
GROWING BRAINS IN SILICO: INTEGRATING BIOCHEMISTRY,

GENETICS AND NEURAL ACTIVITY IN NEURODEVELOPMENTAL

SIMULATIONS

Rasmus S torj ohann

M.Sc., Biochemistry, Simon F'raser University, 1999

B.Sc., Chemistry, Heriot-Wat t University, 1995

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Rasmus Storjohann 2004

SIMON FRASER UNIVERSITY

Fall 2004

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

Rasmus Storjohann

Master of Science

Growing brains in silico: Integrating biochemistry, genetics

and neural activity in neurodevelopmental simulations

Examining Committee: Dr. Jian Pei

Chair

Date Approved:

Dr. Robert F. Hadley

Computing Science, Simon Fraser University

Dr. Gary F. Marcus

Psychology, New York University

- ~p -

Dr. Oliver Schulte

Computing Science, Simon Fraser University

Dr. Eirikur Palsson (external examiner)

Biological Sciences, Simon Fraser University

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work,
has granted to Simon Fraser University the right to lend this thesis,
project or extended essay to users of the Simon Fraser University Library,
and to make partial or single copies only for such users or in response to
a request from the library of any other university, or other educational
institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to
keep or make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying of
this work for scholarly purposes may be granted by either the author or
the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain
shall not be allowed without the author's written permission. \

Permission for public performance, or limited permission for private
scholarly use, of any multimedia materials forming part of this work,
may have been granted by the author. This information may be found on
the separately catalogued multimedia material and in the signed Partial
Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and
signed by this author, may be found in the original bound copy of this
work, retained in the Simon Fraser University Archive.

W. A. C. Bennett Library
Simon Fraser University

Burnaby, BC, Canada

Abstract

Biologists' understanding of the roles of genetics, biochemistry and activity in neural func-

tion is rapidly improving. All three interact in complex ways during development, recovery

from injury and in learning and memory. The software system NeuroGene was written to

simulate neurodevelopmental processes. Simulated neurons develop within a 3D environ-

ment. Protein diffusion, decay and receptor-ligand binding are simulated. Simulations are

controlled by genetic information encoded using a novel programming language mimicking

the control mechanisms of biological genes. Simulated genes may be regulated by protein

concentrations, neural activity and cellular morphology. Genes control protein production,

changes in cell morphology and neural properties, including learning. We successfully sim-

ulate the formation of topographic projection from the retina to the tectum. We propose

a novel model of topography based on simulated growth cones. We also simulate activity-

dependent refinement, through which diffuse connections are modified until each retinal cell

connects to only a few target cells.

To Cathy and Krzstofler

Acknowledgements

I want to thank Gary Marcus for directing the research presented in this thesis. Working

with Gary has been a privilege. While clear in his opinions, he is always open to being

convinced by argument. He also taught me to always think twice before ruling out possible

avenues of research. His encouragement when times were rough was greatly appreciated.

Bob Hadley has been fully involved in the writing of the thesis itself, and his incisive

questions have forced me to think more deeply about the nature of this work and how it

relates to the biological systems that inspire it. I want to thank Bob for his diligence and

attention to detail in commenting on drafts of this thesis. His questions made me consider

more closely my assumptions. I also thank Bob for his extensive financial support during

my time as his student.

I also thank Eric DeWitt for many discussions regarding the concepts and design of the

NeuroGene system. His contributions to the NeuroGene design are described in more detail

in section 3.2 of this thesis.

I want to thank friends and fellow students of S.F.U., Cesar Dragunsky, Jim Stuart, Laila

Singh and David Arpin, as well as my brother Kristoffer for many fun discussions.

Finally, I thank Cathy for her love, understanding and support throughout these years.

I could not have done this without you.

