UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

Parameterized analysis of complexity

Witteveen, J.E.

Publication date
2020

Document Version
Final published version

License
Other

Link to publication

Citation for published version (APA):
Witteveen, J. E. (2020). Parameterized analysis of complexity. [Thesis, fully internal,
Universiteit van Amsterdam]. Institute for Logic, Language and Computation.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/parameterized-analysis-of-complexity(7ee01abc-04ac-45ec-94df-d3612a71b5de).html

B S L S e R P

-

|

.8
- . .‘ vy

: Mw B —wﬂm! Wﬂw“.““

e g

i tv.y-_\y-] R A e

temzed Aﬂl

r-v»:.*ss T

1
5
.

- ‘Q"??’L“\\J

EERETOT,
: .
’

)

B

|

"'%m*w 1 .p-u.; PRI w--e---—um*m*"

J t‘ke Wltteveen

9,' 2] ,
,“ :‘-—_ >
! -1 ‘
/ '

.-I i E
i .

¢ d %

"“l-'. "!_ﬂ" : T i] : %\‘&.—xw\u’tﬂﬁl,

L= 2 y Pl A
-‘.E! 3 L ! » -
PIEASw TR f / s
J 1 . \\ .=
- i \,_‘ - 3 ¥
. - . i
.n . / 3 v |
: ~- ,:"I). ‘; m’\—|‘-.¢-‘-ﬂ\‘o. - - —‘ - -
' g Tty
{ ¢ !
: ,; < K
: B '(, 2 g |
'IJ -
T] l o P i
/ v :
e la--n-r----- Ty ‘-1-!'""'\ [
ey -

al sis

i

E

T

R g - TN ‘; S -
v J .
1 ¥
¢
i
i
] i e u—
! :
S|
L] i
f {
) =
]
1
i
{
1

Parameterized Analysis
of Complexity

ILLC Dissertation Series DS-2020-03

nTa
Eud

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam
Science Park 107
1098 XG Amsterdam
phone: +31-20-525 6051
e-mail: i1lc@uva.nl
homepage: http://www.illc.uva.nl/

Copyright © 2019 by Jouke Witteveen
Printed by Drukkerij Mostert, Leiden

ISBN: 978-94-90858-64-3

Parameterized Analysis
of Complexity

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. ir. K.I. J. Maex
ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in de Aula der Universiteit
op woensdag 29 januari 2020, te 11.00 uur

door

Jouke Erik Witteveen

geboren te Leeuwarden

Promotiecommisie

Promotores: Prof. dr. R. M. de Wolf
Dr. L. Torenvliet
Co-promotor: Prof. dr. S. J. L. Smets

Overige leden: Prof. dr. H. L. Bodlaender
Prof. dr. P. van Emde Boas
Prof. dr. ir. C. T. A.M. de Laat
Prof. dr. Y. Venema
Dr. W. M. Koolen

Universiteit van Amsterdam
Universiteit van Amsterdam
Universiteit van Amsterdam

Universiteit Utrecht
Universiteit van Amsterdam
Universiteit van Amsterdam
Universiteit van Amsterdam

CWI

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

01001 01110 00110 01111 10010 01101 00001 10100 01001 01111 01110

Contents

Acknowledgments

1

Introduction

1.1 The Sizeof a Cube

1.2 Historical Encounters
1.2.1 Computability 0oL
1.2.2 Computational Tractability
1.2.3 Algorithmic Complexity
1.2.4 Algorithmic Statistics,
1.2.5 Computational Redundancy

1.3 Parameterized Complexity Theory

1.4 Contributions Lo

Preliminaries

2.1 Established Theory
2.1.1 Binary Representations
2.1.2 Algorithmic Complexity and Computability Theory
2.1.3 Proof Theory
2.1.4 Computational Complexity Theory
2.1.5 Order Theory

2.2 A New Framework

Parameterizations

3.1 as Limit Computability
3.1.1 Decidable and Semidecidable Parameterizations
3.1.2 Bounded Undecidability
3.1.3 Reducibility to the Halting Set
3.1.4 Subparameterizations

vi

xi

Tt Ot DN =

15
20
23
32

33
34
34
37
39
41
47
23

3.2 as Computational Tractability

3.2.1
3.2.2
3.2.3
3.24

Stratified Computational Complexity
Order Theory for Parameterizations
Optimal Nonuniform Parameterizations
Optimal Uniform Parameterizations

