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Abstract

This article describes a new multiblock procedure for automated generation of two-dimensional
quadrilateral meshes of gear drives. The typical steps of the multiblock schemes have been
investigated in depth to obtain a fast and simple way to mesh planar sections of gear teeth,
allowing local mesh refinement and minimizing the appearance of distorted elements in the mesh.

The proposed procedure is completed with two different mesh quality enhancement tech-
niques. One of them is applied before the mesh is generated, and reduces the distortion of the
mesh without increasing the computational time of the meshing process. The other one is ap-
plied once the mesh is generated, and reduces the distortion of the elements by means of a mesh
smoothing method.

The performance of the proposed procedure has been illustrated with several numerical ex-
amples, which demonstrate its ability to mesh different gear geometries under several meshing
boundary conditions.
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1. Introduction

The finite element analysis (FEA) plays an important role during the design stages of gear
drives, as it allows to determine the stress state of the gears under load [1, 2], to investigate the
formation of the bearing contact during the transmission of power [3, 4, 5] and to predict the
temperature field of the gears in operating conditions [6, 7], among other things. Performing a
finite element analysis requires the development of a finite element model of the transmission,
which is accomplished through three tasks [8]: (i) generation of the finite element mesh of the
gear drive, (ii) definition of the contact surfaces and (iii) establishment of the loading and the
boundary conditions of the gear drives.

Let us draw our attention into the first one of these tasks, in which a finite element mesh of
the gear drive is generated. This task can be divided into two sequential steps: in the first step,
a computerized definition of the gear geometries must be obtained and then, in the second step,
these gear geometries are discretized into finite elements to obtain the finite element mesh of the
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gear drive. The way in which these two steps are carried out has led to different approaches to
develop finite element models of gear drives.

In some of these approaches [7, 9, 10], the computerized definition of the gear geometries
is obtained by means of a computer aided design (CAD) software. Then, these geometries are
imported into a commercial FEA package, where they are discretized into finite elements using
proprietary meshing procedures. This is a simple and immediate way to generate finite element
meshes of gear transmissions but, as explained by Mao [3], it has some inconveniences that
are mainly related to the low accuracy in which the gear geometries are imported into the FEA
packages.

In other approaches [3, 5, 11], the gear geometries are generated directly within the FEA
packages, instead of importing them from CAD softwares. For such a purpose, scripts are im-
plemented in the FEA packages, which allow to obtain a mathematical definition of the gear
geometries considering the manufacturing process and the gear meshing theory [8]. These ap-
proaches allow to overcome the issues related to the low geometrical accuracy of the resulting
meshes but, as explained by Hotait [1], they require an important involvement of the user in terms
of finite element modeling and geometry details.

For these reasons, a more interesting approach is to develop customized stand-alone computer
programs to generate the finite element models of the gear drives [1, 12, 13]. In general, in these
computer programs the geometry of the gears is generated directly from the virtual simulation of
the manufacturing process. Then, these geometries are discretized into finite elements by means
of dedicated meshing procedures. As a result, a finite element mesh of the gear drive is provided,
where the position of the nodes of the mesh is defined by the analytical equations of the gear
profiles and rim. Besides the gain in the accuracy in which the finite element meshes of the gear
drives are generated, this approach allows to ease and automatize the generation of finite element
models of the transmission, guarantying the repetitiveness between them.

These computer programs require of the development of dedicated meshing procedures to
discretize the gear geometries into finite elements. Among the meshing procedures that have been
developed for such a purpose, the one proposed by Argyris et al. [13] is especially relevant, as
it has been extensively used by the gearing research community [4, 6, 14, 15, 16]. This meshing
procedure represents a fast and easy way to discretize a gear geometry into finite elements, but it
tends to produce distorted elements in some parts of the gear tooth, which may compromise the
accuracy of the results of the finite element analysis [17].

Besides that, the meshing procedure proposed by Argyris does not allow to perform local
mesh refinement, because it produces symmetric meshes in both driving and coast sides of the
gear tooth [18]. However, the ability to perform local mesh refinement is a very convenient
feature in a meshing procedure, as it allows to optimize the number of nodes and elements in a
finite element mesh and to reduce the computational cost associated to the finite element model.
In particular, the benefits of performing local mesh refinement when conducting finite element
analyses of gear drives have been illustrated by Barbieri [19] and Liu [20], among others.

Recently, Gonzalez-Perez [18, 21] has proposed a new meshing procedure that enhances Ar-
gyris’ procedure by enabling the performance of local mesh refinement in the vicinity of the
contact profile. In this procedure, individual meshes are generated for the refined and the non-
refined areas, and they are connected between them using multi-point constraints. However,
using multi-point constraints to connect non-conforming meshes tends to be cumbersome from a
model development standpoint [22] and can introduce numerical errors at the mismatching inter-
faces [23]. Furthermore, the meshing procedure proposed by Gonzalez-Perez does not prevent
the generation of distorted elements out of the refined area.
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In spite of the advances that have been done in the field of the finite element analysis of gear
drives, the existing meshing procedures to discretize gear geometries into finite elements still
have some lacks that need to be overcome. Thus, the objective of this work is to develop a new
meshing procedure to perform the automated generation of quadrilateral meshes over gear tooth
sections that, being fast and easy to implement, allows to perform local mesh refinement and
minimizes the appearance of distorted elements in the mesh.