Contents

. .
Approval 11

...
Abstract 111

Dedication iv

Acknowledgements v

Contents vi

List of tables x

List of figures xi

List of algorithms xv

1 Introduction 1

1.1 The need for a biological approach to connectionism 2

1.2 Principles of developmental biology . 3

1.3 Neurobiology . 14

1.4 Learning and innateness . 20

1.5 Previous related work . 23

2 Methods I: Biological principles and algorithmic analysis 34

2.1 Representing genetic information . 35

2.2 Cells and morphology . 49

2.3 Simulation space . 54

. 2.4 Proteins 55

. 2.5 Genes and the genome 65

. 2.6 Growth cones 72

. 2.7 Neural activity 83

. 2.8 Simulation architecture 90

. 2.9 Simulation initialization 93

. 2.10 Execution model 93

. 2.11 Summary 102

3 Methods 11: System architecture 104

. 3.1 The NeuroGene language 104

. 3.2 System architecture 117

. 3.3 Graphical user interface 121

. 3.4 Performance 123

. 3.5 File I /O 123

. 3.6 Summary 125

4 Results I: Verification of algorithms and implementation 1 2 7

. 4.1 Measuring extracellular concentrations 128

. 4.2 Measuring extracellular concentration gradients 132

. 4.3 Simulated decay 136

. 4.4 Receptor ligand binding 137

. 4.5 Simulated diffusion 139

. 4.6 Verifying other aspects of the implementation 145

. 4.7 Conclusion 146

5 Results 11: Developmental simulations 1 4 7

. 5.1 Patterning: Drosophila segmentation 149

. 5.2 Axon guidance: Topographic map formation 152

5.3 Activity dependent development: Ocular dominance and refinement 182

. 5.4 Conclusion 206

vii

6 Conclusions and future work 208

. 6.1 Simulating biology 208

. 6.2 Implementing NeuroGene 213

. 6.3 Limitations 217

. 6.4 Future work 218

. 6.5 Conclusion 221

A List of terms 224

B Gene scripts 238

. B.l Scripts for verification of implementation 238

. B.2 Neurodevelopmental simulations 249

. B.3 Local signal expression 264

C Automatic cell naming 266

. C.l Regular expressions 267

D Exogenous neural input filters 270

. D.l Neural activity sources 271

. D.2 Transform location 272

. D.3 Transform activity 273

. D.4 Transform timing 274

. D.5 Neural activity sinks 275

. D.6 Complete example 276

. D.7 Conclusion 278

E JavaBean coding standard 2 79

F Solution to the diffusion equation 281

. F.l General solution 281

. F.2 Open simulation space 282

. F.3 Closed simulation space 286

. F.4 Conclusion 291

viii

G Models of topographic projections 292

. G.l Summary of earlier models 292

. G.2 Flexibility of models 295

. G.3 Experiments modeled 298

. G.4 The model of Overton and Arbib 298

. G.5 The model of Yates et a1 301

. G.6 Conclusion 303

H A neurotrophic model of synaptic learning 304

. H.l The learning rule 304

. H . 2 Ligand-receptor binding 307

. H.3 From concentrations to learning 308

. H.4 Time-average activity level 310

Index of language primitives 312

Bibliography 314

List of Tables

2.1 Data types recognized within NeuroGene . 52

2.2 Units of measurement of physical parameters used in NeuroGene 102

3.1 Measures of language efficiency . 110

3.2 The types of events generated by the simulation 120

. . . . 4.1 Simulation of ligand-receptor binding by two cells competing for ligand 138

. 5.1 Neural properties of starburst. retinal ganglion. and tectal cells 193

G. l Algorithms used by the various models . 293

G.2 Summary of properties of the map formation of various models 296

G.3 Table of experiments successfully replicated by the various models 299

List of Figures

1.1 Gene expression and regulation . 5

1.2 Gene enhancer complex . 7

1.3 Intracellular signaling . 10

1.4 Schematic of a neuron . 15

2.1 UML diagram showing the possible forms of interactions between the classes

used to represent neurons .

2.2 Informal graphical derivation of the diffusion equation

2.3 Definitions of protein concentrations and mechanisms of protein transport . .

2.4 Example showing the auction mechanism of a growth cone consisting of twelve

filopodia .

2.5 Definitions of protein concentrations as perceived by growth cones

2.6 Flow-chart defining a non-linear model of neural activity

2.7 Image showing which parts of a neuron is included in various cell wide queries .

2.8 UML diagram of the simulation system .

2.9 Three cells shown within a grid of WorldNodes

2.10 The same growth cone as shown when pending actions are implemented at

the beginning of the subsequent time step and at the end of the current time

step .