3.3 as Algorithmic Complexity

3.3.1
3.3.2
3.3.3

Instance Complexity
Equivalent Filters
Randomness and Hardness

3.4 as Model Classes

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6

An Overview of Algorithmic Statistics
Sophistication Lo
Stochasticity
Parameter Estimation
Encodings and Distributions
Data Structures

3.5 as Computational Redundancy

3.5.1
3.5.2
3.5.3
3.5.4
3.5.5

4 Conclusion

Types of Kernelization
Polynomial Turing Kernelizations
A Hierarchy of Polynomial Kernelizations
Polynomial Advice
Lower Bounds

4.1 TheSizeofa Cube
4.2 Historical Encounters

4.3 Future
Notation
Bibliography
Index
Gearfetting
Samenvatting

Abstract

Encounters

vii

229

231

242

245

247

251

3.1.6

3.1.17

3.2.42

3.3.14

3.3.21

3.4.3

3.4.15

3.4.27

3.4.31

3.5.11

List of Slogans

When parameter values must be computable, a set can be fixed-
parameter tractable precisely if it is decidable.

When parameter values may be promised, a set can be fixed-
parameter tractable precisely if it isin AJ. L.

No set for which a parameterized algorithm is attractive admits
an optimal parameterization.

A set is determined up to polynomial-time postprocessing by
the parameterizations that make it fixed-parameter tractable.

Random instances are hard.
Useful information is context-dependent.

There is no such thing as a random object unless the object is a
string and nothing but a string.

Infinitely many parameter values reflect precisely all useful
information of infinitely many strings.

The expected parameter value is small.

With kernelizations, the queries that could have been made
matter too.o

ix

149

159

Acknowledgments

For the past few years, I have studied a topic in computer science in more than
a reasonable amount of detail. This inevitably meant that I isolated myself
somewhat from normal people. Luckily, a few people were willing to follow me in
my mental endeavors. Not only that, some even supplied valuable guidance, for
which I am very grateful.

First and foremost, I want to thank one of the most sincere academics that
I know, my supervisor, Leen Torenvliet. I have never caught him thinking of
The University as a producer of results instead of as a place where humans cultivate
and share knowledge. Because of that mentality, I was allowed to use my curiosity
as the most important guidance in the creation of this thesis.

Next, I am much obliged to Ronald de Wolf and Peter van Emde Boas. Both
went out of their way to see the production of this thesis through to its completion.
If it was not for Ronald, there would be so little redundancy in this thesis that
its information content would resemble random noise. His guidance made all the
difference. As for Peter, an earlier version of this thesis was, in many places, only
“correct up to pesky little details”. The fact that the current version is much
improved in this regard is the result of his many useful and pleasantly specific
comments.

Also outside the ILLC community, I have met people that were willing to help
out where they could. In Ralph Bottesch, I found someone equally quirky in his
approach to parameterized complexity theory as myself. I much appreciate our
collaboration. At this point, I will also mention the awesome teachers I had at the
Piter Jelles gymnasium. One of them, Kobus Sijbrandi, has even been involved
with this thesis specifically, by being the first to attempt to translate the abstract
into Frisian.

On a more personal note, a special thank you goes to Jenny Batson. When
my thesis was getting the better of me and I started questioning my own sanity,
she noticed. For me, having a cup of tea with her in her office will mark the point
from which things progressed positively again.

X1

Speaking of offices and sanity, I hope my office mates, wherever they are,
have still renounced office chairs in favor of exercise balls. Giovanni Cina, Malvin
Gattinger, and Dieuwke Hupkes, I am very happy to have had you as office mates.
Likewise, I am happy to have had Frederik Lauridsen in an office nearby. His
PhD program was just ahead of mine, so by watching Frederik closely, I often
knew what awaited me.

Outside the academic environment, Martijn de Niet has been a great help by
reminding me that the modern world is shaped by human desire and perceived
need. Applying this political view to research may not be optimistic, but it did
make it easier for me to untangle myself from my research emotionally.