2. Definition of the meshing problem and state of the art

In general, a three-dimensional hexaedral mesh of a gear can be constructed as a rotational
pattern of the mesh of a single gear tooth. At the same time, an hexaedral mesh of a gear tooth
can be generated by sweeping a two-dimensional quadrilateral mesh of its transverse section
along the face width of the gear. For this reason, it can be said that the problem of generating
a three-dimensional hexaedral mesh of a gear can be reduced to the problem of generating a
two-dimensional quadrilateral mesh over the transverse section of one of its teeth.

For the definition of a tooth section, and without loss of generality, let us consider a transverse
section of a typical spur gear as the one shown in Fig. 1a. From this gear section, the tooth section
to be meshed is selected (as shaded in gray in Fig. 1a). This tooth section is referred to a local
Cartesian coordinate system that, having the origin of coordinates OL in the center of the gear
section, has the local ZL axis normal to the section plane. The YL axis of the local coordinate
system is oriented in such a way that the considered tooth section is vertical and centered along
this axis.

Figure 1: Geometry of a typical gear tooth section

The considered tooth section is shown in greater detail in Fig 1b. It is defined by eight
boundary curves that can be analytically determined using the parametric equations of the tooth
profile and the portions of the corresponding rim. These curves correspond to the left fillet, left
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profile, top land, right profile, right fillet, right rim, bottom rim and left rim. The positions where
two adjacent boundary curves are connected are marked by points Pi {i = 1, 2, ..., 8}.

Generating a quadrilateral mesh over this tooth section is a problem that is not easy to solve,
because a tooth section is a non-convex domain with complex boundaries. In these cases there
are many researchers [24, 25, 26] that recommend using multiblock meshing procedures, which
can be summarized in the four steps shown in Fig. 2. These four steps have a tight relation
between them, which cause the decisions made in each step to have great influence over the rest.
For instance, the local meshing scheme that is applied over each patch (step A3) determines not
only the geometry allowable for the patch (step A1) but also the type of discretization that is
applied to its boundary curves (step A2).

Figure 2: Flowchart of a multiblock meshing procedure

Multiblock meshing procedures have already been used to generate quadrilateral meshes
over gear tooth sections, one of the most relevant being the one proposed by Argyris [13]. In this
procedure the tooth section is decomposed into six quadrilateral patches, as shown in Fig. 3a.
The simplicity of the geometry of the resulting patches allows to use a simple local meshing
scheme, as the drag method described by Park [27], to generate a structured quadrilateral mesh
directly over each one of them (Fig. 3b). Finally, the meshes of the individual patches are merged
together (Fig. 3c), obtaining a quadrilateral mesh for the tooth section.

The method proposed by Argyris is a simple and fast method to mesh a gear tooth section
using quadrilateral elements, especially because of the simplicity of the local meshing scheme
that is applied to the patches in which the tooth section is decomposed. However, using this local
meshing scheme requires opposite boundary curves of the patches having the same number of
divisions and some limitations in the meshing process arise as a consequence of this requirement.

On the one hand, the combined effect of the mesh propagation between adjacent patches and
the requirement of opposite boundary curves having the same number of divisions implies that
local mesh refinement cannot be performed. On the other hand, Argyris’ meshing procedure
tends to produce distorted elements in parts of the tooth that are usually exposed to elevated
gradients of the primary field variable.

In the following sections, a local meshing scheme capable of meshing patches with an arbi-
trary number of divisions in their boundary curves is described (section 3), which is integrated
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Figure 3: Argyris’ meshing procedure

in the meshing procedure that is proposed in this work (section 4).

3. Structured mesh generation over a quadrilateral planar patch

In this section a meshing scheme to generate a structured mesh over a quadrilateral planar
patch is described. This scheme is based on the hierarchical template-based recursive decompo-
sition of the domain proposed by Miranda [28], and its main advantage is that it allows to mesh
quadrilateral patches having a different number of divisions in opposite boundary curves.

Let us consider a generic planar patch as the one shown in Fig. 4b, which is defined by four
parametric boundary curves that are denoted by ci {i = 1, 2, ..., 4}. Over each boundary curve
there are distributed ni + 1 nodes, which represent the position that the nodes of the resulting
mesh will occupy over them. These nodes divide each boundary curve in ni {i = 1, 2, ..., 4}
segments (or divisions).

In general [24], the process of generating a structured quadrilateral mesh over this generic
patch can be summarized in the three steps shown in Fig. 4a. In the first step (step B1) the patch
is represented in the logical space using a reference square (Fig. 4c), in such a way that each
edge of the reference square (which are denoted by ei {i = 1, 2, ..., 4}) corresponds to a boundary
curve of the patch. The nodes over the boundary curves are also represented over the edges of
this reference square.

In the second step (step B2), a structured quadrilateral mesh is generated over the reference
square (Fig. 4d). For such a purpose, the approach proposed by Miranda [28] is selected, which
consist in a hierarchical template-based recursive decomposition of the reference square. Three
different templates are considered for this decomposition (denoted by T0, T1 and T2 in Fig. 5),
and their selection and orientation depends on the number of divisions in each edge of the square:

• Template T0 is applied when opposite edges have the same number of divisions (Fig. 5a).
This template generates one subregion (sA) that can be easily meshed using a bilinear
interpolation.

• Template T1 is applied when the number of divisions of a pair of opposite edges is equal
but the number of divisions of the other pair of opposite edges is different (Fig. 5b). This
template generates four subregions (sA, sB, sC , sD), where template T0 is applied.
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Figure 4: Meshing quadrilateral patches using hierarchical templates

• Finally, template T2 is used when the number of divisions in the opposite edges of the
square is not equal (Fig. 5c). Template T2 generates three subregions (sA, sB, sC). Template
T0 is applied to subregions sA and sB. Subregion sC can be either a T0 or a T1, depending
on the number of divisions of each edge of the subregion.

