}^{\prime} c_{1} \cdots s_{k-1}^{\prime} c_{k}$ is a prefix of $s$ and such that $t_{0}^{\prime} c_{1} \cdots t_{k^{\prime}-1}^{\prime} c_{k^{\prime}}$ is a prefix of $t$. We claim $k=k^{\prime}$. For instance, suppose $k<k^{\prime}$. Then $a c_{k+1} \cdots c_{\ell^{\prime}}$ is a subword of $u$ but not of $v$ (since $c_{k+1} t_{k+1}^{\prime} \cdots c_{\ell^{\prime}} t_{\ell^{\prime}}^{\prime}$ is the shortest suffix of $v$ with the subword $c_{k+1} \cdots c_{\ell^{\prime}}$ and since there is no $a$-position in $t_{0}^{\prime} c_{1} \cdots t_{k}^{\prime}$ ). Let $a_{i}=c_{i}$ for $i \in\{1, \ldots, k\}$, let $s_{i}=s_{i}^{\prime}$ and $t_{i}=t_{i}^{\prime}$ for $i \in\{0, \ldots, k-1\}$. Let $s_{k}$ and $t_{k}$ such that $s=s_{0} c_{1} \cdots s_{k-1} c_{k} s_{k}$ and $t=t_{0} c_{1} \cdots t_{k-1} c_{k} t_{k}$. Lemma 4 yields $s_{k} \leqslant_{m-1, n}^{\mathrm{FO}^{2}} t_{k}$.

Let $u=s a u^{\prime}$ and $v=t a v^{\prime}$, and let $p^{\prime}=p t a$. For all $i \in\{0, \ldots, k\}$ we have $h\left(p t_{0} a_{1} \cdots t_{i-1} a_{i}\right) \mathcal{R} h\left(p t_{0} a_{1} \cdots t_{i-1} a_{i} s_{i}\right)$ because $\operatorname{alph}(t) \subseteq \operatorname{alph}(s)$. Note
that $h\left(a_{i+1} s_{i+1} \cdots a_{k} s_{k} a u^{\prime}\right) \mathcal{L} h\left(s_{i} a_{i+1} s_{i+1} \cdots a_{k} s_{k} a u^{\prime}\right)$. Since $M \in \mathbf{D A}$ we see $h(p)>_{\mathcal{R}} h\left(p^{\prime}\right)$ and thus $D_{\mathcal{R}}(p) \subsetneq D_{\mathcal{R}}\left(p^{\prime}\right)$. Using the formulas $\langle\varphi\rangle_{>\mathrm{x} a}$ from Lemma 3 yields $u^{\prime} \leqslant{ }_{m, n^{\prime}-1}^{\mathrm{FO}^{2}} v^{\prime}$. As $n^{\prime} \geqslant\left|D_{\mathcal{R}}\left(p^{\prime} v^{\prime}\right) \backslash D_{\mathcal{R}}\left(p^{\prime}\right)\right|+\left|D_{\mathcal{L}}\left(u^{\prime}\right)\right|+2$ we can apply induction to obtain factorizations $u^{\prime}=s_{k+1} a_{k+2} \cdots s_{\ell-1} a_{\ell} s_{\ell}$ and $v^{\prime}=t_{k+1} a_{k+2} \cdots t_{\ell-1} a_{\ell} t_{\ell}$. Setting $a_{k+1}=a$ yields the desired factorizations.

