
Complete Derandomization of Identity Testing
and Reconstruction of Read-Once Formulas∗

Daniel Minahan1 and Ilya Volkovich2

1 Departments of Mathematics and EECS, CSE Division, University of
Michigan, Ann Arbor, MI, USA
dminahan@umich.edu

2 Department of EECS, CSE Division, University of Michigan, Ann Arbor, MI,
USA
ilyavol@umich.edu

Abstract
In this paper we study the identity testing problem of arithmetic read-once formulas (ROF) and
some related models. A read-once formula is formula (a circuit whose underlying graph is a
tree) in which the operations are {+,×} and such that every input variable labels at most one
leaf. We obtain the first polynomial-time deterministic identity testing algorithm that operates
in the black-box setting for read-once formulas, as well as some other related models. As an
application, we obtain the first polynomial-time deterministic reconstruction algorithm for such
formulas. Our results are obtained by improving and extending the analysis of the algorithm of
[52].

1998 ACM Subject Classification F.2.0 Analysis of Algorithms and Problem Complexity

Keywords and phrases Derandomization, Read-Once Formulas, Identity Testing, Arithmetic
Circuits, Reconstruction

Digital Object Identifier 10.4230/LIPIcs.CCC.2017.32

1 Introduction

In this paper we study the problem of Polynomial Identity Testing (PIT): given an arithmetic
circuit C over a field F, with input variables x1, x2, . . . , xn, determine whether C computes
the identically zero polynomial. Given its connections to a wide range of problems, PIT is
considered a central problem in algebraic complexity theory and algorithms design. Particular
instances include: perfect matchings in graphs [40, 43, 20], primality testing [2], IP = PSPACE
[41, 48] the PCP theorem [10, 9] and many more. PIT is one of a few natural problems
which have a simple efficient randomized algorithm [18, 47, 55] but lack a deterministic one.
Indeed, it has been a long standing open question to come up with an efficient deterministic
algorithm for this problem.

In this paper we consider the PIT problem in the black-box setting. In this setting, one is
not given the full description of the circuit C but only allowed black-box (oracle) access to
C. The problem of derandomizing identity testing in this setting reduces to that of finding
for every s an explicit set of points H ⊆ Fn of size poly(s) such that any non-zero circuit of
size s does not vanish on H. We refer to such sets as hitting sets. Indeed, the randomized
algorithm of [18, 47, 55] provides an exponential-size hitting set. Furthermore, applying

∗ Research partially supported by NSF.

© Daniel Minahan and Ilya Volkovich;
licensed under Creative Commons License CC-BY

32nd Computational Complexity Conference (CCC 2017).
Editor: Ryan O’Donnell; Article No. 32; pp. 32:1–32:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CCC.2017.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Derandomization of PIT of ROFs

standard probabilistic arguments one can show existence of “small” hitting sets. Yet, coming
up with an explicit hitting set is believed to be very difficult task as it would immediately
imply explicit exponential lowers bounds [30, 1].

Yet, for several restricted classes of arithmetic circuits, efficient deterministic black-box
PIT algorithms were found. For example, efficient black-box PIT algorithms were shown for
depth-2 arithmetic circuits [13, 36, 39] and depth-3 arithmetic circuits with bounded top fan-
in (also known as ΣΠΣ(k) circuits) [19, 35, 34, 11, 45, 33, 46, 3]. There has also been a lot of
progress on PIT for restricted classes of depth-4 circuits [44, 11, 12, 3, 32, 26, 7, 42, 52, 37, 38].
Another body of research has been focused on PIT algorithms for bounded-read models.
That is, classes of circuits where each variable appears some bounded number of times
[22, 4, 24, 23, 21, 7, 52, 28, 6, 27, 20], with the simplest case being the read-once formulas.

A read-once formula (ROF for short) is an arithmetic formula (i.e. a tree) in which the
operations are {+,×} and such that every input variable labels at most one leaf. These
formulas can be thought of as the smallest formulas that depend on all their variables and the
simplest non-trivial subclass of multilinear formulas. Although ROFs form a very restricted
model of computation they have received a lot of attention in both the Boolean [31, 8, 17]
and the algebraic [29, 16, 14, 15, 51, 52, 54] worlds.

While ROFs have a trivial polynomial (and, in fact, linear-time) white-box PIT algorithm,
the first sub-exponential time nO(

√
n) black-box PIT algorithm for ROFs was given in [49].

Later on, in [52]1 the result was improved to nO(logn) via another algorithm. A different
analysis for the latter algorithm, resulting in roughly the same run time, was given in [7]. Yet,
despite the rich body of work devoted to the problem, prior to our work no polynomial-time
black-box PIT algorithm was known even for ROFs. In this paper we give the first black-box
PIT algorithm for ROFs, and some related classes of formulas, thus achieving a complete
derandomization of the PIT problem for these classes. For more information on PIT we refer
the reader to the survey [53].

It is important to point out that while PIT asks whether the resulting polynomial is
identically zero as a formal sum of monomials, some non-identically zero polynomials might
evaluate to the zero function. For example, x5 − x will always evaluate to zero over the field
of five elements. For this reason we will allow our algorithm to evaluate the polynomial on
elements from a polynomially large extension field of F. In [52] it was shown one cannot
achieve polynomial-time black-box PIT algorithms if |F| = o(n/ logn).