Figure 5: Templates used to decompose the reference square and their nomenclature

After applying the template recursive decomposition, template T0 can be applied to all the
resulting subregions, so they can be meshed individually using bilinear interpolation. To obtain
the final mesh, the meshes of all subregions are merged together.

Finally, in the third step of the local meshing scheme (step B3) the mesh is transferred from
the reference square in the logical space to the quadrilateral patch in the physical space using
transfinite interpolation [29] (Fig. 4e).

The main advantages of this meshing method are that it is a simple method to generate quadri-
lateral meshes over patches, it does not require opposite edges of the patch to have the same
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number of divisions, and it generates topologically equivalent meshes for similar patches with
similar discretizations of the boundary curves. However, when using this method it is important
to bear in mind that the total number of divisions of the boundary curves of the patch must be an
even number. In addition, the transfinite interpolation has some limitations [24, 26, 30] that need
to be taken into account:

• The patches must be defined by four parametric boundary curves, being topologically
equivalent to a square.

• Discontinuities in the slope of the boundary curves should be avoided, since they may have
negative influence on the smoothness of the resulting mesh.

• Non-convex geometries should be avoided as well, since they can produce self-folded
meshes.

4. A new multiblock procedure to mesh gear tooth sections using quadrilateral elements

In this section a new multiblock procedure to mesh gear tooth sections using quadrilateral
elements is proposed. The main goal of this new procedure is to obtain a fast and easy-to-
implement meshing method that, keeping the advantages of the existing methods, allows for the
performance of local mesh refinement and prevents the appearance of heavily distorted elements
in the mesh.

For the development of the proposed meshing procedure it is assumed that the following
information is provided in advance:

• The analytical definition of the eight boundary curves (Fig. 1b) that define the tooth sec-
tion, as well as the points Pi that define the intersections between them.

• A discretization of each boundary curve in the form of ni + 1 nodes, which represent the
position that the nodes of the resulting mesh will occupy over them, and constitute the
boundary conditions of the meshing problem.

Assuming that this information is given, the proposed meshing procedure follows the four
steps presented in Fig. 2. In the first step (step A1) the tooth section is decomposed into simpler
patches, following the indications given in section 4.1. Then, the boundary curves of the resulting
patches are discretized (step A2) considering the provided meshing boundary conditions and the
limitations of the local meshing scheme that is going to be applied over them. Finally, each patch
is meshed separately using the local meshing scheme described in section 3 (step A3). The way
in which steps A2 and A3 are conducted is further explained in sections 4.2 and 4.3, respectively.

After steps A1-A3 are completed, a quadrilateral mesh is obtained for each one of the patches
in which the tooth section is decomposed. In the last step (step A4), the resulting meshes are
merged together and a quadrilateral mesh for the tooth section is obtained.

4.1. Step A1: Decomposition of the tooth section in simple patches

One of the most important things to bear in mind when proposing a decomposition for a
gear tooth section is that the geometry of the resulting patches must fulfill the requirements of
the local meshing scheme that is going to be applied over them. In the proposed procedure, the
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local meshing scheme described in section 3 will be used to mesh these patches, and thereby the
geometry of the patches will be conditioned by its limitations.

But, apart from the limitations imposed by the local meshing scheme, there are other consid-
erations that may have certain influence in the way in which the gear tooth section is decomposed.
For example, it is interesting to select a decomposition that minimizes the difference in length
of the opposite boundary curves of the patches, as this can help to improve the quality of the
resulting meshes. Besides that, it is also interesting to minimize the number of patches in the
decomposition, since this simplifies the global meshing process. But, on the other hand, having
a larger number of patches allows these patches to have simpler boundaries, which is good from
the point of view of the local meshing scheme.

Bearing in mind these limitations and considerations, several ways of decomposing the tooth
section have been investigated in depth. Among them, the one that has proven better results is the
tooth decomposition shown in Fig. 6. This tooth decomposition is based on the determination of
seven auxiliary points, which are denoted by Qi {i = 9, 10, ..., 15} (Fig. 7a). Once these auxiliary
points are determined, connections between them and the existing points are established using
analytical lines, which divide the tooth section into six patches denoted as patch A, B, C, D, E
and F (Fig. 7b). The boundary curves of the resulting patches are denoted by ci {i = 1, 2, ..., 20},
as indicated in Fig. 6c.

Figure 6: Decomposition of a generic asymmetric tooth section into simpler patches

For the determination of the position of the auxiliary points, the following steps are followed:

i. Points Q9 and Q10 are located over the left and right profiles (Fig. 1b), respectively, in
such a way that they divide these curves in two parts of equal length (Fig. 7a). Then, unit
normal vectors at points P3, P4, Q9 and Q10 are determined (denoted by u3, u4, u9 and u10,
respectively, in Fig. 7a).

ii. Vector uL is computed as the bisector of vectors u3 and u9. Similarly, vector uR is computed
as the bisector of vectors u4 and u10.

iii. As shown in Fig. 7b, point P3 is projected onto the YL axis following the direction given
by uL to find point P′3, and point P4 is projected onto the YL axis following the direction

8



given by uR to find point P′4. Then, point Q11 is located at the midpoint of the segment that
connects points P′3 and P′4.

iv. Similarly (Fig. 7c), point Q9 is projected onto the YL axis following the direction given by uL

to find point Q′9, and point Q10 is projected onto the YL axis following the direction given by
uR to find point Q′10. Then, point Q12 is located at the midpoint of the segment that connects
points Q′9 and Q′10.

v. Distance dA is defined as the average length of segments P3Q11 and P4Q11.
vi. Point Q13 is located over the left rim at a distance dA of P5 and point Q14 is located over the

right rim at the same distance dA of P6, as illustrated in Fig. 7d.
vii. Finally, point Q15 is obtained as the intersection of YL axis and a circumference centered in

OL passing through points Q13 and Q14 (Fig. 7d).

