86 research outputs found

    Feed-Forward Optimization With Delayed Feedback for Neural Networks

    Full text link
    Backpropagation has long been criticized for being biologically implausible, relying on concepts that are not viable in natural learning processes. This paper proposes an alternative approach to solve two core issues, i.e., weight transport and update locking, for biological plausibility and computational efficiency. We introduce Feed-Forward with delayed Feedback (F3^3), which improves upon prior work by utilizing delayed error information as a sample-wise scaling factor to approximate gradients more accurately. We find that F3^3 reduces the gap in predictive performance between biologically plausible training algorithms and backpropagation by up to 96%. This demonstrates the applicability of biologically plausible training and opens up promising new avenues for low-energy training and parallelization

    Self-Organization of Spiking Neural Networks for Visual Object Recognition

    Get PDF
    On one hand, the visual system has the ability to differentiate between very similar objects. On the other hand, we can also recognize the same object in images that vary drastically, due to different viewing angle, distance, or illumination. The ability to recognize the same object under different viewing conditions is called invariant object recognition. Such object recognition capabilities are not immediately available after birth, but are acquired through learning by experience in the visual world. In many viewing situations different views of the same object are seen in a tem- poral sequence, e.g. when we are moving an object in our hands while watching it. This creates temporal correlations between successive retinal projections that can be used to associate different views of the same object. Theorists have therefore pro- posed a synaptic plasticity rule with a built-in memory trace (trace rule). In this dissertation I present spiking neural network models that offer possible explanations for learning of invariant object representations. These models are based on the following hypotheses: 1. Instead of a synaptic trace rule, persistent firing of recurrently connected groups of neurons can serve as a memory trace for invariance learning. 2. Short-range excitatory lateral connections enable learning of self-organizing topographic maps that represent temporal as well as spatial correlations. 3. When trained with sequences of object views, such a network can learn repre- sentations that enable invariant object recognition by clustering different views of the same object within a local neighborhood. 4. Learning of representations for very similar stimuli can be enabled by adaptive inhibitory feedback connections. The study presented in chapter 3.1 details an implementation of a spiking neural network to test the first three hypotheses. This network was tested with stimulus sets that were designed in two feature dimensions to separate the impact of tempo- ral and spatial correlations on learned topographic maps. The emerging topographic maps showed patterns that were dependent on the temporal order of object views during training. Our results show that pooling over local neighborhoods of the to- pographic map enables invariant recognition. Chapter 3.2 focuses on the fourth hypothesis. There we examine how the adaptive feedback inhibition (AFI) can improve the ability of a network to discriminate between very similar patterns. The results show that with AFI learning is faster, and the network learns selective representations for stimuli with higher levels of overlap than without AFI. Results of chapter 3.1 suggest a functional role for topographic object representa- tions that are known to exist in the inferotemporal cortex, and suggests a mechanism for the development of such representations. The AFI model implements one aspect of predictive coding: subtraction of a prediction from the actual input of a system. The successful implementation in a biologically plausible network of spiking neurons shows that predictive coding can play a role in cortical circuits

    Robust learning algorithms for spiking and rate-based neural networks

    Get PDF
    Inspired by the remarkable properties of the human brain, the fields of machine learning, computational neuroscience and neuromorphic engineering have achieved significant synergistic progress in the last decade. Powerful neural network models rooted in machine learning have been proposed as models for neuroscience and for applications in neuromorphic engineering. However, the aspect of robustness is often neglected in these models. Both biological and engineered substrates show diverse imperfections that deteriorate the performance of computation models or even prohibit their implementation. This thesis describes three projects aiming at implementing robust learning with local plasticity rules in neural networks. First, we demonstrate the advantages of neuromorphic computations in a pilot study on a prototype chip. Thereby, we quantify the speed and energy consumption of the system compared to a software simulation and show how on-chip learning contributes to the robustness of learning. Second, we present an implementation of spike-based Bayesian inference on accelerated neuromorphic hardware. The model copes, via learning, with the disruptive effects of the imperfect substrate and benefits from the acceleration. Finally, we present a robust model of deep reinforcement learning using local learning rules. It shows how backpropagation combined with neuromodulation could be implemented in a biologically plausible framework. The results contribute to the pursuit of robust and powerful learning networks for biological and neuromorphic substrates