1.1 Our Results
In this section we describe and discuss our results.. In fact, our results hold for the slightly
richer class of preprocessed read-once formulas. A preprocessed ROF (PROF for short) is
a ROF in which we are allowed to replace each variable xi with a univariate polynomial
Ti(xi). A polynomial P (x̄) is a Preprocessed Read-Once Polynomial (PROP for short) if
it can be computed by a preprocessed read-once formula. This PROPs also generalize the
“sum-of-univariates” model. (see Section 3.2 for a formal definition). We begin with our main
result: polynomial-time black-box PIT algorithm for PROFs.

I Theorem 1. Let n, d ∈ N. There exist a deterministic algorithm that given black-box
(oracle) access to a preprocessed read-once formula Φ on n variables and individual degrees
(of the preprocessing) at most d, checks whether Φ ≡ 0. The running time of the algorithm is
polynomial in n and d.

1 Conference version first appeared in [50].

D. Minahan and I. Volkovich 32:3

In [52] it was shown how to extend a PIT algorithm for a single PROF into a PIT
algorithm for a sum of PROFs. By plugging in our main result we obtain a black-box PIT
algorithm for sums of PROFs.

I Theorem 2. Let k, n, d ∈ N. There exist a deterministic algorithm that given black-box
(oracle) access to Φ = Φ1 + . . .+ Φk, where the Φi-s are preprocessed read-once formulas in
n variables, with individual degrees at most d, checks whether Φ ≡ 0. The running time of
the algorithm is (nd)O(k).

Observe that for a fixed k ∈ N the algorithm runs in polynomial time with respect to
n and d. Furthermore, observe that if H is hitting set for a sum of two PROPs then H
is an interpolating set for a single PROP. That is, the values of a single PROP P on H
contain enough information to uniquely identify P . Indeed, a consequence of Theorem 2 is
an interpolating set of polynomial size for PROPs. However in general, H does not provide
us with an efficient algorithm to reconstruct a corresponding PROF.

In [16], a randomized polynomial-time reconstruction algorithm for ROFs was given.
In [51], the algorithm was extended to PROFs. Moreover, it was shown how to convert
a black-box PIT algorithm into a reconstruction algorithm paying a polynomial overhead.
Indeed, by plugging in the result of [52], the first deterministic sub-exponential (and, in
fact, quasi-polynomial) time reconstruction algorithm for PROFs was given. By plugging in
our main result, we achieve a complete derandomization of the reconstruction algorithm by
obtaining a deterministic polynomial-time reconstruction algorithm for PROFs.

I Theorem 3. There exist a deterministic algorithm that given black-box (oracle) access to a
preprocessed read-one formula Φ, on n variables and individual degrees at most d, reconstructs
Φ. Namely, the algorithm outputs a PROF Φ̂ that computes the same polynomial. The
running time of the algorithm is polynomial in n and d.

1.2 Organization
The paper is organized as follows. In Section 2 we give the basic definitions and notations.
In Section 3 we formally introduce ROFs and its generalizations along with some structural
properties, and in Section 3.3 we discuss the PIT algorithm of [52]. In Section 3.4 we prove
some additional properties of the algorithm, which is the main technical contribution of the
paper. Next, in Section 4 we give our main result, thus proving Theorem 1. We discuss the
applications of our main result in Section 5 proving Theorems 2 and 3. We conclude the
paper with some open questions in Section 6.

2 Preliminaries

For a positive integer n, let [n] denote the set {1, . . . , n}. We now give some definitions that
apply to polynomials P,Q ∈ F[x1, . . . , xn]. For a polynomial P , a variable xi, and α ∈ F, let
P |xi=α denote the polynomial that results upon setting xi = α. We say that P depends on
xi if there exist ā, b̄ ∈ Fn that differ in only the i-coordinate such that P (ā) 6= P (b̄). We
denote var(P) ∆= {i : P depends on xi}. Intuitively, P depends on xi if xi appears when P
is written as a sum of monomials.

We say that P is a homogeneous polynomial if all monomials in P has the same total
degree. For i ∈ N we define Hi[P] as the homogeneous part of degree i of P . That is, all the
monomials of total degree i that appear in P . If P does not have monomials of degree i then

CCC 2017

32:4 Derandomization of PIT of ROFs

Hi[P] ≡ 0. We say that P and Q are similar and denote P ∼ Q if there exist α ∈ F \ {0}
such that α · P = Q.

In order to actually calculate the complexity of our algorithm we need to define a formal
model of computation for polynomials.

I Definition 4 (Arithmetic formula). An arithmetic formula is a binary tree where each leaf
is labeled with a variable xi ∈ {x1, . . . , xn} and each internal node, called a gate, is labeled
with an operation + or ×. Additionally, each leaf and node are labeled with some (α, β) ∈ F2.
The tree is evaluated by recursively calculating the values of the left subtree P1 and the right
subtree P2 and then combining them by α(P1 op P2) + β where op is the operation at the
top gate.

The efficiency of a formula over a set of formulas C is measured by the number of gates
in C. Thus when we say polynomial time, we mean polynomial in the number of gates.
Often times, we will implicitly associate a class of formulas C with the class of polynomials
computed by these formulas.

