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Abstract (English) 

 

Healthy sensorimotor integration – or how our touch influences our movements – is critical to 

efficiently interact with our environment. Yet, many aspects of this process are still poorly 

understood. Importantly, several movement disorders are often considered as originating from 

purely motor impairments, while a sensory origin could also lead to a similar set of symptoms. To 

alleviate these issues, we hereby propose a novel biologically-based model of the sensorimotor loop, 

known as the SMILE model. After describing both the functional, and the corresponding 

neuroanatomical versions of the SMILE, we tested several aspects of its motor component through 

functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS). Both 

experimental studies resulted in coherent outcomes with respect to the SMILE predictions, but they 

also provided novel scientific outcomes about such broad topics as the sub-phases of motor imagery, 

the neural processing of bodily representations, or the extend of the role of the extrastriate body 

area. In the final sections of this manuscript, we describe some potential clinical application of the 

SMILE. The first one presents the identification of plausible neuroanatomical origins for focal hand 

dystonia, a yet poorly understood sensorimotor disorder. The last chapter then covers possible 

improvements on brain-machine interfaces, driven by a better understanding of the sensorimotor 

system. 
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Résumé (French)  

 

La façon dont votre sens du toucher et vos mouvements interagissent est connue sous le nom 

d’intégration sensorimotrice. Ce procédé est essentiel pour une interaction normale avec tout ce qui 

nous entoure. Cependant, plusieurs aspects de ce processus sont encore méconnus. Plus important 

encore, l’origine de certaines déficiences motrices encore trop peu comprises sont parfois 

considérées comme purement motrice, alors qu’une origine sensorielle pourrait mener à un même 

ensemble de symptômes. Afin d’améliorer cette situation, nous proposons ici un nouveau modèle 

d’intégration sensorimotrice, dénommé « SMILE », basé sur les connaissances de neurobiologie 

actuelles. Dans ce manuscrit, nous commençons par décrire les caractéristiques fonctionnelles et 

neuroanatomiques du SMILE. Plusieurs expériences sont ensuite effectuées, via l’imagerie par 

résonance magnétique fonctionnelle (IRMf), et la stimulation magnétique transcranienne (SMT), afin 

de tester différents aspects de la composante motrice du SMILE. Si les résultats de ces expériences 

corroborent les prédictions du SMILE, elles ont aussi mis en évidences d’autres résultats scientifiques 

intéressants et novateurs, dans des domaines aussi divers que les sous-phases de l’imagination 

motrice, les processus cérébraux liés aux représentations corporelles, ou encore l’extension du rôle 

de l’extrastriate body area. Dans les dernières parties de ce manuscrit, nous dévoilons quelques 

applications cliniques potentielles de notre modèle. Nous utilisons le SMILE afin de proposer deux 

origines cérébrales plausibles de la dystonie focale de la main. Le dernier chapitre présente comment 

certaines technologies existantes, telles que les interfaces cerveaux-machines, pourraient bénéficier 

d’une meilleure compréhension du système sensorimoteur. 
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1. Introduction and overview 

1.1. First steps into sensorimotor integration 

We are generally unaware on how much the afferent somatosensation information – 

originating from our skin and muscles – is critical in directing even the slightest of our movements. 

Without it, you would probably crush the plastic cup you are sipping from. Even more likely, you 

would spill all of its content when grasping it, as you might fail to compute the correct trajectory for 

your hand to reach that glass on the table. As a last example, have you ever considered the amount 

of information required simply to keep you standing? Equilibrium relies on the combination of a 

handful of sources, such as skin pressure on the soles of your feet, tension from each of your legs and 

chest muscles, and balance information from your inner ear, into an estimation of the state of your 

whole body in space. Based on this, your brain can constantly and unintendedly update your 

muscular activity to correct your stance. As you can see, this mechanism involves a continuous loop 

of motor-sensory-motor processes. 

Indeed, the accurate performance of movements requires several sequential yet 

interconnected mechanisms, namely motor preparation, execution and monitoring (Wolpert and 

Ghahramani, 2000). The first two are coded by the motor system, while the monitoring feedback is 

processed by the sensory systems (Peterka, 2002). Sensorimotor integration is the interplay between 

these two systems, with the motor section achieving the role of effector by constantly actuating the 

state of the body, while the sensory system continuously monitors the results. The natural 

combination of sensory inputs and motor outputs results in the ability to coherently organize bodily 

sensations and motor responses. Only when both motor and sensory information are properly 

integrated in this reciprocal feedback loop, can overt movements be successfully and properly 

performed. 

 

1.2. Modeling the sensorimotor system 

Aberrant behaviors occurring within the sensorimotor loop can result in a broad panel of 

movement disorders. One of such disorders is focal dystonia, a hyperkinetic alteration usually 

characterized by abnormal movement and/or postures of a specific body part, in the absence of 

other basic motor impairments (Fahn et al., 1998). Despite the essential influence of sensorimotor 

integration mechanisms on daily life, many unknowns remain on the general principles of its healthy 

and pathological anatomic-functional organization. To unravel this issue, in the present thesis, we 
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first propose a novel bio-computational model of sensorimotor integration: the Sensory-Motor 

Integrative Loop for Enacting (SMILE), based on the available data from experimental psychology, 

neurophysiology, and neuroimaging. The goal of this model is to provide a new tool to test 

hypotheses on the sensorimotor system, translate them into empirical investigations and clinically 

relevant questions, and implement novel intervention protocols for rehabilitation in the framework 

of sensorimotor disorders.  

In the first part of the present thesis, we will introduce the SMILE with a special concern on the 

description of both its functional and neuroanatomical versions, and how to integrate them together. 

The following two chapters present two experimental studies aiming at investigating and validating 

various aspects of the SMILE, using different imaging modalities, namely functional Magnetic 

Resonance Imaging (fMRI), and Transcranial Magnetic Stimulation (TMS). 

 

1.3. Motor imagery to dissociate sensory and motor mechanisms 

To test such a complex interconnection of processes, one approach consists to isolate its 

smallest indivisible constituents and investigate them separately. In the case of sensorimotor 

integration, one can for example attempt to segregate the sensory component from its motor 

counterparts. One elegant approach toward this aim is granted by motor imagery, which embraces 

motor processes without generating the corresponding sensory feedback inherent to overt 

movements. This is made possible by the concept of functional equivalence, binding not only motor 

imagery, but also the other variants of imagery (such as visual imagery, for example). Functional 

equivalence states that the neural correlates linked to the imagination of a movement grossly 

correspond to the actual, overt performance of the same action (Jeannerod, 2001, Munzert et al., 

2009). Strictly speaking, this means that the same areas of your brain will be responsible for waving, 

whether you actively perform the movement or simply imagine it. Furthermore, motor imagery is 

composed of the same stages as overt movement, namely planning/preparation, and execution 

(Jeannerod and Decety, 1995), and present a temporal correspondence in healthy subjects 

(Georgopoulos and Massey, 1987). Motor imagery is therefore an outstanding approach to 

investigate the SMILE. 

To elicit such motor imagery in the two experimental studies presented in this thesis, we used 

a prominent cognitive task known as the Hand Laterality Judgment task. In this task, participants are 

requested to identify the laterality of a hand visually presented in different views (for example palm 

and dorsum) and rotation angles (Cooper and Shepard, 1975, Parsons, 1994). Solving this task 

requires the unconscious access to motor representations. The rationale of this motor involvement, 
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corroborated by neuroimagery (Parsons et al., 1995, de Lange et al., 2005), posture modulation 

experiments (Ionta et al., 2012, Ionta and Blanke, 2009, Ionta et al., 2007, de Lange et al., 2006, van 

Nuenen et al., 2012) and studies in clinical populations (Fiorio et al., 2006, Helmich et al., 2007), is 

proposed to arise from the recruitment of an imaginary movement of the corresponding limb from 

the actual proprioceptive position into the one of displayed stimulus (Parsons, 1994, Parsons, 1987). 

Remarkably, this task is known as an implicit motor imagery task, since participants are usually 

unaware of relying on motor simulation to solve it. This involvement of the motor system while 

performing these mental hand rotations has been extensively documented. Compared with the 

Shepard’s rotation task (in which the rotated stimuli are not hands, but three-dimensional objects), it 

has been showed that RTs are lengthened not only by increasing rotation angles, but is also sensitive 

to biomechanical constraints. Indeed, response times (RTs) exhibit a clear increase when the stimulus 

is presented in an anatomically awkward position, such as the finger pointing away from the body 

midsagittal plane (Cooper and Shepard, 1975, Parsons et al., 1995). 

 

1.4. Experimental studies of this thesis 

In the first experimental study (Study A, page 11) we used functional Magnetic Resonance 

Imaging (fMRI) to investigate the effects of sensorimotor or visual reference frame on local (hands) 

versus global (full-body) bodily representations. In this paradigm, the hand stimuli could be 

presented either in isolation, or attached to a full-body. A precedent behavioral study suggests that 

these contextual contingencies can trigger the recruitment of motor versus visual strategies, based 

on the perspective implied by the stimulus (Ionta et al., 2012). On this basis, we hypothesized that 

the recruitment of a specific reference frame could be reflected in the differential activation of 

sensorimotor or visual brain networks. By directly comparing the brain activities associated with 

mental rotation of hands or full-bodies, we were able to highlight two different networks of neural 

correlates associated with local and global bodily representations. Mental rotation of hands recruited 

more strongly a broad subset of the sensorimotor network, namely the supplementary motor area, 

premotor cortex, and secondary somatosensory cortex. Conversely, mental rotation of full-bodies 

presented stronger activity in temporo-occipital regions associated with visual processing, including 

the functionally-localized extrastriate body area (EBA). Three main outcomes could be obtained from 

this experiment. First, bodily representations can be carried out by either sensorimotor or visual 

frames of reference, depending on the stimulus context. Secondly, those two frames of references 

were processed via distinct brain network, encoding local or global bodily representations. And third, 

EBA does not exclusively consist of a perceptual node, but also incorporates representational 
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information of the body. With respect to the SMILE model, this experiment illustrated that it is 

indeed possible to separate the sensory and motor components of the sensorimotor integration 

process via specific cognitive tasks, but the fMRI results did not show any significant activity in the 

primary motor cortex (M1), which, according to the SMILE, has to be integrated in the motor 

processing loop. To investigate this oddity in particular, we developed our second experimental study 

(Study B, page 13). 

In this latter, we investigated the involvement of M1 during implicit motor imagery via TMS, 

potentially more prone to identify M1 activations than fMRI, in particular in the case of transient 

processes. Notably, the question of M1 participation in implicit motor imagery still raises many 

controversies. In the past two decades, dozens of studies have alternatively confirmed (see for 

example Kosslyn et al. (1998), Ganis et al. (2000) or Tomasino et al. (2005)) or refuted its 

participation (see for example Kosslyn et al. (2001a), de Lange et al. (2005), or Sauner et al. (2006)). 

In TMS studies, we claim that this dissension might be the results of a poor phase-locking of the TMS 

pulse with the transient mental rotation process hypothetically happening within M1. This failure of 

phase-locking could be emerging from the high intra- and inter-subject variability of response times. 

Therefore, in this paradigm, we propose a novel approach for trial normalization in which the timing 

of the TMS stimulation is adjusted with respect to the expected subject- and stimulus-specific 

response time. Thanks to this novel paradigm, we were able to identify a specific time-window, 

spanning from 55% to 85% of the trial duration, during which the excitability of M1 was modulated 

by different features of the stimuli in mental rotations of hands. This would indicate that part of the 

motor imagery information at the very least transits via the primary motor cortex. Additionally, it 

also represents an utterly innovative approach to investigate the different sequential stages of the 

implicit motor imagery process. 

 

1.5. Clinical applications of the SMILE 

The general discussion of this thesis will consider two examples on how the SMILE model can 

be deployed into clinical settings, to formulate and test hypotheses. In the first part (page 29), we 

examine a specific sensorimotor disorder, namely focal hand dystonia (FHD). After reviewing the 

prevailing knowledge on symptomatic and pathophysiological mechanisms, we use the SMILE model 

to distinguish two potential neural sources for dystonia. In the final section of this thesis (page 47), 

we discuss how a proper understanding of the sensorimotor system can greatly enhance the 

outcomes of another type of clinical therapy. When a patient suffers an intractable rupture of the 

central-to-periphery communication – such as following a spinal cord injury – one of the ultimate 
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resort consists in brain-machine interfaces (BMI). These systems can (among other applications) use 

signals recorded from the central and/or peripheral nervous system, bypass the lesion, and stimulate 

the target limb. Alternatively, the decoded neural signals can be used to control an external actuator, 

being a robotic limb, a wheelchair, or more generally any computerized system. But despite BMIs 

providing impressive opportunities and promising to restore lost sensorimotor functions, their 

presence outside of a controlled environment remains highly anecdotal. Based on users’ reports, one 

of the reasons for the failure of this laboratory-to-homes technology transfer lies in the feel of those 

systems. Users simply fail to integrate the BMI into their own body representation, resulting in 

unnatural impressions and rendering it challenging to control. To overcome this limitation, nowadays 

cutting-edge BMI advances are guided by the principle of biomimicry; i.e. the artificial reproduction 

of normal neural mechanisms. In this chapter, we discuss how the integration of biomimetically-

driven somatosensory feedback into these systems could critically improve their incorporation into 

the user’s body representation, ultimately leading to a feeling of ownership of the BMI, and greatly 

improving its performances. 
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2. A new model: the Somatosensory Integrative Loop for Enacting (SMILE) 

The effective performance of movements in everyday life is crucial to be able to adequately 

integrate our environment and interact with it. Models of the sensorimotor integration have been 

developed on many different facets, and with widely different purposes. In robotics for example, one 

might need such a biologically-based model to infer the correct limb movements of an animatronic 

or humanoid robot (Hauser et al., 2011, Ijspeert, 2008). In the field of cognitive neuroscience, one of 

the seminal computational models of sensorimotor control was initially developed by Daniel M. 

Wolpert in the nineties (Wolpert et al., 1995) , and has been thoroughly improved over the years 

(Franklin and Wolpert, 2011, Wolpert, 1997, Wolpert and Ghahramani, 2000).  

Nevertheless, for the clinical understanding of sensorimotor-related disorders, such a 

comprehensive model of the sensorimotor integration is still missing, in particular upon the 

reciprocal interplay between sensory inputs and motor outputs. These disorders can manifest as 

impairments in the control of voluntary actions and unsuccessful interactions with our environment. 

Potentially, they may arise from an inadequate sampling of sensory events from our surroundings 

because of a disruption of the normal function of the sensorimotor cognitive processing. As stated 

earlier, this is where the convenience of motor imagery in dissociating sensory and motor processes 

is revealed, as it allows to investigate those two components separately. This experimental approach 

is particularly important for studying the physiology of pathological conditions characterized by 

sensory-motor integration deficits but without impairments in basic motor functions, such as focal 

dystonia.  

2.1. Functional SMILE 

One of the challenges of developing such a model in the context of clinical neuroscience is to 

enable the model to explain the causal link between dysfunctional brain networks and specific 

clinical phenotypes. Most prevailing computational models of sensory-motor integration (Shadmehr 

and Krakauer, 2008, Sanger and Merzenich, 2000, Wolpert et al., 1995) agree on the necessity of one 

or more nodes dedicated to the motor preparation stage. Building on these existing computational 

models, we present a biologically-based model of the Sensory-Motor Integrative Loop for Enacting 

(SMILE). According to SMILE, a functional sensorimotor integration requires the coordination of both 

low- and high-level nodes. Starting the loop from a voluntary intention to move (or alternatively from 

a reaction to somatosensory information), the initial signals in the high-level preparation nodes 

encode the movement planning stage, and they are transmitted to a converter node which will  
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translate them into motor commands (see Figure 1). This node generates the motor order and 

volleys the information to the periphery through the corticospinal tract. In parallel, an internal copy 

of this motor outflow (called efference copy, or corollary discharge) is integrated with the 

proprioceptive information (“current state”) present in the high-level sensory encoding node. 