    Egocentric Computer Vision and Machine Learning for Simulated Prosthetic Vision

    Get PDF
    Las prótesis visuales actuales son capaces de proporcionar percepción visual a personas con cierta ceguera. Sin pasar por la parte dañada del camino visual, la estimulación eléctrica en la retina o en el sistema nervioso provoca percepciones puntuales conocidas como “fosfenos”. Debido a limitaciones fisiológicas y tecnológicas, la información que reciben los pacientes tiene una resolución muy baja y un campo de visión y rango dinámico reducido afectando seriamente la capacidad de la persona para reconocer y navegar en entornos desconocidos. En este contexto, la inclusión de nuevas técnicas de visión por computador es un tema clave activo y abierto. En esta tesis nos centramos especialmente en el problema de desarrollar técnicas para potenciar la información visual que recibe el paciente implantado y proponemos diferentes sistemas de visión protésica simulada para la experimentación.Primero, hemos combinado la salida de dos redes neuronales convolucionales para detectar bordes informativos estructurales y siluetas de objetos. Demostramos cómo se pueden reconocer rápidamente diferentes escenas y objetos incluso en las condiciones restringidas de la visión protésica. Nuestro método es muy adecuado para la comprensión de escenas de interiores comparado con los métodos tradicionales de procesamiento de imágenes utilizados en prótesis visuales.Segundo, presentamos un nuevo sistema de realidad virtual para entornos de visión protésica simulada más realistas usando escenas panorámicas, lo que nos permite estudiar sistemáticamente el rendimiento de la búsqueda y reconocimiento de objetos. Las escenas panorámicas permiten que los sujetos se sientan inmersos en la escena al percibir la escena completa (360 grados).En la tercera contribución demostramos cómo un sistema de navegación de realidad aumentada para visión protésica ayuda al rendimiento de la navegación al reducir el tiempo y la distancia para alcanzar los objetivos, incluso reduciendo significativamente el número de colisiones de obstáculos. Mediante el uso de un algoritmo de planificación de ruta, el sistema encamina al sujeto a través de una ruta más corta y sin obstáculos. Este trabajo está actualmente bajo revisión.En la cuarta contribución, evaluamos la agudeza visual midiendo la influencia del campo de visión con respecto a la resolución espacial en prótesis visuales a través de una pantalla montada en la cabeza. Para ello, usamos la visión protésica simulada en un entorno de realidad virtual para simular la experiencia de la vida real al usar una prótesis de retina. Este trabajo está actualmente bajo revisión.Finalmente, proponemos un modelo de Spiking Neural Network (SNN) que se basa en mecanismos biológicamente plausibles y utiliza un esquema de aprendizaje no supervisado para obtener mejores algoritmos computacionales y mejorar el rendimiento de las prótesis visuales actuales. El modelo SNN propuesto puede hacer uso de la señal de muestreo descendente de la unidad de procesamiento de información de las prótesis retinianas sin pasar por el análisis de imágenes retinianas, proporcionando información útil a los ciegos. Esté trabajo está actualmente en preparación.<br /

