16,146 research outputs found

    A graph rewriting programming language for graph drawing

    Get PDF
    This paper describes Grrr, a prototype visual graph drawing tool. Previously there were no visual languages for programming graph drawing algorithms despite the inherently visual nature of the process. The languages which gave a diagrammatic view of graphs were not computationally complete and so could not be used to implement complex graph drawing algorithms. Hence current graph drawing tools are all text based. Recent developments in graph rewriting systems have produced computationally complete languages which give a visual view of graphs both whilst programming and during execution. Grrr, based on the Spider system, is a general purpose graph rewriting programming language which has now been extended in order to demonstrate the feasibility of visual graph drawing

    Lombardi Drawings of Graphs

    Full text link
    We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs.Comment: Expanded version of paper appearing in the 18th International Symposium on Graph Drawing (GD 2010). 13 pages, 7 figure

    Constructing sonified haptic line graphs for the blind student: first steps

    Get PDF
    Line graphs stand as an established information visualisation and analysis technique taught at various levels of difficulty according to standard Mathematics curricula. It has been argued that blind individuals cannot use line graphs as a visualisation and analytic tool because they currently primarily exist in the visual medium. The research described in this paper aims at making line graphs accessible to blind students through auditory and haptic media. We describe (1) our design space for representing line graphs, (2) the technology we use to develop our prototypes and (3) the insights from our preliminary work

    Stress-Minimizing Orthogonal Layout of Data Flow Diagrams with Ports

    Full text link
    We present a fundamentally different approach to orthogonal layout of data flow diagrams with ports. This is based on extending constrained stress majorization to cater for ports and flow layout. Because we are minimizing stress we are able to better display global structure, as measured by several criteria such as stress, edge-length variance, and aspect ratio. Compared to the layered approach, our layouts tend to exhibit symmetries, and eliminate inter-layer whitespace, making the diagrams more compact

    Field Quantization in 5D Space-Time with Z2_2-parity and Position/Momentum Propagator

    Get PDF
    Field quantization in 5D flat and warped space-times with Z2_2-parity is comparatively examined. We carefully and closely derive 5D position/momentum(P/M) propagators. Their characteristic behaviours depend on the 4D (real world) momentum in relation to the boundary parameter (ll) and the bulk curvature (\om). They also depend on whether the 4D momentum is space-like or time-like. Their behaviours are graphically presented and the Z2_2 symmetry, the "brane" formation and the singularities are examined. It is shown that the use of absolute functions is important for properly treating the singular behaviour. The extra coordinate appears as a {\it directed} one like the temperature. The δ(0)\delta(0) problem, which is an important consistency check of the bulk-boundary system, is solved {\it without} the use of KK-expansion. The relation between P/M propagator (a closed expression which takes into account {\it all} KK-modes) and the KK-expansion-series propagator is clarified. In this process of comparison, two views on the extra space naturally come up: orbifold picture and interval (boundary) picture. Sturm-Liouville expansion (a generalized Fourier expansion) is essential there. Both 5D flat and warped quantum systems are formulated by the Dirac's bra and ket vector formalism, which shows the warped model can be regarded as a {\it deformation} of the flat one with the {\it deformation parameter} \om. We examine the meaning of the position-dependent cut-off proposed by Randall-Schwartz.Comment: 44 figures, 22(fig.)+41 pages, to be published in Phys.Rev.D, Fig.4 is improve

    Tag-Cloud Drawing: Algorithms for Cloud Visualization

    Get PDF
    Tag clouds provide an aggregate of tag-usage statistics. They are typically sent as in-line HTML to browsers. However, display mechanisms suited for ordinary text are not ideal for tags, because font sizes may vary widely on a line. As well, the typical layout does not account for relationships that may be known between tags. This paper presents models and algorithms to improve the display of tag clouds that consist of in-line HTML, as well as algorithms that use nested tables to achieve a more general 2-dimensional layout in which tag relationships are considered. The first algorithms leverage prior work in typesetting and rectangle packing, whereas the second group of algorithms leverage prior work in Electronic Design Automation. Experiments show our algorithms can be efficiently implemented and perform well.Comment: To appear in proceedings of Tagging and Metadata for Social Information Organization (WWW 2007

    Quasiconvex Programming

    Full text link
    We define quasiconvex programming, a form of generalized linear programming in which one seeks the point minimizing the pointwise maximum of a collection of quasiconvex functions. We survey algorithms for solving quasiconvex programs either numerically or via generalizations of the dual simplex method from linear programming, and describe varied applications of this geometric optimization technique in meshing, scientific computation, information visualization, automated algorithm analysis, and robust statistics.Comment: 33 pages, 14 figure

    Applications of Structural Balance in Signed Social Networks

    Full text link
    We present measures, models and link prediction algorithms based on the structural balance in signed social networks. Certain social networks contain, in addition to the usual 'friend' links, 'enemy' links. These networks are called signed social networks. A classical and major concept for signed social networks is that of structural balance, i.e., the tendency of triangles to be 'balanced' towards including an even number of negative edges, such as friend-friend-friend and friend-enemy-enemy triangles. In this article, we introduce several new signed network analysis methods that exploit structural balance for measuring partial balance, for finding communities of people based on balance, for drawing signed social networks, and for solving the problem of link prediction. Notably, the introduced methods are based on the signed graph Laplacian and on the concept of signed resistance distances. We evaluate our methods on a collection of four signed social network datasets.Comment: 37 page
    • …
    corecore