Potentially, non-somatosensory information (for example vision or audition) could also be integrated 

to enhance the precision of the current state estimation. Combining this current state with the 

efference copy allows a forward model to infer the final position of the body, even before the overt 

corresponding movement can be completed. Different hypotheses coexist upon the exact neural 

pathway followed by the efference copy, in particular on whether it transits through the sensory 

encoding node, or whether it is directly processed by the forward model (Borich et al., 2015). The 

 

Figure 1: Functional schematic representation of the SMILE model. The signal sent by the motor 

command node (red arrow) comprises an efference copy processed by the forward model and a 

motor outflow generating a sensory feedback (blue arrows). Low-level nodes compare the actual 

sensory feedback to an anticipated sensory prediction generated by a feedback model and transmit 

information on the resulting sensory error to high-level nodes in order to calibrate the subsequent 

motor command. At the sensory encoding node, non-somatosensory inputs (such as vision or 

audition, green arrow and box) might be integrated to generate a more accurate representation of 

the current state. 
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outcome of the forward model, carrying the expected post-movement proprioceptive state, is then 

volleyed to the motor planning node, which can therefore proceed to initiate the computations 

relative to the next required movement. The dual sensorimotor information emanating from the 

forward model node is also volleyed toward a feedback model which, based on the expected 

proprioceptive state, computes the sensory effects of the movement itself (sensory prediction). 

When the movement reaches its end, the difference between the anticipated sensory prediction and 

the actual sensory feedback is processed by low-level sensory nodes into a sensory error term. This is 

eventually fed back into the high-level preparation node, as well as the motor command node 

through the sensory encoding node, in order to calibrate the next movement. Through this multi-

level feedback loop, the balance between the sensory and the motor processes is maintained. 

 

2.2. Neuroanatomical SMILE 

Based on the available data, we attempt to biologically situate the different nodes of the 

SMILE model. At the biological level, according to the SMILE model the movement preparation would 

be encoded by the premotor and supplementary motor regions (Ionta et al., 2010a). These regions 

would exchange information with M1, which would take the role of the motor command node (see 

Figure 2). M1 would then transmit the motor command toward the periphery, and simultaneously 

generates an efference copy volley to the parietal cortex, where it would be combined by the 

forward model (O'Reilly et al., 2013, Wolpert et al., 1998) with the proprioceptive current state 

emanating from S1. The feedback model encoded primarily by the cerebellum (Blakemore et al., 

2000) would integrate the estimated current states to compute the sensory prediction. This latter 

would then be compared to the actual sensory feedback in the basal ganglia, thalamus, and 

cerebellum as low-level nodes. Then the signals processed by these low-level nodes would be sent to 

both the primary sensory encoding node (S1) and the premotor and supplementary motor area. The 

information sent by these three nodes (S1, premotor, supplementary motor area) toward M1, would 

then be used for the calibration of the subsequent motor output. The somatosensory feedback 

processed in coordination by the cerebellum, basal ganglia, and thalamus and then modulated by 

premotor, supplementary motor area, and S1, the motor execution commands are calibrated in M1, 

and the loop is complete. 
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Figure 2: Neuroanatomical configuration of the healthy SMILE model. Healthy sensory-motor 

integration leads to balanced motor command and sensory feedback. The motor command (red 

arrows) from the primary motor cortex generates a sensory feedback (blue arrows), which is 

processed in low- and high-level modules and in turn calibrates the subsequent motor command 

itself.  

S1 primary sensory cortex    BG   basal ganglia 
PM premotor cortex    Par   parietal cortex 
Th thalamus     CALIB   calibration 
Cer cerebellum    FW model  forward model 
M1 primary motor cortex   FB model  feedback model 
SMA supplementary motor area  Est. Current State estimated current state 
 

 

 



David Perruchoud Université de Lausanne Février 2017 
  

- 11 - 

3. Study A - Differential neural encoding of sensorimotor and visual body 

representations 

Authors: David Perruchoud*, Lars Michels*, Marco Piccirelli, Roger Gassert, Silvio Ionta.  

(* contributed equally)  

Published in Scientific Report, 2016 Nov 24. Volume 6, pp. 37259.  

To be found in Annex 1 (p. 81) 

Contribution: The candidate performed the data analysis, and prepared the manuscript 

in collaboration with the Prof. Lars Michels, from the University Hospital of Zurich, 

Switzerland. 

 

 

 

Based on the SMILE model, as a first step, we aimed at studying the relationship between 

changes in the sensory input and modifications in the movement preparation and associated nodes. 

To this aim we performed the following fMRI study, where we varied the features of the (visual) 

sensory input (presence or absence of a full-body attached to a hand) and verified the activation or 

inactivation of the sensorimotor network.  

In a former study, we found that visual context affects the selection of different strategies 

during mental rotation (Ionta et al., 2012). In particular, if hand images are presented in isolation, 

participants rely on motor imagery, using an egocentric, first-person perspective. Conversely, if the 

hand images are presented attached to a full-body, the participants’ response profile suggests the 

use of a visual imagery strategy, in an allocentric, third-person perspective. On this basis, we 

hypothesized that, at the neural level, the use of one or the other strategy (motor vs visual) would be 

reflected in the activation of different brain networks. Namely, mental rotation of hands should 

predominantly activate the sensorimotor network, which – according to the SMILE model – should 

include among others, pre-central, post-central, and parietal regions, as well as subcortical 

structures. Conversely, mental rotation of bodies (when hands are attached to a full-body) should 

primarily activate occipital regions. 

To investigate this hypothesis, we adapted our behavioral experiment (Ionta et al., 2012) to 

the fMRI environment. We chose fMRI as the ideal neuroinvestigation technique because it provides 

access to deep structures, while the activation of subcortical areas via other conventional 
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neuroimaging technique, such as EEG, remains very challenging. We focused the data analysis on the 

direct contrast between “hands” and “bodies” because we wanted to uncover the differences 

between this two kinds of mental rotation, which in previous studies was only hypothesized on the 

basis of isolated contrasts (hands alone or bodies alone). 

 

3.1. Abstract 

Sensorimotor processing specifically impacts mental body representations. In particular, 

deteriorated somatosensory input (as after complete spinal cord injury) increases the relative weight 

of visual aspects of representations of body parts, leading to aberrancies in how images of body parts 

are mentally manipulated (mental rotation). This suggests that a sensorimotor or visual reference 

frame, respectively, can be relatively dominant in local (hands) versus global (full-body) bodily 

representations. On this basis, we hypothesized that the recruitment of a specific reference frame 

could be reflected in the activation of sensorimotor versus visual brain networks. To this aim, we 

directly compared the brain activity associated with mental rotation of hands versus full-bodies. 

Mental rotation of hands recruited more strongly the supplementary motor area, premotor cortex, 

and secondary somatosensory cortex. Conversely, mental rotation of full-bodies determined stronger 

activity in temporo-occipital regions, including the functionally-localized extrastriate body area. 

These results support that (1) sensorimotor and visual frames of reference are used to represent the 

body, (2) two distinct brain networks encode local or global bodily representations, and (3) the 

extrastriate body area is a multimodal region involved in body processing both at the perceptual and 

representational level. 
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Based on the SMILE model, we might expect that M1 (but also the parietal cortex) would be 

somehow activated during mental rotation, in particular of hands. In the fMRI experiment, we did 

not find such a pattern of brain activations. This could be explained by at least two reasons. First, we 

computed only the direct contrast between hands and bodies. Such a direct comparison could cancel 

out similar patterns of activity in the two conditions (hands, bodies), including e.g. M1 and the 

parietal cortex. Second, previous literature on the involvement of M1 in mental rotation is very 

controversial. Separate sets of studies respectively concluded on M1 being involved, or not involved, 

during mental rotation.  

One possible reason for such inconsistence relates to the colossal inter- and intra-subject 

variability in the performance of the mental rotation task. To control this crucial methodological bias, 

and finally assert the involvement of M1 in mental rotation, we ran the following TMS study and 

designed a completely new methodological approach based on intra- and inter-subject 

normalization. With this approach we investigated the temporal dynamic of M1 activation during 

mental rotation of hands within the framework of the SMILE model. 

The participants performed the mental rotation task on isolated hands, while TMS single-

pulses were delivered to M1 in order to elicit motor-evoked potentials (MEPs) in the contralateral 

hand, at different time-points along the trial duration. In the light of M1 investigation, we chose TMS 

because it is a very specific and sensitive approach to probe the causal role of cortical activations, 

instead of the mere brain-behavioral correlational approach which characterizes both EEG and fMRI. 
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4.1. Introduction 

The human brain is able to simulate perception or experience, in the absence of external 

stimuli. This concept is known as “mental imagery”, through which a cognitive process is internally 

generated without external inputs or outputs (Santo Di Nuovo et al., 2014, McNorgan, 2012). Even if 

the easiest example coming to mind would be visual imagery — for example when picturing a 

beautiful scenery experienced in the past — mental imagery can expand to a broad panel of 

modalities. Among others, “motor imagery” consists in the neural elaboration of a movement in 

absence of its actual motor execution (Kosslyn et al., 2001a). It can be explicitly elicited when 

imaging a given movement, but also implicitly, unconsciously performed in the framework of other 

cognitive processes. Such implicit motor imagery has been mostly investigated via the hand laterality 

judgement task, in which the participant is asked to determine the laterality of a hand visually 

presented in different views and orientations (Cooper and Shepard, 1975). This task has been shown 

to elicit implicit motor imagery via an unconscious mental rotation of one’s own hand into the 

position of the stimulus (Parsons, 2001, Parsons, 1987). Notably, response times (RTs) typically 

increase for biomechanically complex orientations of the stimuli (Parsons, 1994) or when the 

participants’ hands are constraint in an awkward posture (Ionta et al., 2012). 

Like other modalities of mental imagery, motor imagery is bound by the concept of functional 

equivalence, according to which an imagined perception relies on similar neural substrates than the 

corresponding overt perception (Iacoboni et al., 1999, Jeannerod, 1995). Indeed, many neuroimaging 

studies have highlighted the involvement of several nodes of the sensorimotor network during motor 

imagery, such as the supplementary motor area, the premotor cortex, parietal areas, or the basal 

ganglia (Kosslyn et al., 1998, Kosslyn et al., 2001b, Perruchoud et al., 2016) Nevertheless, the 

involvement of the primary motor cortex (M1) during implicit motor imagery is still highly debated. 

Different neuroimaging studies have systematically reported M1 being activated (Kosslyn et al., 1998, 

Wraga et al., 2003, Lacourse et al., 2005, Hallett et al., 1994) or not (Kosslyn et al., 2001b, Parsons et 

al., 1995, Kuhtz-Buschbeck et al., 2003). Other studies suggest that M1 activity during mental 

rotation is only linked to the overt response related to a button press (Windischberger et al., 2003, 

de Lange et al., 2005, de Lange et al., 2008). 

M1 activation in a given process can be specifically probed using transcranial magnetic 

stimulation (TMS), and several studies have attempted to resolve the argument thereby, again with 

contrasting outcomes. Two different approaches can be differentiated. Firstly, TMS can be used to 

disrupt a specific node in a hypothetical processing network; the observation of behavioral changes 

following the stimulation indicates the involvement of the target node in the investigated cognitive 

process. Alternatively, the amplitude of a motor evoked potential (MEPs) in the target muscle, is 
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indicative of the subjacent excitability of M1 at the time of stimulation. A modulation of this 

excitability suggests that M1 is involved in a specific process. Ganis et al. (2000) showed that TMS 

stimulation of M1 at 650 ms after stimulus onset results in an increase of RTs, and Tomasino et al. 

(2005) reached the same conclusion for a delay of only 400 ms. Both results suggest that M1 plays a 

crucial role in implicit motor imagery. But a deeper investigation by Sauner et al. (2006) using several 

time-points during the mental rotation of hands showed that M1 stimulation had no effect on task 

performance, regardless of the timing of the stimulation. 

One possible reason for the discrepancy reported in those TMS studies emanates from their 

attempt to probe a single time-point of a process which presents a fundamentally high trial duration 

variation, from both intra- and inter-subject perspectives. For example, the seminal work from 

Parsons (1994) about mental rotations of hands reports RTs roughly in the range of 1500 ms. 

Contrastly, Tomasino et al. (2005) obtained mean RTs of about 950 ms . On the other extreme, 

Berneiser et al. (2016) reported mean RTs which could reach 2200 ms. Based on these evidences, the 

mean RT for such motor imagery can double between two participants, or even within a single 

subject, between different views or orientations of the same stimulus. To remedy to this issue, we 

therefore suggest a new paradigm approach, based on the TMS MEPs recording, whose pulse timing 

is determined as a function of the subject-specific and orientation-specific baseline response times. 

In this way, we were able to investigate the excitability of M1 at different phases of the mental 

rotation of hands, in a trial-normalized approach. 

 

4.2. Methods 

4.2.1. Participants 

12 healthy and right-handed young male participants were enrolled in the experiment (mean 

age 23.2 ± 4.3 years; mean Edinburgh handedness score 92.5 ± 14.8). All participants had normal or 

corrected-to-normal vision and gave their written consent prior to the experiment. The experimental 

protocol was approved by the local Ethics Committee of the University of Verona (Italy), conducted 

at the Department of Neurosciences, Biomedicine and Movement Sciences (University of Verona), 

and was in accordance with the Declaration of Helsinki 1964. 

4.2.2. Equipment 

In each participant, we measured cortico-spinal excitability in all experimental conditions by 

means of motor-evoked potentials (MEPs) recorded at the level of the right hand. To record MEPs, 

three pairs of disposable bipolar electromyographic electrodes were positioned on the participant 
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right hand and forearm, in a belly-tendon montage, on the First Dorsal Interosseus muscle (FDI), the 

Abductor Digiti Minimi muscle (ADM), and the Flexor Digitorum Superficialis muscle (FDS). For each 

participant, the customized cortical motor hotspot was localized at the position of the TMS coil which 

elicited the maximal FDI excitation. The resting motor threshold was identified as the minimal 

stimulator output necessary to trigger five FDI MEPs of at least 50 µV out of ten trials. Any further 

stimulation was performed at 120% of the resting motor threshold. Focal TMS stimulation was 

carried out by a STM9000 Magnetic stimulator (ATES Medical Device, Italy) using a figure-of-height 

coil of 70 mm in diameter, producing a maximum output of 2T at the coil surface. Electromyographic 

signals were collected by a Digitimer D360 8-channel amplifier (Digitimer Ltd, Welwyn Garden City, 

UK) coupled with a CED Power 1401 coupled with Spike2 acquisition system (Cambridge Electronic 

Design Ltd, Cambridge, UK) to record and processed the data. Statistical analysis was performed 

using R (R Development Core Team, 2014).  

4.2.3. Procedure and stimuli 

The whole experiment was performed on a single day, in a timeframe of approximately 

3 hours. The main task of the mental rotation was composed of short trials during which a realistic, 

colored photograph of a hand was presented on a screen 1m in front of the participant, on a visual 

angle between 6.5 and 8.5 degrees. All stimuli were normalized for luminance, and the paradigm was 

presented by E-Prime2 (Psychology Software Tools, Sharpsburg, USA). 16 different stimuli could be 

presented, following 3 factors, namely Side (left or right), View (palmar or dorsum), and Rotation 

(upright, medial, upside-down, and lateral, in 90° steps, see Figure 3).  
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Figure 3 : List of all visual stimuli. 