3.1 Example of a simple context free grammar and the parsing process based on

the grammar . 106

3.2 Inheritance diagram of AstNode . 107

3.3 Evaluation of an expression by an AST data structure 108

3.4 A short example of a gene together with the abstract syntax tree (AST) data

structure representing the gene . 109

3.5 An example gene script in which a gene is encountered for the first time in an

embedded scope . 113

3.6 Contexts changing through the parsing of a gene definition 116

3.7 UML diagram of the NeuroGene system . 118

3.8 The NeuroGene main GUI view . 122

4.1 Computing the concentration at a point (x. y. z) by successive interpolation

in 3D . 129

4.2 Protein concentration values computed by NeuroGene from two different con-

centration gradients . 130

4.3 Aliasing problem deriving from the production of extracellular protein 131

4.4 Computed protein concentration gradients from shown concentration profiles . 134

4.5 Vector field representing the computed concentration gradient vectors across

a simulation space with a simple spherically symmetrical concentration dis-

tribution . 135

4.6 Decay of protein with decay rate 0.02 and initial concentration 1.0. 137

4.7 Diffusion from a simple initial concentration function in 1D 141

4.8 Diffusion from a simple initial concentration function in 2D 141

4.9 Diffusion from a simple initial concentration function in 3D 142

4.10 Same simulation as that shown in figure 4.7, except that the rate of diffusion

is 3 times higher . 142

4.1 1 Diffusion in a closed simulation space . 144

5.1 Gene network responsible for initialization of the first segment of Drosophila

melongaster . 151

5.2 Start point and steady state situation of the NeuroGene simulation of the

Evenstripe system of Drosophila melongaster 151

5.3 Expression pattern of ephrinA/B in the tectum and EphA/B in the retina . . . 154

5.4 Growth cone function for climbing a concentration gradient of the protein

retino TectalGradient . 156

xii

Implementation of a self-enhancing cell identity gene 157

The "pecking-order" mechanisms gives rise to a sorted topographical projec-

tion . 160

Simulation of map formation in wild.type . 163

Experiments showing the resistance of the map formation model to variations

in gradient shapes . 164

Expansion and compression of the topographic projection caused by removal

of half the retina or half the tectum . 165

5.10 Experiment in which the retina consists of two nasal half.retinas. so that

opposite gradients exists in the left and right half of the retina 167

5.11 Experiment in which two eyes innervate the same tectum. one of which is

reduced in size . 168

5.12 Simulation of the topographic map formation with the experimental modifi-

cations after Brown et a1 . (2000) . 170

5.13 Results from simulations with varying levels of EphA knockin 171

5.14 Projection of 25 distinct populations of nasal receptor cells onto a target area

representing the nasal bulb . 173

5.15 A: Neurotrophic mechanism of axon-axon repulsion at 9000 time steps (steady

state) . 176

5.16 Refinement by moving waves and Hebbian learning 185

5.17 Simple Hebbian learning implemented in the NeuroGene gene language 187

5.18 Hebbian learning mechanism as implemented using receptor-ligand interactions . 188

5.19 The gene implementing the learning rule . 190

5.20 Experiment for ocular dominancelrefinement with endogenously generated

neural activity . 191

5.21 Patterns of endogenously generated neural activity in the retina, as simulated

in NeuroGene . 196

5.22 Refinement and ocular dominance with endogenously generated neural activity . 198

5.23 ODCs and topographies of the two eyes . 200

5.24 Exogenous neural activity modules assembled to give different but related

visual input to the two eyes . 201

...
Xlll

5.25 Refinement, ocular dominance and topography as simulated using exogenous

simulated visual input. 202

5.26 Ocular dominance stripes generated with different inter-eye correlation of neu-

ral activity. 204

6.1 Example of a gene effects section which reveals the unusual semantic proper-

ties introduced by the parallel execution model of NeuroGene. 216

C.l Example of naming of a set of related cells ("Foo" being the parent) according

to the rules outlined here. 266

D.l The complete exogenous filter assembly used to simulate the visual stimuli of

the ocular dominancelrefinement experiments. 276

G.l Three experiments that are replicated by other models, but which have not

been attempted by us. 298

xiv

List of Algorithms

1 Simulation of ligand-receptor binding for one WorldNode instance W 63

2 Simulated gene expression . 67

3 Growth cone simulation . 73

Chapter 1

Introduction

The human brain is arguably the most complex thing in the known universe. How does it

come about? What is the role of innateness and learning in its formation? Is this level of

complexity beyond the limits of what can be constructed under genetic control? How do

genes and environment (nature and nurture) compete or cooperate to build a brain? In this

thesis I will try to show how genetic and environmental information together may shape

some components of the vertebrate central nervous system. My tool will be a simulator

based on current knowledge of genetics and developmental neurobiology. There are three

components to my work:

Develop a set of primitive operations that can encode the genetic information necessary

to explain the observed developmental processes. These primitives must reflect the

genetic control mechanisms as well as cellular communication and behaviour.

Build a simulator of neurodevelopmental processes. This simulator takes as input a

genome written using the set of primitives. By application of the genetic instructions

to a set of cells, these undergo changes in behaviour, and through this behaviour they

give rise to structures that may resemble biological tissues.

Demonstrate the power of the simulator by simulating the development of well under-

stood systems from neurobiology. The systems are chosen for being dependent on both

genetic and environmental cues during development.

CHAPTER 1. INTRODUCTION 2

In the remainder of this chapter, I will first discuss why I believe there are large potential

benefits to incorporating as much biological knowledge as possible in connectionist models

of neural systems (section 1.1). Section 1.2 is an introduction of the relevant principles of

developmental biology, relating to gene regulation, chemical signaling, etc. Section 1.3 is an

introduction of the relevant neurobiology, mostly relating to developmental processes and

mechanisms which are unique to neural tissues. In section 1.4 I discuss the relationship be-

tween learning an innateness, and how an improved understanding of how these two interact

may lead to a better understanding of the mind. Finally, in section 1.5 I outline earlier work,

some of which forms the basis for the research presented in this thesis.

1.1 The need for a biological approach to connectionism

The goal of cognitive science, in my understanding, is to bridge the gap between physiology

and psychology - to explain our experience of the mind in terms of the mechanisms of the

body and the brain. The problem is approached from two directions, with psychology or

biology as starting point. Cognitive science brings together a number of disciplines that use

either or both of these approaches. Connectionism, perhaps more than any other cognitive

science, attacks the problem from both sides, creating models consisting of neuron-like nodes

and synapse-like connections to tackle complex cognitive tasks.

Regardless of whether we chose a "classical" or a neural network approach to artificial

intelligence, an ultimate goal is to understand how the mind is implemented in the biological

brain. The neural inspiration for connectionism makes this goal more explicit, and perhaps,

more attainable. Some connectionist researchers seem to feel that "in time, 'rigid' classical

models of higher cognition will yield to more fluid, more realistic, neurally inspired models

of which are at least akin to current connectionist models" (Hadley, 1999, p. 198).

Connectionism has suffered from a paucity of detailed knowledge about the properties

of biological neural networks. As a result, many important connectionist models have relied

on assumptions and guesswork about the entities they model. Recent and rapid progress in

experimental techniques within neuroscience, genetics and other areas of biology is now filling

many gaps in our knowledge about the structure and function of biological neural networks.

The conductance (or "weight") of individual synapses can be measured and manipulated in

vivo (Zhang et al., 1998) and related directly to behaviour (Oda et al., 1998). The role of

CHAPTER 1. INTRODUCTION 3

chemical communication in the activity-dependent formation and stabilization of synapses

is being uncovered (Bonhoeffer, 1996). Particular forms of learning have been disabled by

reducing the activity of a particular receptor in parts of the brain of monkeys (Liu et al.,

2004), and social memory and recall has been specifically altered by changing the level of

particular neural signaling molecules in rats, voles and sheep (Bielsky and Young, 2004).