Figure 7: Determination of the position of the auxiliary points in a generic asymmetric tooth section

Note that there may be some cases in which patch F will not exist. If distance dA is greater
than the length of segments P5P7 and P6P8, then patch F is not considered in the meshing pro-
cess, and the whole lower part of the tooth corresponds to patches D and E.

Finally, it is important to mention that the resulting decomposition does not completely match
the requirements of the local meshing scheme. On the one hand, patches A, D, E and F are
bounded by more than four boundary curves, and on the other hand, patches D and E are non-
convex regions. These issues must be taken into account in the following steps of the meshing
procedure to avoid meshing problems.

4.2. Step A2: Discretization of the boundary curves of the patches

As it has been mentioned before, the proposed meshing procedure is developed assuming
that the discretization of the boundary curves of the patches is provided in advance, in terms of
ni + 1 nodes that are distributed along each one of these curves, dividing them in ni segments.

However, before continuing with the meshing process, it is necessary to check that the pro-
vided discretization is suitable for the local meshing scheme that is going to be applied to the
patches. In the proposed procedure, the meshing scheme described in section 3 is used to mesh
the patches, and its only requirement is that the total number of divisions in the boundary curves
of the patch must be an even number.
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Table 1: General meshing requirements (ni indicates number of divisions in boundary curve ci)

Requirement Target patch Mathematical condition
R1 A (n3 + n4 + n5 + n13 + n14) must be even
R2 B (n2 + n13 + n15 + n19) must be even
R3 C (n6 + n14 + n16 + n19) must be even
R4 D (n1 + n8 + n15 + n17 + n20) must be even
R5 E (n7 + n9 + n16 + n18 + n20) must be even
R6 F (n10 + n11 + n12 + n17 + n18) must be even

Considering all the patches in which the tooth section is decomposed, this requirement can
be turned into the six mathematical conditions shown in Tab. 1. Each one of these conditions is
related to one of the patches in which the tooth section is decomposed, and all of them need to
be simultaneously fulfilled in order to continue with the meshing process.

4.3. Step A3: Generation of a quadrilateral mesh over each one of the patches

The first step when applying the meshing scheme described in section 3 to mesh the patches
in which the tooth section is decomposed is to establish a correlation between the boundary
curves of each patch in the physical space and the edges of the reference square in the logical
space (step B1 in Fig. 4a).

In those patches that are bounded by four boundary curves, such as patches B and C, a
straightforward one-to-one correlation can be established between their boundary curves and the
edges of the reference square. In the rest of the patches, which are bounded by five curves, it is
necessary to join together two adjacent boundary curves of the patch, and then relate the resulting
curve to a single edge of the reference square.

Depending on which adjacent curves are joined together, five different curve combinations
can be produced for each patch, and each one of them leads to a different solution for the meshing
problem. The selection of the optimum curve combination for each patch depends on which one
of them better suits the limitations of the local meshing scheme. In patches A and F, it is clear
that the curve combinations shown in Fig. 8a and Fig. 8d are the ones that better suit these
limitations, because any other curve combination would present severe discontinuities in the
slope of the resulting boundary curves.

Figure 8: Combination of boundary curves for patches A, D, E and F.
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In contrast, in patches D and E this election is not as simple, because all the possible curve
combinations present similar discontinuities in the slope of the boundary curves and may lead to
non-convex geometries. In these cases it is necessary to evaluate all the possible curve combina-
tions and select the one that maximizes the quality of the mapping of the mesh from the logical
space to the physical space. In this work, the quality of the mapping has been evaluated through
the scaled jacobian [31] of the transfinite interpolation, an it has revealed that the optimal curve
combinations for these patches are the ones shown in Fig. 8b and Fig. 8c.

Once the correlation between the boundary curves of the patches in the physical space and
the edges of the reference square in the logical space is established, the steps B2 and B3 of the
local meshing scheme can be followed to produce a quadrilateral mesh over each patch.

5. Improving the quality of the mesh

When performing a finite element analysis, the geometry of the elements in which the domain
of the problem is discretized is a factor that has an important influence over the accuracy of the
obtained results. It is well known that the presence of distorted elements reduces the accuracy
of the results of the analysis, especially when these distorted elements are located in areas where
elevated gradients of the primary field variable are produced. In consequence, distorted elements
should be avoided in the whole mesh in general, and in particular in those regions of the gear
tooth where elevated gradients of the primary field variable are expected.

Unfortunately, quadrilateral mesh generation algorithms (as the one proposed in this work)
tend to produce meshes that contain distorted elements. This is the reason why they are usually
completed with mesh quality enhancement techniques. In this work, two different techniques
have been considered:

• An a priori mesh quality enhancement technique, which is explained in section 5.1.

• An a posteriori mesh quality enhancement technique, which is explained in section 5.2.

5.1. A priori enhancement of the quality of the mesh

In the proposed meshing procedure, the mesh of the gear tooth is generated by merging the
individual meshes of the patches in which the tooth section is decomposed. In consequence,
separate actions can be taken to avoid the appearance of distorted elements in each one of the
patches.