We consider formulas in the black-box (or oracle) setting. That is, the algorithm cannot
directly look at the formula and is only allowed to query the polynomial computed by the
formula on Fn. Hereafter, we assume that an evaluation query can be carried out in O(1)
time. In case F is small, we allow to query the formula on a polynomially-large extension
field of F.

2.1 Generators and Hitting Sets
Our black-box PIT algorithms use the notion of generators. In this section, we formally define
this notion, describe a few of its useful properties and give the connection to hitting sets.
Intuitively, a generator G for a polynomial class C, is a function that stretches t independent
variables into n � t dependent variables that can be plugged into any polynomial P ∈ C
without causing it to vanish. Recall that a hitting set H ⊆ Fn for a class of polynomials C is
a set such that for any nonzero polynomial P ∈ C, there exists ā ∈ H, such that P (ā) 6= 0.

I Definition 5 (Hitting Set). Let C be a class of polynomials in F[x1, . . . , xn]. A set H is
called a hitting set for C provided that ∀P ∈ C with P 6≡ 0 we have that P |H 6≡ 0.

This leads us to a basic algorithm for PIT.

I Lemma 6. Let C be a class of polynomials in F[x1, . . . , xn] and let H be a hitting set for
C. Then there exists a deterministic PIT algorithm for C that runs in time O(|H|).

The following generalization of the fundamental theorem of algebra provides hitting sets
of exponential size for every polynomial. A proof can be found in [5].

I Lemma 7. Let P 6≡ 0 ∈ F[x1, . . . , xn] and suppose the individual degree of any variable in
P is bounded by some d ∈ N. Pick S ⊆ F with |S| > d. Then P |Sn 6≡ 0.

I Remark. The precondition of the lemma implies that |F| > d. In case that F is small, this
assumption is met by choosing elements from an appropriately large extension field of F.

A related notion is the notion of generators. Many hitting sets are constructed by means
of generators.

I Definition 8 (Generator). Let C be a class of polynomials over F. A polynomial map
G : Ft → Fn is a generator for C provided that ∀P 6≡ 0 ∈ C we have P (G) 6≡ 0.

D. Minahan and I. Volkovich 32:5

Intuitively, a generator G for C is a polynomial mapping that has a hitting set for C in
its image. More specifically, Lemma 7 allows us to convert a generator into a hitting set by
observing that a polynomial composed with a polynomial map results in another polynomial.
Such composition typically reduces the number of variables that the polynomial depends
on, but it may increase the total degree. Thus, since the size of the hitting set produced by
Lemma 7 depends on both parameters, we want to find a generator that reduces the number
of variables without drastically increasing its degree.

3 Read-Once Formulas

In this section we discuss our computational model. We first consider the basic model of
read-once formulas and cover some of its main properties. Then, we introduce the model of
preprocessed-read-once formulas and give its corresponding properties.

3.1 Read-Once Formulas and Read-Once Polynomials

Most of the definitions that we give in this section are from [29] and [52] or some small
variants. We start by formally defining the notions of a read-once formula and a read-once
polynomial.

I Definition 9 (Read-Once Formula). A read-once formula (ROF) is an arithmetic formula
where each variable appears at most once. A polynomial P (x̄) is a read-once polynomial
(ROP for short) if it can be computed by a read-once formula.

Clearly, ROPs form a subclass of multilinear polynomials. In addition, note that the
number of gates in a ROF is at most twice the number of variables. This means that our
complexity scales with n, so we need only be concerned about how the runtime of our
algorithm scales with respect to the number of variables. Thus, our ideal efficiency for an
algorithm is nO(1). The next lemma also follows easily from the definition.

I Lemma 10 (ROP Structural Lemma). Every ROP P (x̄) that depends on at least two
variables can be presented in exactly one of the following forms:
1. P (x̄) = P1(x̄) + P2(x̄),
2. P (x̄) = P1(x̄) · P2(x̄) + c. ,
where P1 and P2 are non-constant, variable-disjoint ROPs and c ∈ F is a constant.

3.2 Preprocessed Read-Once Polynomials

In this section we extend the model of ROFs by allowing a preprocessing step of the input
variables. While the basic model is read-once in its variables, the extended model can be
considered as read-once in univariate polynomials. In addition, this model generalizes the
“sum-of-univariates” model, which, in particular, contains the “sum-of-squares” model.

I Definition 11. A preprocessing is a transformation T (x̄) : Fn → Fn of the form T (x̄) ∆=
(T1(x1), T2(x2), . . . , Tn(xn)) such that each Ti is a non-constant univariate polynomial.

Notice that preprocessings do not affect the PIT problem in the white-box setting as for
every n-variate polynomial P (ȳ) it holds that P (ȳ) ≡ 0 if and only if P (T (x̄)) ≡ 0. We now
give a formal definition and list some immediate properties.