The preceding lemma enables induction on the parameter $m$. We start with a homomorphism onto a monoid satisfying $U_{m} \leqslant V_{m}$ and want to show that preimages of $\leqslant$-order ideals are unions of $\leqslant \leqslant_{m, n}^{\mathrm{FO}^{2}}$-order ideals for some sufficiently large $n$. Intuitively, a string rewriting technique yields the largest quotient which satisfies the identity $U_{m-1} \leqslant V_{m-1}$. One rewriting step corresponds to one application of the identity $U_{m-1} \leqslant V_{m-1}$ of level $m-1$. Such rewriting steps can be lifted to the identity $U_{m} \leqslant V_{m}$ in the contexts they are applied.
Proposition 3. Let $m \geqslant 1$ be an integer, let $h: A^{*} \rightarrow M$ be a surjective homomorphism onto an ordered monoid $M \in \mathbf{D A}$ satisfying $U_{m} \leqslant V_{m}$. There exists a positive integer $n$ such that $u \leqslant \begin{gathered}\mathrm{FO}_{n}{ }^{2} \\ v\end{gathered}$ implies $h(u) \leqslant h(v)$ for all $u, v \in A^{*}$.
Proof. We proceed by induction on $m$. For the base case $m=1$ a result of Pin [18] shows that, for every $\leqslant$-order ideal $I$ of $M$, the set $h^{-1}(I)$ is a finite union of languages $A^{*} a_{1} \cdots A^{*} a_{k} A^{*}$ for some $k \geqslant 1$ and $a_{i} \in A$. Let $n$ be the maximum of all indices $k$ appearing in those unions when considering all order ideals $I \subseteq M$. If $u \leqslant_{1, n}^{\mathrm{FO}^{2}} v$, then for all languages $P=A^{*} a_{1} \cdots A^{*} a_{k} A^{*}$ with $k \leqslant n$ we have that $v \in P$ implies $u \in P$. Moreover, the preimage $L$ of the order ideal generated by $h(v)$ is a finite union of languages $A^{*} a_{1} \cdots A^{*} a_{k} A^{*}$ with $k \leqslant n$. We have $v \in L$ and thus $u \in L$. This shows $h(u) \leqslant h(v)$.

In the following let $m \geqslant 2$ and fix some integer $\omega \geqslant 1$ such that $x^{\omega}$ is idempotent for all $x \in M$. We introduce a string rewriting system $\rightarrow$ on $A^{*}$ by letting $t \rightarrow s$ if $h(s)=h(t)$ or if $t=p v_{m-1} q$ and $s=p u_{m-1} q$ for $p, q \in A^{*}$, and $v_{1}=1$ and $u_{1}=z$, and for $i \geqslant 2$ we have

$$
v_{i}=\left(u_{i-1} x_{i}\right)^{\omega} v_{i-1}\left(y_{i} u_{i-1}\right)^{\omega}, \quad u_{i}=\left(u_{i-1} x_{i}\right)^{\omega} u_{i-1}\left(y_{i} u_{i-1}\right)^{\omega}
$$

for $x_{i}, y_{i}, z \in A^{*}$. Note that $t \rightarrow s$ implies $p^{\prime} t q^{\prime} \rightarrow p^{\prime} s q^{\prime}$ for all $p^{\prime}, q^{\prime} \in A^{*}$. Let $\xrightarrow[\rightarrow]{*}$ be the transitive closure of $\rightarrow$, i.e., let $t \xrightarrow{*} s$ if there exists a chain $t=w_{1} \rightarrow w_{2} \rightarrow \cdots \rightarrow w_{\ell}=s$ of rewriting steps for some $\ell \geqslant 1$ and $w_{i} \in A^{*}$. We claim that we can lift the rewriting steps of $t \xrightarrow{*} s$ to $M$ within certain contexts in an order respecting way.
Claim. Let $u, v, s, t \in A^{*}$ with $t \xrightarrow{*} s$. If both $h(u) \mathcal{R} h(u s)$ and $h(v) \mathcal{L} h(s v)$, then $h(u s v) \leqslant h(u t v)$.
The proof of the claim is by induction on the length of a minimal $\rightarrow$-chain from $t$ to $s$. The claim is trivial if $h(t)=h(s)$. Suppose $t \rightarrow t^{\prime} \rightarrow s$ and $t^{\prime}=p v_{m-1} q$ and $s=p u_{m-1} q$. Since $h(u) \mathcal{R} h(u s)$, there exists $x \in A^{*}$ such that $h(u)=h(u s x)$; and since $h(v) \mathcal{L} h(s v)$ there exists $y \in A^{*}$ such that $h(v)=h(y s v)$. Now $h(u)=h\left(u\left(p u_{m-1} q x\right)^{\omega}\right)$ and $h(v)=h\left(\left(y p u_{m-1} q\right)^{\omega} v\right)$. By letting $x_{m}=q x p$ and $y_{m}=q y p$, the identity $U_{m} \leqslant V_{m}$ of $M$ yields

$$
\begin{aligned}
h(u s v) & =h\left(u p\left(u_{m-1} x_{m}\right)^{\omega} u_{m-1}\left(y_{m} u_{m-1}\right)^{\omega} q v\right) \\
& \leqslant h\left(u p\left(u_{m-1} x_{m}\right)^{\omega} v_{m-1}\left(y_{m} u_{m-1}\right)^{\omega} q v\right)=h\left(u t^{\prime} v\right) .
\end{aligned}
$$