The generation of distorted elements when meshing a given patch depends on the meshing
template that is applied by the local meshing scheme. In general, when a meshing template
produces distorted elements in the reference square in the logical space (see templates T1 and T2
in Fig. 5), these distorted elements tend to be transferred to the patch in the physical space. In
addition, the orientation of the meshing template determines the region of the patch where these
distorted elements appear. This fact is illustrated in Fig. 9, where all the possible orientations of
meshing templates T0, T1 and T2 have been used to mesh patch D of the gear tooth section.

As explained in section 3, the selection and the orientation of the meshing templates de-
pends on the number of divisions in the boundary curves of the patch. Hence, the appearance
of distorted elements can be controlled by selecting an appropriate number of divisions in the
boundary curves of the patch. This can be done by adding meshing conditions when discretiz-
ing the boundary curves of the patches, which are added to the meshing requirements shown in
Tab. 1.
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Figure 9: Meshing templates applied to patch D
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Table 2: Meshing conditions to improve the quality of the mesh (ni indicates number of divisions in boundary curve ci)

Condition Target patch Mathematical condition

C1 D n1 ≥ n17 + n20
if n1 = n17 + n20 → n8 = n15

C2 E n7 ≥ n18 + n20
if n7 = n18 + n20 → n9 = n16

C3 F n10 = n11
n17 + n18 = n12

To provide an example, let us focus firstly in patch D, which is used to mesh the left part
of the rim of the gear tooth. In this patch it is interesting to avoid the appearance of distorted
elements in the vicinity of the fillet, as elevated gradients of the primary field variable are usually
produced in this region. As it can be observed in Fig. 9, this can be achieved by two different
ways:

• by setting n1 > n17 + n20, regardless of the value of n8 and n15 (Fig. 9e, h and i),

• by setting n1 = n17 + n20, as long as n8 = n15 (Fig. 9a).

Both mathematical conditions are included in the meshing condition C1 shown in Tab. 2. A
similar reasoning can be made for patch E, leading to the meshing condition C2 shown in Tab. 2.

Patches A, B and C are used to mesh the superior part of the gear tooth, including the contact
profiles. As a consequence of the gear tooth contact, the contact profiles are regions exposed to
elevated gradients of the primary field variable, and in consequence it is also interesting to avoid
the appearance of distorted elements when meshing these patches. However, unlike in patches D
and E, it is not easy to provide general meshing conditions for these patches without introducing
excessive limitations in the meshing process. For this reason, it is left to the user to provide
meshing boundary conditions that minimize the appearance of distorted elements.

However, two meshing recommendations can be given in order to minimize the generation of
distorted elements in these patches. On the one hand, the user should reduce, as much as possible,
the difference between the number of divisions of opposite boundary curves of the patches. On
the other hand, the user should specify smooth transitions between the number of divisions in
the opposite boundary curves of adjacent patches, in order to avoid unbalanced meshes. For
example, when specifying the number of divisions in curves c13 and c14, the user should consider
the number of divisions specified for boundary curves c4, c15 and c16:

n13 + n14 '
n4 + (n15 + n16)

2
(1)

Finally, patch D is used to mesh the lower rim of the tooth. In the great majority of the
cases, this part of the tooth is not subjected to elevated gradients of the primary field variable,
and in consequence it is not usually affected by special meshing requirements. With the aim of
improving the general quality of the mesh of the tooth, it is interesting to ensure that template T0
is used to mesh this patch, which can be done by applying the meshing condition C3 from Tab. 2.
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These measures to improve the quality of the resulting mesh do not carry an increase of the
computational cost of the meshing procedure. Although they limit the flexibility of the user, they
are not a requirement of the meshing procedure and can be ignored whenever it is needed.

5.2. A posteriori enhancement of the quality of the mesh

The objective of the a posteriori mesh quality enhancement techniques is to reduce the distor-
tion of the elements once the mesh is generated. In general, they can be classified into clean-up
and mesh smoothing techniques. While the former improve the quality of the mesh by changing
the connectivity of its elements, the latter reduce the distortion of the elements by varying the
position of its inner nodes.

Mesh smoothing techniques are preferred in this work, as they are especially indicated to
reduce the distortion of the elements of the mesh. There is a wide range of methods to perform
mesh smoothing, which go from Laplacian to optimization-based methods. While the former
are more suitable in terms of computational cost, the latter lead to better quality meshes. A big
number of methods have arisen as a mixture of them, that combine features of both types of
technique (a survey on these methods can be found in Ref. [25]).

Among these hybrid techniques, the one proposed by Zhou [32] has been selected for this
work because it offers three interesting features: it provides better results than the Laplacian
smoothing, its computational cost is lower than the objective-based smoothing and it is easy
to implement. This mesh smoothing consist of an iterative algorithm whose main flowchart is
shown in Fig. 10a. For each iteration of the algorithm, each interior node m of the mesh is sequen-
tially moved to its corresponding optimum position, and its corresponding nodal displacement
δm is computed. This process is continued until the maximum displacement of the inner nodes is
below a certain tolerance δtol or a maximum number of iterations imax is reached.

Figure 10: Mesh smoothing
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For the definition of the optimum position of node m, consider a sample quadrilateral mesh
as the one shown in Fig. 10b. Let m be an interior node of the mesh, and k any of the nodes
of the enclosing polygon around m. Vector rk describes the position of node m with respect to
node k, and αk and γk are the angles between vector rk and the edges of the enclosing polygon at
node k. On the other hand, mk represents the improved position of node m with respect to node
k, which is obtained by rotating the vector rk around point k to fulfill αk = γk. A collection of
improved positions mk is obtained for each interior node m of the mesh, one for each node k of its
enclosing polygon. The optimum position of node m is defined as the average of this collection
of improved positions mk.