 

Participants sat comfortably in a chair, with their hands outside of their field of view, laying 

palm-down on their laps. Avoiding any unnecessary motor activity, they were asked to verbally 

report the laterality of the pictured hand, as fast and accurately as possible. The timing of their 

responses was recorded via a microphone, while the experimenter registered their accuracy. As soon 

as the participant had formulated an answer — or if the maximum trial duration of 3500 ms was 

reached without response — the stimulus disappeared, and was replaced by a grey fixation. The 

onsets of two successive trials were separated by 6 seconds.  

 

The experiment started with a quick presentation of the study, and a training during which the 

participants could get acquainted with the task. To avoid conscious strategy selection, no mention of 

“imagery” was made during the explanation, letting the participants choose which strategy to adopt 

to solve the task. The training was intentionally long, with a maximum of 10 minutes, to ensure that 

the participants were comfortable with the task, and that they reached the plateau of their learning 

curve (i.e. stabilization of the RTs). During the training only, participants were given visual feedback 



 Validation of a model of sensorimotor integration with clinical benefits.   

- 18 - 

upon the accuracy of their responses. The baseline RTs was then evaluated, for each subject and 

each stimulus, by recording two blocks of 64 trials (total of 8 repetitions of each stimulus 

combination). These RTs were later used in the main task, to define the timing of the TMS pulses, as 

described below. 

 

After a short session of 10 rest MEPs recording, the main experimental part was broken down 

into 6 blocks of 64 stimuli, each block lasting 6 minutes and 24 seconds. In these blocks, the TMS 

pulses could be given at 50%, 60% or 70% of the subject-specific baseline RTs for the corresponding 

stimulus combination. An extra set of trials did not involve any TMS pulse. Three of the participants 

had extra pulses given at 30% and 40% of their baseline RTs, resulting in blocks of 9 minutes and 36 

seconds. Between two blocks, participants were allowed a break of approximately 5 minutes. After 

the 6 blocks, 10 more rest MEPs were recorded, and the experiment ended with the revised 

Edinburgh Inventory to score the handedness of each participant (Oldfield, 1971, Dragovic, 2004). 

 

4.2.4. Analysis 

Trials were discarded if the answer given by the participant was wrong, or if the participant 

failed to give an answer within the maximal duration of 3500 ms. Following previous studies, trials 

whose RTs were shorter than 500 ms were discarded as well (Ionta and Blanke, 2009, Ionta et al., 

2012). Finally, unexpected loud noises in the vicinity of the experiment could prematurely trigger the 

microphone, and such trials were discarded as well. Altogether, 8% of the trials were discarded. For 

the remaining valid trials, the MEP amplitudes in the three target muscles were divided by the 

participant-specific mean rest MEPs recorded before and after the main experiment, to express the 

MEP amplitudes as a percentage of rest MEPs. To solve the issue of the high variability of the RTs, the 

timing of each TMS pulse was expressed as a percentage of the current trial duration. For example, if 

the TMS pulse was given at 700 ms after stimulus onset, and the RT for the trial was 1150 ms, this 

pulse would have a trial-percentage of 61% (see two examples on Figure 4Erreur ! Source du renvoi 

introuvable.). This way, the timing of TMS pulse was normalized both across participants and across 

stimuli. For the analysis, all trials falling into a percentage-bin of 15% were pooled together. Because 

the number of TMS pulses delivered under 40% of the trial duration were not sufficient, the analysis 

consisted of 4 percentage-bins (40%-55%, 55%-70%, 70%-85%, and 85%-100%). In the example 

above, a trial-percentage of 61% would result in the corresponding trial being pooled in the bin of 

55%-70%. Three different MEPs analyses were carried out, each comparing two precise features of 

the stimuli. (1) The postural awkwardness factor of the trial was broken into familiar (upright and 
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medial rotations) and awkward (upside-down and lateral rotations), based on earlier behavioral 

studies (Parsons, 1987). The other two analyses consisted of (2) the side factor (left- and right-hand 

stimuli) and (3) the view factor (palm- and dorsum-hand stimuli). In each case, the mean MEP ratio 

for a given factor and percentage-bin was estimated for all 12 subjects, and both distributions were 

then compared via a paired t-test, with FDR multiple comparison across percentage-bins. This 

allowed for the investigation of the M1 excitability with respect to specific features of the stimuli. 

Any effect was considered significant for PFDR<0.05. 

 

 

 

 

 

 

Figure 4 : Trial schematic, with examples of timing calculation for a trial in two different 

participants. The top panel presents a response-time of 1150 ms and a TMS pulse given at 700 ms 

post-stimulus (i.e. 70% of the subject- and stimulus-specific baseline of 1000 ms). Because of the 

TMS pulse timing and the actual trial RT, these values results in a trial-percentage of 61% of the 

normalized trial duration. Therefore, this trial would be pooled in the 55%-70% percentage-bin for 

later analysis. The bottom panel depicts a hypothetical trial for another subject, with the same 

stimulus, and following the same calculations. Notice how both trials would be pooled in the 55%-

70% percentage-bin, despite emanating from different RT and TMS timings. 
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4.3. Results 

4.3.1. Behavioral results 

The accuracy of the participants’ responses was adequate (mean accuracy 92.9%, SD=4.9%, 

range from 81.5% to 98.2%). The three-way ANOVA on the RTs with the factors of Side (2 levels, left 

and right), View (2 levels, palm and dorsum) and Rotation (4 levels, upright, medial, upside-down and 

lateral), computed on the valid trials without TMS pulse, showed a main effect of Side (F(1,11)=5.62, 

p=0.02), with shorter RTs for the dominant (right) hand, as well as the main effect of Rotation 

(F(3,33)=12.04, p<0.001). The two-way interaction of View x Rotation also showed significance 

(F(3,33)=4.94, p=0.003, see Figure 5). The presence of the medial-over-lateral-advantage (Funk and 

Brugger, 2008), in which laterally-presented hands are mentally rotated slower than medially-

presented ones – particularly on the palm-view rotations – suggests that our participants’ 

performance was indeed modulated by biomechanical constraints, and hence it is likely they relied 

on motor simulation strategies to solve the task. Any other main effect, two-way, or three-way 

interactions, appeared to be not significant (all p>0.54). The inter- and intra-subject variabilities of 

RTs are presented in the Figure 6. Importantly, the timing of the TMS pulse (50%, 60% or 70% of the 

baseline RTs) did not lead to any significant changes in the participants’ RTs, as revealed by a one-

way ANOVA (F(3,45)=0.05, p=0.99, not shown here). 

 

Figure 5 : Response times without TMS stimulation. The “medial-over-lateral” effect on the palm 

views indicates the use of a motor strategy to solve the task. The error bars denote standard error of 

the mean. * denotes p(Tukey)<0.05 to all other data points. 
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Figure 6 : Inter- and Intra-subject variability. (a) Mean response times for view and rotation, for 

each of the 12 participants, in the valid trials without TMS pulses. Each color represents a different 

participant. Notice the wide intersubject variability, for example between participant 5 (in black) and 

participant 8 (in red). (b) Distribution of all valid trials (pooled across both views and all orientations) 

without TMS pulse, for each subject. The full dots represent the fastest and slowest trials of each 

participant. Color code corresponds to A. Notice that within subject, the duration of different trials 

can for example span between 500 and 2200 ms (participant 7, in dark green). 

4.3.2. M1 excitability results 

When comparing the postural awkwardness factor (i.e. upright and medial hand rotations for 

familiar, and upside-down and lateral rotations for awkward), the 55%-70% percentage-bin shows 

statistically significant differences for both FDI (P=0.0329) and ADM (P=0.0153) (see Figure 7, top), 

with the awkward condition resulting in both cases into an increase of the cortical excitability. When 

comparing the two possible stimulus views (see Figure 7, bottom), only the FDS muscle shows a 

significant difference in the 70%-85% percentage-bin (P=0.0188), with palm view resulting in an 

increase of the cortical excitability. Finally, when comparing the laterality of the stimuli, M1 

excitability did not present any significant difference between the left and right stimuli, regardless of 

the target muscle (see Figure 7, middle). 

 

4.4. Discussion 

In this study, we investigated the modulation of corticospinal excitability of M1 during the 

mental rotation of hands. A cohort of previous studies investigating similar processes have fail to 

reach a consensus, on neither the laterality (de Lange et al., 2008, Thayer and Johnson, 2006), 

temporal dynamics (Ganis et al., 2000, Tomasino et al., 2005), nor even on such broad matter as the 
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involvement of M1 during motor imagery (Kosslyn et al., 1998, Kosslyn et al., 2001a, Hallett et al., 

1994).  

 

Figure 7: Phase-locked M1 excitability during mental rotation of hands. Results are given at 

different percentage-bins of the trial performance, probed via MEP amplitude. The task MEP 

amplitudes in the three hand and wrist muscles are compared to the mean rest MEP recorded before 

and after the paradigm (100%). The statistical significance is computed by paired T-tests between 

two types of stimuli, within a single percentage-bin. The top panel presents the comparison between 

biomechanically familiar (upright and medial rotations) and awkward (upside-down and lateral 

rotations) movements. The middle panel presents the comparison between left and right stimuli. The 

bottom panel presents the comparison between the dorsum and palm view of the stimuli.   

* denotes PFDR<0.05. Error bars denote the standard error of the mean.  

FDI : First Dorsal Interosseus ; ADM : Abductor Digiti Minimi ; FDS : Flexor Digitorum Superficialis 
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4.4.1. The flawed approach of stimulus-locked analysis 

We suggest that such inconsistencies might emerge from the prevailing but potentially flawed 

approach of stimulus-locked analysis, to investigate a process exhibiting widely varying intra- and 

inter-subject trials durations. Here, we propose a novel methodological approach normalizing these 

specific variations by establishing the timing of the process in post-processing, based on the single-

trial duration instead of the customary stimulus-locked or response-locked approaches. Using this 

novel methodology, we were able to evidence specific time-windows in terms of trial duration 

percentages, during which the corticospinal excitability of M1 was differentially modulated by 

particular stimulus features. 

The existent evidences on TMS studies of M1 during mental rotations of hands have relied on 

these potentially flawed stimulus-locked or response-locked approaches, and have reached diverging 

outcomes. Tomasino and colleagues (2005), showed that single-pulse TMS on the hand area of left 

M1 lengthened the RTs of a same/different pair-matching task of hands rotations, when the pulse 

was delivered 400 ms after the stimulus onset. These results are in direct contradiction with an 

earlier study, in which Ganis et al. (2000) highlighted – in a very similar approach – a behavioral 

effect of TMS with a 650 ms delay post stimulus onset, but critically not at 400 ms, for both hands 

and feet mental rotations. This discrepancy could originate from disregarding the different 

performances in term of trial duration. Indeed, the mean RTs reported in those two studies show a 

trend consistent with their outcomes, with the mean RTs approximating 925 ms, respectively 985 ms 

for Tomasino et al., respectively Ganis et al., results. Additionally, the pair-matching task, in which a 

pair of rotated hands has to be identified as either same, or mirror images of each other presents an 

inherent limitation. As suggested by Zacks et al. (2008), the strategy adopted by the participants to 

solve such a task can have critical outcomes on the results, as it could engage either motor or 

visuospatial imagery.  

Building on this discrepancy, Sauner et al. (2006) delivered single-pulse TMS to the left M1 at 6 

different post-stimulus time-points (0-1000 ms, in steps of 200 ms) of an actual hand laterality 

judgement task while recording MEPs, thus addressing several of the limitations previously stated. 

None of their stimulus-locked time-points revealed any effect on performance nor cortical 

excitability during the mental rotation of hands. Nevertheless, their small cohort, and the complexity 

of their multi-factorial analysis, could have masked some potential effects. In particular, RTs for left 

hand rotations around the upside-down direction show a clear increase for stimulations at 400 ms 

compared to the trials where the TMS pulse was delivered immediately with the stimulus onset, but 
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this effect goes unnoticed and unreported in their four-way ANOVA analysis. Their design also 

allowed them to investigate the response-locked behavior of MEPs in the last 400 ms before toe-

press, here again, only showing a lateralization effect, that they interpret as a secondary effect of the 

task. Furthermore, based on the difference of the mean RTs between their fastest and slowest 

orientations, Sauner et al. suggested that the motor rotations phase of the mental rotation of hands 

should last a minimum of 150 ms. Applying the same principle to our data, the motor rotation phase 

would be lasting at least 30% of our normalized trial, on average. Our selected 15% bin-size is 

therefore expected to allow the identification of any potential effect of interest. 

A final study from Pelgrims et al. (2011) claimed that the previously reported discrepancies 

could be originating from the somatosensory feedback inherent to suprathreshold TMS stimulation, 

interfering with the motor process. To address this concern, they stimulated left or right M1 between 

100 and 500 ms after stimulus onset with 10 Hz subthreshold repetitive TMS (train of 5 pulses) 

during mental rotation of hands. They showed that this TMS stimulation impairs the RTs for hands, 

but not letter rotations, irrespective of the stimulus laterality. This inconsistency with the results 

presented by Sauner et al. could arise from three scenarios. (1) RTs might not be sensitive enough to 

detect the ephemeral disruptive effect of single-pulse TMS on M1. (2) Single-pulse TMS might be 

insufficiently potent to carry an actual disruptive effect on M1, as opposed to the rTMS protocol 

presented in the Pelgrims. Finally, (3) the large interventional window (400 ms of rTMS, plus after-

effect) might indirectly adjust for the potential poor phase-locking of the TMS stimulation in the 

single-pulse case. By interfering with the target node thorough a longer virtual lesion effect, a 

potentially short critical time-window might be stimulated more consistently across trials than by the 

single-pulse approach. 

Our approach examined this third possibility and aimed to address the aforementioned 

limitations of the previous studies while investigating the cortical excitability of M1 along the 

partitioned duration of normalized trials. In our novel paradigm, the timing of the TMS pulse was 

defined in term of percentage of the total trial duration, on a trial-by-trial basis, instead of relying on 

the usual stimulus-locked or response-locked approaches. With this approach, we were able to 

highlight both general and muscle-specific modulations of the cortical excitability of M1 in distinct 

normalized time-windows along the trial durations.  

 

4.4.2. Posture awkwardness related activation 

In particular, while performing hand mental rotations toward biomechanically awkward 

postures (upside-down and lateral orientations), MEPs amplitude was significantly higher than for 
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biomechanically familiar postures (upright and medial orientations), during a time-window of 55% to 

70% of the full-trial duration (see Figure 7, top panel). This effect is similar to the so-called “medial-

over-lateral” effect (Funk and Brugger, 2008), built on the specific anatomical exertion during lateral 

versus medial rotations. 