    Informationsrouting, Korrespondenzfindung und Objekterkennung im Gehirn

    Get PDF
    The dissertation deals with the general problem of how the brain can establish correspondences between neural patterns stored in different cortical areas. Although an important capability in many cognitive areas like language understanding, abstract reasoning, or motor control, this thesis concentrates on invariant object recognition as application of correspondence finding. One part of the work presents a correspondence-based, neurally plausible system for face recognition. Other parts address the question of visual information routing over several stages by proposing optimal architectures for such routing ('switchyards') and deriving ontogenetic mechanisms for the growth of switchyards. Finally, the idea of multi-stage routing is united with the object recognition system introduced before, making suggestions of how the so far distinct feature-based and correspondence-based approaches to object recognition could be reconciled.Allgemein gesprochen beschäftigt sich die vorliegende Arbeit mit der Frage, wie das Gehirn Korrespondenzen zwischen Aktivitätsmustern finden kann. Dies ist ein zentrales Thema in der visuellen Objekterkennung, hat aber Bedeutung für alle Bereiche der neuronalen Datenverarbeitung vom Hören bis zum abstrakten Denken. Das Korrespondenzfinden sollte invariant gegenüber Veränderungen sein, die das Erscheinungsbild, aber nicht die Bedeutung der Muster ändern. Außerdem sollte es auch funktionieren, wenn die beiden Muster nicht direkt, sondern nur über Zwischenstationen miteinander verbunden sind. Voraussetzungen für das invariante Korrespondenzfinden zwischen Mustern sind einerseits die Existenz sinnvoller Verbindungsstrukturen, und andererseits ein prinzipieller neuronaler Mechanismus zum Finden von Korrespondenzen. Mit einem prinzipiellen Korrespondenzfindungsmechanismus befasst sich Kapitel 2 der Arbeit. Dieser beruht auf dynamischen Links zwischen den Punkten beider Muster, die durch punktuelle ähnlichkeit der Muster und globale Konsistenz mit benachbarten Links aktiviert werden. In mehrschichtigen Systemen können dynamische Links außer zur Korrespondenzfindung auch zum kontrollierten Routing von Information verwendet werden. Unter Verwendung dieser Eigenschaft wird in Kapitel 2 ein Gesichtserkennungssystem entwickelt, das invariant gegenüber Verschiebung und robust gegenüber Verformungen ist und gute Performanz auf Benchmarkdatenbanken In Kapitel 3 wird untersucht, was die sparsamste Methode ist, neuronale Muster so zu verbinden, dass es von jedem Punkt des einen Musters einen Pfad zu jedem Punkt des anderen gibt und visuelle Information von einem Muster zum anderen geroutet werden kann. Dabei wird die Gesamtmenge an benötigten neuronalen Ressourcen, also sowohl Verbindungen als auch merkmalrepräsentierende Einheiten der Zwischenschichten, minimiert. Dies führt zu mehrstufigen Strukturen mit weit gespreizten, aber dünn besetzten Verästelungen, die wir Switchyards nennen. Bei der Interpretation der Ergebnisse zeigt sich, dass Switchyards mit den qualitativen und quantitativen Gegebenheiten im Primatenhirn vereinbar sind, soweit diese bekannt sind. Kapitel 4 beschäftigt sich mit der Frage, wie solche doch recht komplizierten neuronalen Verbindungsstrukturen ontogenetisch entstehen können. Es wird ein möglicher Mechanismus vorgestellt, der auf chemischen Markern basiert. Die Marker werden von den Einheiten der untersten Schicht gebildet und diffundieren durch die entstehenden Verbindungen nach oben. Verbindungen wachsen bevorzugt zwischen Einheiten, die sehr unähnliche chemische Marker enthalten. Die resultierenden Verbindungsstrukturen sind beinahe identisch mit den in Kapitel 3 analytisch hergeleiteten Architekturen und biologisch sogar noch plausibler. Kapitel 5 führt die Ideen der vorangegangenen Kapitel zusammen, um das Korrespondenzfinden zwischen Mustern über mehrstufige Routingstrukturen hinweg zu realisieren. Es wird gezeigt, wie mit Hilfe von Switchyards Korrespondenzen zwischen normalen'' visuellen Mustern gefunden werden können, obwohl anfangs keine der einzelnen Stufen des Switchyards auf beiden Seiten Muster anliegen hat, die miteinander abgeglichen werden könnten. Im Anschluss wird das Prinzip zu einem vollständigen Erkennungssystem ausgebaut, das über mehrere Routingstufen hinweg ein gegebenes Eingangsmuster positionsinvariant einem mehrerer gespeicherter Muster zuordnen kann