Functional neural networks can be grown and studied in vitro (Bi and Poo, 1999). Transient

shifts in human perception have been induced in experiments designed based on our improved

understanding of synapse plasticity (Fu et al., 2002). New learning algorithms with strong

biological justifications have been formulated (Song et al., 2000; Elliott and Shadbolt, 1998a),

and new connectionist architectures are constructed based on detailed information about

patterns of neural interconnections (Rodriguez et al., 2004).

This rich and rapidly growing body of knowledge represents a treasure-trove for connec-

tionists. However, the incorporation of detailed biological experimental results into a con-

nectionist methodology poses new challenges, not least because the biological understanding

of neural systems is still far from complete, and new discoveries continue to surprise. My

research is part of an effort to allow new biological knowledge to bear on central unanswered

questions in cognitive science: What are the topologies of the neural networks that are re-

sponsible for our cognitive processes? How are these topologies formed? What is the role of

learning and experience in forming neural networks? To what extent is our mind subject to

genetic (i.e. evolutionary) control? What are the biological processes underlying learning?

What are the limits to what can be learned?

1.2 Principles of development a1 biology

Development is the process by which biological tissues grow and differentiate during the

life of an organism1. Starting with the fertilized egg, developmental processes control cell

division, differentiation, migration and programmed cell death to give rise to an organism

equipped to survive outside the protective environment of the egg or the womb. After birth,

development continues in the form of gradual increase in body size, as well as more abrupt

changes such as metamorphosis in insects and puberty in mammals.

'See appendix A for a list of terms than may be unfamiliar to non-biologists.

CHAPTER 1. INTRODUCTION 4

In this review of developmental biology I will focus on developmental mechanisms in

animals. While the genetic machinery is identical in plants and animals, plant development

is significantly different in several respects, particularly due to the fact that plant cells do

not migrate. Within the animal kingdom, the principles of developmental biology appear

to be almost universal. For example, many genes and mechanisms discovered in the worm

C.elegans have since been found to also exist in mammals.

1.2.1 Gene expression and regulation

The development of an organism is a process of cellular self-organization under the control

of the genetic code. Genes are active units of information, chemically encoded in the form

of DNA, and interacting with other genes and with the cellular environment through DNA-

protein and protein-protein interactions. The collection of all the genes of a single organism

is called the genome of that organism.

At one level of description, a gene contains the information needed to make one particular

kind of protein. Through the machinery of transcription and translation (often abbreviated

to expression), information encoded in the Pletter DNA code (A, T , G and C) is translated

into a sequence of amino acids which are linked together to form a protein. The protein code

consists of twenty different amino acids. In contrast to the four letters of the DNA code, the

twenty amino acids have widely divergent chemical properties, which in turn cause different

protein sequences to give rise to proteins with widely divergent, and highly specialized,

properties and functions. Examples include structural proteins (e.g. in hair and skin),

catalytic enzymes (e.g. digestive enzymes), photo-reactive proteins (chlorophyll and eye

photo receptor pigments) and communication carriers (hormones like insulin). Proteins

are central to the processes of cellular motion (e.g. in muscle cells), chemical recognition

(antibodies), signal transduction (sensory cells related to all our five senses), as well as every

other function performed by living bodies.

A particular class of proteins are those that bind to DNA, in particular proteins that are

able to recognize and bind to particular DNA code sequences (Davidson, 2001). These are

regulatory proteins (or transcription factors), which means that they regulate the transcrip-

tion of genes. This gives rise to the second level of description of genes. At this level, genes

are units of information that interact with each other. When the gene for regulatory protein

CHAPTER 1 . INTRODUCTION

- Cell

Nucleus

Genome = Gene*
DXX t N *

Gene Enhancer Coding region
IN = 4

[{En, em) -t B > Transcription

\ 1 RNX t N * Transcriptio messenger RNA
factor

\ 1 Translation
Ribosome: N 3 -t A

Enzymes, receptors, protein E A*
+ signals, structural

A = 20
components, etc.

Intracellular

1 J

soluble p r o t e i n 0
Membrane
bound protc

1

0 Extracellular
soluble protein

Figure 1.1: Gene expression. The genome is stored in the cell nucleus, of which there is
exactly one in every cell. The genome consists of a large number of genes, encoded in
DNA. A gene consists of an enhancer region and a coding region. The enhancer consists of
regulatory elements. The regulatory elements bind regulatory proteins. The combined states
of all the regulatory elements (occupied or free) determines the rate at which transcription
occurs. During transcription copies of the gene's coding region are created. These copies are
made from RNA, a chemical that is very similar to DNA, and which encodes information
over the same Pletter alphabet. The mRNA copies are mobile and may be transported to
the far reaches of the cell. There they are translated into proteins by cellular machinery
called ribosomes. Proteins are strings over a 20 letter alphabet of amino acids. Depending
on the sequence of amino acids in the protein, the protein may bind to cell membranes or
remain soluble in the intracellular fluid. The proteins are then transported to their final
destination. For Regulatory proteins re-enter the nucleus where they bind to regulatory
elements of one or more genes.