Much of my life outside the academic environment revolved around kayaking
and [am grateful for my wonderful friends at the Rotterdamsche Cano Club.
Particular thanks go to Jaap Kraaijenga for his remarkable ability to sense what
is going on in peoples lives.

With regards to kayaking, I am deeply indebted to my K2 partners, Koen
van Ginkel, Arthur Hamel, Alexandra van den Elsen, and Erwin Verkleij. Training
and racing with them has given each of my years as a PhD student its own
character. The most memorable races were team efforts, and would not have been
possible without the amazing supporting job done by Ron Hoogwater and Hans
Borsboom. I am delighted to have them as my paranymphs for the defense of this
thesis.

Jouke Witteveen
Leiden, December 2019

Xii

Chapter 1

Introduction

No matter how powerful a machine, it may not be powerful enough. This is
true of machines that do physical work, but also of machines that compute, as
every computer will struggle on some workloads. When a computational task gets
challenging, it is said to be complex. This is not very precise and indeed, the word
complexity is used to indicate a wide variety of phenomena.

This thesis introduces a unified framework for the analysis of a multitude of
forms of complexity. A unifying theory need not be better than any of the specific
theories it tries to include. However, it may open the door to new ways of thinking
about old concepts and thus enable future developments.

We begin this introductory chapter with an informal section, arguing that
there is really no single form of complexity. This section, Section 1.1, is intended
to be readable by a broad audience and is centered around intuition more than
around mathematics. In Section 1.2, we take a more in-depth look at some of the
ways complexity pops up in mathematics and computer science. The notions of
complexity that emerge shall each be subject to an analysis in our unified framework
in Chapter 3. Our unified framework offers a mathematical model of complexity
rooted in a branch of computer science called parameterized complexity theory.
We shall review the existing formalisms in parameterized complexity theory in
Section 1.3. A short overview of the contributions presented in this thesis is given
in Section 1.4.

Following this introductory chapter is a chapter that contains the background
theory required for our analysis of multiple forms of complexity. This background
chapter contains two parts. The first part, Section 2.1, deals with established
theory and serves to make this thesis self-contained. In the second part, Section 2.2,
our new framework for the analysis of complexity is laid out.

The body of this thesis is formed by Chapter 3, which contains all of our
results. It is split into five parts, each dealing with a different form of complexity.
A high-level overview of our results in a shared context is given in Chapter 4.

2 Chapter 1. Introduction

1.1 The Size of a Cube

Shown in Figure 1.1 are three different shapes. When we ask which of these three
shapes is the largest, we start a journey down a deep rabbit hole. In this thesis,
that rabbit hole is explored. As an indication of what is to come, we briefly
consider a comparable question: What is the largest species of snakes? The
heaviest snakes are anacondas, but the longest snakes are pythons. Thus, the
answer to this question depends on what is meant by “the largest”.

For our shapes, the situation is no better. Especially since the figure only
shows the abstract essence of a tetrahedron, a cube, and a dodecahedron. Were
the figure to show any particular physical instances of these shapes, then at least
we could have compared masses and lengths. Luckily, abstract shapes can be
measured too. The number of corners, the number of edges, and the number
of faces are a few of the metrics we can look at. In all of these measures, a
cube, Figure 1.1b, is larger than a tetrahedron, Figure 1.1a, and smaller than a
dodecahedron, Figure 1.1c.

‘ tetrahedron cube dodecahedron
corners 4 8 20
edges 6 12 30
faces 4 6 12

None of these ways of measuring a shape, by the number of corners, edges,
or faces, is clearly more fundamental than the others. Besides, these ways of
measuring are by no means all ways there are of measuring a shape. Another
metric looks at the number of edges that need to be traversed in order to get from
one corner to another. Let us consider this metric for the cube. From each corner
of the cube, only 3 others are directly reachable. Sometimes, traversing 2 or even
3 edges may be necessary. Since we never need to go over more than 3 edges, we
say that the diameter of a cube, in an abstract sense, is 3 edges. The diameter of
a shape is another metric that may be used to measure a shape.