    Dynamics of biologically informed neural mass models of the brain

    Get PDF
    This book contributes to the development and analysis of computational models that help brain function to be understood. The mean activity of a brain area is mathematically modeled in such a way as to strike a balance between tractability and biological plausibility. Neural mass models (NMM) are used to describe switching between qualitatively different regimes (such as those due to pharmacological interventions, epilepsy, sleep, or context-induced state changes), and to explain resonance phenomena in a photic driving experiment. The description of varying states in an ordered sequence gives a principle scheme for the modeling of complex phenomena on multiple time scales. The NMM is matched to the photic driving experiment routinely applied in the diagnosis of such diseases as epilepsy, migraine, schizophrenia and depression. The model reproduces the clinically relevant entrainment effect and predictions are made for improving the experimental setting.Die vorliegende Arbeit stellt einen Beitrag zur Entwicklung und Analyse von Computermodellen zum Verständnis von Hirnfunktionen dar. Es wird die mittlere Aktivität eines Hirnareals analytisch einfach und dabei biologisch plausibel modelliert. Auf Grundlage eines Neuronalen Massenmodells (NMM) werden die Wechsel zwischen Oszillationsregimen (z.B. durch pharmakologisch, epilepsie-, schlaf- oder kontextbedingte Zustandsänderungen) als geordnete Folge beschrieben und Resonanzphänomene in einem Photic-Driving-Experiment erklärt. Dieses NMM kann sehr komplexe Dynamiken (z.B. Chaos) innerhalb biologisch plausibler Parameterbereiche hervorbringen. Um das Verhalten abzuschätzen, wird das NMM als Funktion konstanter Eingangsgrößen und charakteristischer Zeitenkonstanten vollständig auf Bifurkationen untersucht und klassifiziert. Dies ermöglicht die Beschreibung wechselnder Regime als geordnete Folge durch spezifische Eingangstrajektorien. Es wird ein Prinzip vorgestellt, um komplexe Phänomene durch Prozesse verschiedener Zeitskalen darzustellen. Da aufgrund rhythmischer Stimuli und der intrinsischen Rhythmen von Neuronenverbänden die Eingangsgrößen häufig periodisch sind, wird das Verhalten des NMM als Funktion der Intensität und Frequenz einer periodischen Stimulation mittels der zugehörigen Lyapunov-Spektren und der Zeitreihen charakterisiert. Auf der Basis der größten Lyapunov-Exponenten wird das NMM mit dem Photic-Driving-Experiment überein gebracht. Dieses Experiment findet routinemäßige Anwendung in der Diagnostik verschiedener Erkrankungen wie Epilepsie, Migräne, Schizophrenie und Depression. Durch die Anwendung des vorgestellten NMM wird der für die Diagnostik entscheidende Mitnahmeeffekt reproduziert und es werden Vorhersagen für eine Verbesserung der Indikation getroffen

