18 research outputs found

    Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS'09)

    Get PDF
    The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg, is the 26th in this series. Previous meetings took place in Paris (1984), Saarbr¨ucken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), W¨urzburg (1993), Caen (1994), M¨unchen (1995), Grenoble (1996), L¨ubeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and Bordeaux (2008). ..

    A class of theory-decidable inference systems

    Get PDF
    Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2004-2005Dans les deux dernières décennies, l’Internet a apporté une nouvelle dimension aux communications. Il est maintenant possible de communiquer avec n’importe qui, n’importe où, n’importe quand et ce, en quelques secondes. Alors que certains systèmes de communication distribués, comme le courriel, le chat, . . . , sont plutôt informels et ne nécessitent aucune sécurité, d’autres comme l’échange d’informations militaires ou encore médicales, le commerce électronique, . . . , sont très formels et nécessitent de très hauts niveaux de sécurité. Pour atteindre les objectifs de sécurité voulus, les protocoles cryptographiques sont souvent utilisés. Cependant, la création et l’analyse de ces protocoles sont très difficiles. Certains protocoles ont été montrés incorrects plusieurs années après leur conception. Nous savons maintenant que les méthodes formelles sont le seul espoir pour avoir des protocoles parfaitement corrects. Ce travail est une contribution dans le domaine de l’analyse des protocoles cryptographiques de la façon suivante: • Une classification des méthodes formelles utilisées pour l’analyse des protocoles cryptographiques. • L’utilisation des systèmes d’inférence pour la mod´elisation des protocoles cryptographiques. • La définition d’une classe de systèmes d’inférence qui ont une theorie décidable. • La proposition d’une procédure de décision pour une grande classe de protocoles cryptographiquesIn the last two decades, Internet brought a new dimension to communications. It is now possible to communicate with anyone, anywhere at anytime in few seconds. While some distributed communications, like e-mail, chat, . . . , are rather informal and require no security at all, others, like military or medical information exchange, electronic-commerce, . . . , are highly formal and require a quite strong security. To achieve security goals in distributed communications, it is common to use cryptographic protocols. However, the informal design and analysis of such protocols are error-prone. Some protocols were shown to be deficient many years after their conception. It is now well known that formal methods are the only hope of designing completely secure cryptographic protocols. This thesis is a contribution in the field of cryptographic protocols analysis in the following way: • A classification of the formal methods used in cryptographic protocols analysis. • The use of inference systems to model cryptographic protocols. • The definition of a class of theory-decidable inference systems. • The proposition of a decision procedure for a wide class of cryptographic protocols

    Stochastic Mathematical Systems

    Full text link
    We introduce a framework that can be used to model both mathematics and human reasoning about mathematics. This framework involves {stochastic mathematical systems} (SMSs), which are stochastic processes that generate pairs of questions and associated answers (with no explicit referents). We use the SMS framework to define normative conditions for mathematical reasoning, by defining a ``calibration'' relation between a pair of SMSs. The first SMS is the human reasoner, and the second is an ``oracle'' SMS that can be interpreted as deciding whether the question-answer pairs of the reasoner SMS are valid. To ground thinking, we understand the answers to questions given by this oracle to be the answers that would be given by an SMS representing the entire mathematical community in the infinite long run of the process of asking and answering questions. We then introduce a slight extension of SMSs to allow us to model both the physical universe and human reasoning about the physical universe. We then define a slightly different calibration relation appropriate for the case of scientific reasoning. In this case the first SMS represents a human scientist predicting the outcome of future experiments, while the second SMS represents the physical universe in which the scientist is embedded, with the question-answer pairs of that SMS being specifications of the experiments that will occur and the outcome of those experiments, respectively. Next we derive conditions justifying two important patterns of inference in both mathematical and scientific reasoning: i) the practice of increasing one's degree of belief in a claim as one observes increasingly many lines of evidence for that claim, and ii) abduction, the practice of inferring a claim's probability of being correct from its explanatory power with respect to some other claim that is already taken to hold for independent reasons.Comment: 43 pages of text, 6 pages of references, 11 pages of appendice

    Complexity of Small Universal Turing Machines: A Survey

    Get PDF
    We survey some work concerned with small universal Turing machines, cellular automata, tag systems, and other simple models of computation. For example it has been an open question for some time as to whether the smallest known universal Turing machines of Minsky, Rogozhin, Baiocchi and Kudlek are efficient (polynomial time) simulators of Turing machines. These are some of the most intuitively simple computational devices and previously the best known simulations were exponentially slow. We discuss recent work that shows that these machines are indeed efficient simulators. In addition, another related result shows that Rule 110, a well-known elementary cellular automaton, is efficiently universal. We also discuss some old and new universal program size results, including the smallest known universal Turing machines. We finish the survey with results on generalised and restricted Turing machine models including machines with a periodic background on the tape (instead of a blank symbol), multiple tapes, multiple dimensions, and machines that never write to their tape. We then discuss some ideas for future work

    The complexity of small universal Turing machines: a survey

    Get PDF
    We survey some work concerned with small universal Turing machines, cellular automata, tag systems, and other simple models of computation. For example it has been an open question for some time as to whether the smallest known universal Turing machines of Minsky, Rogozhin, Baiocchi and Kudlek are efficient (polynomial time) simulators of Turing machines. These are some of the most intuitively simple computational devices and previously the best known simulations were exponentially slow. We discuss recent work that shows that these machines are indeed efficient simulators. In addition, another related result shows that Rule 110, a well-known elementary cellular automaton, is efficiently universal. We also discuss some old and new universal program size results, including the smallest known universal Turing machines. We finish the survey with results on generalised and restricted Turing machine models including machines with a periodic background on the tape (instead of a blank symbol), multiple tapes, multiple dimensions, and machines that never write to their tape. We then discuss some ideas for future work

    Counterpossibles in Science: The Case of Relative Computability

    Get PDF
    I develop a theory of counterfactuals about relative computability, i.e. counterfactuals such as 'If the validity problem were algorithmically decidable, then the halting problem would also be algorithmically decidable,' which is true, and 'If the validity problem were algorithmically decidable, then arithmetical truth would also be algorithmically decidable,' which is false. These counterfactuals are counterpossibles, i.e. they have metaphysically impossible antecedents. They thus pose a challenge to the orthodoxy about counterfactuals, which would treat them as uniformly true. What’s more, I argue that these counterpossibles don’t just appear in the periphery of relative computability theory but instead they play an ineliminable role in the development of the theory. Finally, I present and discuss a model theory for these counterfactuals that is a straightforward extension of the familiar comparative similarity models

    Parameterized analysis of complexity

    Get PDF

    Analytic Combinatorics in Several Variables: Effective Asymptotics and Lattice Path Enumeration

    Get PDF
    The field of analytic combinatorics, which studies the asymptotic behaviour of sequences through analytic properties of their generating functions, has led to the development of deep and powerful tools with applications across mathematics and the natural sciences. In addition to the now classical univariate theory, recent work in the study of analytic combinatorics in several variables (ACSV) has shown how to derive asymptotics for the coefficients of certain D-finite functions represented by diagonals of multivariate rational functions. We give a pedagogical introduction to the methods of ACSV from a computer algebra viewpoint, developing rigorous algorithms and giving the first complexity results in this area under conditions which are broadly satisfied. Furthermore, we give several new applications of ACSV to the enumeration of lattice walks restricted to certain regions. In addition to proving several open conjectures on the asymptotics of such walks, a detailed study of lattice walk models with weighted steps is undertaken.Comment: PhD thesis, University of Waterloo and ENS Lyon - 259 page
    corecore