Yet another metric is defined by the minimum number of corners we need to
mark so that every edge connects to a marked corner at one or both of its ends.

—

(a) A tetrahedron (b) A cube (c) A dodecahedron

Figure 1.1: Three shapes

1.1. The Size of a Cube 3

(a) The abstract cube visualized as (b) The Wagner graph. Note that

a graph. Corners of the cube are this graph can be obtained from
shown as dots and dots are con- the cube graph, Figure 1.2a, by
nected by a line whenever the cor- exchanging two endpoints of two
ners they represent are connected edges.

by an edge of the cube.

Figure 1.2: Structures of possibly connected objects can be represented as graphs.
The dots in the above graphs represent the objects and are called vertices. The
lines connecting vertices are called edges.

Such a collection of marked vertices is said to cover the edges. For a cube, it is
possible to cover the edges using 4 corners. It is not possible to cover all the edges
with fewer corners, thus 4 is the minimum number of corners that is required to
cover the edges. Like our previous metrics, this minimum number of corners that
is required to cover the edges of a shape may be used to measure a shape.

Which metric is the most relevant depends on what uses of our shape we are
most interested in. Our previous two metrics looked specifically at corners and
edges. In such cases, we are really only interested in the connection structure of a
shape. Its three-dimensional nature is of lesser interest and the cube may as well
be represented as in Figure 1.2a.

Note that for all simple graphs, there is a maximum to the number of edges as
a function of the number of vertices. Once all vertices in a graph are connected to
each other, we cannot add any new edges to the graph. On the other hand, if we
allow for vertices that are not connected to any other vertex, then the number
of vertices can be far greater than the number of edges. In particular, there is
then no maximum to the number of vertices as a function of the number of edges.
Moreover, there are only finitely many graphs with any given number of vertices,
whereas there are infinitely many for any given number of edges. For this reason,
we may consider the number of vertices to be a more fundamental metric than the
number of edges. However, calling a graph with very many vertices but hardly
any edges “large” may conflict with our intuitive notion of size.

Again, what graphs are large depends on what is meant by “large”. In each
context the appropriate notion of size may be different. Roughly speaking, the

4 Chapter 1. Introduction

size of an object relates to how difficult it is to work with. The more extreme the
dimensions or masses of objects are, the more inconvenient processing them will
likely be. This is true for the physical processing of physical objects, but also for
processing abstract objects computationally. It is the latter kind of processing
that this thesis is concerned with.

Returning to graphs, some actions on graphs may conceivably be easier on
graphs with a smaller diameter. In the context of such actions, the diameter of a
graph may be a good measure of the size of a graph. Other contexts may favor
graphs in which the edges can be covered by a smaller number of vertices. A set
of vertices that cover the edges of a graph is called a vertex cover. In contexts
that favor small vertex covers, the minimum size of a vertex cover may be a good
measure of the size of a graph.

As a demonstration of the possible disagreement between all these measures
of the size of a graph, consider the graph in Figure 1.2b. This graph is known as
the Wagner graph. Because it cannot be drawn without some edges crossing each
other, there is no meaningful way we can assign a value to the number of faces of
this graph. Of course, there are also no corners in the way that our shapes had
them, but the Wagner graph does have vertices, which can be counted just as well.
As far as the number of vertices or the number of edges are concerned, the Wagner
graph, Figure 1.2b, has the same size as the graph of the cube, Figure 1.2a.

cube graph Wagner graph
vertices 8 8
edges 12 12
diameter 3 2
vertex cover 4 5

On our other two metrics, the graphs differ. The Wagner graph has a smaller
diameter than the cube graph. By contrast, the minimum size of a vertex cover,
listed simply as “vertex cover” in the table above, is smaller for the cube graph.
Thus, we see that which of the two graphs is larger depends on the metric that is
used and hence on the context in which we compare the two graphs.

In the next section of this chapter, Section 1.2, several more examples of the
multifaceted nature of complexity are discussed more formally. The remainder
of this thesis then works towards a unified analysis of complexity that works for
each of the forms of complexity we identify in Section 1.2. Finally, in Section 4.1,
we shall return briefly to measuring a cube, and summarize our findings.