    VALIDATION OF A MODEL OF SENSORIMOTOR INTEGRATION WITH CLINICAL BENEFITS

    Get PDF
    Healthy sensorimotor integration – or how our touch influences our movements – is critical to efficiently interact with our environment. Yet, many aspects of this process are still poorly understood. Importantly, several movement disorders are often considered as originating from purely motor impairments, while a sensory origin could also lead to a similar set of symptoms. To alleviate these issues, we hereby propose a novel biologically-based model of the sensorimotor loop, known as the SMILE model. After describing both the functional, and the corresponding neuroanatomical versions of the SMILE, we tested several aspects of its motor component through functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS). Both experimental studies resulted in coherent outcomes with respect to the SMILE predictions, but they also provided novel scientific outcomes about such broad topics as the sub-phases of motor imagery, the neural processing of bodily representations, or the extend of the role of the extrastriate body area. In the final sections of this manuscript, we describe some potential clinical application of the SMILE. The first one presents the identification of plausible neuroanatomical origins for focal hand dystonia, a yet poorly understood sensorimotor disorder. The last chapter then covers possible improvements on brain-machine interfaces, driven by a better understanding of the sensorimotor system. -- La façon dont votre sens du toucher et vos mouvements interagissent est connue sous le nom d’intégration sensorimotrice. Ce procédé est essentiel pour une interaction normale avec tout ce qui nous entoure. Cependant, plusieurs aspects de ce processus sont encore méconnus. Plus important encore, l’origine de certaines déficiences motrices encore trop peu comprises sont parfois considérées comme purement motrice, alors qu’une origine sensorielle pourrait mener à un même ensemble de symptômes. Afin d’améliorer cette situation, nous proposons ici un nouveau modèle d’intégration sensorimotrice, dénommé « SMILE », basé sur les connaissances de neurobiologie actuelles. Dans ce manuscrit, nous commençons par décrire les caractéristiques fonctionnelles et neuroanatomiques du SMILE. Plusieurs expériences sont ensuite effectuées, via l’imagerie par résonance magnétique fonctionnelle (IRMf), et la stimulation magnétique transcranienne (SMT), afin de tester différents aspects de la composante motrice du SMILE. Si les résultats de ces expériences corroborent les prédictions du SMILE, elles ont aussi mis en évidences d’autres résultats scientifiques intéressants et novateurs, dans des domaines aussi divers que les sous-phases de l’imagination motrice, les processus cérébraux liés aux représentations corporelles, ou encore l’extension du rôle de l’extrastriate body area. Dans les dernières parties de ce manuscrit, nous dévoilons quelques applications cliniques potentielles de notre modèle. Nous utilisons le SMILE afin de proposer deux origines cérébrales plausibles de la dystonie focale de la main. Le dernier chapitre présente comment certaines technologies existantes, telles que les interfaces cerveaux-machines, pourraient bénéficier d’une meilleure compréhension du système sensorimoteur