6. Numerical examples and discussion of results

The performance of the proposed procedure is illustrated by meshing several cases of study
that are obtained as a combination of a gear geometry and a boundary curve discretization. Two
different gear geometries are considered in the study:

• Gear geometry G1 corresponds to a standard spur gear, with z = 20 teeth, modulus
m = 2 mm, pressure angle α = 20◦, addendum of standard basic rack tooth haP = 2 mm,
dedendum of standard basic rack tooth h f P = 2.5 mm and tooth depth h = 4.5 mm.

• Gear geometry G2 corresponds to a spur gear with pointed teeth, having z = 20 teeth,
modulus m = 2 mm, pressure angle α = 25◦, profile shift coefficient x = 0.5, adden-
dum of standard basic rack tooth haP = 2 mm, dedendum of standard basic rack tooth
h f P = 2.5 mm and tooth depth h = 4.5 mm.

Both gear geometries are meshed considering two different discretizations of the boundary
curves, which are denoted by FM (fine mesh) and CM (coarse mesh):

• In the boundary discretization FM a uniform element size equal to 0.15 mm has been
specified for all the external curves of the tooth section (left fillet, left profile, top land,
right profile and right fillet). The rest of the curves are discretized following geometric
progressions, with a maximum element size equal to 0.30 mm.

• In the boundary discretization CM a uniform element size equal to 0.30 mm has been spec-
ified for all the external curves of the tooth section. The rest of the curves are discretized
following geometric progressions, with a maximum element size equal to 0.60 mm.

Table 3 summarizes the cases of study that have been considered in this investigation. Each
case of study can be meshed using three different variations of the proposed meshing procedure:

• A standard meshing procedure ST, in which the proposed meshing procedure is applied
without any mesh quality enhancement technique.

• A pre-improved meshing procedure PI, in which the proposed meshing procedure is ap-
plied considering the a priori mesh quality enhancement technique described in section 5.1.

• A double-improved meshing procedure DI, in which the pre-improved meshing procedure
is completed with the a posteriori mesh quality enhancement technique described in sec-
tion 5.2. In this procedure the number of iterations of the mesh smoothing algorithm has
been limited to 10 and the maximum displacement to 0.02 mm.
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Table 3: Summary of selected cases of study and resulting meshes

Case of Gear Boundary Resulting Meshing Figurestudy geometry discretization mesh procedure

G1FM G1 FM
G1FM-ST Standard 11a
G1FM-PI Pre-improved 11b
G1FM-DI Double-improved 11c

G1CM G1 CM
G1CM-ST Standard 11d
G1CM-PI Pre-improved 11e
G1CM-DI Double-improved 11f

G2FM G2 FM
G2FM-ST Standard 12a
G2FM-DI Pre-improved 12b
G2FM-PI Double-improved 12c

G2CM G2 CM
G2CM-ST Standard 12d
G2CM-PI Pre-improved 12e
G2CM-DI Double-improved 12f

As a result of meshing the selected cases of study using these variations of the proposed
meshing procedure, the 12 meshes reflected in Tab. 3 have been obtained. These meshes are
compared between them in terms of:

• The number of nodes and the number of elements of the mesh, as these parameters are
relevant to the computational cost associated to the solution of the finite element model.

• The quality of the mesh, represented by the average and the maximum distortion of the
elements of the mesh, as there is a relation between the distortion of the elements and the
accuracy of the solution of the finite element model.

The distortion of a given element can be defined as the degree of deviation of that element
compared to the regular reference element, which, in the case of quadrilateral meshes, is a square.
To measure how much an element is distorted, mesh quality metrics are used. Among the several
mesh quality metrics available in the literature, Oddy’s metric [33] has been selected in this work
because it is a robust metric that allows to consider all the types of element distortion (shearing,
stretching and combinations of both) in just one value.

Oddy’s metric fO is calculated for every element of the mesh following the equation presented
in Ref. [33]. When the evaluated element is not distorted (i.e. it is a square) the value of Oddy’s
metric is zero, and this value increases to infinity as it does the distortion of the element. The
maximum distortion of the elements of the mesh is defined by the maximum value of Oddy’s
metric fO,max and the average distortion of the elements of the mesh is defined by the average
value of Oddy’s metric fO,avg.

Figure 11 shows the meshes that are obtained when cases of study G1FM and G1CM are
meshed using the standard, the pre-improved and the double-improved meshing procedures. A
grayscale code has been used to indicate the amount of distortion of the elements of each mesh,
represented by Oddy’s metric ( fO), in which the color of the elements becomes darker as their
distortion increases.
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Figure 11: Meshes obtained for cases of study G1FM and G1CM
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The meshes that are obtained when the standard meshing procedure is used to mesh cases of
study G1FM and G1CM are shown in Fig. 11a and Fig. 11d, respectively. These figures demon-
strate that this procedure can be successfully used to discretize gear geometry G1 into quadrilat-
eral elements, either using a fine mesh (G1FM-ST) or a coarse mesh (G1CM-ST). However, it
is observed that in both cases it tends to generate distorted elements in the vicinity of the fillets
(patches D and E), in the central part (patches B and C) and near the tip of the tooth (patch A).

