12,307 research outputs found

    Area and Length Minimizing Flows for Shape Segmentation

    Get PDF
    ©1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.Presented at the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 17-19, 1997, San Juan, Puerto Rico.DOI: 10.1109/CVPR.1997.609390Several active contour models have been proposed to unify the curve evolution framework with classical energy minimization techniques for segmentation, such as snakes. The essential idea is to evolve a curve (in 20) or a surface (in 30) under constraints from image forces so that it clings to features of interest in an intensity image. Recently the evolution equation has. been derived from first principles as the gradient flow that minimizes a modified length functional, tailored io features such as edges. However, because the flow may be slow to converge in practice, a constant (hyperbolic) term is added to keep the curve/surface moving in the desired direction. In this paper, we provide a justification for this term based on the gradient flow derived from a weighted area functional, with image dependent weighting factor. When combined with the earlier modified length gradient flow we obtain a pde which offers a number of advantages, as illustrated by several examples of shape segmentation on medical images. In many cases the weighted area flow may be used on its own, with significant computational savings

    Area and length minimizing flows for shape segmentation.

    Get PDF
    Abstrac

    Finsler Active Contours

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TPAMI.2007.70713In this paper, we propose an image segmentation technique based on augmenting the conformal (or geodesic) active contour framework with directional information. In the isotropic case, the euclidean metric is locally multiplied by a scalar conformal factor based on image information such that the weighted length of curves lying on points of interest (typically edges) is small. The conformal factor that is chosen depends only upon position and is in this sense isotropic. Although directional information has been studied previously for other segmentation frameworks, here, we show that if one desires to add directionality in the conformal active contour framework, then one gets a well-defined minimization problem in the case that the factor defines a Finsler metric. Optimal curves may be obtained using the calculus of variations or dynamic programming-based schemes. Finally, we demonstrate the technique by extracting roads from aerial imagery, blood vessels from medical angiograms, and neural tracts from diffusion-weighted magnetic resonance imagery

    Piecewise rigid curve deformation via a Finsler steepest descent

    Get PDF
    This paper introduces a novel steepest descent flow in Banach spaces. This extends previous works on generalized gradient descent, notably the work of Charpiat et al., to the setting of Finsler metrics. Such a generalized gradient allows one to take into account a prior on deformations (e.g., piecewise rigid) in order to favor some specific evolutions. We define a Finsler gradient descent method to minimize a functional defined on a Banach space and we prove a convergence theorem for such a method. In particular, we show that the use of non-Hilbertian norms on Banach spaces is useful to study non-convex optimization problems where the geometry of the space might play a crucial role to avoid poor local minima. We show some applications to the curve matching problem. In particular, we characterize piecewise rigid deformations on the space of curves and we study several models to perform piecewise rigid evolution of curves

    Multi-Scale 3D Scene Flow from Binocular Stereo Sequences

    Full text link
    Scene flow methods estimate the three-dimensional motion field for points in the world, using multi-camera video data. Such methods combine multi-view reconstruction with motion estimation. This paper describes an alternative formulation for dense scene flow estimation that provides reliable results using only two cameras by fusing stereo and optical flow estimation into a single coherent framework. Internally, the proposed algorithm generates probability distributions for optical flow and disparity. Taking into account the uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene flow than previous methods allow. To handle the aperture problems inherent in the estimation of optical flow and disparity, a multi-scale method along with a novel region-based technique is used within a regularized solution. This combined approach both preserves discontinuities and prevents over-regularization – two problems commonly associated with the basic multi-scale approaches. Experiments with synthetic and real test data demonstrate the strength of the proposed approach.National Science Foundation (CNS-0202067, IIS-0208876); Office of Naval Research (N00014-03-1-0108

    Shape Calculus for Shape Energies in Image Processing

    Full text link
    Many image processing problems are naturally expressed as energy minimization or shape optimization problems, in which the free variable is a shape, such as a curve in 2d or a surface in 3d. Examples are image segmentation, multiview stereo reconstruction, geometric interpolation from data point clouds. To obtain the solution of such a problem, one usually resorts to an iterative approach, a gradient descent algorithm, which updates a candidate shape gradually deforming it into the optimal shape. Computing the gradient descent updates requires the knowledge of the first variation of the shape energy, or rather the first shape derivative. In addition to the first shape derivative, one can also utilize the second shape derivative and develop a Newton-type method with faster convergence. Unfortunately, the knowledge of shape derivatives for shape energies in image processing is patchy. The second shape derivatives are known for only two of the energies in the image processing literature and many results for the first shape derivative are limiting, in the sense that they are either for curves on planes, or developed for a specific representation of the shape or for a very specific functional form in the shape energy. In this work, these limitations are overcome and the first and second shape derivatives are computed for large classes of shape energies that are representative of the energies found in image processing. Many of the formulas we obtain are new and some generalize previous existing results. These results are valid for general surfaces in any number of dimensions. This work is intended to serve as a cookbook for researchers who deal with shape energies for various applications in image processing and need to develop algorithms to compute the shapes minimizing these energies

    Active Mean Fields for Probabilistic Image Segmentation: Connections with Chan-Vese and Rudin-Osher-Fatemi Models

    Get PDF
    Segmentation is a fundamental task for extracting semantically meaningful regions from an image. The goal of segmentation algorithms is to accurately assign object labels to each image location. However, image-noise, shortcomings of algorithms, and image ambiguities cause uncertainty in label assignment. Estimating the uncertainty in label assignment is important in multiple application domains, such as segmenting tumors from medical images for radiation treatment planning. One way to estimate these uncertainties is through the computation of posteriors of Bayesian models, which is computationally prohibitive for many practical applications. On the other hand, most computationally efficient methods fail to estimate label uncertainty. We therefore propose in this paper the Active Mean Fields (AMF) approach, a technique based on Bayesian modeling that uses a mean-field approximation to efficiently compute a segmentation and its corresponding uncertainty. Based on a variational formulation, the resulting convex model combines any label-likelihood measure with a prior on the length of the segmentation boundary. A specific implementation of that model is the Chan-Vese segmentation model (CV), in which the binary segmentation task is defined by a Gaussian likelihood and a prior regularizing the length of the segmentation boundary. Furthermore, the Euler-Lagrange equations derived from the AMF model are equivalent to those of the popular Rudin-Osher-Fatemi (ROF) model for image denoising. Solutions to the AMF model can thus be implemented by directly utilizing highly-efficient ROF solvers on log-likelihood ratio fields. We qualitatively assess the approach on synthetic data as well as on real natural and medical images. For a quantitative evaluation, we apply our approach to the icgbench dataset
    corecore