    A unifying functional approach towards synaptic long-term plasticity

    Get PDF
    Das Gehirn ist die wohl komplexeste Struktur auf Erden, die der Mensch erforscht. Es besteht aus einem riesigen Netzwerk von Nervenzellen, welches in der Lage ist eingehende sensorische Informationen zu verarbeiten um daraus eine sinnvolle Repräsentation der Umgebung zu erstellen. Außerdem koordiniert es die Aktionen des Organismus um mit der Umgebung zu interagieren. Das Gehirn hat die bemerkenswerte Fähigkeit sowohl Informationen zu speichern als auch sich ständig an ändernde Bedingungen anzupassen, und zwar über die gesamte Lebensdauer. Dies ist essentiell für Mensch oder Tier um sich zu entwickeln und zu lernen. Die Grundlage für diesen lebenslangen Lernprozess ist die Plastizität des Gehirns, welche das riesige Netzwerk von Neuronen ständig anpasst und neu verbindet. Die Veränderungen an den synaptischen Verbindungen und der intrinsischen Erregbarkeit jedes Neurons finden durch selbstorganisierte Mechanismen statt und optimieren das Verhalten des Organismus als Ganzes. Das Phänomen der neuronalen Plastizität beschäftigt die Neurowissenschaften und anderen Disziplinen bereits über mehrere Jahrzehnte. Dabei beschreibt die intrinsische Plastizität die ständige Anpassung der Erregbarkeit eines Neurons um einen ausbalancierten, homöostatischen Arbeitsbereich zu gewährleisten. Aber besonders die synaptische Plastizität, welche die Änderungen in der Stärke bestehender Verbindungen bezeichnet, wurde unter vielen verschiedenen Bedingungen erforscht und erwies sich mit jeder neuen Studie als immer komplexer. Sie wird durch ein komplexes Zusammenspiel von biophysikalischen Mechanismen induziert und hängt von verschiedenen Faktoren wie der Frequenz der Aktionspotentiale, deren Timing und dem Membranpotential ab und zeigt außerdem eine metaplastische Abhängigkeit von vergangenen Ereignissen. Letztlich beeinflusst die synaptische Plastizität die Signalverarbeitung und Berechnung einzelner Neuronen und der neuronalen Netzwerke. Der Schwerpunkt dieser Arbeit ist es das Verständnis der biologischen Mechanismen und deren Folgen, die zu den beobachteten Plastizitätsphänomene führen, durch eine stärker vereinheitlichte Theorie voranzutreiben.Dazu stelle ich zwei funktionale Ziele für neuronale Plastizität auf, leite Lernregeln aus diesen ab und analysiere deren Konsequenzen und Vorhersagen. Kapitel 3 untersucht die Unterscheidbarkeit der Populationsaktivität in Netzwerken als funktionales Ziel für neuronale Plastizität. Die Hypothese ist dabei, dass gerade in rekurrenten aber auch in vorwärtsgekoppelten Netzwerken die Populationsaktivität als Repräsentation der Eingangssignale optimiert werden kann, wenn ähnliche Eingangssignale eine möglichst unterschiedliche Repräsentation haben und dadurch für die nachfolgende Verarbeitung besser unterscheidbar sind. Das funktionale Ziel ist daher diese Unterscheidbarkeit durch Veränderungen an den Verbindungsstärke und der Erregbarkeit der Neuronen mithilfe von lokalen selbst-organisierten Lernregeln zu maximieren. Aus diesem funktionale Ziel lassen sich eine Reihe von Standard-Lernenregeln für künstliche neuronale Netze gemeinsam abzuleiten. Kapitel 4 wendet einen ähnlichen funktionalen Ansatz auf ein komplexeres, biophysikalisches Neuronenmodell an. Das Ziel ist eine spärliche, stark asymmetrische Verteilung der synaptischen Stärke, wie sie auch bereits mehrfach experimentell gefunden wurde, durch lokale, synaptische Lernregeln zu maximieren. Aus diesem funktionalen Ansatz können alle wichtigen Phänomene der synaptischen Plastizität erklärt werden. Simulationen der Lernregel in einem realistischen Neuronmodell mit voller Morphologie erklären die Daten von timing-, raten- und spannungsabhängigen Plastizitätsprotokollen. Die Lernregel hat auch eine intrinsische Abhängigkeit von der Position der Synapse, welche mit den experimentellen Ergebnissen übereinstimmt. Darüber hinaus kann die Lernregel ohne zusätzliche Annahmen metaplastische Phänomene erklären. Dabei sagt der Ansatz eine neue Form der Metaplastizität voraus, welche die timing-abhängige Plastizität beeinflusst. Die formulierte Lernregel führt zu zwei neuartigen Vereinheitlichungen für synaptische Plastizität: Erstens zeigt sie, dass die verschiedenen Phänomene der synaptischen Plastizität als Folge eines einzigen funktionalen Ziels verstanden werden können. Und zweitens überbrückt der Ansatz die Lücke zwischen der funktionalen und mechanistische Beschreibungsweise. Das vorgeschlagene funktionale Ziel führt zu einer Lernregel mit biophysikalischer Formulierung, welche mit etablierten Theorien der biologischen Mechanismen in Verbindung gebracht werden kann. Außerdem kann das Ziel einer spärlichen Verteilung der synaptischen Stärke als Beitrag zu einer energieeffizienten synaptischen Signalübertragung und optimierten Codierung interpretiert werden

    Growing Brains in Silico: Integrating Biochemistry, Genetics and Neural Activity in Neurodevelopmental Simulations