CCC 2017

32:6 Derandomization of PIT of ROFs

I Definition 12. A preprocessed arithmetic read-once formula (PROF for short) over a field
F in the variables x̄ = (x1, . . . , xn) is a binary tree whose leafs are labelled with non-constant
univariate polynomials T1(x1), T2(x2), . . . , Tn(xn) (all together forming a preprocessing) and
whose internal nodes are labelled with the arithmetic operations {+,×} and with a pair of
field elements (α, β) ∈ F2. Each Ti can label at most one leaf. The computation is performed
in the following way. A leaf labelled with the polynomial Ti(xi) and with (α, β) computes
the polynomial α · Ti(xi) + β. If a node v is labelled with the operation op and with (α, β),
and its children compute the polynomials Φv1 and Φv2 then the polynomial computed at v is
Φv = α · (Φv1 op Φv2) + β.

A polynomial P (x̄) is a Preprocessed Read-Once Polynomial (PROP for short) if it can
be computed by a preprocessed read-once formula. A Decomposition of a polynomial P is a
pair Q(z̄), T (x̄) such that P (x̄) = Q(T (x̄)) when Q is a ROP and T is a preprocessing. An
immediate consequence from the definition is that each PROP admits a decomposition. The
following lemma is the PROPs analog of Lemma 10.

I Lemma 13 (PROP Structural Lemma). Every PROP P (x̄) with |var(P)| ≥ 2 can be
presented in one of the following forms:
1. P (x̄) = P1(x̄) + P2(x̄),
2. P (x̄) = P1(x̄) · P2(x̄) + c,
where P1 and P2 are non-constant, variable-disjoint PROPs and c ∈ F is a constant.

3.3 The Algorithm of [52]
In this paper we improve the complexity analysis of the PIT algorithm of [52]. We begin by
describing their algorithm. The heart of the algorithm is a construction of polynomial map
Gn,t which is shown to be a generator for PROPs for a certain range of parameters.

As in [52], we fix a set A = {α1, α2, . . . , αn} ⊆ F of n distinct elements. It is also
assumed that in case that F is small, we have access to some extension field of F with more
than n elements. As was shown in [52], this assumption is necessary in order to achieve a
polynomial-time algorithm.

I Definition 14 (The generator of [52]). Let t ∈ N. For each i ∈ [n] let Li(y) denote

the i-th Lagrange Interpolation polynomial. Formally: Li(y) ∆=
∏

j 6=i
(y−αj)∏

j 6=i
(αi−αj)

. That is,

Li(y) is a degree n − 1 polynomial satisfying: Li(αj) = 1 when j = i and Li(αj) = 0
when j 6= i. For each i ∈ [n], let Git(y1, . . . , yt, z1, . . . , zt)

∆=
∑t
k=1 Li(yk) · zk. Finally, let

Gn,t(y1, . . . , yt, z1, . . . , zt)
∆=
(
G1
t (y1, . . . , zt), . . . , Gnt (y1, . . . , zt)

)
.

Gn,t can be seen as a sum of t variable-disjoint copies of Gn,1. This can be seen as the
algebraic analogue of t-wise independent bits. The main part of the analysis of the algorithm
is to establish that for every n ∈ N the map Gn,logn is a generator for PROPs on n variables.

I Lemma 15 ([52]). Let P ∈ F[x1, . . . , xn] be a non-constant PROP. Then P (Gn,logn) is
non-constant.

The intuition behind the proof is that a PROP can be written as either a sum or a
product of two variable-disjoint polynomials (Lemma 13). Hence, (at least) one of these
polynomials contains at most half of the variables. The map Gn,t allows to “move” to a
smaller polynomial by “shaving” a copy of Gn,1. Finally, applying Lemma 7 one could show
that if Gn,t is a generator for a class of polynomials, then it can be converted into a relatively
small hitting set for that same class.

D. Minahan and I. Volkovich 32:7

I Lemma 16. Let P ∈ F[x1, . . . , xn] be a polynomial of degree d such that P (Gn,t) 6≡ 0 for
some t, d ∈ N. Then P has a hitting set of size (nd)O(t).

Consequently, the result of Lemma 15 translates into a hitting set of size (nd)O(logn) for
PROPs. We note that the generator of [52] has been used as an ingredient in some subsequent
PIT algorithms (e.g. [21, 7, 6, 25]).

3.4 Our Technical Contribution
In this section we explore additional properties of the generator of [52]. The main observation
is a structural property of the generator when applied to a polynomial that depends only on
a “small” subset of variables. This is the main technical contribution of the paper.

Let A = {α1, α2, . . . , αn} be the set of elements that is used to define the generator.

I Definition 17. For I ⊆ [n], define ΦI(y) ∆=
∏
i∈I

(y − αi). For notational convenience,

Φ∅(y) ∆= 1.

In order to provide some intuition for the definition, we observe that for any i ∈ [n] we
have that Li ∼ Φ[n]\{i} .

I Lemma 18. Let P ∈ F[x1, . . . , xn] be a homogeneous polynomial of a total degree d and
let δ be an upper bound on the individual degrees of all variables xi in P . Then there exists a
polynomial P ′(y) of degree at most δ · |var(P)| − d such that

P (Gn,1(y, z)) = zd · Φd−δ[n] (y) · P ′(y) · Φδ[n]\var(P)(y).

In particular, there exist a polynomial P ′(y) of degree at most d · (|var(P)| − 1) such that

P (Gn,1(y, z)) = zd · P ′(y) · Φd[n]\var(P)(y).