We interpret this modulation of the corticospinal excitability of M1 as a generalized activation 

of the M1 neural counterparts corresponding to the hand muscles during the actual processing of the 

motor imagery. The executed movement toward complex terminal positions involves a global strain 

in the hand muscles, but not a specific wrist pronation nor supination, reason why this activation is 

only occurring in the hand muscles, but not in FDS. The timing of this activation is also consistent 

with the current model of the sequential phases of the mental rotation of hands, as the stimulus has 

first to be visually interpreted and requires an initial guess of hand laterality before the motor 

imagery phase takes place (Parsons, 1994, Thayer and Johnson, 2006). The last portion of the total 

trial duration has to be devoted to the response processing, by mapping the handedness judgement 

to the corresponding motor response, vocal in our case. The exact timing of this process has not yet 

been precisely defined, but previous results estimate the response-specific processing of the hand 

laterality judgement task to the last 80-120 ms (Kawamichi et al., 1998), when the response is given 

by pressing a button. The mean RTs reported for this task by different studies seem to not drastically 

differ whether the response modality was carried out by button pressing, toe switch, or verbal 

response. Based on these premises, with the global mean RTs of 890 ms, the response-specific 

mental processes of our experiment would on average befall into the last 9-13% of a trial, which 

corresponds grossly to our choice of bin size. In other words, the last percentage bin of our analysis 

(85% to 100%) is likely to mostly incorporate the response-specific processing, during which the 

outcome of the mental rotation is mapped to the correct verbal answer, and generates the 

vocalization. 

Critically, and unlike the previously reported effect of single-pulse TMS during mental rotations 

of hands (Ganis et al., 2000, Tomasino et al., 2005, Pelgrims et al., 2011), this effect on the 

biomechanical constraints of the motor imagery shows a direct relationship between the amplitude 

of the effect, and the angle of the stimulus. Because our analysis on biomechanical posture 

awkwardness is directly computing paired comparisons between 2 sets of 2 different rotations 

(upright and medial versus upside-down and lateral), any statistically significant effect would show a 

differential effect of the angle of stimulus. We suggest that this difference with previous literature is 

based on the increased sensitivity of our approach, based on normalized trial duration, with respect 

to the classical stimulus-locked approaches used in the previous studies. Potentially, the detection of 

our effect could also emerge from a higher sensitivity of MEPs to the motor imagery processes, 
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compared to the dependent variable used in many of the earlier studies, namely RTs (Ganis et al., 

2000, Tomasino et al., 2005, Sauner et al., 2006). Indeed, MEPs recordings represent a direct 

monitoring of the M1 cortical activation, potentially linked to motor imagery, while RTs are the 

outcome of a long process combining several sequential phases. 

 

4.4.3. Absence of Laterality-related modulation 

In the present study, we only delivered TMS stimulation to the left M1, as it has been 

consistently showed that the left motor and premotor areas are likely involved not only in the motor 

processes of the contralateral limbs (and hands in particular), but also of the ipsilateral counterpart 

during motor imagery or observation (de Lange et al., 2008). Meanwhile, and especially for motor 

imagery, the right M1 seems to only affect the contralateral limbs. Nevertheless, this strict 

lateralization of the motor process is still under debate, as many studies emphasized a broader role 

of right M1 (Pelgrims et al., 2011). In particular, some believe that both right and left M1 can serve 

sequential, but essentially different phases of executed reaching movement, irrespective of the 

laterality of the effector limb (Schaefer et al., 2007, Sainburg, 2002). An alternative hypothesis in the 

context of mental hand rotations, is that each M1 considers the matching between the mental 

rotation outcome and the biomechanical constraint of its contralateral hand (Johnson, 1998, 

Parsons, 1994, Papadelis et al., 2007). Our data show that the left M1 activation is not differentially 

modulated by motor imagery of left or right hands (see Figure 7, middle panel). Combined with the 

general activation reported above, which suggest a potential role of M1 in motor imagery, this 

absence of laterality effect is in line with the current hypothesis that the left M1 is equally involved in 

both hands motor imagery, irrespective of the laterality of the target limb. Because of the high 

hemispheric specialization of motor imagery reported in earlier studies, any claim on the right M1 is 

impossible with our design, and would require to repeat the experiment with right M1 TMS 

stimulation. Also, the verbal response required by the participants could theoretically bias the results 

of laterality, as it is well-known that speech production is almost exclusively processed in the left 

hemisphere. But such an influence on our paradigm is unlikely, since vocal response is expected to be 

counterbalance in all of our comparisons.  

 

4.4.4. Muscle-specific activation 

Our data also show coherent muscle specificity in corticospinal excitability. When comparing 

the two different views of the stimuli. Processing palmar views of the hand resulted in an increase of 
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MEPs amplitude in the FDS muscle compared to dorsal views, within the 70% to 85% bin of trial 

duration. As participants performed the experiment with their hands on their knees, with palm 

down, the palm view trials required an additional imagined supination of the wrist, to rotate the 

imaged palm toward the viewer. FDS has been previously shown to be activated during execution of 

the wrist supination (Pizzolato et al., 2012). The timing of this activation in our experiment places it 

downstream from the activation reported in the posture awkwardness case. This would suggest a 

specific sequence of the imagined movements required to solve the task, with the wrist rotation 

occurring later than the initial activation.  

 

4.5. Conclusion 

Altogether, our data identified a characteristic increase of M1 excitability at a specific time-

window during the motor imagery process. This time-window occurs very late in the whole process, 

as the main activity modulations are detected between 55% and 85% of the whole trial duration. 

Even though it would contradict the very purpose of this study, we can translate these percentages 

back into pure post-stimuli timings, in order to compare with previously reported results. With the 

global mean RT of our experiment of 890 ms, this gives an approximate target window for motor 

processes in mental rotation of 500 ms to 750 ms after stimulus onset. This is consistent with many 

studies who identified M1 or general motor activations on the late processing of mental rotations of 

hands. Besides the study from Ganis et al. (2000) reported above, Lebon et al. (2012) identified an 

interaction of rIPL with M1 during mental rotations of hands, via an elegant dual-pulse experiment 

given at 650 ms after stimulus onset. In a magnetoencephalographic recording, de Lange et al. (2008) 

identified a motoric suppression of alpha and beta waves starting approximately 300 ms after 

stimulus onset, and lasting until the end of each trial. Finally, Thayer and Johnson (2006) showed that 

electroencephalographic modulations of evoked-related potentials were present during the same 

task within a broad window of 600 to 1200 ms after stimulus onset, and were stronger during a 

window of 700 to 1000 ms. All of these results are consistent with the original model for mental 

rotation of hands developed by Parsons (1994), in which the motor imagery is preceded by an earlier 

necessary visual phase, as well as an initial “educated guess”, taking the shape of an implicit 

perceptual analysis (de Lange et al., 2008). 

In summary, using the novel methodology proposed here, we could identify the specific time-

window, on a trial-specific approach, during which motor processes are involved in mental rotation 

of hands and are represented by a modulation of the excitability of M1. This highlights the critical 

importance of considering inter- and intra-subject behavioral variability when investigating the 
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temporal dynamics of the motor processes during the hand laterality judgement task in future 

studies.   
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5. Clinical application 1: the case of dystonia 

Dystonia is a disabling movement disorder characterized by muscle contractions and frequently 

associated with abnormal movements and/or postures (Fahn et al., 1998). It is the third most 

common movement disorder after essential tremor and Parkinson’s disease (Breakefield et al., 

2008). It affects movement execution either at a global or local level. On the basis of this 

topographical distinction, dystonia can be defined as general or focal. Focal hand dystonia (FHD) is 

one of the most common forms of focal primary dystonic disorders (Tarsy and Simon, 2006, Jankovic, 

2009). Despite steadily growing clinical experience, little is known about its etiopathogenesis, and 

our understanding of its pathophysiology is still insufficient (Zoons et al., 2011). For these reasons 

the treatment is limited to only symptomatic therapy, such as focal application of botulinum toxin 

(Hallett et al., 2009). The development of novel treatment strategies for FHD is limited due to this 

lack of in-depth knowledge about the underlying pathophysiological mechanisms. This is where the 

SMILE model can be applied. Accommodating the main three pathophysiological mechanisms of FHD 

(loss of inhibition (Hallett, 2011), aberrant neural plasticity (Quartarone and Pisani, 2011), and 

defective learning-based sensorimotor integration (Byl, 2007)), the SMILE model proposes a plausible 

source of FHD and can be extended to other sensorimotor impairments. 

 

5.1. Sensory-Motor deficits in Focal Dystonia 

5.1.1. Behavioral Data 

Behavioral data can be used to generate hypotheses regarding candidate nodes and/or links 

within putative models that contribute to disorder-related alterations, as well as to individuate 

specific impairments (and therefore improve the understanding of the pathology) and also to assess 

early markers of a given disorder even before the first manifestation of the clinical symptoms 

(Scontrini et al., 2009). In the case of dystonia, two main behavioral tasks have been largely used: the 

Spatial Discrimination Threshold (SDT) and the Temporal Discrimination Threshold (TDT). 

 

5.1.2. Spatial characteristics of dystonic disorders 

The SDT task establishes the minimal distance between two stimuli that participants can reliably 

discern as distinct events. Healthy subjects can detect changes in the orientation of tiny parallel 

grooves as thin as 1 mm when presented on the tip of the finger (Craig and Kisner, 1998). The SDT has 
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been largely used in populations suffering from a variety of dystonic disorders. For example, varying 

the thickness and intervals of the grooves allows to reliably investigate disorder-related sensory 

features (Van Boven and Johnson, 1994). 

Starting from the hypothesis that dystonias are associated with an aberrant organization of the 

sensory cortex, Bara-Jimenez et al. (2000) compared the abilities of blindfolded FHD patients and 

healthy controls in localizing tactile stimuli delivered either to a single phalanx or to each individual 

phalanx of the right (dystonic) hand. Spatial sensitivity was impaired in dystonic patients only when 

stimuli were delivered to different regions on the same phalanx.  

Bara-Jimenez et al. (200b) likewise presented FHD patients with “Johnson–Van Boven–Philips” 

domes and observed an impaired ability in FHD patients to discriminate grating orientation. Sanger et 

al. (2001) replicated these results and additionally showed that SDT was also impaired in the non-

dominant, non-symptomatic hand. On this basis, it could be suggested that the disorganization due 

to FHD is not limited to a single body part but rather extends to the whole body (or at least to the 

contralateral hand).  

To explore whether the impairments in SDT tasks are specific for FHD or are also detectable in 

other types of dystonias, Molloy et al. (2003) conducted an experiment with domes applied bilaterally 

on the tip of the index fingers of a broad panel of dystonic patients, including general dystonia, FHD, 

blepharospasm, and cervical dystonia. Their findings contrast with the unspecific SDT impairment 

reported by Sanger et al. (2001). General dystonia patients displayed similar performance compared 

to healthy subjects, while all focal dystonia patients showed impaired SDT. Importantly, only FHD 

patients showed a significant threshold difference between dominant and non-dominant hands. 

Therefore, it still needs to be clarified whether the spatial discrimination impairments observed in 

FHD patients are restricted to only the symptomatic limb or are instead bilateral.  

 

5.1.3. Temporal characteristics of dystonic disorders 

Another frequently used task in dystonia-related research is the TDT, which identifies the 

minimal time interval between two stimuli that allows differentiating them as separate events. It 

typically involves unimodal electrical stimulation of the skin, but can be coupled, paralleled, or even 

replaced by visual, kinematic, or any other type of stimuli. On average, healthy subjects can 

discriminate two electrical stimuli on the index finger provided they are separated by at least 30 ms 

(Lacruz et al., 1991). 

In dystonic patients there is evidence of abnormalities not only in spatial discrimination, but also 
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in temporal processing. In an investigation of a heterogeneous set of dystonic patients (5 generalized, 

1 focal hand, and 1 upper-body segmental dystonia), a single or pair of non-noxious tactile stimuli 

were applied to both index fingers with various inter-stimulus intervals. In comparison with healthy 

controls, dystonic patients exhibited an increased TDT (Tinazzi et al., 1999). In a subsequent study, 

Tinazzi et al. (2002) showed that in FHD the temporal threshold drastically increases with the distance 

between the stimulation sites. Since these outcomes could theoretically result from a general 

integration issue, Aglioti et al. (2003) extended the paradigm to visual-tactile stimulation in an 

investigation restricted to generalized dystonia patients. Using either electrical tactile stimulation of 

the index finger and/or visual stimuli with LEDs, they revealed increased TDT compared to healthy 

controls in all conditions, though particularly marked in the cross-modal situation. Additionally, they 

showed that temporal order judgments (i.e. the explicit reporting of the temporal order of several 

asynchronous stimuli) are also impaired in generalized dystonia patients (Aglioti et al., 2003). When 

conducting a similar experiment in FHD patients, the TDT for unimodal visual stimuli resulted in 

similar performance between patients and controls (Fiorio et al., 2003). 

These collective data suggest a critical difference in the mechanisms of FHD and generalized 

dystonia. FHD patients’ impairment appears to be linked to tactile processing and visual-tactile 

integration, whereas the generalized dystonia patients exhibit more general impairments in 

integration processing, including exclusively visual processing of stimuli near the hands. This 

interpretation has been further confirmed in cervical dystonia (Tinazzi et al., 2004) and 

blepharospasm (Fiorio et al., 2008); two other types of focal dystonia which yielded similar results. By 

comparing performance with corresponding non-dystonic patients (i.e. cervical pain and hemifacial 

spasms, respectively), it has been shown that the impairment is selective for dystonic disorders 

(Tinazzi et al., 2004, Fiorio et al., 2008). 

Temporal discrimination seems to be affected both at symptomatic and non-symptomic body 

surfaces. Scontrini et al (2009) stimulated either the hand, neck, or eyebrow in 82 focal dystonia 

patients including blepharospasm, FHD, cervical, and laryngeal dystonia. They observed a general 

increase of the discrimination threshold for all the investigated body parts (Scontrini et al., 2009). This 

corresponds with the spatial studies reviewed above, as well as with a study in which abnormalities in 

TDT during uni- and multi-modal visual-tactile processing were shown to be linked to the non-fully 

penetrant gene in both manifesting and non-manifesting carriers (Fiorio et al., 2007a).  

Overall, most studies present a coherent picture of the relationship between dystonia and 

temporal discrimination threshold, whose increase in focal dystonia is specifically selective for 

somatosensory processing, but not isolated to the symptomatic limb, while generalized dystonia can 

be attributed to a more general integration deficit. 



 Validation of a model of sensorimotor integration with clinical benefits.   

- 32 - 

 

5.1.4. Kinesthetic impairments in dystonia 

It has been demonstrated that the so-called “vibration-induced illusionary movement” (the 

illusion of movement induced by tonic vibration of a tendon) is impaired in dystonic patients 

compared to healthy controls (Tempel and Perlmutter, 1990). In order to assess the properties of this 

illusion in focal dystonia, Grünewald et al. (1997) recruited patients suffering from cervical dystonia, 

FHD, and healthy controls. All participants were blindfolded and were asked to mimic the movements 

of one arm with the other arm. The “master” arm was either moved passively by the experimenter, or 

illusionary “moved” by means of vibration-induced illusionary movement with 50 Hz tonic vibrations 

at the level of the biceps tendon. As expected, dystonia patients could accurately track passive 

movements. However and unlike healthy subjects, tracking during illusory conditions was bilaterally 

impaired, even if the vibration-induced flexion was normal (Grunewald et al., 1997). This suggests an 

impairment of the kinesthetic pathway, while the perception of position would remain intact (see 

also Rome and Grunewald, 1999; Yoneda et al., 2000; Frima et al., 2003). 

 

5.2. Structural Imaging 

Few studies investigated the structural brain organization of FHD and the available data are 

largely inconsistent. Some studies associated FHD with anatomical abnormalities at the cortical level 

(Delmaire et al., 2007, Garraux et al., 2004), some others to sub-cortical abnormalities (Granert et al., 

2011b, Draganski and Bhatia, 2010). In particular, part of the evidence from structural brain imaging 

on in the pathophysiology of dystonia highlights the role of abnormalities in subcortical structures, 

including the basal ganglia (Krystkowiak et al., 1998, Bhatia and Marsden, 1994, Beukers et al., 2011, 

Draganski et al., 2009), mesencephalon (Vidailhet et al., 1999), and the cerebellum-thalamus-cortex 

axis (Argyelan et al., 2009). Conversely, other studied associated FHD with structural abnormalities at 

the cortical level, including the sensorimotor (Garraux et al., 2004, Delmaire et al., 2007) and the 

premotor cortex (Granert et al., 2011a). 