    Get PDF
    Biologists\u27 understanding of the roles of genetics, biochemistry and activity in neural function is rapidly improving. All three interact in complex ways during development, recovery from injury and in learning and memory. The software system NeuroGene was written to simulate neurodevelopmental processes. Simulated neurons develop within a 3D environment. Protein diffusion, decay and receptor-ligand binding are simulated. Simulations are controlled by genetic information encoded using a novel programming language mimicking the control mechanisms of biological genes. Simulated genes may be regulated by protein concentrations, neural activity and cellular morphology. Genes control protein production, changes in cell morphology and neural properties, including learning. We successfully simulate the formation of topographic projection from the retina to the tectum. We propose a novel model of topography based on simulated growth cones. We also simulate activitydependent refinement, through which diffuse connections are modified until each retinal cell connects to only a few target cells

    Homeostatische Plastizität - algorithmische und klinische Konsequenzen

    Get PDF
    Plasticity supports the remarkable adaptability and robustness of cortical processing. It allows the brain to learn and remember patterns in the sensory world, to refine motor control, to predict and obtain reward, or to recover function after injury. Behind this great flexibility hide a range of plasticity mechanisms, affecting different aspects of neuronal communication. However, little is known about the precise computational roles of some of these mechanisms. Here, we show that the interaction between spike-timing dependent plasticity (STDP), intrinsic plasticity and synaptic scaling enables neurons to learn efficient representations of their inputs. In the context of reward-dependent learning, the same mechanisms allow a neural network to solve a working memory task. Moreover, although we make no any apriori assumptions on the encoding used for representing inputs, the network activity resembles that of brain regions known to be associated with working memory, suggesting that reward-dependent learning may be a central force in working memory development. Lastly, we investigated some of the clinical implications of synaptic scaling and showed that, paradoxically, there are situations in which the very mechanisms that normally are required to preserve the balance of the system, may act as a destabilizing factor and lead to seizures. Our model offers a novel explanation for the increased incidence of seizures following chronic inflammation.Das menschliche Gehirn ist in der Lage sich an dramatische Veränderungen der Umgebung anzupassen. Hinter der Anpassungsfähigkeit des Gehirns stecken verschiedenste ernmechanismen. Einige dieser Mechanismen sind bereits relativ gut erforscht, wahrend bei anderen noch kaum bekannt ist, welche Rolle sie innerhalb der Informationsverarbeitungsprozesse im Gehirn spielen. Hier, soll gezeigt werden, dass das Zusammenspiel von Spike-Timing Dependent Plasticity' (STDP) mit zwei weiteren Prozessen, Synaptic Scaling' und Intrinsic Plasticity' (IP), es Nervenzellen ermöglicht Information effizient zu kodieren. Die gleichen Mechanismen führen dazu, dass ein Netzwerk aus Neuronen in der Lage ist, ein Arbeitsgedächtnis' für vergangene Stimuli zu entwickeln. Durch die Kombination von belohnungsabhängigem STDP und homöostatischen Mechanismen lernt das Netzwerk, die Stimulus-Repräsentationen für mehrere Zeitschritte verfügbar zu halten. Obwohl in unserem Modell-Design keinerlei. Informationen über die bevorzugte Art der Kodierung enthalten sind, finden wir nach Ende des Trainings neuronale Repräsentationen, die denjenigen aus vielen Arbeitsgedächtnis-Experimenten gleichen. Unser Modell zeigt, dass solche Repräsentationen durch Lernen enstehen können und dass Reward-abhängige Prozesse eine zentrale Kraft bei der Entwicklung des Arbeitsgedächtnisses spielen können. Abschliessend werden klinische Konsequenzen einiger Lern-Prozesse untersucht. Wir konnten zeigen, dass der selbe Mechanismus, der normalerweise die Aktivität im Gehirn in Balance hält, in speziellen Situationen auch zu Destabilisierung führen und epileptische Anfälle auslösen kann. Das hier vorgestellte Modell liefert eine neuartige Erklärung zur Entstehung von epileptischen Anfällen bei chronischen Entzündungen
    corecore