1.2. Historical Encounters 5

1.2 Historical Encounters

The word complexity is used in various contexts and its meaning is not always
made precise. Still, it has often been observed that structural properties of data
may influence the notion of complexity at hand. In this thesis, we put forward a
mathematical formalization of the notion of complexity, covering as many use cases
as possible. First, let us review some of the ways we may encounter complexity and
what structural properties these many forms of complexity are involved with.
In relation to their notions of complexity, each of these structural properties
points at a line of thinking that is essentially parameterized. In Chapter 3, this
parameterized nature is made explicit by rephrasing the corresponding results in
a unified parameterized framework. A historical overview of the theoretical side
of parameterized reasoning can be found in Section 4.2.

1.2.1 Computability

Some sets are intrinsically undecidable. For such sets, there is no effective
procedure that is able to distinguish the members of the set from the nonmembers
of the set. This is a very extreme form of complexity: We are unable to determine
membership in undecidable sets uniformly not because we are perhaps not clever
enough, but because it is fundamentally impossible. Undecidable sets, however,
are not all equally undecidable. It is possible to organize many sets in a hierarchy
of (un)decidability. In fact, there are many ways to do so.

One hierarchy in which sets can be placed based on their decidability is the
arithmetical hierarchy, due to Kleene [91]. This hierarchy consists of classes of sets
that are defined inductively. The classifications are denoted X9 and TIY | where n
is a natural number. A set S'is in 39, if there is a set Pin II)) such that we have

S={x|3Jy: (z,y) € P}.

Observe that the set Pis a set of pairs. Conversely, a set P is in I1° 4 if there is
a set of pairs S in ¥¥ such that we have

P={z|VYy: (z,y) € S}.

All that remains to define the arithmetical hierarchy is a definition of the base case,
the classes ¥ and II3. We follow Rogers [131] and Downey and Hirschfeldt [46]
and set both classes equal to the class of decidable sets. Originally, Kleene chose a
smaller class, namely that of sets definable through “primitive recursive” predicates.
Yet another option is to take for ¥) and IIJ the class of sets definable in first-
order logic with only bounded quantifiers [115]. We shall not go into details about
these alternatives. Whichever definition we adhere to, we end up with the same
classes X0 and 1, whenever n is at least 1. To wit, regardless of our choice for %9
and 11, a set is in X9 precisely when it is semidecidable (also known as recursively

6 Chapter 1. Introduction

N (O
% 115 25! 1T
) C) C
A Az
C N C N
b Iy 5! by
) C N C
A Az
y N ¢ 9O
= m 50— 5! -
X z) C
AY A7 =AY
(a) The arithmetical hierarchy (b) The difference hierarchy lies be-
low the A level of the arithmetical
hierarchy.

Figure 1.3: The arithmetical hierarchy and the difference hierarchy are both
infinite hierarchies of classes of sets.

enumerable) [91, 115, 131]. Likewise, the complement of a semidecidable set is in
119, as 3 and V are dual to each other in the sense that, for every predicate Q) we
have

—Jdz: Q(z) <= Vz:-Q(x).

Indeed, a set S is in X0 precisely when there is a decidable set A such that we
have

S={z|3y1: Yyg: Fyz: oo s (((T, 91),Y2) Yp1)s Yn) € A}, (1.1)

and similarly for 119 when we exchange 3 and V. It follows that, in general, a
set is in ¥ if its complement is in TIY. As, whenever n is at least 1, the classes
0 and I19 are unequal, neither is closed with respect to taking complements.
For convenience, we therefore define classes A as the intersection of ¥ and
I1Y. These classes are closed with respect to taking complements. Remark that
sets in A? are both semidecidable and have a semidecidable complement, and are
therefore decidable. Visually, the arithmetical hierarchy thus looks like depicted
in Figure 1.3a.

Returning to undecidability as a form of complexity, the arithmetical hierarchy
provides a means of analyzing complexity. For sets that appear in one of the
classes of the arithmetical hierarchy, say AY, we may call the level at which it
occurs, n, “the complexity” of the set. Thus, we can compare how undecidable
certain sets are. As demonstrated by (1.1), this notion of complexity ties in with a
more or less structural property of the set it applies to. The number of quantifier

1.2. Historical Encounters 7

alternations required for defining a set starting from a decidable set expresses its
complexity.