Proof. Let V ⊆ [n] and let m(x̄) = α
∏
i∈V

xei
i be a monomial s.t.

∑
i∈V

ei = d and ∀i ∈ V : 0 ≤

ei ≤ δ.

m (Gn,1(y, z)) = αzd ·
∏
i∈V

Lei
i (y) = βzd ·

∏
i∈V

Φei

[n]\{i}(y) = βzd · Φd[n](y)/
∏
i∈V

(y − αi)ei =

βzd · Φd−δ[n] (y) · ΦδV (y)/
∏
i∈V

(y − αi)ei · Φδ[n]\V (y) =

zd · Φd−δ[n] (y) · β
∏
i∈V

(y − αi)δ−ei · Φδ[n]\V (y).

Take m′(y) = β
∏
i∈V (y−αi)δ−ei and observe that degree of m′(y) is δ · |V |−d. By definition,

the polynomial P consists of a sum of such monomial where V = var(P). Therefore, the first
claim follows by a linearity argument. The second claim follows by observing that d is an
upper bound on the individual degrees of all variables xi in P , so we can set δ = d. J

4 Main Result

In this section we prove our main result Theorem 1. We begin by showing that P (Gn,1) hits
sums of univariate polynomials. This proof is available in [52] but we reproduce it here for
completeness.

CCC 2017

32:8 Derandomization of PIT of ROFs

I Lemma 19. Let P ∈ F[x1, . . . , xn] be a non-constant polynomial of the form P =
n∑
i=1

Ti(xi).

Then P (Gn,1(y, z)) is non-constant.

Proof. Pick xi such that Ti(xi) is non-constant. Observe that: P (Gn,1)|y=αi = Ti(z) +∑
j 6=i

Tj(0). This is a non-constant polynomial and so P (Gn,1) is non-constant as well. J

We now move to the proof our main result. We want to show that Gn,1 is a generator
for the set of PROPs. The idea is to proceed by induction using Lemma 13. Recall that
for any P ∈ F[x1, . . . , xn] and i ∈ N, Hi[P] denotes the homogeneous part of degree i of P .
Consequently, we can write P =

∑d
i=0Hi[P].

I Theorem 20. Let P ∈ F[x1, . . . , xn] be a non-constant PROP. Then P (Gn,1) is non-
constant.

Proof. Let d denote the total degree of P . We induct on m = |var(P)|. The base case where
m = 1 follows from Lemma 19. Now, suppose that m ≥ 2. By the PROP Structural Lemma
(Lemma 13) we have two cases.

1. P = P1 · P2 + c. Note that |var(P1)|, |var(P2)| ≤ m− 1, so by the inductive hypothesis
P1(Gn,1) and P2(Gn,1) are non-constant polynomials and hence their product is non-
constant as well. Adding a constant does not affect this.

2. P = P1 +P2. For j = 1, 2: we can write Pj =
d∑
i=0

Pi,j where Pi,j = Hi[Pj]. By Lemma 18,

for each 0 ≤ i ≤ d and j = 1, 2 there exists a polynomial P ′i,j(y) of degree at most
i · (|var(Pi,j)| − 1) such that

Pj(Gn,1(y, z)) =
d∑
i=0

Pi,j(Gn,1(y, z)) =
d∑
i=0

zi · P ′i,j(y) · Φi[n]\var(Pi,j)(y)

and hence

P (Gn,1(y, z)) =
d∑
i=0

zi ·
(
P ′i,1(y) · Φi[n]\var(Pi,1)(y) + P ′i,2(y) · Φi[n]\var(Pi,2)(y)

)
. (1)

As before, by the inductive hypothesis P1(Gn,1) and P2(Gn,1) are non-constant polyno-
mials. Therefore, there exist 1 ≤ k ≤ d such that

zk · P ′k,1(y) · Φk[n]\var(Pk,1)(y) 6≡ 0

and in particular P ′k,1(y) 6≡ 0. Let us denote Vj = var(Pk,j) and W = [n] \ (V1 ∪ V2).
Consider the expression that corresponds to the zk term in Equation 1:

P ′k,1(y) · Φk[n]\var(Pk,1)(y) + P ′k,2(y) · Φk[n]\var(Pk,2)(y) (2)

As Pk,1 and Pk,2 are variable-disjoint, Equation 2 can be rewritten as:

P ′k,1(y) · ΦkV2∪W (y) + P ′k,2(y) · ΦkV1∪W (y) =
ΦkW (y) ·

(
P ′k,1(y) · ΦkV2

(y) + P ′k,2(y) · ΦkV1
(y)
)

The last equality follows from the properties of Φ (see Definition 17).
We claim that the obtained expression is non-constant. To this end, it sufficient to
show that P ′k,1(y) · ΦkV2

(y) + P ′k,2(y) · ΦkV1
(y) 6≡ 0. Assume the contrary. We obtain that

D. Minahan and I. Volkovich 32:9

P ′k,1(y) · Φk
V2

(y) = −P ′k,2(y) · Φk
V1

(y). As V1 and V2 are disjoint sets, ΦV1(y) and ΦV2(y)
have no common roots. Therefore, it must be the case that ΦkV1

divides P ′k,1. As P ′k,1 6≡ 0,
we get that

deg
(
P ′k,1

)
≥ deg

(
ΦkV1

)
= k |V1|

while by Lemma 18, P ′k,1(y) is a polynomial of degree at most k · (|V1| − 1). Consequently,
the coefficient of zk in P (Gn,1(y, z)) is non-constant and the claim follows. J

Theorem 1 follows by combining Theorem 20 with Lemma 16.