Observe that $\left(p u_{m-1} q x\right)^{\omega} p=p\left(u_{m-1} q x p\right)^{\omega}=p\left(u_{m-1} x_{m}\right)^{\omega}$. Note that alph $\left(t^{\prime}\right) \subseteq$ $\operatorname{alph}(s)$. Therefore, $h(u) \mathcal{R} h(u s)$ implies $h(u) \mathcal{R} h\left(u t^{\prime}\right)$, and symmetrically $h(v) \mathcal{L} h(s v)$ implies $h(v) \mathcal{L} h\left(t^{\prime} v\right)$. Induction yields $h\left(u t^{\prime} v\right) \leqslant h(u t v)$ and thus $h(u s v) \leqslant h(u t v)$. This completes the proof of the claim.

Let $t \sim s$ if $t \xrightarrow{*} s$ and $s \xrightarrow{*} t$. Let $M^{\prime}$ be the quotient $A^{*} / \sim$. The relation $\sim$ is a congruence on $A^{*}$ and $M^{\prime}$ is naturally equipped with a monoid structure. Let $h^{\prime}: A^{*} \rightarrow M^{\prime}$ be the canonical homomorphism mapping $u \in A^{*}$ to its equivalence class modulo $\sim$. The preorder $\xrightarrow{*}$ on $A^{*}$ induces a partial order on $M^{\prime}$ by letting $h^{\prime}(u) \leqslant h^{\prime}(v)$ whenever $v \xrightarrow{*} u$. Thus $M^{\prime}$ forms an ordered monoid. Moreover, $M^{\prime}$ is an unordered quotient of $M$ and, in particular, $M^{\prime}$ is finite and in DA, and $x^{\omega}$ is idempotent for all $x \in M^{\prime}$.

By construction, $M^{\prime}$ satisfies the identity $U_{m-1} \leqslant V_{m-1}$ and induction yields an integer $n$ such that $u \leqslant{ }_{m-1, n}^{\mathrm{FO}^{2}} v$ implies $h^{\prime}(u) \leqslant h^{\prime}(v)$. We show that $u \leqslant_{m, n^{\prime}}^{\mathrm{FO}^{\prime}} v$ implies $h(u) \leqslant h(v)$ for $n^{\prime}=n+2|M|$. Suppose $u \underset{m, n^{\prime}}{\mathrm{FO}^{2}} v$ and consider the factorizations $u=s_{0} a_{1} \cdots s_{\ell-1} a_{\ell} s_{\ell}$ and $v=t_{0} a_{1} \cdots t_{\ell-1} a_{\ell} t_{\ell}$ from Lemma 5. For all $i$ we have:
$-s_{i} \leqslant_{m-1, n}^{\mathrm{FO}^{2}} t_{i}$ and thus $t_{i} \xrightarrow{*} s_{i}$ by choice of $n$,

- $h\left(t_{0} a_{1} \cdots t_{i-1} a_{i}\right) \mathcal{R} h\left(t_{0} a_{1} \cdots t_{i-1} a_{i} s_{i}\right)$, and
$-h\left(a_{i+1} s_{i+1} \cdots a_{\ell} s_{\ell}\right) \mathcal{L} h\left(s_{i} a_{i+1} s_{i+1} \cdots a_{\ell} s_{\ell}\right)$.
For conciseness $t_{0} a_{1} \cdots t_{i-1} a_{i}$ is the empty word if $i=0$, and so is $a_{i+1} s_{i+1} \cdots a_{\ell} s_{\ell}$ if $i=\ell$. Applying the above claim repeatedly to substitute $s_{i}$ with $t_{i}$ for increasing $i \in\{0, \ldots, \ell\}$ yields the following chain of inequalities:

$$
\begin{aligned}
h(u) & =h\left(s_{0} a_{1} s_{1} \cdots s_{\ell-1} a_{\ell} s_{\ell}\right) \\
& \leqslant h\left(t_{0} a_{1} s_{1} \cdots s_{\ell-1} a_{\ell} s_{\ell}\right) \\
& \vdots \\
& \leqslant h\left(t_{0} a_{1} t_{1} \cdots t_{\ell-1} a_{\ell} s_{\ell}\right) \\
& \leqslant h\left(t_{0} a_{1} t_{1} \cdots t_{\ell-1} a_{\ell} t_{\ell}\right)=h(v) .
\end{aligned}
$$