At a conceptual level, one of the focal points of computability theory is the
behavior of computations in the limit. Computations that terminate eventually
are said to converge, and computations that never terminate are said to diverge.
From this perspective, it is clear how the sets in X, the semidecidable sets,
are slightly more complex than the decidable sets. Decidable sets have decision
procedures and those procedures converge on all inputs. For semidecidable sets on
the other hand, convergence of a procedure that tries to determine membership
can only be guaranteed on the members of the set. Ascending further in the
arithmetical hierarchy, it becomes near-impossible to give characterizations of
the sets in terms of convergence. This is one reason to look for measures of
complexity-beyond-decidability that increase complexity more gradually. One
such measure was introduced by Ershov [52] some 25 years after the introduction
of the arithmetical hierarchy. This measure also revolves around a hierarchy of
classes of sets and is in that regard similar in spirit to the arithmetical hierarchy.
We have seen that the 3 and II classes of the arithmetical hierarchy are not closed
with respect to taking complements. The starting point of Ershov’s hierarchy
was the observation that these classes are also not closed with respect to taking
relative complements. Given two sets A and B in some class X0, with n at least 1,
the set A\ B need not be in X2, and similarly for the classes IIY. However, when
A and B are taken from XY, we may go about deciding whether a given x is
in A\ B as follows.

1: We assume x is neither in A nor in B and if our computations are interrupted
and we are asked our best guess about x, we answer that it is not in A \ B.

2: We try to find out whether x is in A by running a procedure that halts
precisely on the members of A. If this procedure halts, we have learned
that x is in A. In case we are then asked our best guess about z, we answer
that it is in A\ B.

3: Having found that x is in A, we try to find out whether z is in B by running
a procedure that halts precisely on the members of B. If this procedure
halts, we have learned that x is also in B. In case we are later asked our

best guess about z, we know the correct response and answer that it is not
in A\ B.

Only in the final situation, we can answer a membership query with certainty.
Therefore, our procedure should be considered a kind of approximation of a
decision procedure. Observe that the procedure adjusts its knowledge about
membership of x in A\ B at most twice. Procedures that are not convergent
in the classical sense, but are allowed to “change their mind” a finite number of
times were first put forward by Putnam [124] and Gold [66].

8 Chapter 1. Introduction

The idea of Ershov was to base a hierarchy on the number of times a decision
procedure in the sense of Putnam and Gold is allowed to change its mind. The
resulting hierarchy is known today as the difference hierarchy [46, 140]. The
classes of the difference hierarchy are denoted Y1 and II.;1. For sets A and B,
let A /A B denote the symmetric difference (A\ B)U (B\ A). A set Sisin ¥}
if there are sets A;, Ay, As, ..., A, in 39 such that we have

S=A ANA,NA; N NA,. (1.2)

Like in the arithmetical hierarchy, a set P is in I if its complement, P°, is
in ¥ 1. Note that when n is odd, we have

(A A Ay AN AG A AN A = A8 AASAAS A - A AC.

Therefore, for odd n, a set Pis in I, if there are sets A;, Ay, Ay, ..., A,, in T1?
such that we have

These definitions are equivalent to the original characterization by Ershov [52] that
was stated in terms of unions of disjoint relative complements. The equivalence
follows from elementary identities. The resulting hierarchy, including the levels A;l
that are the intersection of ¥ 1 and I, is depicted in Figure 1.3b.

Because the AJ class is closed under taking unions, intersections, and comple-
ments, it is also closed under taking symmetric differences. Moreover, it includes
both X¢ and T1Y, thus for all natural numbers n, the classes 3,1, TI1, and A, of
the difference hierarchy are included in AY. Consequently, the difference hierarchy
is only relevant for sets that are not too complicated according to the arithmetical
hierarchy. Still, its core ideas make the ensuing notion of complexity an interesting
measure of undecidability. As we have seen, the number of semidecidable sets
needed to write a set like in (1.2) relates to a generalized form of convergence of

computation.