The directionality of volumetric differences between FHD patients and controls does not 

provide a straightforward means of individuating a precise neural substrate responsible for, or at 

least associated with the symptoms (see Table 1).  
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Region Increased volume Decreased volume 

   

Prefrontal Cortex Egger et al., 2007 Draganski et al., 2003 

Inferior Parietal Lobe Etgen et al., 2006 Egger et al., 2007 

Cerebellum Draganski et al., 2003 Delmaire et al., 2007 

Thalamus Obermann et al., 2007 Delmaire et al., 2007 

Putamen Bradley et al., 2009 Obermann et al., 2007 

   

Table 1: Dystonia-related volumetric changes. Previous studies have reported conflicting results in 

cortical, basal ganglia and cerebellar regions. 

 

5.3. Functional Imaging 

In several neuroimaging studies on active movements in FHD, patients were asked to 

physically perform the movement while functional magnetic resonance imaging (fMRI) data were 

recorded. In order to test the hypothesis that a dysfunctional balance between neighboring finger 

representations could be one origin of FHD, a recent study required FHD patients to control a cursor 

on a screen by regulating the force applied on one or two mouse buttons with their affected hand 

(Moore et al., 2012). With respect to healthy controls, FHD patients showed decreased activity in 

bilateral S1, right parietal cortex and cerebellum, and left putamen, during the coupled movement.  

If only coupled movements are specifically affected by FHD, it might be hypothesized that the 

pattern of cerebral activity would vary as a function of movement difficulty. Accordingly, FHD 

patients have been asked to use the affected hand to either write (complex movement) or 

flex/extend the fingers while fMRI data were recorded (Havrankova et al., 2012). Consistent with 

Moore et al. (2012), Havrankova et al. showed the hypoactivation of S1 and parietal cortex. However, 

no involvement of cerebellum or basal ganglia was reported. Additional investigations on the 

potential influence of movement complexity showed premotor hyperactivity and cerebellar 

hypoactivity associated with unimanual and bimanual finger tapping in FHD patients with respect to 

controls (Kadota et al., 2010). Hu et al. (2006) asked FHD patients to perform progressively more 

complex kinds of writing while being in the fMRI scanner and, with respect to healthy controls, they 

found increased activation in motor cortex, basal ganglia and cerebellum associated with complex 

writing (using the pen) but no differences for simple writing (using the finger). This would support 

the view that movement complexity plays a central role in the symptoms exhibition and the relative 

cerebral activity; however, the involved network does not match other data.  
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Despite such initial agreement, the level of inconsistency between different studies addressing 

similar issue increases as slightly different tasks are performed by FHD patients. Abnormal neural 

activity has been reported in basal ganglia (Peller et al., 2006, Schneider et al., 2010, Blood et al., 

2004, Chase et al., 1988, Siebner et al., 2003), thalamus (Preibisch et al., 2001, Hu et al., 2006), 

sensorimotor cortex (Preibisch et al., 2001, Islam et al., 2009, Jankowski et al., 2013), and 

supplementary motor areas (Hu et al., 2006, Oga et al., 2002). Such inconsistencies in the literature 

are best exemplified by controversial findings regarding the discordant level of activity reported in 

prefrontal (Preibisch et al., 2001, Dresel et al., 2006, Pujol et al., 2000, Playford et al., 1998) and 

primary motor areas (Detante et al., 2004, Dresel et al., 2006, Playford et al., 1998, Pujol et al., 2000, 

Ceballos-Baumann et al., 1995, Ibanez et al., 1999).  

However, the functional neuroimaging studies that investigated the features of sensorimotor 

representations in FHD – by asking patients to physically perform a movement – might be affected by 

a methodological issue which could dramatically undermine their validity. Indeed, there is strong 

evidence supporting that the sensory feedback during movement execution is altered in FHD.  

One possible way to overcome this limitation is to investigate the pattern of neural activity at 

rest. The comparison of the correlation between activity changes in different brain areas during 

different tasks and rest brought to the scientific community one of the most robust findings 

throughout the last years of neuroimaging science: the implication of the medial prefrontal cortex, 

temporo-parietal junction, and precuneus in a canonical network dubbed as the 'default mode 

network' (e.g. Buckner et al., 2008) (Gultepe and He, 2013). Investigating the properties of the 

default mode network in FHD patients by analyzing the changes in resting-state networks, 

Mohammadi et al. (2012) found that FHD patients show reduced patterns in postcentral regions  and 

augmented patterns in basal ganglia. These data speak in favor of disorganization at the level of the 

sensorimotor system, in particular the basal ganglia and the somatosensory cortex; both important 

for coding the afferent sensory feedback. However, despite the undisputed advances brought by the 

resting-state approach in circumventing potential confounds due to altered sensory feedback, it still 

does not provide information on the origin of task-specificity, one of the most peculiar aspects of 

FHD (see 1.3 Motor imagery to dissociate sensory and motor mechanisms). 

 

Considering the hypothesized mechanisms of FHD and the possible structure described in the 

SMILE model, we further propose that FHD is the manifestation of a breakdown in the sensory-motor 

loop as the result of a disorganization targeting S1 and due to over-training-related abnormal 

neuroplasticity, impaired cortico-subcortical dynamics and local loss of inhibition. Based on evidence 
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showing that FHD patients exhibit impairments in temporal and spatial discrimination, but not in 

overt motor behaviors other than the task-specific ones, one first hypothesis is that the breakdown 

of the sensory-motor integration happens in the high-level nodes, specifically in S1. The breakdown 

would determine no equivalence between the signal sent from the periphery to S1, and the signal 

sent from S1 to M1 (calibration). When M1 sends the signal to the periphery through the brainstem, 

the peripheral muscle activation (through the cerebellum, basal ganglia, and thalamus) sends a 

feedback signal to premotor, supplementary motor and primary sensory regions, which in turn have 

back projections to equivalent areas in M1. We hypothesize that if the gain of the signals sent 

through this loop is superior to 1, then M1 keeps increasing its firing until maximal muscle 

contraction occurs, that is the typical cramp of FHD (see Figure 8A). 

Taking into account the possibility that the deterioration of the sensory information could 

happen in the low-level nodes and that the whole thalamus-basal ganglia circuit preserves 

somatotopic organization all along (Vitek 2002), a second hypothesis is that S1 receives already 

“disordered” sensory errors from the sub-cortical and cerebellar modules. This would imply that only 

a fraction of the sensory feedback could be impaired, i.e. the component for the hand, supporting 

that sub-cortical modules, and thus the feedback from cerebellum-thalamus-basal ganglia complex 

to S1 (plus the signal from S1 to M1) is impaired and causes problems downstream (see Figure 8B). 

The SMILE model explains (1) task-specific impairments in terms of a breakdown in only some 

sub-components of the sensorimotor loop, (2) increasing muscle contraction resulting in cramps as a 

function of the unbalance between sensory input and motor output, and (3) spreading activity to 

agonist muscles (due to overlapping cortical representations) as a function of extremely repetitive 

behaviors that would cause cortical disorganization. Taking into consideration this tight association 

between sensory input and motor output, it is clear how crucial their dissociation is for better 

understanding the nature of their integration, and therefore the implementation of mental rotation 

as investigation tool in future experimental protocols. 
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Figure 8: Disorganization of the SMILE model in FHD. A) According to a first hypothetical 

disorganization, in FHD the sensory feedback is altered between S1 and M1, resulting in an abnormal 

motor command. B) A second hypothesis concerns the possibility that the sensory information is 

distorted already in the low-level nodes, resulting in an altered signal transmitted from the sensory 

processing nodes to S1 and the movement preparation nodes (PM-SMA). 

The dashed arrows represent qualitative anomalies in signal processing. The size of the arrows 

represents the quantitative features of the signal. Red, respectively blue boxes and arrows depict 

motor-, respectively sensory-related nodes and connections. 

S1 primary sensory cortex    BG   basal ganglia 
PM premotor cortex    Par   parietal cortex 
Th thalamus     CALIB   calibration 
Cer cerebellum    FW model  forward model 
M1 primary motor cortex   FB model  feedback model 
SMA supplementary motor area  Est. Current State estimated current state 
 

 

5.4. Potential Mechanisms of FHD  

5.4.1. Loss of Inhibition 

For several decades, the excitatory/inhibitory regulations of the central nervous system have 

been proposed as impaired in both general dystonia and FHD (Tinazzi et al., 2009). Atypical 

excitability and activity would result in the deterioration of the communication pathways between 

the central nervous system and the periphery. Nevertheless, testing this type of hypothesis is 

particularly challenging using conventional neuroimaging or behavioral techniques, due to the 

difficulty of distinguishing between excitatory or inhibitory processes. In order to overcome this 
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limitation, Transcranial Magnetic Stimulation (TMS) – a non-invasive technique allowing the 

excitation or inhibition of specific brain regions through magnetic pulses – has been largely used to 

study the properties of given cortico-spinal pathways (Miniussi and Thut, 2010). The features of the 

“motor-evoked potentials” (time-locked electromyographic activity resulting from a supra-threshold 

TMS pulse over the motor cortex) and Cortical Silent Period (CSPs; the interval of silent 

electromyographic activity following a supra-threshold TMS pulse) can provide information regarding 

the underlying state of the neural populations. In healthy subjects, the typical duration of CSPs for 

TMS stimuli of 120% of the motor threshold is about 70 ms (Saisanen et al., 2008). In FHD the 

(a)typical CSPs are shortened (Kimberley et al., 2009), restricted to the symptomatic hand (Chen et 

al., 1997), and task-specific (Tinazzi et al., 2005b). For example, Tinazzi et al. (2005a) used CSP 

together with a facilitation/rest electromyographic motor-evoked potentials to demonstrate the 

task-specific motor impairment of FHD. In this study, while TMS was delivered and motor-evoked 

potentials were recorded, participants performed both pincer grip (a finely tuned activations of an 

isolated subset of muscles of the thumb and index finger) and power grip (a co-contraction of all 

digits). With respect to healthy controls, FHD patients had different CSPs and motor-evoked 

potentials depending on the type of grip performed. In particular, while pincer grip elicited shorter 

CSPs and larger motor-evoked potentials amplitude ratio, power grip remained unchanged, 

supporting the specificity of excitatory/inhibitory impairment mechanisms in FHD (see also Kimberley 

et al., 2009). 

In addition to CSP, other types of inhibition features are potent markers of neural pathway 

mechanisms, and have been shown to present abnormalities in all types of dystonia at the level of 

both the central and the peripheral nervous system (Hallett, 2006, Lin and Hallett, 2009). At the 

central level, intracortical surround inhibition (the capacity of an excited neuron to reduce the 

activity of the neighbors) is decreased in FHD (Lin and Hallett, 2009, Espay et al., 2006, Ridding et al., 

1995, Chen et al., 1997). At the peripheral level, reciprocal inhibition (the coordinated contraction 

and relaxation of agonist and antagonist muscles, respectively) is dramatically impaired in FHD 

patients (Nakashima et al., 1989, Panizza et al., 1990).  

Animal studies showed that aberrant intracortical surround inhibition can lead to dystonic 

behaviors (Matsumura et al., 1991, Matsumura et al., 1992). In humans such loss of inhibition can be 

investigated using TMS (Hallett, 2007). For example, Sohn et al. (2004) set the TMS pulses as 

stimulating the portion of the primary motor cortex (M1) corresponding to the little finger, but 

triggered by the activity elicited by self-initiated flexion of the index finger. Using this approach, the 

authors investigated surround inhibition in FHD patients by evaluating the little finger reactivity 
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during volitional flexion of the index finger. Their results showed that in FHD patients the motor-

evoked potentials’ amplitude was increased.  

In addition to intracortical surround inhibition, also interhemispheric inhibition (the ability of a 

unilateral hemispheric stimulation of the motor cortex to inhibit the contralateral motor cortex given 

a short latency) is impaired in FHD (Sohn and Hallett, 2004, Beck et al., 2009). Interhemispheric 

inhibition is usually investigated with dual-site TMS, where a conditioning stimulus is applied in one 

hemisphere, and shortly followed by a test stimulus in the corresponding sensorimotor area of the 

contralateral hemisphere. In healthy controls the conditioning stimulus has a suppression effect over 

the test stimulus (Perez and Cohen, 2009). Analyzing the amplitude of motor-evoked potentials of 

this test-pulse allows the investigation of the underlying modulation of interhemispheric inhibition. 

Beck et al. (2009) showed that interhemispheric inhibition is partially lost in patients with mirror 

dystonia, while non-mirror dystonia patients exhibited similar performance compared with healthy 

subjects. This discovery suggests that interhemispheric inhibition is not deeply involved in the basic 

pathophysiology of dystonia, but only in its mirror aspect. In order to investigate the task-specificity 

of inter-hemispheric inhibition in mirror dystonia, Sattler et al. (2013) extended the previous study 

with a rest versus pen-holding task. At rest, the inter-hemispheric inhibition levels of all three groups 

(healthy subject, mirror and non-mirror FHD) were similar, but mirror patients displayed a large 

bilateral decrease in inter-hemispheric inhibition in the pen-holding condition, inversely related to 

the severity and duration of symptoms. Altogether, these two studies agree on the involvement of 

impaired inter-hemispheric inhibition in mirror dystonia, but this latter is not directly involved in the 

pathophysiology of focal dystonia itself, since it does not occur in non-mirror dystonia situations. 

Some groups focused on psychogenic dystonia, a type of dystonic disorder without a clear 

neurological basis and possibly associated with other psychological disorders. In this vein, Espay et al. 

(2006) used TMS for investigating a broad range of behavioral features in both psychogenic and 

organic (non-psychogenic) dystonia. These features included reciprocal inhibition, CSPs, but also 

cutaneous silent period, as well as short- and long-intracortical inhibition. All of these behavioral 

markers were statistically different between healthy subjects and dystonia patients. The only 

statistically relevant difference between behavioral results in psychogenic and organic dystonia 

involved reciprocal inhibition.  

Altogether these data suggest that different types of dystonia, whether primary or secondary to 

psychological disorders, share basic mechanisms as well as widespread cortical and subcortical 

abnormalities. The neurological mechanisms underlying these behavioral outcomes might not be the 

original cause for dystonia, but simply the consequence of upstream unknown dysregulation. 

Nonetheless, numerous studies have linked dystonia symptoms with the abnormal synchronous 
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activity of numerous modules in the basal ganglia-thalamocortical circuit (Vitek 2002). While 

synchronous neural activity is involved in the planning and execution of movement in healthy 

subjects, dysregulation in the degree of synchronization might disrupt the proper function of the 

sensorimotor feedback system a whole (Schnitzler and Gross, 2005). 