CHAPTER 1. INTRODUCTION 6

"A" is transcribed and translated into a protein, this protein will seek out its specific DNA

code sequence and bind to it. This DNA sequence actually forms part of another gene "B"

- however, the sequence is never translated into a protein. The sequence is one of perhaps

many regulatory elements that make up the enhancer region of gene "B". Depending on the

particular gene in question, the presence of protein "A" at the regulatory element may cause

gene "B" to become expressed, or to cease to be expressed. This comes about because the

protein may help or hinder the binding of an enzyme to the beginning of gene "B1"s protein-

coding region. This enzyme carries out the first step (transcription) in the process of gene

expression. The expression of "B" will in this case be causally affected by changes in the

concentration of the protein "A". Such causal relationships are central to the developmental

and genetic processes we aim to simulate. However, the molecular detail underlying these

relations (as shown in figure 1.2) will not be explicitly modeled.

There exists a lot of biological data on the expression behaviour of a wide range of genes,

to the point where the elucidation of such information is considered as its own discipline,

known as proteomics, see e.g. Palzkill (2002) and Davidson et al. (2002). For some genes, their

expression behaviour can be expressed using boolean algebra, e.g., a gene is expressed only

if some protein is present in a certain amount, or only if the cell receives neural activation

above a certain threshold, etc. For other genes, the expression profile is better encoded

using arithmetic, e.g., the expression rate of some gene is proportional to the square root

of the concentration of some protein. For yet other genes, the expression behaviour is best

represented by a combination of both.

Genes also play a central role in evolution, the process which over the centuries and

generations causes organisms to constantly remain genetically well-adapted to their changing

environment. Evolution rests on genetic processes such as point-mutation, chromosome

cross-over, sexual reproduction and others. Since we do not aim to model evolution within

NeuroGene, these processes fall outside the scope of this thesis.

1.2.2 Gene networks and cascades

Many genes are subject to very complex regulatory mechanisms. An example of such a gene

is end016 in sea urchin, which

. . . is expressed in the early embryo in the progenitors of the endomesoderm,

CHAPTER I . TXTRVDUCTIOX

Figure 1.2: complex. A: A number of regulatory proteins (polygons) bind to the
DNA of the enhancer region (dashed line) in such a way that the transcriptional enzyme
(circle) ca.n bind arid initiate transcription. The coding region of the gene is off t,o the right
in the direction of the arrow. In the complex proteins bind t.o DNA as well as to each other
through specific interactions, i.e. proteins recognize and birld to specific DN.4 sequences and
specific binding sites on other prot,eins. The probability that t,he enhancer complex is forrried
in a given cell at a particular time is a function of the properties of these DKA-protein and
protein-protein interactions. as well as the coricentration of all the regulatory proteir~s. For
example, a protein that binds only weakly to the enhancer corriplex must be present in a

high concentration for the complex to be likely to form, while a proteiri t,hat binds strongly
needs only be present in low concentration to ensure that the complex forms. The higher
the probability of the complex forrriing, the more freyuent.1-j the transcriptional enzynie will
bind and copy the gene's codirig region, and the higher the expression level of the gene.
The expressiori rate of the gene is therefore a function of the properties of the enhancer and
the regulat,orv proteins (both ultimately encoded in the geriorne as inherited inforrriation)
and the current state of the cell, expressed as the current concentratiori of all relevant
regulatory proteins. B: Transcription is disrupted because a required regulatory protein
is absent. C: Transcription is disrupt-ed because the presence of an inhibit,ing regulatory
proteins (black), either or1 bound or free proteins, impede the forrriatiori of the enharicer
complex. D: Transcription is disrupted because a regulatory protein (black) binds where the
trariscription enzyme should bind.

C H A P T E R 1. INTRODUCTION 8

then throughout the gut, and finally only in the midgut, a not very elaborate

temporal sequence. But its control system turns out to be an elegantly organized

and complex information processing device that responds to both positive and

negative inputs to set the boundaries of expression. Early and late expression

phases are controlled by two different sub-regions of the regulatory sequence,

or modules, each several hundred base pairs long. Together these are serviced

by nine different DNA sequence-specific transcription factom2 [. . .] The func-

tions that the end016 regulatory system performs are conditional on the inputs,

and they include linear amplification of these inputs, but also many non-linear

operations such as an intermodule switch that transfers control from the early

to the late module, detection of input thresholds, and various logic operations

(Davidson et al., 2002, p. 1670).

Depending on the abundance of different regulatory proteins in the cell, some of the regula-

tory elements will be occupied, and some will be empty. Depending on which proteins are

present and which are absent, the enzyme that initiates gene expression may have a higher

or lower affinity for the gene's coding region; stated simply, the enzyme may have a harder

or easier time doing its job. If the enzyme has an easy time, it will succeed often. As a

result, the protein that the gene encodes will be produced in large quantities. If the enzyme

has a hard time getting to the gene, the protein is produced at a lower rate or not at all.

The abundance of a regulatory protein affects the states (occupied or free) of regulatory

elements of other genes. This affects the facility with which the enzyme can help express

these genes, which in turn affects the rate of production of the corresponding proteins. In

other words, the abundance of one protein affects the rate of production of another - a more

common way of saying the same thing is that one gene affects the expression of another gene.

The genes of an organism define a network in the form of a directed graph. The nodes of

the graph are the genes, the arcs are causal their interactions which determine the expression

behaviours of each gene. While no such network has ever been constructed in its entirety

for any organism, pieces of it has been discerned in many cases.