Proof of Theorem 1. The implication $1 \Rightarrow 2$ is Lemma 1, and $2 \Rightarrow 3$, is Lemma 2, For the implication 3. $\Rightarrow 1$, let $L \subseteq A^{*}$ be a language, let $h_{L}: A^{*} \rightarrow$ $M_{L}$ be its syntactic homomorphism. Moreover, suppose that $M_{L}$ is in DA and satisfies $U_{m} \leqslant V_{m}$. The set $I=h_{L}(L)$ is an order ideal of $M_{L}$. Proposition 3 shows that there exists an integer $n$ such that $L=h_{L}^{-1}(I)$ is a union of $\leqslant_{m, n}^{\mathrm{FO} 2}$-order ideals. Up to equivalence, there are only finitely many formulas with quantifier depth $n$. Therefore, $\leqslant_{m, n}^{\mathrm{FO} 2}$-order ideals are $\Sigma_{m, n}^{2}$-definable.

## Conclusion

The fragments $\Sigma_{m}^{2}$ of $\mathrm{FO}^{2}[<]$ are defined by restricting the number of nested negations. They can be seen as the half levels of the alternation hierarchy $\mathrm{FO}_{m}^{2}$ in two-variable first-order logic, and we have $\Sigma_{m}^{2} \subseteq \mathrm{FO}_{m}^{2} \subseteq \Sigma_{m+1}^{2}$. It is known that the languages definable in $\mathrm{FO}_{m}^{2}$ form a strict hierarchy, see e.g. [16]. For every $m \geqslant 1$ we have given $\omega$-terms $U_{m}$ and $V_{m}$ such that a language $L$ is definable in
$\Sigma_{m}^{2}$ if and only if its ordered syntactic monoid is in the variety DA and satisfies the identity $U_{m} \leqslant V_{m}$. Using this characterization one can decide whether a given regular language is definable in $\Sigma_{m}^{2}$. In particular, we have shown decidability for every level of an infinite hierarchy. Note that there is no immediate connection between the decidability of $\mathrm{FO}_{m}^{2}$ and the decidability of $\Sigma_{m}^{2}$.

The block product principle is an important tool in the proof of the direction from $\Sigma_{m}^{2}$ to identities. In order to be able to apply this tool, we first extended block products to the case where the left factor is an ordered monoid and then stated the block product principle in this context. In order to further extend the block product $M \square N$ to the case where both $M$ and $N$ are ordered, one has to consider the monotone functions in $N \times N \rightarrow M$ instead of $M^{N \times N}$. As in the case of the wreath product principle [20] this leads to ordered alphabets when stating the block product principle. However, one implication in the block product principle fails for ordered alphabets as the universal property does not hold in this setting.