5 Applications

In this section we show two application for our main result, proving Theorems 2 and 3. The
first application is testing whether several PROPs sum up to the zero polynomial. To this
end, we require the following result which shows that a generator for the class of PROPs can
be extended to yield a generator for the class of sums of PROPs.

I Lemma 21 ([52]). Let Gn be a generator for PROPs on n variables. Then for any k ∈ N,
Gn +Gn,3k is a generator for sums of k PROPs on n variables.

I Remark. As both Gn and Gn,3k represent polynomial maps with the same output length,
the sum G+Gn,3k should be interpreted as component-wise sum, where we implicitly assume
the variables of Gn and Gn,3k have been relabelled so as to be disjoint.

The next corollary follows by combining Lemma 21 with Theorem 20 and the properties
of Gn,t (see Definition 14).

I Corollary 22. For any k, n ∈ N, the map Gn,3k+1 is a generator for sums of k PROPs on
n variables.

Theorem 2 follows by applying Lemma 16. Observe that if H is hitting set for a sum of
two PROPs then H is an interpolating set for a single PROP. That is, the values of a single
PROP P on H contain enough information to uniquely identify P . Indeed, a consequence
of Theorem 2 is an interpolating set of polynomial size for PROPs. However in general, H
does not provide us with an efficient algorithm to reconstruct a corresponding PROF. In [51]
it was shown how to use an interpolating set to devise a reconstruction algorithm with a
polynomial overhead.

I Lemma 23 ([51]). Let n, d ∈ N. There exists a deterministic algorithm that given a hitting
set Hn,d for PROPs on n variable and degree at most d, and black-box (oracle) access to
a PROP P as above, outputs a PROF Φ that computes P , in time polynomial in n, d and
|Hn,d|.

Combining the Lemma with Theorem 1 results in Theorem 3.

6 Conclusions & Open Questions

In this paper we present the first polynomial-time black-box identity testing and reconstruction
algorithms for read-once formulas, which form a subclass of multilinear formulas. In [7],
quasi-polynomial-time and polynomial-time PIT algorithms were given for multilinear read-k
formulas in the black-box and the white-box settings, respectively for constant values of k.
At a high-level, both algorithms go by alternating the following two steps:

CCC 2017

32:10 Derandomization of PIT of ROFs

Step 1: Reduce PIT of a read-(k + 1) formula to PIT of sum of two read-k formulas.
Step 2: Reduce PIT of sum of two read-k formulas to PIT of a (single) read-k formula.

While Step 2 introduces an overhead of (roughly) nkO(k) in both settings, the gap in the
final complexity results from the overhead introduced by Step 1. Indeed, in the whitebox
setting, the overhead is poly(n, k) while in black-box setting the overhead is nO(logn).
Moreover, for k = 0 the the analysis of Step 2 can be seen as a different analysis of the
black-box PIT algorithm for ROFs of [52], resulting in roughly the same run time. We hope
that the ideas presented in this paper could be extended further to improve the analysis of
the black-box PIT algorithms of [7], and, perhaps lead to new PIT algorithms.

Some open questions: can one obtain a polynomial-time black-box PIT algorithm for
multilinear read-k formula with a constant k? What about k = 2? I.e. multilinear read-
twice formulas. Even more specifically, can one show a black-box reduction from a PIT
instance of a multilinear read-twice formula to polynomially-many PIT instances of sums of
constantly-many read-once formulas, introducing only a polynomial overhead?

Acknowledgments. The authors would like to thank the anonymous referees for useful
comments.

References
1 M. Agrawal. Proving lower bounds via pseudo-random generators. In Proceedings of the

25th FSTTCS, volume 3821 of LNCS, pages 92–105, 2005.
2 M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Annals of Mathematics, 160(2):781–

793, 2004.
3 M. Agrawal, C. Saha, R. Saptharishi, and N. Saxena. Jacobian hits circuits: Hitting-sets,

lower bounds for depth-d occur-k formulas & depth-3 transcendence degree-k circuits. In
Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC), pages
599–614, 2012.

4 M. Agrawal, C. Saha, and N. Saxena. Quasi-polynomial hitting-set for set-depth- formulas.
In Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC),
pages 321–330, 2013.

5 N. Alon. Combinatorial nullstellensatz. Combinatorics, Probability and Computing, 8:7–29,
1999.

6 M. Anderson, M.A. Forbes, R. Saptharishi, A. Shpilka, and B. L. Volk. Identity Testing and
Lower Bounds for Read-k Oblivious Algebraic Branching Programs. In 31st Conference on
Computational Complexity (CCC 2016), volume 50 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 30:1–30:25. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.CCC.2016.30.

7 M. Anderson, D. van Melkebeek, and I. Volkovich. Derandomizing polynomial identity
testing for multilinear constant-read formulae. Computational Complexity, 24(4):695–776,
2015.