1.2.2 Computational Tractability

In computational complexity theory, a set is deemed complex if it is intractable.
Here, tractability is customarily taken with respect to the running-time behavior
of decision procedures. While we can measure the time a decision procedure takes
on a specific input, we are primarily interested in how this time compares to
other, unknown, inputs. The running time of a decision procedure is therefore
traditionally expressed as a function of the size of its input. As we saw in
Section 1.1, the notion of input size is heavily reliant on the choice of an encoding
scheme for inputs. No computable encoding scheme reflects all possible structural
aspects an input may have. This is especially visible in contexts that offer some
“standard” encoding. For instance, in graph theory [40], graphs are often thought

1.2. Historical Encounters 9

of as encoded by an adjacency matrix. In that case, the size of a graph is
determined by the number of its vertices. However, certain structural properties
other than the number of vertices may be exploitable by a decision procedure for
a set of graphs. Regarding sets that are intractable because the running time of a
decision procedure is at least exponential as a function of the input size, Garey
and Johnson remark the following.

[..] there are a variety of ways in which the time complexity of an
algorithm can be “exponential,” some of which might be preferable to
others. This is especially evident when, as is customary in practice,
we consider time complexity expressed in terms of natural problem
parameters instead of the artificially constructed “input length.” [63,
Section 4.3]

When restricting to inputs on which such natural parameters assume small values,
a set that is initially intractable may indeed become tractable. As inputs with low
parameter values may be abundant, it may be that large subsets of the input space
are easy to digest for some decision procedure. In addition, Garey and Johnson
note that inputs encountered in practice may tend to have low parameter values:
“[..] in practice it is often the subproblem, rather than the general problem, that
we are called upon to solve.”

1.2.1. EXAMPLE. The standard compilers for the Rust programming language
and the Haskell programming language are able to infer data types of variables
and functions. The algorithm they use for this has a worst-case running-time
that scales exponential as a function of the length of its input. However, such
exponential running times are experienced very rarely in practice [89]. Thus,
some property of the expressions that this algorithm operates on behaves in a
special way for inputs that are encountered in practice. Indeed, the origin of the
exponential running time of the algorithm can be traced back to the nesting depth
of a certain pattern in the expressions. In practice, this nesting depth is almost
always low.

1.2.2. EXAMPLE. We can model a social network by a graph, representing persons
by vertices and connecting two vertices when the persons they represent know
each other. Given a graph that models mutual acquaintance, we may ask how
large a subset of people there exists that all know each other [a clique, see 40].
This is formalized by the set

CLIQUE = {(G, 1) | there is a set of at least [vertices of the graph G in which

each pair of vertices is connected by an edge},

Let G be a graph with n vertices and let [be at most n. The number of
possible subsets of the vertices of G that are of size [cannot be bounded by

10 Chapter 1. Introduction

a polynomial of n alone. In fact, when [is, say, 5, the number of subsets is
exponential as a function of n. It is widely believed that there are no decision
procedures for CLIQUE that have a subexponential running time. Nonetheless,
given a subset of vertices of G, we can check whether its members are pairwise
connected within a polynomial running time.

However, this analysis disregards some practicalities that result from the
situation we are modeling. It is rare to come across a person with very many
mutual acquaintances. Therefore, it is safe to assume that in any graph we that
models a social network, almost no vertex is connected to more than, say, 20
others. As a consequence, we find that in any graph encountered in practice, a set
of pairwise connected vertices, a clique, can contain at most 21 elements. This
means that the number of subsets of vertices that needs to be checked is less than
n?!) which, as Garey and Johnson observe [63, Section 4.1], is polynomial in n.
While this already brings the running time down to polynomial, we shall see in
Section 1.3 that a far more efficient decision procedure is not hard to come by.

The takeaway is that computational complexity is preferably measured by
parameters of the input instead of by the input length alone. Somehow, we need
to decide which parameters to take into account. Different decision procedures
may favor different parameters. Note, though, that it is possible to combine
the benefits that different parameters may provide through aggregating multiple
decision procedures.