These distorted elements can be partially avoided by meshing these cases of study using
the pre-improved meshing procedure. Figure 11b shows the mesh that is obtained when case
of study G1FM is meshed using this procedure (G1FM-PI). The visual comparison between this
mesh and the one obtained using the standard procedure (G1FM-ST, Fig. 11a) reveals the benefits
of using the a priori mesh quality enhancement technique, as the distortion of the elements in
the vicinity of the fillets and at the tip of the tooth is reduced. In this particular case of study
the consideration of the a priori mesh quality enhancement technique brings a reduction of the
71% of the maximum distortion ( fO,max) and a reduction of the 24% of the average distortion
( fO,avg) of the mesh, without a noticeable increase of the computational time associated to the
procedure. Similar results are observed when case of study G1CM is meshed using the pre-
improved meshing procedure (G1CM-PI, Fig. 11e).

The application of the a priori mesh quality enhancement technique does not severely affect
the original meshing boundary conditions, as only minor changes need to be applied to the dis-
cretization of the boundary curves of the patches to fulfill the meshing conditions described in
section 5.1. As a result of these changes, a reduction of the number of nodes and elements in the
mesh is achieved, which does not affect to the mesh density in the fillets nor the contact profiles.

Finally, the double-improved meshing procedure can be applied to maximize the quality of
the meshes. Examples of the meshes that are obtained when cases of study G1FM and G1CM
are meshed using this procedure are shown in Fig. 11c (G1FM-DI) and Fig. 11f (G1CM-DI),
respectively. In these cases, the application of the a posteriori mesh quality enhancement tech-
nique brings reductions over the 55% of the maximum and the average distortion of the meshes.
The number of nodes and elements in the meshes is not affected by mesh smoothing, because
this technique varies the position of the nodes but does not change either the connectivity or the
number of nodes of the discretization. However, it is important to remark that unlike the a pri-
ori mesh quality enhancement technique, the a posteriori mesh quality enhancement technique
increases the computational time associated to the meshing procedure.

Considering an average workstation, the computer time associated to the pre-improved mesh-
ing procedure has been lower than 1 second in all the studied cases. For a given case of study,
the computer time associated to the double-improved meshing procedure is approximately three
times the computer time associated to the pre-improved procedure. The difference in computer
times resides in the time associated to the a posteriori mesh quality enhancement technique,
which is proportional to the number of nodes in the mesh and the number of iterations of the
mesh smoother.

A similar discussion can be made for the meshes that are obtained when cases of study G2FM
and G2CM are meshed using the standard, the pre-improved and the double-improved meshing
procedures, which are shown in Fig. 12. In general, the quality of these meshes is slightly worse
than the quality of the meshes obtained for cases of study G1FM and G1CM (Fig. 11), as gear
geometry G2 presents higher difficulties for the meshing procedures. These difficulties reside in
the fact that there is a larger difference between the length of the opposite boundary curves of
the patches in which the tooth section is decomposed. This fact is illustrated in Tab. 4, where
the ratios between the length of the opposite boundary curves of the patches are shown for gear
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Table 4: Ratios between the length of opposite boundary curves of the patches

Patch Curves Geometry G1 Geometry G2

A length(c13 + c14)/length(c4) 2.06 3.72
length(c3)/length(c5) 1.00 1.00

B, C length(c13)/length(c15) 1.24 1.42
length(c2)/length(c19) 1.00 1.04

D, E length(c17 + c20)/length(c1) 2.62 4.77
length(c8)/length(c15) 1.00 1.00

F length(c17 + c18)/length(c12) 1.08 1.05
length(c10)/length(c11) 1.00 1.00

geometries G1 and G2. As it can be observed, these ratios are larger for gear geometry G2 than
for gear geometry G1, especially for patches A, D and E.

6.1. Local mesh refinement

In this section the ability of the proposed procedure to perform local mesh refinement is
checked. For such a purpose, two additional cases of study have been developed, in which gear
geometry G1 is meshed under boundary discretizations that lead to local mesh refinement at the
fillet (case of study G1FR) and at the center of the contact profile (case of study G1PR). The
resulting meshes could be useful to evaluate the bending stress at the tooth root and the contact
stress that arise from the bearing contact, respectively.

Figures 13a and 13c show the meshes that are obtained when these cases are meshed using
the pre-improved meshing procedure (G1FR-PI and G1PR-PI, respectively). In both cases of
study a uniform element size equal to 0.30 mm is specified for the external curves of the tooth
section, except for the mesh refinement area, where a uniform element size equal to 0.15 mm
is defined. In case of study G1FR there is an abrupt change between the element size in the
refined area and the element size in the non-refined area, whereas in case of study G1PR there
is a smooth transition between the element size in both areas, where the size of the elements
increases following a geometric growth.

In meshes G1FR-PI and G1PR-PI, the number of nodes and elements are in the same or-
der of magnitude that in mesh G1CM-PI (Fig. 11e), but the mesh density in those parts of the
tooth where the local mesh refinement is performed is within the range of the mesh G1FM-PI
(Fig. 11b). This means that the computational time associated to the solution of these finite el-
ement models is similar to the computational time associated to the coarse mesh G1CM-PI, but
the accuracy of the results of the analysis within the refined areas will be similar to the accuracy
of the results obtained with the fine mesh G1FM-PI.

However, the application of local mesh refinement brings a worsening of the quality of the
mesh. Compared to meshes G1FM-PI and G1CM-PI, meshes G1FR-PI and G1PR-PI show
larger values of average and maximum distortion, and heavily distorted elements appear in those
patches that are affected by the local mesh refinement. This happens because these patches need
to accommodate larger variations in the number of divisions of their opposite boundary curves.

