1,370 research outputs found

    Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric Vehicles

    Get PDF
    The combination of machine learning and heterogeneous embedded platforms enables new potential for developing sophisticated control concepts which are applicable to the field of vehicle dynamics and ADAS. This interdisciplinary work provides enabler solutions -ultimately implementing fast predictions using neural networks (NNs) on field programmable gate arrays (FPGAs) and graphical processing units (GPUs)- while applying them to a challenging application: Torque Vectoring on a multi-electric-motor vehicle for enhanced vehicle dynamics. The foundation motivating this work is provided by discussing multiple domains of the technological context as well as the constraints related to the automotive field, which contrast with the attractiveness of exploiting the capabilities of new embedded platforms to apply advanced control algorithms for complex control problems. In this particular case we target enhanced vehicle dynamics on a multi-motor electric vehicle benefiting from the greater degrees of freedom and controllability offered by such powertrains. Considering the constraints of the application and the implications of the selected multivariable optimization challenge, we propose a NN to provide batch predictions for real-time optimization. This leads to the major contribution of this work: efficient NN implementations on two intrinsically parallel embedded platforms, a GPU and a FPGA, following an analysis of theoretical and practical implications of their different operating paradigms, in order to efficiently harness their computing potential while gaining insight into their peculiarities. The achieved results exceed the expectations and additionally provide a representative illustration of the strengths and weaknesses of each kind of platform. Consequently, having shown the applicability of the proposed solutions, this work contributes valuable enablers also for further developments following similar fundamental principles.Some of the results presented in this work are related to activities within the 3Ccar project, which has received funding from ECSEL Joint Undertaking under grant agreement No. 662192. This Joint Undertaking received support from the European Union’s Horizon 2020 research and innovation programme and Germany, Austria, Czech Republic, Romania, Belgium, United Kingdom, France, Netherlands, Latvia, Finland, Spain, Italy, Lithuania. This work was also partly supported by the project ENABLES3, which received funding from ECSEL Joint Undertaking under grant agreement No. 692455-2

    Pipelining Saturated Accumulation

    Get PDF
    Aggressive pipelining and spatial parallelism allow integrated circuits (e.g., custom VLSI, ASICs, and FPGAs) to achieve high throughput on many Digital Signal Processing applications. However, cyclic data dependencies in the computation can limit parallelism and reduce the efficiency and speed of an implementation. Saturated accumulation is an important example where such a cycle limits the throughput of signal processing applications. We show how to reformulate saturated addition as an associative operation so that we can use a parallel-prefix calculation to perform saturated accumulation at any data rate supported by the device. This allows us, for example, to design a 16-bit saturated accumulator which can operate at 280 MHz on a Xilinx Spartan-3(XC3S-5000-4) FPGA, the maximum frequency supported by the component's DCM

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code

    A Survey and Evaluation of FPGA High-Level Synthesis Tools

    Get PDF
    High-level synthesis (HLS) is increasingly popular for the design of high-performance and energy-efficient heterogeneous systems, shortening time-to-market and addressing today's system complexity. HLS allows designers to work at a higher-level of abstraction by using a software program to specify the hardware functionality. Additionally, HLS is particularly interesting for designing field-programmable gate array circuits, where hardware implementations can be easily refined and replaced in the target device. Recent years have seen much activity in the HLS research community, with a plethora of HLS tool offerings, from both industry and academia. All these tools may have different input languages, perform different internal optimizations, and produce results of different quality, even for the very same input description. Hence, it is challenging to compare their performance and understand which is the best for the hardware to be implemented. We present a comprehensive analysis of recent HLS tools, as well as overview the areas of active interest in the HLS research community. We also present a first-published methodology to evaluate different HLS tools. We use our methodology to compare one commercial and three academic tools on a common set of C benchmarks, aiming at performing an in-depth evaluation in terms of performance and the use of resources

    Time-area efficient multiplier-free recursive filter architectures for FPGA implementation

    Get PDF
    corecore