 

5.4.2. Abnormal Neural Plasticity 

Neural plasticity refers to the ability of the brain to adapt its neural connections to the 

requirements of the environment as a result of learning. Animal studies showed that over-trained 

repetitive movements abnormally remodels somatosensory cortical maps, leading to sensory de-

differentiation between the receptive fields of neighboring digits (Byl, 2007). This de-differentiation 

parallels the development of dystonic-like behaviors (Byl et al., 1996, Blake et al., 2002). In other 

words, after a prolonged and intense stimulation, the neuron which previously coded the sensory 

input relative to only one finger starts to respond to sensory inputs delivered to more fingers (Byl et 

al., 1997). Indeed, dystonia-related changes of receptive field features have been reported in sub-

cortical structures such as the pallidum and thalamus (Lenz et al. 1998), key nodes in the generation 

of sensory and/or motor representations. Such neuro-plastic changes would be at the basis of 

aberrant pairing of tactile stimuli in healthy subjects (Godde et al., 1996), or excessive repetitive 

movement patterns in FHD patients (Altenmuller and Jabusch, 2010, Roze et al., 2009). Experimental 

evidence showed that FHD is associated with such de-differentiation in areas S1 and S2 (Butterworth 

et al., 2003), basal ganglia (Quartarone et al., 2008, Rothwell and Huang, 2003), and cerebellum 

(Thompson and Steinmetz, 2009). Interestingly, non-manifesting carriers of a gene supposed to be 

involved in developing dystonia exhibit impairments in sequence learning but not in motor learning 

(Ghilardi et al., 2003). This supports the proposition that dystonia is a complex disorder due to 

aberrant integration mechanisms, biologically based on abnormal neuronal plasticity and dynamics, 

as a predisposing endophenotypic trait (Quartarone and Pisani, 2011). 

In a recently developed methodology called “paired-associative stimulation”, sensory stimuli are 

paired with TMS cortical stimulation depending on the basic level of cortical plasticity. Thanks to this 

method, it is possible to create an artificial and relatively long-term association between an event 

and the TMS pulse. Using median nerve stimulation and TMS over S1 to elicit paired-associative 

stimulation, Tamura et al. (2009) showed that in healthy subjects paired-associative stimulation 

intervention had no notable effects on any measure of cortical excitability or inhibition. Conversely, 

in FHD patients, the waveform elicited by TMS increased right after paired-associative stimulation, 

suggesting an abnormally increased excitability of S1. 
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In a recent extension of this study, and following the emerging hypothesis according to which 

cerebellar dysfunction might be tightly linked to the development of focal dystonia (Raike et al., 

2012), Hubsch et al. (2013) used theta-burst stimulation of the cerebellum to investigate how its 

excitability can influence cortical plasticity of M1 in FHD. Theta-burst stimulation is a repetitive 

TMS protocol in which short trains of 3 high-frequency magnetic pulses are repetitively 

discharged to a brain area. It is used to modulate the short-term excitability level of a given 

brain area. In that prospect, Hubsch et al. (2013) used theta-burst stimulation on cerebellum 

followed by paired-associative stimulation of M1 and showed a complete loss of cerebellar 

influence on sensorimotor plasticity, specifically for FHD patients. In the same study, the 

authors also showed that FHD patients had both lower performances in learning a new task 

and in “washing out” a previously learned task in order to adapt to a modification. These 

data suggest that the loss of cerebellar influence on sensorimotor cortex might be linked to 

atypical plasticity of the sensorimotor cortex. 

 

5.4.3. Defective Learning-based Sensory-Motor Integration 

According to the defective sensorimotor learning hypothesis, the different types of dystonia 

would be characterized by functional alterations in the sensorimotor circuit supposed to integrate 

sensory input and motor output (Breakefield et al., 2008). In this view the dystonic behavior would 

be due to abnormal somatosensory feedback received by the motor system during the movement. 

Accordingly, it has been shown that over-practice can cause an overlap of the somatosensory 

receptive fields (Butterworth et al., 2003), which would lead to altered sensory representations and 

therefore to abnormal motor behaviors. In favor of this hypothesis, there is evidence that finger 

representations in FHD patients are spatially closer (Bara-Jimenez et al., 1998), providing the 

biological justification to the notion that FHD develops in conjunction with excessive sensory 

stimulation or over-repetition of motor tasks (Quartarone et al., 2006).  

The aberrant sensory input would be due to the disorganization of S1(Hinkley et al., 2009). The 

overlap of digit representations in S1 would lead to excessive gain in the sensorimotor loop, due to 

the incongruence between the somatosensory and motor maps (Sanger and Merzenich, 2000). This 

incongruence would lead to a saturation of motor commands resulting in the dystonic movement of 

the affected hand or even in the muscular over-contraction and consequent paralysis. In this way the 

altered sensory representations would lead to abnormal motor behavior, highlighting the importance 

of sensorimotor integration. The critical role of the sensory feedback in modulating motor responses 
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(Abbruzzese and Berardelli, 2003) is demonstrated by evidence showing how sensory discrimination 

is impaired in patients suffering from writer’s cramp (Sanger et al., 2001) as well as by the altered 

sensorimotor integration mechanisms in patients presenting musician’s dystonia (Rosenkranz et al., 

2000) and writer’s cramp (Murase et al., 2000). In addition to experimental data, the importance of 

sensory processing in an apparently purely motor disorder such as FHD, is also demonstrated by the 

effectiveness of sensory re-training procedures (Zeuner et al., 2002). Despite short-term duration and 

reversibility, FHD patients can significantly improve their spatial acuity by performing daily sessions of 

Braille reading sessions for 8 weeks (Zeuner and Hallett, 2003). 

However, the nature of the relationship between disorganized somatosensory information and 

aberrant motor output is still under debate. One possible explanation is that long-lasting non-

physiologic motor behavior can cause changes in somatosensory representations. Alternatively, 

abnormal somatosensory representations may lead to abnormal motor output explaining the 

particular dystonic phenotype. Consequently, one of the main focuses for future research will be to 

investigate movement mechanisms in FHD and other types of movement disorders, but ruling out 

any confounding effect due to abnormal sensory feedback.  

 

5.5. Mental Imagery and Rotation to investigate Sensorimotor mechanisms 

To identify the origin of dystonic behaviors it is crucial to understand the features of 

sensorimotor integration mechanisms while avoiding any potential confound due to altered sensory 

feedback. One possibility to achieve this goal is to use an investigation tool that does not require 

movement execution. This would help differentiate the mechanisms related to altered sensory 

feedback from those related to abnormal sensorimotor representations. Mental imagery is a 

cognitive task with such characteristics. In healthy subjects, physical execution and mental imagery of 

a movement –“motor imagery”- share similar temporal and kinematic properties (Sirigu et al., 1996). 

The association between the properties of executed and imagined movements is further 

demonstrated by clinical studies showing how physical impairments are reflected in mental imagery. 

For example, if patients suffering from hemi-Parkinson’s disease are asked to physically perform and 

mentally imagine specific manual movements with the affected and the unaffected hand, the 

response times of the imagery task will be proportional to the asymmetries in the physical task; that 

is longer latencies for the affected than the unaffected hand (Dominey et al., 1995). Some data 

described the effects of FHD on motor imagery of different movements. In particular, in order to 

understand whether the physical impairments due to FHD generally or specifically influence the 

characteristics of mental imagery, patients suffering from writer’s cramp were asked to physically 
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perform and mentally imagine finger tapping and writing (Tumas and Sakamoto, 2009). Surprisingly, 

with respect to healthy controls patients had longer motor imagery latencies for both actions, 

suggesting that FHD would lead to unspecific deficits in mental imagery of complex movements. 

In healthy controls, physical movement and motor imagery also engage partially overlapping 

brain networks (Grezes and Decety, 2001). In particular, physical practice modulates the imagery-

related brain activity in a specific network including the supplementary motor area, basal ganglia, 

and cerebellum (Ionta et al., 2010a). Several data support that also in clinical populations there is an 

association between the performance in motor imagery and the quantity or quality of neural activity. 

For example if Parkinson’s disease patients are asked to physically perform and mentally imagine 

hand and wrist movements, they show longer latencies and decreased activation patterns in fronto-

parietal regions (Samuel et al., 2001). In addition, if Parkinson’s patients with freezing of gait perform 

motor imagery of walking, with respect to healthy controls their response times are longer and brain 

activity is decreased in the supplementary motor area and increased in the mesencephalic locomotor 

region (Snijders et al., 2011). 

Through the manipulation of cortico-spinal excitability by means of TMS, motor imagery can be 

used to investigate not only the properties of cortical representations but also the characteristics of 

the communication between the central nervous system and the periphery. In particular, in healthy 

subjects top-down imagery-related mechanisms regulate the excitability of the sensorimotor 

pathways (Fourkas et al., 2006), and in Parkinson’s patients the typical cortico-spinal excitability in 

response to the imagination of a movement is drastically reduced with respect to healthy controls 

(Tremblay et al., 2008). With regard to FHD patients, Quartarone et al. (2005) delivered the TMS 

pulse while participants were imagining index flexion. Similarly to the results shown by Sohn and 

Hallet (2004) on movement execution, during motor imagery the amplitude of motor-evoked 

potentials of all recorded hand and forearm surround muscles was increased in FHD patients, even 

for the arm not involved in motor imagery (Quartarone et al., 2005). This highlights the broad and 

less focused muscular activity in FHD patients compared with healthy subjects, even in the case of 

simple imagined movements. 

In order to deepen the investigation on motor imagery and to evaluate the impact of motor 

imagery on motor excitability in dystonia, another group conducted an experiment on patients 

suffering from flaccid leg paresis due to psychogenic dystonia (Liepert et al., 2011). In this study, 

single and double TMS pulses were delivered while patients imagined ankle flexion. The amplitude of 

motor-evoked potentials resulting from the TMS pulse over the foot/leg motor cortex decreased with 

respect to rest, while it increased in healthy subjects (Liepert et al., 2011). This finding suggests an 

amplification of motor-imagery-related cortical excitability. Interestingly, during ankle movement 



David Perruchoud Université de Lausanne Février 2017 
  

- 43 - 

observation on a video, motor-evoked potentials modulation of both healthy controls and 

psychogenic dystonia patients were similar (Liepert et al., 2011). Altogether with the motor imagery 

results, these data emphasize the difference between self-referred motor mechanisms and other-

oriented visually based processing in focal dystonia.  

Only few brain imaging studies investigated the neural circuits recruited by motor imagery and 

their task-dependent activity in FHD. In one of the first studies addressing this issue, post-stroke 

secondary FHD patients were asked to execute and imagine simple wrist flexion/extension while 

fMRI data were recorded (Lehericy et al., 2004). This study showed abnormal activity in parietal and 

frontal regions in patients with respect to controls during both motor imagery and execution 

(Lehericy et al., 2004). Using the same task and technique, a later study investigated the neural 

correlates of motor imagery in patients suffering from dystonia due to complex regional pain 

syndrome (Gieteling et al., 2008). The results showed that with respect to healthy controls, motor 

imagery of wrist flexion/extension in these patients was associated with a reduced activation in 

fronto-parietal cortex (Gieteling et al., 2008). Consistent data have been recently reported in two 

paired studies. In these studies, FHD patients were asked to perform motor imagery of grasping a 

pencil with the purpose of either write with it or sharpen it (Delnooz et al., 2013, Delnooz et al., 

2012). In the first study, the authors individuated the pattern of brain activity, and showed that with 

respect to controls, FHD patients had stronger activity in premotor areas during imagery of grasping 

for writing but not during imagery of grasping for sharpening (Delnooz et al., 2013). These data 

suggest that in the region typically involved in balancing the motor output as a function of the 

sensory feedback, some degrees of abnormalities already exist at the level of movement planning or 

calibration. In the second study the authors applied a functional connectivity approach to the same 

dataset to further understand the interplay between the previously individuated regions of interest 

(Delnooz et al., 2012). This study showed that FHD patients had reduced connectivity between the 

premotor cortex and the parietal cortex with respect to controls (Delnooz et al., 2012). Taking into 

account that in healthy controls the coupling between premotor and parietal cortices is important 

for movement simulation and calibration (de Lange et al., 2006) and that the parietal cortex is an 

important hub for integrating information coming from different modalities (e.g. visual and motor; 

Fogassi and Luppino, 2005), the reduced functional connectivity between parietal and premotor 

cortex could be associated with a decreased ability to sample sensory feedback and integrate it with 

movement execution. However, these results should be considered with caution in the absence of a 

quantitative measurement of the patients’ imagery performance. 

Neuroimaging studies based on previous models showed the involvement of both cortical and 

subcortical regions, suggesting that dystonic deficits affect a broadly distributed network but leaving 
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unsolved the issue of which nodes of this network are specifically impaired. The inconsistencies in 

the available results could be due to methodological differences in experimental protocols, required 

tasks, scanning procedures, or the under-estimation of the distorted sensory feedback as a crucial 

confounding factor that renders the investigation of sensorimotor processes particularly difficult. 

Conversely, mental rotation of body parts engages anatomically interconnected brain systems 

implicated in the integration of sensorimotor information and has been implemented with brain 

imaging for studying the properties of the sensorimotor system in movement disorders such as 

Parkinson’s disease. However, both neuroimaging and physiological data necessary to identify the 

pathophysiological peculiarities of FHD are still lacking, and mental rotation is a good tool to acquire 

this information. This important information on brain activity and cortico-spinal communication 

relative to mental rotation of body parts in FHD represents an unresolved gap that could and should 

be filled. Finding the influence of FHD in modulating the activity of specific neural circuits, such as 

hypersynchronous activity, might help not only to better understand the pathophysiology of FHD, but 

also to develop ad-hoc interventions aiming at further regulating those brain circuits. 

In addition, patients who lost their dominant limb due to amputation, show longer latencies and 

lower accuracy in the mental rotation of images depicting the amputated hand (Nico et al., 2004), 

therefore presenting highly specific impairments. The debate on the specificity of this effects has 

been further addressed taking into account the mental rotation performance of patients in which 

one or both hands never developed from birth, i.e. bilateral or unilateral amelia (Funk and Brugger, 

2008). As in cerebral palsy, bilateral amelia results in a general slowing down, but does not affect the 

general modulation of the response times as a function of the stimulus orientation. Similar to 

amputees, unilateral amelic patients’ performance is slower for the missing hand with respect to the 

present hand. 

In cervical dystonia (affecting the neck and therefore the vestibular system) mental rotation of 

all body parts is impaired (Fiorio et al., 2007b), while in FHD (affecting only one specific body 

segment) the mental rotation of only the affected hand is selectively impaired (Fiorio et al., 2006). In 

a later study Katschnig et al. (2010) used mental rotation to investigate the differences between fixed 

and mobile dystonia. By showing that fixed dystonia (more debilitative) elicits longer latencies than 

mobile dystonia (less debilitative), their data confirmed that the severity of impairment is reflected in 

mental rotation abilities (Katschnig et al., 2010). 

Based on these data it could be concluded that, regardless of the general availability of sensory 

feedback, the most crucial factor influencing mental rotation is body asymmetry, suggesting that the 

sensorimotor system tends to put more weight on the available information with a consequent 

detriment for the representation of the affected body part. 
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A way to test this possibility takes into account the mechanisms of postural and proprioceptive 

online recalibration. In healthy subjects, congruent visuo-tactile stimulation promotes self-attribution 

of a fake hand as explicitly measured by self-reports (“rubber hand illusion”), but does not necessarily 

affect proprioceptive hand recalibration as implicitly measured by the “proprioceptive drift” 

procedure (Rohde et al., 2011). Possibly due to such implicit-explicit dissociation, in FHD the illusory 

self-attribution is preserved but the proprioceptive drift is impaired (Fiorio et al., 2011). However, it is 

not clear whether the absence of proprioceptive drift in FHD is due to measurement (in)sensitivity or 

to aberrant sensorimotor plasticity. The possibility to quantitatively measure the behavioral 

outcomes of the plasticity of sensorimotor representations is provided by mental rotation. Indeed, in 

healthy subjects the illusory self-attribution due to the RHI correlates with the performance in such 

mental transformations, even in the absence of proprioceptive drift (Ionta et al., 2013). Nevertheless, 

despite the fact that such measurements might provide a less controversial measurement of 

proprioceptive hand recalibration in FHD, no data are currently available. 
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6. Clinical application 2: Biomimetic Brain-Machine Interfaces 

Every year in the United States of America alone about two million people suffer from the 

consequences of spinal cord injury (250 thousand; Jackson et al., 2004) or limb loss (1.6 million; 

Ziegler-Graham et al., 2008). These, and other similar breakdowns in communication between the 

central nervous system and the body’s periphery, result in a complex picture of symptoms including 

motor and/or somatosensory impairments. Despite the great technological developments in spinal 

cord repair (Tabakow et al., 2014, van den Brand et al., 2012) and even if some of the most advanced 

approaches are currently undergoing human clinical trials (Wang et al., 2014), the new solutions are 

still far from being implemented as a part of standard rehabilitation procedures. Until clinical and 

non-clinical researchers identify treatments for each of these conditions and learn how to re-

establish functions of a disconnected or uncontrolled limb, patients will continue to tirelessly await 

novel solutions to re-acquire even the slightest part of their former mobility and autonomy. 

