8 research outputs found

    Arithmetic Circuits with Locally Low Algebraic Rank

    Get PDF
    In recent years there has been a flurry of activity proving lower bounds for homogeneous depth-4 arithmetic circuits, which has brought us very close to statements that are known to imply VP != VNP. It is a big question to go beyond homogeneity, and in this paper we make progress towards this by considering depth-4 circuits of low algebraic rank, which are a natural extension of homogeneous depth-4 arithmetic circuits. A depth-4 circuit is a representation of an N-variate, degree n polynomial P as P = sum_{i=1}^T Q_{i1} * Q_{i2} * ... * Q_{it} where the Q_{ij} are given by their monomial expansion. Homogeneity adds the constraint that for every i in [T], sum_{j} degree(Q_{ij}) = n. We study an extension where, for every i in [T], the algebraic rank of the set of polynomials {Q_{i1}, Q_{i2}, ... ,Q_{it}} is at most some parameter k. We call this the class of spnew circuits. Already for k=n, these circuits are a strong generalization of the class of homogeneous depth-4 circuits, where in particular t<=n (and hence k<=n). We study lower bounds and polynomial identity tests for such circuits and prove the following results. 1. Lower bounds: We give an explicit family of polynomials {P_n} of degree n in N = n^{O(1)} variables in VNP, such that any spnewn circuit computing P_n has size at least exp{(Omega(sqrt(n)*log(N)))}. This strengthens and unifies two lines of work: it generalizes the recent exponential lower bounds for homogeneous depth-4 circuits [KLSS14, KS-full] as well as the Jacobian based lower bounds of Agrawal et al. which worked for spnew circuits in the restricted setting where T * k <= n. 2. Hitting sets: Let spnewbounded be the class of spnew circuits with bottom fan-in at most d. We show that if d and k are at most poly(log(N)), then there is an explicit hitting set for spnewbounded circuits of size quasipolynomial in N and the size of the circuit. This strengthens a result of Forbes which showed such quasipolynomial sized hitting sets in the setting where d and t are at most poly(log(N)). A key technical ingredient of the proofs is a result which states that over any field of characteristic zero (or sufficiently large characteristic), upto a translation, every polynomial in a set of algebraically dependent polynomials can be written as a function of the polynomials in the transcendence basis. We believe this may be of independent interest. We combine this with shifted partial derivative based methods to obtain our final results

    Complete Derandomization of Identity Testing and Reconstruction of Read-Once Formulas

    Get PDF
    In this paper we study the identity testing problem of arithmetic read-once formulas (ROF) and some related models. A read-once formula is formula (a circuit whose underlying graph is a tree) in which the operations are {+,x} and such that every input variable labels at most one leaf. We obtain the first polynomial-time deterministic identity testing algorithm that operates in the black-box setting for read-once formulas, as well as some other related models. As an application, we obtain the first polynomial-time deterministic reconstruction algorithm for such formulas. Our results are obtained by improving and extending the analysis of the algorithm of [Shpilka-Volkovich, 2015

    Constructing Faithful Homomorphisms over Fields of Finite Characteristic

    Full text link
    We study the question of algebraic rank or transcendence degree preserving homomorphisms over finite fields. This concept was first introduced by Beecken, Mittmann and Saxena (Information and Computing, 2013), and exploited by them, and Agrawal, Saha, Saptharishi and Saxena (Journal of Computing, 2016) to design algebraic independence based identity tests using the Jacobian criterion over characteristic zero fields. An analogue of such constructions over finite characteristic fields was unknown due to the failure of the Jacobian criterion over finite characteristic fields. Building on a recent criterion of Pandey, Sinhababu and Saxena (MFCS, 2016), we construct explicit faithful maps for some natural classes of polynomials in the positive characteristic field setting, when a certain parameter called the inseparable degree of the underlying polynomials is bounded (this parameter is always 1 in fields of characteristic zero). This presents the first generalisation of some of the results of Beecken et al. and Agrawal et al. in the positive characteristic setting

    Discovering the roots: Uniform closure results for algebraic classes under factoring

    Full text link
    Newton iteration (NI) is an almost 350 years old recursive formula that approximates a simple root of a polynomial quite rapidly. We generalize it to a matrix recurrence (allRootsNI) that approximates all the roots simultaneously. In this form, the process yields a better circuit complexity in the case when the number of roots rr is small but the multiplicities are exponentially large. Our method sets up a linear system in rr unknowns and iteratively builds the roots as formal power series. For an algebraic circuit f(x1,,xn)f(x_1,\ldots,x_n) of size ss we prove that each factor has size at most a polynomial in: ss and the degree of the squarefree part of ff. Consequently, if f1f_1 is a 2Ω(n)2^{\Omega(n)}-hard polynomial then any nonzero multiple ifiei\prod_{i} f_i^{e_i} is equally hard for arbitrary positive eie_i's, assuming that ideg(fi)\sum_i \text{deg}(f_i) is at most 2O(n)2^{O(n)}. It is an old open question whether the class of poly(nn)-sized formulas (resp. algebraic branching programs) is closed under factoring. We show that given a polynomial ff of degree nO(1)n^{O(1)} and formula (resp. ABP) size nO(logn)n^{O(\log n)} we can find a similar size formula (resp. ABP) factor in randomized poly(nlognn^{\log n})-time. Consequently, if determinant requires nΩ(logn)n^{\Omega(\log n)} size formula, then the same can be said about any of its nonzero multiples. As part of our proofs, we identify a new property of multivariate polynomial factorization. We show that under a random linear transformation τ\tau, f(τx)f(\tau\overline{x}) completely factors via power series roots. Moreover, the factorization adapts well to circuit complexity analysis. This with allRootsNI are the techniques that help us make progress towards the old open problems, supplementing the large body of classical results and concepts in algebraic circuit factorization (eg. Zassenhaus, J.NT 1969, Kaltofen, STOC 1985-7 \& Burgisser, FOCS 2001).Comment: 33 Pages, No figure

    Improved Hitting Set for Orbit of ROABPs

    Get PDF

    Variety Membership Testing in Algebraic Complexity Theory

    Get PDF
    In this thesis, we study some of the central problems in algebraic complexity theory through the lens of the variety membership testing problem. In the first part, we investigate whether separations between algebraic complexity classes can be phrased as instances of the variety membership testing problem. For this, we compare some complexity classes with their closures. We show that monotone commutative single-(source, sink) ABPs are closed. Further, we prove that multi-(source, sink) ABPs are not closed in both the monotone commutative and the noncommutative settings. However, the corresponding complexity classes are closed in all these settings. Next, we observe a separation between the complexity class VQP and the closure of VNP. In the second part, we cover the blackbox polynomial identity testing (PIT) problem, and the rank computation problem of symbolic matrices, both phrasable as instances of the variety membership testing problem. For the blackbox PIT, we give a randomized polynomial time algorithm that uses the number of random bits that matches the information-theoretic lower bound, differing from it only in the lower order terms. For the rank computation problem, we give a deterministic polynomial time approximation scheme (PTAS) when the degrees of the entries of the matrices are bounded by a constant. Finally, we show NP-hardness of two problems on 3-tensors, both of which are instances of the variety membership testing problem. The first problem is the orbit closure containment problem for the action of GLk x GLm x GLn on 3-tensors, while the second problem is to decide whether the slice rank of a given 3-tensor is at most r
    corecore