8 D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once formulas with queries. J.
ACM, 40(1):185–210, 1993.

9 S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems. JACM, 45(3):501–555, 1998.

10 S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP.
JACM, 45(1):70–122, 1998.

11 V. Arvind and P. Mukhopadhyay. The monomial ideal membership problem and polynomial
identity testing. Information and Computation, 208(4):351–363, 2010.

http://dx.doi.org/10.4230/LIPIcs.CCC.2016.30

D. Minahan and I. Volkovich 32:11

12 M. Beecken, J. Mittmann, and N. Saxena. Algebraic independence and blackbox iden-
tity testing. In Automata, Languages and Programming, 38th International Colloquium
(ICALP), pages 137–148, 2011.

13 M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynominal
interpolation. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing
(STOC), pages 301–309, 1988.

14 D. Bshouty and N.H. Bshouty. On interpolating arithmetic read-once formulas with expo-
nentiation. JCSS, 56(1):112–124, 1998.

15 N.H. Bshouty and R. Cleve. Interpolating arithmetic read-once formulas in parallel. SIAM
J. on Computing, 27(2):401–413, 1998.

16 N.H. Bshouty, T.R. Hancock, and L. Hellerstein. Learning arithmetic read-once formulas.
SIAM J. on Computing, 24(4):706–735, 1995.

17 N.H. Bshouty, T.R. Hancock, and L. Hellerstein. Learning boolean read-once formulas
with arbitrary symmetric and constant fan-in gates. JCSS, 50:521–542, 1995.

18 R.A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing. Inf.
Process. Lett., 7(4):193–195, 1978.

19 Z. Dvir and A. Shpilka. Locally decodable codes with 2 queries and polynomial identity
testing for depth 3 circuits. SIAM J. on Computing, 36(5):1404–1434, 2006.

20 S.A. Fenner, R. Gurjar, and T. Thierauf. Bipartite perfect matching is in quasi-nc. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC,
pages 754–763, 2016. doi:10.1145/2897518.2897564.

21 M. Forbes, R. Saptharishi, and A. Shpilka. Pseudorandomness for multilinear read-once
algebraic branching programs, in any order. In Proceedings of the 46th Annual ACM
Symposium on Theory of Computing (STOC), pages 867–875, 2014. Full version at https:
//eccc.weizmann.ac.il/report/2013/132/. doi:10.1145/2591796.2591816.

22 M. Forbes and A. Shpilka. Quasipolynomial-time identity testing of non-commutative and
read-once oblivious algebraic branching programs. Electronic Colloquium on Computational
Complexity (ECCC), 19:115, 2012.

23 M. Forbes and A. Shpilka. Explicit noether normalization for simultaneous conjugation via
polynomial identity testing. In APPROX-RANDOM, pages 527–542, 2013.

24 M. Forbes and A. Shpilka. Quasipolynomial-time identity testing of non-commutative and
read-once oblivious algebraic branching programs. In Proceedings of the 54th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 243–252, 2013. Full version
at https://eccc.weizmann.ac.il/report/2012/115/. doi:10.1109/FOCS.2013.34.

25 M.A. Forbes, A. Shpilka, I. Tzameret, and A. Wigderson. Proof complexity lower bounds
from algebraic circuit complexity. CoRR, abs/1606.05050, 2016. URL: http://arxiv.org/
abs/1606.05050.

26 A. Gupta. Algebraic geometric techniques for depth-4 PIT & sylvester-gallai conjectures
for varieties. Electronic Colloquium on Computational Complexity (ECCC), 21:130, 2014.
URL: https://eccc.weizmann.ac.il/report/2014/130/.

27 R. Gurjar, A. Korwar, and N. Saxena. Identity Testing for Constant-Width, and Commuta-
tive, Read-Once Oblivious ABPs. In 31st Conference on Computational Complexity (CCC
2016), volume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages 29:1–
29:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
CCC.2016.29.

28 R. Gurjar, A. Korwar, N. Saxena, and T. Thierauf. Deterministic Identity Testing for Sum
of Read-once Oblivious Arithmetic Branching Programs. In 30th Conference on Compu-
tational Complexity (CCC 2015), volume 33 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 323–346. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015.
doi:10.4230/LIPIcs.CCC.2015.323.

CCC 2017

http://dx.doi.org/10.1145/2897518.2897564
https://eccc.weizmann.ac.il/report/2013/132/
https://eccc.weizmann.ac.il/report/2013/132/
http://dx.doi.org/10.1145/2591796.2591816
https://eccc.weizmann.ac.il/report/2012/115/
http://dx.doi.org/10.1109/FOCS.2013.34
http://arxiv.org/abs/1606.05050
http://arxiv.org/abs/1606.05050
https://eccc.weizmann.ac.il/report/2014/130/
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.29
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.29
http://dx.doi.org/10.4230/LIPIcs.CCC.2015.323

32:12 Derandomization of PIT of ROFs

29 T.R. Hancock and L. Hellerstein. Learning read-once formulas over fields and extended
bases. In Proceedings of the 4th Annual Workshop on Computational Learning Theory
(COLT), pages 326–336, 1991.

30 J. Heintz and C.P. Schnorr. Testing polynomials which are easy to compute (extended
abstract). In Proceedings of the 12th Annual ACM Symposium on Theory of Computing
(STOC), pages 262–272, 1980.