Brain-machine interfaces (BMIs) are an alternative approach that proposes bypassing the 

lesion or substituting the involved body segment and aims to restore at least part of the 

sensorimotor functions in patients suffering from movement disorders due to disconnection or loss. 

BMIs decode neural activity associated with motor intentions directly from the brain or nerves and 

feed it into an assistive device (see also Rupp et al., 2014). One of the most obvious applications is 

the control of robotic prostheses based on brain activity. For example, electrocorticography (ECoG) 

can be used to record brain activity associated with a particular movement, and a BMI system can 

decode these patterns of neural activity and translate them into commands for a prosthetic device 

able to perform the corresponding movement (Marquez-Chin et al., 2009). The first occurrence of 

the BMI concept can be attributed to the group guided by E. E. Fetz who demonstrated how robotic 

devices could be controlled by brain activity (Fetz, 1969, Fetz and Finocchi, 1971, Fetz and Baker, 

1973). In the same years J. J. Vidal described a BMI system based on electroencephalography (EEG), 

thus highlighting the feasibility of non-invasive techniques for the control of prosthetic devices (Vidal, 

1973). The following forty years have been marked by intensive worldwide research and growth of 

the field at an astonishing pace. The capabilities and features of BMI systems have considerably 

broadened, relying on a panel of different biological signals and aiming at the treatment of an 

increasing number of clinical conditions (Wolpaw et al., 2006, Mak and Wolpaw, 2009). After an 

initial phase of development and testing, BMI technologies have finally left the laboratory and are 

nowadays starting to get deployed to patients’ living places for daily activities (Vaughan and Wolpaw, 

2006, Sellers et al., 2010). This became strikingly clear with the first kick being shot by a paraplegic 

patient using a full EEG-controlled exoskeleton at the opening ceremonies of the Football World Cup 
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2014 (Nicolelis, 2012, Nicolelis and Servick, 2014). Thus, BMIs are not only reaching specific clinical 

populations, but also gradually entering the collective consciousness of the wider public.  

Here, we focus on the importance of generating matching somatosensory percepts when 

designing BMIs to restore lost motor functions. First, we address the importance of properly 

classifying users and selecting correspondingly appropriate BMIs. Next, we review the state-of-the-

art developments in substitutive BMIs, including the different types of biological signals that can be 

used and their respective applications. Finally, we discuss current approaches for providing sensory 

feedback to and from BMIs, with a specific focus on how biomimetics principles can increase 

incorporation and control by the artificial reproduction of normal neural mechanisms. 

 

6.1. User-BMI integration 

The first important step in clinically-applied BMIs is the classification of users in order to select 

the best fit between the user’s needs and the available BMI solutions. Because the same BMI 

approach can address similar symptoms despite very different etiologies, the best user-BMI match 

could be based on the disease effects (Wolpaw et al., 2006). According to this method, patients' 

conditions and needs can be differentiated into three categories. The first group comprises patients 

who present mild and/or localized motor impairments and maintain most volitional movements. For 

this class of users, BMI technology likely has limited benefit since their residual muscular activity is 

sufficient to effectively control any potential assistive device. The second class includes patients who 

retain some degrees of volitional motor activity and require a specifically customized BMI system. 

For example, high cervical spinal cord injury preserves only extremely meager voluntary control, and 

patients could benefit from a hybrid EMG/BMI system. Finally, the third group consists of patients 

with no volitional motor activity, who rely entirely on BMI even for elementary tasks. Locked-in 

syndrome is one example of this class of patients who can profit from BMI systems even for basic 

communication. However, locked-in syndrome represents a particularly difficult case, because 

patients’ performance in BMI control is generally below the normal average. The exact reason for 

this inefficacy is not fully understood yet, but potential causes include impaired vision and cognitive 

disability (Birbaumer, 2006). These factors might also be the origin of a sort of “illiteracy” for brain-

computer interfaces, a condition affecting between 15% and 30% of the users (Guger et al., 2003, 

Vidaurre and Blankertz, 2010) and consisting in the inability to modulate brain signals and therefore 

to profit from brain-computer interfaces applications. One possible solution to this issue is to rely on 

the so-called “co-adaptivity”, in which both user and BMI system dynamically adapt to each other 

(Millán et al., 2010, Wolpaw and Wolpaw, 2012). To allow this continuous side-by-side enhancement, 
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the BMI system must regularly update its decoding algorithm based on newcomer neural data from 

the user. Reciprocally, the user needs to be presented with feedback of the BMI performance, from 

which he can optimize its mental strategies. In most cases, this closed-loop system results in steeper 

learning curves and/or generally improved BMI efficiency (Mattout et al., 2015, Bryan et al., 2013). 

How can co-adaptivitiy be further optimized? By aiming at the preservation of the mapping 

between naturally-evoked neural activity and sensorimotor features of limb state and control, the 

concept of “biomimicry” has emerged as a possible solution (Bensmaia and Miller, 2014). The 

exploitation of biomimetic principles had been applied for the optimization of both BMI control and 

feedback. In the former case, an example of such application is attempting to decode limb endpoint 

velocity or position naturally encoded into brain activity during execution or imagination of 

movement (Flint et al., 2012, Fan et al., 2014). From a sensory feedback point of view, biomimicry 

attempts to artificially recreate neural activity naturally-occurring during normal sensory experience. 

Probably the most widely spread systems following this approach are cochlear implants, which aim at 

exciting the cochlea with matching spatial, temporal and spectral features of normal auditory signals 

(Wander and Rao, 2014), but several other techniques, mostly cortical stimulations, have been 

applied in a similar prospect (Berg et al., 2013, Tabot et al., 2013). By relying on natural neural 

schemes, biomimetic systems also tend to be experienced more intuitively by the users, facilitating 

their acceptance and easing their integration into daily routines. This acceptance depends on the 

user’s sense of being in control of the device (agency, see section 6.2) as well as the sense that the 

device belongs to the user’s body (ownership, see also section 6.3 and 6.4). 
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From: 
Pisotta, Perruchoud et Ionta, (2015) 

Figure 9: The brain–BMI–brain loop. Schematic representation of the neuro-computational circuitry 

between the different possible techniques for acquiring neural signals (in blue, left panel), 

computational decoders (in light green, lower panel), and devices (in orange, right panel). First, in 

the “recording” phase, the brain activity is recorded through invasive or non-invasive methods, 

resulting in the transmission of raw signals to the next phase. Second, during the “decoder” phase, 

the neural signals are decoded and classified by machine-learning adaptive algorithms, which 

generate control commands to be sent to the external tool. Third, in the “effector” phase, the 

resulting computational output is used to control different kind of hardware and software devices. 

Finally, the device sends feedback signals back to the brain (upper arrow). 
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6.2. Neuroprosthetic Control 

After the best user-BMI integration is identified, users must be provided with intuitive control 

of BMI devices in order to allow a full incorporation of the prosthesis into the user’s body schema (a 

mental representation of the shape, posture, and anatomical constraints of one's own body; 

Berlucchi and Aglioti, 2010). To this aim, it is necessary to develop the sense of being in control of the 

prosthesis device, taking advantage of the behavioral and neurophysiological outcomes of movement 

representation as a function of physical training (Ionta et al., 2010a). Hereafter, we define “control” 

as the ability to voluntarily change the states of a dynamic system in order to achieve specific tasks 

and desired goals. This can refer to different levels of organization in robotic prosthetics (Tucker et 

al., 2015). The most common prosthetic control relies on the extraction of specific features of 

electroencephalographic (EEG) brain signals and the translation of relevant features into commands 

for the neuroprosthetic device or into triggers for muscular contraction (Wolpaw et al., 2002). In 

patients with residual voluntary muscle control, many other sources can be exploited in addition to 

brain activity,, such as electromyography (Memberg et al., 2014, Ambrosini et al., 2014, Scheme and 

Englehart, 2011) or electroculogram (Usakli et al., 2010). The procedures for extracting all the 

different signals can be grossly split into invasive and non-invasive techniques.  

 

6.2.1. Non-invasive techniques 

Electrophysiological or metabolic brain signals are detectable using a wide range of non-

invasive techniques. Scalp EEG is currently the most common technique for BMI applications (Bortole 

et al., 2014), and is capable of detecting specific time-frequency patterns of brain activity associated 

with voluntary or involuntary cognitive and sensorimotor processing (Wolpaw et al., 2002) . The wide 

varieties of signals that can be measured from EEG, together with its low cost, portability, and 

compliance by a range of participants, make EEG a particularly attractive technique for BMIs. 

Nevertheless, EEG signals detected on the scalp can be greatly distorted (e.g. by the resistance of the 

skull), resulting in a massive drop in spatial resolution. Advanced decoding algorithms can 

nevertheless greatly improve the information gathered from scalp recording, and rivaling with more 

invasive techniques (Wolpaw and McFarland, 2004). This feature, together with relatively affordable 

price, compliance, and high temporal resolution, makes of EEG one of the ideal candidates to supply 

the information on cortical activity to the BMI systems. In one of the latest designs, EEG-based BMIs 

have been used to move wheelchairs (Carlson and Millán, 2013), spell words (Yin et al., 2013, Hwang 

et al., 2012), and estimate hand (Bradberry et al., 2010) and locomotion kinematics (Presacco et al., 

2011). Building on the effectiveness of mental simulation in activating specific neural mechanisms 
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(Ionta and Blanke, 2009, Ionta et al., 2010b), it has been shown that simulating hand and foot 

movements enables BMI control (McFarland et al., 2010). Real-time brain activity can be accessed 

also with other techniques such as functional magnetic resonance imaging (Ruiz et al., 2014), 

magnetoencephalography (Buch et al., 2008, Mellinger et al., 2007), or near-infrared spectroscopy 

(Coyle et al., 2007, Sitaram et al., 2007, Power et al., 2011). These techniques have better spatial 

resolution, but are unpractical in daily-life situations. Therefore, they are used mostly for therapeutic 

purposes in clinical settings, e.g. neural activity modulation (Broetz et al., 2010). Nevertheless, those 

approaches can potentially contribute to the improvement of BMI performance when coupled with 

EEG (Fazli et al., 2012, Quandt et al., 2012). 

 

6.2.2. Invasive techniques 

Invasive techniques tend to provide less noisy signals with better spatial resolution, with 

respect to non-invasive methods. However, they present downsides due to surgical implantation, 

limited number of channels, risk of infection, and cellular isolation or death. The most common 

invasive techniques are intraneural recording, electrocorticography (ECoG), and intracortical 

electrodes. Being directly inserted inside the nerve fascicles, intraneural electrodes can record 

peripheral activity in patients without spinal nor nerve damages, such as amputees (Rossini et al., 

2010, Micera et al., 2010a, Micera et al., 2010b). These systems can exploit biologically relevant 

tasks, such as natural grasping (Micera et al., 2011, Di Pino et al., 2012). Allowing direct recording 

from the surface of the brain, ECoG relies on the same principles as EEG, but avoids signal blurring by 

surgically inserting grids or stripes of subdural electrodes onto the cortex. Similarly to EEG, it can be 

used to control a wide variety of devices for assistive technology (Leuthardt et al., 2004). For 

example, ECoG-BMI has been successful in controlling one-, two-, or three-dimensional software 

implementations (Leuthardt et al., 2011, Milekovic et al., 2012, Schalk et al., 2008, Wang et al., 

2013), or decoding natural motor intentions (Spuler et al., 2014). So far, ECoG-BMI experimentation 

has been restricted to animal studies or temporary pre-surgical ECoG implants (Leuthardt et al., 

2004). However, recent studies show that ECoG can be implemented for the recovery of motor 

functions for severely paralyzed patients (Wang et al., 2013). Finally, intracortical recording is based 

on the surgical insertion of high-density electrode microarrays in the cortical layers (Campbell et al., 

1991). These electrodes can record neural activity at the single cell level. BMI experimental 

investigations have been carried out in non-human mammals (Serruya et al., 2002, Carmena et al., 

2003, Velliste et al., 2008, O'Doherty et al., 2009, O'Doherty et al., 2012, Venkatraman et al., 2009, 

Flint et al., 2012, Ethier et al., 2012, Bansal et al., 2012). Almost exclusively pilot trials of intracortical 
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recording have been performed in humans (Collinger et al., 2013, Hochberg et al., 2012, Hochberg et 

al., 2006, Simeral et al., 2011). This particular technique raises the issue of long-term signal stability, 

as signal quality tends to decrease with time, due to the emergence of inflammation and fibrotic 

tissues that isolate the electrodes as a natural immune response of the neuroglia (Polikov et al., 

2005). Nevertheless, a new-generation of biocompatible flexible electrodes decreases the risk of 

rejection and provides stable signals for longer periods (Marin and Fernandez, 2010). The most 

notable recent applications of intracortical BMI for humans include giving a tetraplegic patient a 

point-and-click ability up to 1’000 days after implantation (Simeral et al., 2011), or the natural control 

of a 7 degrees-of-freedom neuroprosthesis (Collinger et al., 2013, Hochberg et al., 2012).  

Altogether, multiple approaches can be considered for BMI control, each of which being 

suitable for a different population of patients. The highest BMI performance are still obtained using 

invasive recording techniques, but recent advances in EEG signal processing are rapidly filling the gap 

and might provide similar results within a cheap, non-invasive, and perfectly safe framework in the 

upcoming decades. 

 

6.3. Biomimicry of Sensory Feedback 

The previous section highlighted how an ideal BMI should translate brain signals encoding 

movements into computational commands to activate mechanical movements (Pistohl et al., 2012). 

However, not only pure motor disorders, but also deficits associated with sensory loss can 

dramatically affect movement execution (Sainburg et al., 1995). Thus, a real-time feedback of the 

prosthetic movement should be provided to the user in the form of artificial sensory consequences 

(Yanagisawa et al., 2012). Based on this feedback, on the one hand the user can learn to adjust his 

brain activity according to the performance of the device by identifying and exploiting appropriate 

mental strategies. On the other hand, the BMI system could use advanced machine learning 

algorithms to continuously adapt the prosthesis to the user (Vidaurre et al., 2011) and could also 

receive real-time feedback of its own performance through, for example, the detection of error-

related brain activity patterns (Ferrez and Millán, 2005, Ferrez and del, 2008, Chavarriaga and Millán, 

2010, Combaz et al., 2012). Thus, the creation of sensory consequences of a prosthetic action has a 

crucial role in the deployment of successful BMIs. In order to close this user-BMI-user loop, efficient 

control and real-time feedback have to be properly integrated (Pisotta et al., 2015). In the same vein, 

cognitive neuroscience has shown that coherent low-level sensory information (e.g. vision and touch) 

is essential for building high-level psychological constructs such as body ownership (Botvinick and 

Cohen, 1998). In the so-called “rubber hand illusion”, Botvinick et al. created illusory hand ownership 
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through synchronous stimulation of a fake hand (visual) and the participant’s real hand (tactile). The 

same effect has been demonstrated with non-anthropomorphic robotic hand prosthesis (Rosen et 

al., 2009). Recent evidence showed the importance of congruent visuo-tactile information to 

properly represent our body (Ionta et al., 2013). Accordingly, by promoting the sense of prosthesis 

ownership, congruent visuo-tactile stimulation can lead to its acceptance and recognition as part of 

one's own body (Marasco et al., 2011).  