The distortion of these meshes can be reduced using a posteriori mesh quality enhance-
ment techniques. Thus, Figs. 13b and 13d show the meshes that are obtained when cases of
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Figure 12: Meshes obtained for cases of study G2FM and G2CM
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Figure 13: Meshes obtained for cases of study G1FR and G1PR.

study G1FR and G1PR are meshed using the double-improved meshing procedure (G1FR-DI
and G1PR-DI, respectively). As expected, the application of the a posteriori mesh quality en-
hancement technique brings a notable reduction of the average and maximum distortion of the
meshes, as well as of the number of heavily distorted elements in the mesh.

Yet, it is known that the application of the a posteriori mesh quality enhancement technique
implies an increase of the computational time associated to the meshing procedure. However,
this increase is, in general, very small compared to the accuracy improvement and the reduction
of the computer time associated to the solution of the finite element model that can be achieved
when local mesh refinement is applied.

6.2. Comparison with Argyris meshing procedure
Finally, it is interesting to evaluate the performance of the proposed pre-improved meshing

procedure compared to the performance of Argyris’ procedure. For such a purpose, the cases
of study G1FM, G1CM, G2FM and G2CM have been meshed using both procedures, and the
resulting meshes are compared in terms of their maximum and average distortion.

To make this comparison more sound, minor modifications have been made in the boundary
discretization when applying the Argyris’ procedure, in such a way that the resulting meshes
have a similar number of nodes and elements than the meshes resulting from the proposed pre-
improved procedure. Furthermore, distances d1 and d2 used in the Argyris’ procedure (see Fig. 3)
have been optimized for each case of study, in order to reduce the average distortion of the mesh
by minimizing the average value of Oddy’s metric.

Figure 14 shows the meshes obtained when the selected cases of study are meshed using the
Argyris’ procedure (which are denoted by an A letter). In general, it can be observed that this
procedure tends to produce heavily distorted elements in the central part of the tooth section.
Besides that, heavily distorted elements also appear at the tip of the tooth and the contact profiles
when applying the Argyris meshing procedure to gear geometry G2.

The comparison between the meshes obtained from both procedures shows that the pre-
improved meshing procedure leads to less distorted meshes than Argyris’ procedure, both in
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Figure 14: Meshes obtained for cases of study G1FM, G1CM, G2FM and G2CM using Argyris’ procedure

terms of average and maximum distortion. A more detailed comparison between the distortion
of the meshes produced by both meshing procedures is presented in Fig. 15. In this figure five
ranges of Oddy’s metric are defined and the percentage of elements in the mesh within each range
is shown. It can be observed that in all the studied cases the proposed pre-improved procedure
produces a larger percentage of undistorted elements than Argyris’ procedure. In the worst of the
cases (G2FM-PI), the proposed pre-improved procedure produces 74% of undistorted elements
whereas in the best of the cases (G2FM-A) Argyris’ procedure is only able to produce 60% of
elements within this range.

Figure 15: Comparison with Argyris mesh strategy

In contrast, when observing the percentage of heavily distorted elements, in the worst of the
cases (G2FM-PI) the proposed pre-improved procedure only produces 1% of heavily distorted
elements, whereas in the best of the cases (G1CM-A) Argyris’ procedure produces 6% of the
elements within this range. This means that even in the worst of the cases, the meshes obtained
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using the pre-improved procedure are better (in terms of element distortion) than the meshes
obtained using Argyris’ procedure. These results evidence the advantages of using the proposed
pre-improved meshing procedure compared to the meshing procedure proposed by Argyris.

7. Conclusions

In this work, a new procedure for automated generation of two-dimensional quadrilateral
meshes of gear drives is proposed. The proposed procedure is based on a multiblock scheme,
in which the gear tooth is decomposed into simple patches that are individually meshed using a
local meshing scheme. Each of the typical steps of the multiblock schemes has been investigated
in depth and, as a result, a fast and simple way to mesh planar sections of gear teeth has been
obtained. The performance of the proposed procedure has been illustrated with several numer-
ical examples, which demonstrate the ability of the proposed procedure to mesh different gear
geometries under several meshing boundary conditions.

The proposed procedure has been completed with two different mesh quality enhancement
techniques, which are aimed to reduce the distortion of the elements in which the gear geom-
etry is discretized. The first one of them is an a priori mesh quality enhancement technique,
which is applied before the mesh is generated, and the second one is an a posteriori mesh quality
enhancement technique, which is applied after the mesh is generated. The numerical examples
have revealed that the proposed a priori mesh quality enhancement technique is capable of re-
ducing the distortion of the resulting meshes without increasing the computational time of the
meshing process. In addition, it has been shown that the application of the a posteriori mesh
quality enhancement technique can bring further reductions of the distortion of the elements of
the mesh.

The performance of the proposed meshing procedure has been compared to the performance
of a traditional meshing procedure and, as a result of this comparison, it is observed that the pro-
posed procedure provides meshes with better quality than the traditional approaches. In addition,
the proposed meshing procedure covers an important lack of the traditional meshing procedures,
which is the performance of local mesh refinement. Examples of local mesh refinement at the
contact profile and the fillet of the gear tooth have been shown, demonstrating the capability of
the proposed procedure to perform local mesh refinement in different parts of the gear tooth.

In summary, the proposed meshing procedure has the advantage of being simple and provides
two important developments regarding the existing procedures to mesh gear drives: the possibil-
ity of performing local mesh refinement and a significant improvement in the final quality of the
mesh.
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