Sometimes the graph takes the form of a tree, with a "master gene" at the root. Such

gene networks are often called cascades. An example is the gene Pax6, which is involved

Transcription factor is another term for regulatory protein.

CHAPTER 1. INTRODUCTION 9

in eye formation in fruit flies. Through experimental means, Halder et al. (1995) caused

Pax6 to be expressed in parts of the fly where it would normally be silent. This caused

anatomically complete eyes to form at places where limbs and antennas normally form. The

Pax6 gene sequence consists of about 21,000 DNA base pairs, representing approximately

42 kbits of information (Genecards, 2004). This gene by itself cannot possibly contain all

the information necessary to build fruit fly eyes. Instead, Pax6 regulates a number of other

genes, which themselves regulate more genes, until all the genes required to build photo

receptor cells, pigment cells, cone cells and bristles are activated in the proper spatial and

temporal pattern required to build the eye. It is believed that a total of approximately 2,500

genes are involved in eye formation in the fruit fly (Halder et al., 1995, 1998; Gehring, 1998).

1.2.3 Receptors and inter-cellular signaling

The description above limits gene-gene interactions to those that occur within a single cell.

However, developmental processes rely on communication between cells, both between neigh-

bouring cells and over longer distances. The carriers of information are still chemical sub-

stances, either attached to the surface of cells or released into the extra-cellular fluid.

Chemically mediated inter-cellular communication relies on cells carrying receptors that

are sensitive to the presence of specific signal molecules. The receptors are bound to the cell

membrane, and carry a binding site for signal molecules. This binding site is exposed to the

extra-cellular space. When a molecule binds to the receptor on the outside of the cell, it

sets off a chain of events inside the cell leading to the activation of some protein that affects

the expression level of one or more genes. In this way the expression level of genes in one

cell may affect extra-cellular signal concentrations which again affect the expression levels

of genes within other cells.

Competition as developmental principle in neuroscience has found extensive support in

experimental observations (van Ooyen and Ribchester, 2003; Swindale, 1996). The most

studies example of such competition is the neuro-muscular junction (Rasmussen and Will-

shaw, 1993). Ligand-receptor binding is a purely chemical process by which biological sys-

tems may implement competition (Harding and Chowdhry, 2001). Different cells, carrying

differing amounts of receptor bound to their surfaces, will attract different amounts of a

soluble ligand which is present in the space surrounding the cells. The amount of receptor

- Cell

Nucleus - =92

I

Inactwe
second messenger

O\
second messenger

b

.) Enrracellular signal

Figure 1.3: Intracellular signaling. The cell initially carries receptors on its surface, and
contains a ':second messenger'' protein in an i~iactive forni. When an extracellular sig~ial
binds to the receptor (1); the receptor changes shape, exposing on the intracellular side an
"active site" (2) that was previously inaccessible. The inactive form of the seco~id messenger
niolecule binds to this active site (3). The receptor then acts as am erizyrrie (or catalyst).
converting the inactjive form of the secorid messenger into its active form (4). This activation
often consists of attaching a negatively charged phosphate group (-PO:-) to t,he second
messeuger. Enzymes that activate other proteins through phosphorylatiori are called kinases,
and they are central to almost all know11 intracellular inforr~is~tiori processing systerris. The
activated second messenger then breaks free from the receptor, and travels t,o the nucleus,
where it acts as a regulat,ory protein: binding to the enhancer region of genes, turning them
on or off. The receptor is now free to activate a new second messenger molecule (5). A
sirigle extracellular signal ~nolecule can thus cause the activation of' a large number of' secorid
rriessenger. rno1ec:ules: thereby causing a form of arnpli,fication. Eventually the extracellular
signaling ~riolecule is destroyed or dislodged from the receptor, arid the receptor returns to
its inactive form (6).
Note that both the inactive second messenger and the receptor are proteins encoded in genes,
and that these genes must have been expressed in preparation for the encounter with the
extracellular signal rriolecule - the sensitivity of cells t,o extracellular signals is therefore
under genetic control.

CHAPTER 1. INTRODUCTION 11

carried by each cell then becomes the competitive strength of each cell. The cells compete

for a limited resource, which is the ligand present in the extracellular space.

1.2.4 Gradients, domains and patterns

The bodies of all complex animals are divided into tissues and organs which consist of cells

with different properties and activities. The main goal of developmental biologists is to

understand how these patterns of cell differentiation arise.

The simplest mechanism by which cell differentiation can arise is through a concentration

gradient established though the diffusion of a soluble3 signaling molecule. Typically, the

signaling substance is produced by cells within a small area, and diffusion causes a monotonic

decrease in the concentration of the signal with increasing distance from the source. The

range of diffusion and the shape of the resulting gradient depend on the rates of production,

diffusion and breakdown of the chemical signal. Given two or more dissimilar gradients,

sensitive cells may react reliably in a position-dependent manner, forming new domains in

what was previously uniform tissue. Some cell types may react by producing other diffusible

chemicals, thus establishing new gradients. In this way, wide ranging gradients may give

rise to new gradients with narrower range, each time dividing domains of uniform cells into

differentiated sub domains of steadily increasing complexity (Davidson et al., 2002).