The effective implementation of sensory feedback in standard BMIs still requires technological 

developments to produce well-balanced closed-loop systems. In most current BMIs, this balance 

cannot be reached because of unnatural or modality-mismatching feedback. Typically, this feedback 

consists only in a mere movement observation. But, vision alone does not provide important 

information on e.g. pressure, texture, stiffness, slipperiness, weight, etc. These features are 

continuously extracted during object manipulation and are mediated by the appropriate 

somatosensory afferents. Additionally, vision does not allow fine-tuned movement recalibration 

based on proprioception, an inescapable source of information to properly interact with the 

environment. Finally, visual information is pointless during isometric muscle activity, in which a 

modulation of the applied force does not translate into actual movement (for example while grasping 

a stiff object with increasing force). Thus, despite the undisputable importance of vision for motor 

performance (Flanagan and Johansson, 2003, Johansson et al., 2001, Johansson and Flanagan, 2009), 

visual feedback alone cannot satisfy the requirements for the effective manipulation of a 

neuroprosthesis. The need for somatosensory feedback, including proprioception, is considered one 

bottleneck for application of BMIs (Lebedev and Nicolelis, 2006). As depicted by the SMILE model, 

the interaction between somatosensory and motor processing is inherent at several stages of motor 

control, including cortical and subcortical networks (Pisotta and Molinari, 2014), and strongly relies 

on the multifaceted complexity (Saal and Bensmaia, 2014) and extremely high spatial resolution of 

tactile information (Skedung et al., 2013).  

The artificial reproduction of natural somatosensory consequences of a motor act can be 

considered as a component of the so-called biomimicry: the preservation of the mapping between 

naturally-evoked neural activity and healthy sensorimotor limb features. Along these lines, BMI 

systems are nowadays being designed with the aim of naturally interacting with the user, including 

the possibility of providing somatosensory signals (Ramos-Murguialday et al., 2012). The transition 

from visual to a more motor-relevant somatosensory feedback is starting to show its first results. 

Building on previous evidence on the effectiveness of mental simulation in activating sensorimotor 

pathways (Fourkas et al., 2006), Cincotti et al. (2007) integrated either visual or vibrotactile real-time 

feedback while participants mastered their brain activity by simulating hand movements. Vibrotactile 
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feedback yielded better results in situations where the visual channel was heavily loaded and all 

participants reported a more natural feeling while using vibrotactile feedback. This subjective 

preference for tactile feedback might arise from the tight relationship between the motor and 

somatosensory systems (Perruchoud et al., 2014). Similarly, ipsilateral matching mental simulation 

and tactile feedback yield better performance, suggesting that a non-biomimetic contralateral 

feedback generates an interference (Chatterjee et al., 2007). Moreover, the use of pressure gradient 

(instead of vibrotactile feedback) tends to match more closely the neural process of feedback 

occurring during normal motor action, therefore increasing biomimicry leads to better performance, 

supporting that that grip recognition relies on the ability to recognize both finger configurations and 

pressure levels (Antfolk et al., 2013a). In summary, the reviewed findings support that proper user-

BMI integration depends also on the identification of the proper and patient-customized selection of 

biomimicry-relevant feedback, with different learning curves for each modality.  

 

6.4. Biomimetic (invasive) Somatosensory Substitution  

The reviewed advances in BMI feedback raised the possibility to completely bypass a defective 

sensory organ and directly stimulate (upstream) the nervous system. We already introduced 

intraneural recording of peripheral activity. A similar technology can be used to stimulate peripheral 

nerves and elicit sensory percepts. For example, Di Pino and colleagues (2012) implanted intraneural 

electrodes in an amputee experiencing phantom pain, a chronic and continuous painful sensation 

from the missing limb (Knecht et al., 1996). Intraneural stimulation replaced the absent afferent 

signals corresponding to somatosensory consequences of movements, and the patient reported 

diminished phantom pain and increased performance (Di Pino et al., 2012). Using a similar setup, 

Raspopovic et al. (2014) enhanced the identification of postures, shapes, and stiffness in the absence 

of visual and auditory information, suggesting the incorporation of the BMI system into the user’s 

body representation. Finally, sparse vibrotactile stimulation during neuroprosthetic object 

manipulation helps patients to efficiently regulate movement control (Cipriani et al., 2014).  

Recently it has become feasible to bypass not only specific body segments but also the entire 

peripheral nervous system and directly stimulate cortical areas to elicit somatosensory percepts. 

Such an intracortical stimulation approach has been performed mostly in animal models, for 

example, using optogenetics. In optogenetic experiments, animals are genetically engineered to 

grant the possibility to modulate brain activity (at high spatial and temporal resolution) using brain 

implanted optical fibers (Zemelman et al., 2002). Using this technique, O'Connor et al. (2013) elicited 

an illusory and robust perception of obstacle. Another solution to elicit a much broader panel of 
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percepts is via so-called "intracortical microstimulation" (ICMS). It is based on the same principles of 

intracortical recording, but employs electrodes arrays instead of single electrodes (Romo et al., 

1998). Using ICMS, sensations can be elicited by stimulating specific cortical areas with particular 

parameters. For example, after vibrotactile-ICMS training, owl monkeys are able to solve a binary 

forced-choice task to get a reward, solely based on specific patterns of ICMS cues (Fitzsimmons et al., 

2007).  

Classic intracortical stimulation and ICMS can be carried out over longer periods with respect 

to intracortical recording, because the electrodes’ physiologic isolation due to fibrotic tissues can be 

circumvented by modulating the stimulation parameters (Bensmaia and Miller, 2014). In the same 

vein, the first bi-directional ICMS-based BMI showed that rhesus monkeys can control a cursor 

(based on signals from motor cortex) while the task consequences are encoded as specific ICMS 

patterns in the sensory cortex (O'Doherty et al., 2009). As an extension of this study, the same 

approach has also been used to control more complex situations such as virtual hands (O'Doherty et 

al., 2012). Treated animals become able to identify virtual textures within the same time-scale as for 

natural tactile exploration (Lebedev et al., 1994, Liu et al., 2005). Similarly, ICMS can be used to 

faithfully encode skin indentation and then render native and prosthetic body parts more equivalent 

in terms of tactile discrimination (Berg et al., 2013), location, pressure, and timing (Tabot et al., 

2013). Finally, ICMS can augment perceptual abilities, e.g. invisible (infrared) inspection, by 

regulating intracortical stimulation as a function of signals created by implanted infrared detectors 

(Thomson et al., 2013).  

A further alternative to classic BMI technology is “targeted reinnervation”, which is 

demonstrating robust results in restoring sensorimotor functions. This technique allows for the re-

implantation of residual nerves after amputation into denervated muscles (Kuiken et al., 2004, 

Kuiken et al., 2009). Typically, after arm amputation, the remaining arm nerves are redirected and re-

implanted into the denervated ipsilateral chest area, creating a bidirectional communication channel. 

By redirecting the previously healthy nerves terminations, the neural patterns involved in motor 

control and sensory feedback are conserved, and the biomimicry of the system is therefore 

maintained. Downstream, voluntary motor commands are sent to the amputated arm and produce 

muscular activity in the reinnervated chest muscles, who function as bio-amplifiers and translate 

neural information into prosthetic commands. Upstream, afferent channels can transmit information 

from the reinnervated mechanoreceptors (in the chest) to the brain regions representing the 

amputated limb. This allows tactile stimulation of the chest to be experienced as emanating from the 

amputated arm (Kuiken et al., 2007). This innovative technique initiated a substantial improvement 

in the complexity and biomimicry of robotic prostheses. Sensitivity comparisons showed that grating 
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identification and force level are as accurate with reinnervated skins as normal skin (Marasco et al., 

2009) and equal or better in point localization (Sensinger et al., 2009, Marasco et al., 2009). In 

addition, when comparing targeted reinnervation with other current neuroprosthetic approaches, 

the sense of ownership for a prosthetic device is increased (Marasco et al., 2011), and prosthetic 

movements are simplified thanks to better fine-tuned visuo-tactile matching (Kim and Colgate, 

2012). The current challenge is to encode somatosensory information from the prosthetic arm and 

intelligibly transmit it to the reinnervated area. These examples highlight the need of constant 

development of engineering solutions and improvement of existing sensors that are able to detect a 

broad range of relevant signals (for example different degrees of shearing, pressure, temperature 

and humidity), such as the artificial skin recently developed by Kim and coll§eagues (2014). 

 

6.5. Current Limitations and Future Challenges  

Recent technological and scientific advances have considerably extended the field of sensory 

feedback for neuroprosthesis, but a natural perception requires a more precise combination of 

parameters such as frequency, duration, intensity, temporal patterns, and localization (Cincotti et al., 

2007, Bensmaia and Miller, 2014). Specific combinations of features might elicit a broad range of 

different percepts and the complete mapping of all parameter combinations with the corresponding 

percept in animals can be extremely laborious, if not impossible. Conversely, this process can be 

reverse-engineered in humans, by having the participant reporting the sensation elicited by 

exhaustive combinations of features, and identifying the corresponding combination for each 

investigated sensory feedback. Thus future directions will have to attempt the transition from animal 

research to human clinical trials. 

A recent advance with eminent fallouts on neuroprosthetics and neurorehabilitation is 

immersive virtual or augmented reality. An augmented reality feedback is more engaging and 

challenging than a simplistic visual depiction (Chin et al., 2010). Accordingly, also illusory body 

ownership (rubber hand illusion) can be triggered for virtual arms, with remarkable outcomes both at 

the behavioral (Perez-Marcos et al., 2009) and neural level (Evans and Blanke, 2013). Virtual reality-

based BMI systems have critical implications for rehabilitation (Bermudez i Badia et al., 2013), 

suggesting that, by increasing the visual biomimicry of BMI systems, virtual and augmented reality 

could augment patients' involvement in rehabilitation protocols and therefore improve sensorimotor 

recovery. The implementation of haptic feedback in (currently exclusively visual or audio-visual) 

virtual reality setups would add precious input to be able to re-create a broad range of natural 

percepts in an immersive manner.  
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Not only physical tasks can be improved by augmenting the biomimicry of BMIs, but also 

neurological condition such as phantom pain or phantom referral tactile sensation. The former is 

believed to originate from incoherent experience with respect to the body representation, the latter 

arises from reinnervation and/or cortical reorganization. For example, the proximity of the hand and 

face areas in the cerebral cortex is probably the reason why many upper arm amputees get referral 

sensations in their phantom hand while stimulating their face. Thanks to biomimetic BMIs, a proper 

somatosensory stimulation can be associates with specific prosthetic movements, thus re-

establishing a somatotopic correspondence between motor intentions and sensory feedback and 

therefore limiting sprouting of cortical maps (Antfolk et al., 2012, Antfolk et al., 2013b). Phantoms 

maps have been used to elicit illusory ownership sensations toward a rubber hand (Ehrsson et al., 

2008) or a mechanical prosthesis (Rosen et al., 2009), and an fMRI study of the somatotopy of 

amputees highlighted the tight correspondence between somatotopic cortical maps of healthy 

individuals and phantom limb amputees (Bjorkman et al., 2012). The use of phantom-coherent 

somatosensory feedback decreases phantom pain, potentially by resolving multisensory discrepancy 

within body representation (Ramachandran and Altschuler, 2009). 

 

6.6. The future steps of biomimetic BCI 

The broad scope of BMI spreads across countless applications, including entertainment, 

monitoring physiological states (Lal et al., 2003), or augmenting physical and sensory abilities (Di Pino 

et al., 2014). In this chapter, we reviewed the existing literature on control and feedback for medical 

BMIs, with a special focus on the importance of biomimicry-relevant signals. The incorporation of the 

prosthesis in the user’s body representation, including to his biological and psychological sense of 

self (Glannon, 2014), is a critical step for efficient rehabilitation, and is enhanced by engaging 

naturally-occurring control and sensory systems. An efficient incorporation of the device can be 

significantly reinforced via relevant somatosensory and proprioceptive feedback (Gallagher, 2005). 

However, artificially re-created sensory percepts risk to overload or distort the natural information 

processing (Lenay et al., 2003) and, in contrast to normal situations, are not constrained by modality-

specific high-order mechanisms, including attention and cognition (Spence, 2014). This is one of the 

most challenging present limitations and, in order to control noisy and distracting signals as in 

natural conditions (reciprocal inhibition), future work will have to render BMIs able to self-regulate 

their activity as a function of attentional and cognitive states. This is why understanding and 

developing the concept of biomimicry with respect to the SMILE model will be crucial for the 

upcoming deployment of BMIs and their laboratory-to-user transition. 
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7. Conclusion: bringing back a SMILE 

This thesis attempted to develop and test a novel biologically-based model of sensorimotor 

integration. This model is predominantly targeted at the understanding of sensorimotor disorders, by 

allowing the formulation and testing of clinically-relevant hypotheses, built upon the prevailing 

knowledge on symptomatic and pathophysiological mechanisms. 

After identifying the different functional nodes required along the sensorimotor integration 

loop, we reviewed the available data in order to identify the most plausible neuroanatomical location 

for each of these nodes. To validate this hypothetical SMILE model, we performed two experiments 

investigating the motor component of the sensorimotor integration loop, via two different 

neuroimaging techniques. In addition to providing coherent outcomes with respect to the SMILE 

predictions, each of these studies also generated novel scientific proposals. For example, the fMRI 

experiment allowed us to identify a new role for EBA, which not only consists of a perceptual node, 

but also incorporates high-level bodily representations. Additionally, we could attest that global and 

local frames of reference while transforming bodily representations involves the activation of broadly 

divergent brain networks. Similarly, the TMS experiment resulted in critical information about the 

timing of the motor phase of the well-known hand laterality judgment task, and allowed us to 

validate a novel paradigm to deal with the high inter- and intra-subject variations of behavioral 

performances, which had – in our knowledge – never been investigated. In the last sections of this 

manuscript, we present two potential clinical applications of the SMILE model, (1) by proposing two 

SMILE-derived hypotheses on the neural origin of focal hand dystonia, and (2) by highlighting how a 

steady understanding of the sensorimotor integration process can have critical implication in the 

development of cutting-edge technologies, such as brain-machine interfaces. 

In fine, the SMILE model appears to be a potent tool to operate when investigating sensory 

and/or motor processes, but as any existing model, it need to be further validated, particularly 

regarding its sensory components that were not covered by the scope of this thesis. As any existing 

model, it should also be constantly challenged and extended in the light of novel scientific evidences. 

For example, no biological system works in perfect isolation, and the sensorimotor system is no 

exception to this rule; as presented in the last chapter, other senses than somatosensation – such as 

vision and audition – can also play an essential role in directing movement, yet their implications are 

critically absent from the SMILE. A future extension of the model could quantify these new 

interactions and localize their impacts on each of the current nodes, pushing the understanding of 

sensorimotor integration, one more step further. 
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