## References

1. J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math., 6:66-92, 1960.
2. R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. J. Comput. Syst. Sci., 5(1):1-16, 1971.
3. V. Diekert, P. Gastin, and M. Kufleitner. A survey on small fragments of first-order logic over finite words. Int. J. Found. Comput. Sci., 19(3):513-548, 2008.
4. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in Mathematical Logic. Springer, 1995.
5. C. C. Elgot. Decision problems of finite automata design and related arithmetics. Trans. Amer. Math. Soc., 98:21-51, 1961.
6. Ch. Glaßer and H. Schmitz. Languages of dot-depth 3/2. Theory of Computing Systems, 42(2):256-286, 2008.
7. J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California, 1968.
8. R. Knast. A semigroup characterization of dot-depth one languages. RAIRO, Inf. Théor., 17(4):321-330, 1983.
9. A. Krebs and H. Straubing. An effective characterization of the alternation hierarchy in two-variable logic. In FSTTCS 2012, Proceedings, volume 18 of LIPIcs, pp. 86-98. Dagstuhl Publishing, 2012.
10. M. Kufleitner and A. Lauser. Languages of dot-depth one over infinite words. In LICS 2011, Proceedings, pp. 23-32. IEEE Computer Society, 2011.
11. M. Kufleitner and A. Lauser. Around dot-depth one. Int. J. Found. Comput. Sci., 23(6):1323-1339, 2012
12. M. Kufleitner and A. Lauser. The join levels of the Trotter-Weil hierarchy are decidable. In MFCS 2012, Proceedings, volume 7464 of $L N C S$, pp. 603-614. Springer, 2012.
13. M. Kufleitner and A. Lauser. The join of the varieties of R-trivial and L-trivial monoids via combinatorics on words. Discrete Math. \& Theor. Comput. Sci., $14(1): 141-146,2012$.
14. M. Kufleitner and A. Lauser. Quantifier alternation in two-variable first-order logic with successor is decidable. In STACS 2013, Proceedings, volume 20 of LIPIcs, pp. 305-316. Dagstuhl Publishing, 2013.
15. M. Kufleitner and P. Weil. The $\mathrm{FO}^{2}$ alternation hierarchy is decidable. In $C S L$ 2012, Proceedings, volume 16 of LIPIcs, pp. 426-439. Dagstuhl Publishing, 2012.
16. M. Kufleitner and P. Weil. On logical hierarchies within $\mathrm{FO}^{2}$-definable languages. Log. Methods Comput. Sci., 8:1-30, 2012.
17. R. McNaughton and S. Papert. Counter-Free Automata. The MIT Press, 1971.
18. J.-É. Pin. A variety theorem without complementation. In Russian Mathematics (Iz. VUZ), volume 39, pp. 80-90, 1995.
19. J.-É. Pin and P. Weil. Polynomial closure and unambiguous product. Theory Comput. Syst., 30(4):383-422, 1997.
20. J.-É. Pin and P. Weil. The wreath product principle for ordered semigroups. Commun. Algebra, 30(12):5677-5713, 2002.
21. M. P. Schützenberger. On finite monoids having only trivial subgroups. Inf. Control, 8:190-194, 1965.
22. Th. Schwentick, D. Thérien, and H. Vollmer. Partially-ordered two-way automata: A new characterization of DA. In DLT 2001, Proceedings, volume 2295 of $L N C S$, pp. 239-250. Springer, 2002.
23. I. Simon. Piecewise testable events. In Autom. Theor. Form. Lang., 2nd GI Conf., volume 33 of $L N C S$, pp. 214-222. Springer, 1975.
24. H. Straubing. A generalization of the Schützenberger product of finite monoids. Theor. Comput. Sci., 13:137-150, 1981.
25. H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, 1994.
26. H. Straubing. Algebraic characterization of the alternation hierarchy in $\mathrm{FO}^{2}[<]$ on finite words. In CSL 2011, Proceedings, volume 12 of LIPIcs, pp. 525-537. Dagstuhl Publishing, 2011.
27. H. Straubing and D. Thérien. Weakly iterated block products of finite monoids. In LATIN 2002, Proceedings, volume 2286 of LNCS, pp. 91-104. Springer, 2002.
28. P. Tesson and D. Thérien. Diamonds are forever: The variety DA. In Semigroups, Algorithms, Automata and Languages 2001, Proceedings, pp. 475-500. World Scientific, 2002.
29. D. Thérien. Classification of finite monoids: The language approach. Theor. Comput. Sci., 14(2):195-208, 1981.
30. D. Thérien and Th. Wilke. Over words, two variables are as powerful as one quantifier alternation. In STOC 1998, Proceedings, pp. 234-240. ACM Press, 1998.
31. W. Thomas. Classifying regular events in symbolic logic. J. Comput. Syst. Sci., 25:360-376, 1982.
32. B. A. Trakhtenbrot. Finite automata and logic of monadic predicates (in Russian). Dokl. Akad. Nauk SSSR, 140:326-329, 1961.
33. Ph. Weis and N. Immerman. Structure theorem and strict alternation hierarchy for $\mathrm{FO}^{2}$ on words. Log. Methods Comput. Sci., 5:1-23, 2009.

[^0]:    * The last two authors acknowledge the support by the German Research Foundation (DFG) under grant DI 435/5-1.