Not all signal molecules are free to diffuse through the embryo. Some remain bound to

the surface of the cells that produce them. These signals are only detected by cells in the

immediate neighbourhood. Membrane-bound signals may act as tags which identify cells or

tissues, or for constructing fine patterns in which single cells may assume roles that differ

from those of their immediate neighbours (Muller, 1997).

1.2.5 Developmental mechanisms

Genes interacting with other genes is a means to an end, which is to affect the size and shape

and activities of the cells, organs and organisms they are part of. The size and shapes of cells

is commonly referred to as the cell morphology. In contrast to the wide repertoire of gene-gene

interactions within and among cells, genes have a limited set of ways in which they can affect

cell morphology. These include cell division, cell migration, and programmed cell death, all

3"Soluble" is used in this text to distinguish from "membrane-bound"

CHAPTER 1. INTRODUCTION

of which are under genetic control. As will become apparent in the following section, nerve

cells have more complex shapes than most other cells in the body, and a correspondingly

wider repertoire of developmental mechanisms is used to build neural organs.

Biological cells contain an internal network of stiff fibres which maintain the cells' shape.

This network is known as the cytoskeleton. The cytoskeleton is highly dynamic! constantly

being broken down and rebuilt. It is attached to the cell membrane, and changes in the

structure of the skeleton may lead to changes in the shape of the cell. Through the cells'

ability to adhere to their surroundings, such changes may again be translated into cellu-

lar migration. Similar intracellular scaffolding is also involved in cell division. Concerted

cytoskeletal changes in large numbers of cells may lead to large-scale changes in shapes of

tissues and organs. Very similar mechanisms underlie the migration of axons and dendrites.

Like all other processes in the cell, changes in the cytoskeleton are under genetic control,

through genes expressing proteins which in turn cause skeletal fibres to break down or be

rebuilt. See e.g. Browder et al. (1991, chapter 9) for an introduction to cellular adhesion and

motility. The intracellular skeletal structures are also involved in intracellular trafficking of

proteins to specific target areas within the cell. The targeting information is encoded in the

gene along with the protein sequence. The target area may be one of the various intracel-

lular structures or, in the case of neurons, different part of the neuronal structure, such as

synapses, axons, dendrites, etc. Through this mechanism, the cell nucleus, containing the

genome of the organism, acts as a central coordinator of all the cell's activities.

1.2.6 Studying genes

The study of genes involves a number of interdependent techniques. This typically imposes

a certain ordering on the study of the various aspects of the structure and function of a

particular gene, since the information originating from the application of one technique

is required for the use of another. However, the fact that many genes are shared among

organisms often allows for the required information discovered in one organism to be applied

to the study of another. Below are listed a number of questions that can be posed relating

to a given gene, and short outlines of the techniques used to answer these questions:

1. What does a gene do? That is, what is the effect of changes in the expression rate of

the gene? Statistical analysis of the variability of a trait across individuals can suggest

CHAPTER 1. INTRODUCTION 13

the existence of one or more genes contributing to that trait. The discovery of mutant

organisms with grossly affected phenotypes, such as altered body-shape! behaviour,

etc., can also lead researchers to the discovery of the mutated gene which can then be

directly correlated to the observed mutant phenotype.

2. How is the gene regulated? How is the gene expression rate affected by changes in the

state of the cell and its environment? Where and when is the gene expressed? These

question can not be answered without a certain understanding of question 1, since

researchers need to be able to determine whether the gene is active or not in any given

situation. Important techniques include knockout and over expression of other genes

causing reduced or elevated concentrations of regulatory proteins, thus affecting the

expression of the gene in question. Detecting either the mRNA or protein produced

from a gene requires the sequence of the gene or that of a related gene, possibly from

a different organism. This can be used to determine where in the organism a gene is

active.

3. Where is the gene located within the chromosomes of the genome'? This is often a

difficult and time-consuming problem to solve, however it leads to the sequence of the

gene, including regulatory elements, which is required for further progress. Again, it

relies on knowing the answer to question 1, and may be assisted by knowing sequences

of related genes from other species.

4. How is the gene related to other genes in the same and other species? This requires the

sequence of the gene to be known, and involves statistical analyses of similar but non-

identical sequences. If the gene is found to be closely related to other genes (perhaps

in other organisms) whose structure and function is well understood, rapid progress

can be made in understanding the novel gene.

5. How does the gene regulation work? This requires the identification of regulatory

protein binding sites within the DNA sequence of the regulatory elements of the gene.

Often the gene sequence alone can give many answers, but if a novel regulatory protein

with an unknown DNA binding sequence is involved, more detailed investigation of

molecular interactions between the DNA and the novel protein is required. A good

understanding of question 2 is very helpful in this work.

CHAPTER 1. INTRODUCTION 14

6. How does the protein produced by the gene work? That is, what other protein does

the protein in question interact with, how are these interactions modulated, etc. (see

figure 1.3). Here knock-out and over expression of putative interacting proteins is

an important tool, similar to what was used in question 2, but here applied to the

discovery of protein-protein interactions. An extension of this question is: what is

the detailed molecular mechanism of the proteins' action? This requires either the

molecular structure of the protein, or that of a protein produced by a closely related

gene.

7. How can drugs be created which would alleviate disorders caused by malfunctions in

the protein? This is often the ultimate goal of genetic research. This requires a detailed

understanding of question 6.

Each of these analyses produce an increasingly detailed picture of the structure and function

of a particular gene. As will be outlined in detail in chapter 2, genes within the NeuroGene

system are represented at a level of abstraction where much of this information is omitted.

