899,721 research outputs found

    Temporal relation between quiet-Sun transverse fields and the strong flows detected by IMaX/SUNRISE

    Full text link
    Localized strongly Doppler-shifted Stokes V signals were detected by IMaX/SUNRISE. These signals are related to newly emerged magnetic loops that are observed as linear polarization features. We aim to set constraints on the physical nature and causes of these highly Doppler-shifted signals. In particular, the temporal relation between the appearance of transverse fields and the strong Doppler shifts is analyzed in some detail. We calculated the time difference between the appearance of the strong flows and the linear polarization. We also obtained the distances from the center of various features to the nearest neutral lines and whether they overlap or not. These distances were compared with those obtained from randomly distributed points on observed magnetograms. Various cases of strong flows are described in some detail. The linear polarization signals precede the appearance of the strong flows by on average 84+-11 seconds. The strongly Doppler-shifted signals are closer (0.19") to magnetic neutral lines than randomly distributed points (0.5"). Eighty percent of the strongly Doppler-shifted signals are close to a neutral line that is located between the emerging field and pre-existing fields. That the remaining 20% do not show a close-by pre-existing field could be explained by a lack of sensitivity or an unfavorable geometry of the pre-existing field, for instance, a canopy-like structure. Transverse fields occurred before the observation of the strong Doppler shifts. The process is most naturally explained as the emergence of a granular-scale loop that first gives rise to the linear polarization signals, interacts with pre-existing fields (generating new neutral line configurations), and produces the observed strong flows. This explanation is indicative of frequent small-scale reconnection events in the quiet Sun.Comment: 11 pages, 8 figure

    Development of a multiblock procedure for automated generation of two-dimensional quadrilateral meshes of gear drives

    Get PDF
    This article describes a new multiblock procedure for automated generation of two-dimensional quadrilateral meshes of gear drives. The typical steps of the multiblock schemes have been investigated in depth to obtain a fast and simple way to mesh planar sections of gear teeth, allowing local mesh refinement and minimizing the appearance of distorted elements in the mesh. The proposed procedure is completed with two different mesh quality enhancement techniques. One of them is applied before the mesh is generated, and reduces the distortion of the mesh without increasing the computational time of the meshing process. The other one is applied once the mesh is generated, and reduces the distortion of the elements by means of a mesh smoothing method. The performance of the proposed procedure has been illustrated with several numerical examples, which demonstrate its ability to mesh different gear geometries under several meshing boundary conditions

    The impact of Entropy and Solution Density on selected SAT heuristics

    Full text link
    In a recent article [Oh'15], Oh examined the impact of various key heuristics (e.g., deletion strategy, restart policy, decay factor, database reduction) in competitive SAT solvers. His key findings are that their expected success depends on whether the input formula is satisfiable or not. To further investigate these findings, we focused on two properties of satisfiable formulas: the entropy of the formula, which approximates the freedom we have in assigning the variables, and the solution density, which is the number of solutions divided by the search space. We found that both predict better the effect of these heuristics, and that satisfiable formulas with small entropy `behave' similarly to unsatisfiable formulas

    Design of Dual-band Branch-Line Coupler Based on Shunt Open-Circuit DCRLH Cells

    Get PDF
    In this article, the shunt open-circuit dual composite right/left-handed (DCRLH) cell is initially proposed and one dual-band branch-line coupler based on the proposed cells is designed. It is found that, compared with DCRLH cell, the frequency selectivity, matching condition and adjustment range of the shunt open-circuit DCRLH cell improve greatly. Moreover, the shunt open-circuit DCRLH cell exhibits two adjustable frequency points with -90degrees phase shift within its first two passbands. In order to explore this exotic property effectively, the influence of the primary geometrical parameter is investigated through parametric analysis. Thus, one dual-band branch-line coupler based on the shunt open-circuit DCRLH cells is designed. Both simulated and measured results indicate that comparative performance is achieved. Different from part of previous dual-band branch line couplers, for the proposed coupler, the signs of phase difference of two output ports within the two operating frequency bands are identical with each other. This branch-line coupler is quite suitable for the application which is sensitive to the variation of phase difference and its effective area is compact

    Asymmetry in the reconstructed deceleration parameter

    Full text link
    We study the orientation dependence of the reconstructed deceleration parameter as a function of redshift. We use the Union 2 and Loss datasets, by using the well known preferred axis discussed in the literature, finding the best fit reconstructed deceleration parameter. We found that a low redshift transition of the reconstructed q(z)q(z) is clearly absent in one direction and amazingly sharp in the opposite one. We discuss the possibility that such a behavior can be associated with large scale structures affecting the data.Comment: 9 pages, 12 figure
    • …
    corecore