1.2.3. EXAMPLE. One way to decide membership in CLIQUE is by generating an
exhaustive list of candidate sets of vertices and checking whether any is a clique
of the desired size. Suppose we want to decide whether a given graph G has a
clique of [elements. The simplest implementation of the aforementioned design
pattern starts out by generating all possible sets of [vertices of G. However, other
approaches are possible too.

Suppose [is even and we have a clique (v, vy, vg, ..., v;). Because these vertices
form a clique there is, for i < %, an edge connecting v; to v, L in G. Thus an
alternative way to generate candidate sets of vertices is via all possible sets of
% edges, by taking the endpoints of the selected edges. Any clique of size [is
guaranteed to be generated this way.

We can compare these two approaches by counting the number of candidate
sets they consider. Let n be the number of vertices in G and m the number of
edges in G. There are ('}) sets of [vertices and (;7“2) sets of £ edges. When either
of these numbers is much smaller than the other, we expect the corresponding
decision procedure to run much faster than the other. Thus, it pays to construct
an aggregate decision procedure. This decision procedure would first compute
both numbers and then run the decision procedure that is expected to be the
fastest.

The computational complexity of the vertex-centric decision procedure is best
expressed as a function of the parameters n and [. On the other hand, the

1.2. Historical Encounters 11

complexity of the edge-centric decision procedure is best expressed as a function
of the parameters m and [. Our aggregate decision procedure demonstrates that
it pays off to take into account multiple parameters. By taking into account more
parameters, we get a more detailed insight into the computational complexity of
a set such as CLIQUE. For some instances of CLIQUE, the running-time bound
available in terms of n and [is better than that in terms of m and [and vice
versa.

The algorithm we presented for our aggregate decision procedure for CLIQUE in
the example above combines two other algorithms. Such algorithms are known as
hybrid algorithms [103]. They offer a best-of-both-worlds alternative in situations
where we have two algorithms without one being better than the other. From a
parameterized point of view, hybrid algorithms combine the information of multiple
input parameters and as such show how these parameters can interact. This is
relevant not only when we use parameters to measure computational complexity,
but also in the design of ever-faster polynomial-time algorithms.

1.2.4. EXAMPLE. As a showcase of hybrid algorithms that do not face computa-
tional intractability, we shall take a look at sorting algorithms. Even naive sorting
algorithms,; such as repeatedly finding the least value, manage to have a running
time bounded by a polynomial of the length of the input list. Because sorting is
such a common operation in algorithmics, extensive research has been put into
the development of fast sorting algorithms.

The quicksort algorithm [35] makes a number of comparisons that is at most
quadratic as a function of the length, n, of the input list. However, worst-
case inputs are very rare and on average the algorithm needs roughly nlogn
comparisons. With a number of comparisons in the order of nlogn in the
worst case, the heapsort algorithm [35] appears at least as good as quicksort.
Nevertheless, it has a higher overhead and in practice it is often outperformed by
quicksort. By combining both algorithms, we can construct a sorting algorithm
that is about as fast as quicksort, yet has a worst-case running time in the order
of nlogn. This hybrid algorithm is known as introsort [111] and is used by some
prominent implementations of the C++ standard library.

The way introsort chooses between its constituent algorithms, quicksort and
heapsort, is not as up-front as it was in our hybrid decision procedure for CLIQUE.
This matters when we want to identify parameters that express structure favored
by either of the constituent algorithms. Instead of handing over the input to either
quicksort or heapsort, the hybrid introsort hooks into the divide-and-conquer
nature of quicksort. The core of the quicksort algorithm is that it splits its
input list into a list of low values and a list of high values. These sublists can be
sorted independently and for that, quicksort recursively invokes itself. Because
the splitting stage requires some n comparisons for a list of n elements, we do not
want the recursion depth to exceed a constant multiple of logn. In the worst case,

12 Chapter 1. Introduction

however, quicksort reaches a recursion depth of n. To mitigate this worst case
behavior, introsort uses heapsort to sort the sublists when the recursion depth gets
too high, say higher than 2logn. Thus, we have found that the recursion depth
reached by quicksort functions as a parameter of the input list. This parameter
may appear somewhat unnatural and its specific value for a given list depends on
the implementation of quicksort. For all implementations, however, input lists
that get high parameter values can be cons