31 M. Karchmer, N. Linial, I. Newman, M.E. Saks, and A. Wigderson. Combinatorial char-
acterization of read-once formulae. Discrete Mathematics, 114(1-3):275–282, 1993.

32 Z. S. Karnin, P. Mukhopadhyay, A. Shpilka, and I. Volkovich. Deterministic identity testing
of depth 4 multilinear circuits with bounded top fan-in. SIAM J. on Computing, 42(6):2114–
2131, 2013.

33 Z. S. Karnin and A. Shpilka. Black box polynomial identity testing of generalized depth-3
arithmetic circuits with bounded top fan-in. Combinatorica, 31(3):333–364, 2011. doi:
10.1007/s00493-011-2537-3.

34 N. Kayal and S. Saraf. Blackbox polynomial identity testing for depth 3 circuits. In
Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 198–207, 2009. Full version at https://eccc.weizmann.ac.il/report/
2009/032/.

35 N. Kayal and N. Saxena. Polynomial identity testing for depth 3 circuits. Computational
Complexity, 16(2):115–138, 2007.

36 A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate poly-
nomials. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
(STOC), pages 216–223, 2001.

37 M. Kumar and S. Saraf. Arithmetic Circuits with Locally Low Algebraic Rank. In 31st
Conference on Computational Complexity (CCC 2016), volume 50 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 34:1–34:27. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2016. doi:10.4230/LIPIcs.CCC.2016.34.

38 M. Kumar and S. Saraf. Sums of Products of Polynomials in Few Variables: Lower Bounds
and Polynomial Identity Testing. In 31st Conference on Computational Complexity, CCC,
volume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1–35:29.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CCC.2016.
35.

39 R. J. Lipton and N.K. Vishnoi. Deterministic identity testing for multivariate polynomials.
In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 756–760, 2003.

40 L. Lovasz. On determinants, matchings, and random algorithms. In L. Budach, editor,
Fundamentals of Computing Theory. Akademia-Verlag, 1979.

41 C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. JACM, 39(4):859–868, 1992.

42 P. Mukhopadhyay. Depth-4 identity testing and noether’s normalization lemma. Electronic
Colloquium on Computational Complexity (ECCC), 2015.

43 K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1):105–113, 1987.

44 N. Saxena. Diagonal circuit identity testing and lower bounds. In Automata, Languages
and Programming, 35th International Colloquium, pages 60–71, 2008. Full version at https:
//eccc.weizmann.ac.il/eccc-reports/2007/TR07-124/.

45 N. Saxena and C. Seshadhri. From Sylvester-Gallai Configurations to Rank Bounds: Im-
proved Black-Box Identity Test for Deph-3 Circuits. In Proceedings of the 51st Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 21–30, 2010.

http://dx.doi.org/10.1007/s00493-011-2537-3
http://dx.doi.org/10.1007/s00493-011-2537-3
https://eccc.weizmann.ac.il/report/2009/032/
https://eccc.weizmann.ac.il/report/2009/032/
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.34
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.35
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.35
https://eccc.weizmann.ac.il/eccc-reports/2007/TR07-124/
https://eccc.weizmann.ac.il/eccc-reports/2007/TR07-124/

D. Minahan and I. Volkovich 32:13

46 N. Saxena and C. Seshadhri. An almost optimal rank bound for depth-3 identities. SIAM
J. Comput., 40(1):200–224, 2011.

47 J.T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, 1980.

48 A. Shamir. IP=PSPACE. In Proceedings of the Thirty First Annual Symposium on Foun-
dations of Computer Science, pages 11–15, 1990.

49 A. Shpilka and I. Volkovich. Read-once polynomial identity testing. In Proceedings of
the 40th Annual ACM Symposium on Theory of Computing (STOC), pages 507–516, 2008.
doi:10.1145/1374376.1374448.

50 A. Shpilka and I. Volkovich. Improved polynomial identity testing for read-once formulas.
In APPROX-RANDOM, pages 700–713, 2009. Full version at https://eccc.weizmann.
ac.il/report/2010/011/.

51 A. Shpilka and I. Volkovich. On reconstruction and testing of read-once formulas. Theory
of Computing, 10:465–514, 2014.

52 A. Shpilka and I. Volkovich. Read-once polynomial identity testing. Computational Com-
plexity, 24(3):477–532, 2015.

53 A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

54 I. Volkovich. Characterizing arithmetic read-once formulae. ACM Transactions on Com-
putation Theory (ToCT), 8(1):2, 2016. doi:10.1145/2858783.

55 R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the Interna-
tional Symposium on Symbolic and Algebraic Computation, pages 216–226, 1979.

CCC 2017

http://dx.doi.org/10.1145/1374376.1374448
https://eccc.weizmann.ac.il/report/2010/011/
https://eccc.weizmann.ac.il/report/2010/011/
http://dx.doi.org/10.1145/2858783

	Introduction
	Our Results
	Organization

	Preliminaries
	Generators and Hitting Sets

	Read-Once Formulas
	Read-Once Formulas and Read-Once Polynomials
	Preprocessed Read-Once Polynomials
	The Algorithm of [52]
	Our Technical Contribution

	Main Result
	Applications
	Conclusions & Open Questions