In fact, only the information discovered from points 1-2 above are represented within the

NeuroGene data structures.

1.3 Neurobiology

A neuron is a cell highly specialized for processing information in the form of electrical

pulses. The central part of the cell consists of the soma, which contains the cell nucleus.

This is the site of gene transcription, translation can also occur in other parts of the neuron

(see figure 1.1). Extending from the soma are long fibrous extensions collectively known as

neurites, which fall into two classes, dendrites and axons. -4 cell commonly carries a large

number of dendrites but only one axon. The axon usually extends far away from the soma

while the dendrites form a highly branched network close to the soma.

Neurons form connections among themselves through synapses. At the synapse the elec-

tric signal (action potential) in the presynaptic cell is converted into a pulse of chemical

signaling molecules (neurotransmitter) which diffuses across the synaptic cleft. At the post-

synaptic side of the cleft, the chemical signal is converted back into an electric signal in the

postsynaptic cell. As a rule, synapses connect the axon of the presynaptic cell to on of the

CH.4 PTER 1. TAvTROD UCTTO3-

Soma

Nucleus

Dendrites

Ason

Growlh cone

Presynaptic cell

Postsynaptic cells

Action potentials

mRNA transport

Figure 1.4: Sche~riatic of a neuron. a-d indicates diff'erent kinds of synapses: a and b are
incoming synapses through which the cell receives neural activity from other cells not shown.
c arid d are outgoing synapses through which neural activity is trarisrriitted to other neurons.
a arid d are synapses formed between the axon of one cell arid the deridrit,e arbor of ariot,her.
b is an exarriple of a synapse on the soma of a cell, while c is an en.-passa.nt synapse formed
on the main shaft of the axon.

dendrites of the postsy~iaptic cell. This irriplies that dendrites act as the cell's input device,

while the axon is the output device.

1.3.1 Neural activity

Neurons are non-linear in their information processing activit,~. They pass on i~if'ormation

to their postsynaptic cells in the for111 of discrete action potentials. Information is carried in

t,he frequency and timing of these action p~t~ent ia ls , riot in their shape or amplitude which

tend to change little. This means that a neuron's computatioli consists of determining when

to "fire"? i.e., cause an action potential in the axon. I t is believed that this computation takes

place at the axon hillock-, an enlarged part of the axon a t the point where it joins the soma.

4 neuron that has not received any action potentials for a while, will be a t resting

potentia.1. This means that the potential (voltage) across the cell rnerribrarie will be around

-70 nil{. As the neuron receives act,ion potentials from its afferent cells. the membrane

potential increases. The amount of increase will depend on the number of action potentials.

the conductance of sjrnapses (also referred to as s y n a p t i c ,we igh t) , the proximity of the

synapses to the soma and properties of the cell rriernbrane. When t,he ~nenibrane potential

CHAPTER 1. INTRODUCTION 16

reaches a threshold potential, typically between 6 5 and -55 mV, the cell fires. This means

that a new action potential is generated in the axon hillock, after which the membrane

potential drops down to the resting potential. The neuron is typically insensitive to further

input for a period after firing, called the refractory delay. When a cell receives action

potentials on inhibitory synapses, it may become hyper-polarized, bringing the membrane

potential below the resting potential and making the cell less likely to fire.

1.3.2 Growth cones and neuronal development

A correctly interconnected nervous system is the result of massive exploratory growth, with

the growth cone as the explorer par excellence (Gordon-Weeks, 2000). A dynamic structure

at the tip of extending neurites, the growth cone is largely responsible for neuritic orga-

nization at all levels, from long-range axon guidance to the exact positioning of synapses.

It consists of a bulbous structure at the tip of a growing neurite from which extends large

numbers of fibers called filopodia. These fibers probe their environment and direct axon

growth and synaptogenesis. While most of the research on growth cones has focused on ax-

onal path finding mechanisms, a more recent study has shown that dendrite growth occurs

though similar processes (Furrer et al., 2003). Given the central role of growth cones in the

development of neural tissues, it follows that simulation of growth cone function will also be

central role to the NeuroGene simulation system.

Growth cones contain mitocondria and ribosomes, indicating that they are self-sufficient

with respect to energy and protein synthesis (gene translation). Growth cones even remain

functional for up to three hours after the axon has been severed from the cell body (Halloran

and Kalil, 1994). The cell presumably exerts control over the growth cones by transport-

ing mRNA of appropriate genes along the extending neurites. However, the translational

machinery in the growth cone (which produces protein according to instructions carried by

mRN A) constitutes a second level of control over protein synthesis. The "local authority"

of the growth cone may give it the ability to react rapidly to changes in its environment,

something that would not be possible if it was "micro-managed" by the distant nucleus.

The structural integrity of axon fibres are maintained by intracellular skeletal fibres called

microtubules (see section 1.2.5). These extend into the central portion of the growth cone.

The peripheral part of the growth cone is high in another fibrous substance called actin. See

CHAPTER 1. INTRODUCTION

Hely (1998, chapter 3.) for a good review of growth cone biology.

The ability of growth cones to act as path finders relies on filopodia's ability to sense their

environment. The filopodia are able to detect exceedingly shallow concentration gradients of

signaling molecules (1% over 25 pm (Baier and Bonhoeffer, 1992; Goodhill, 1998)). They are

also able to integrate multiple such signals simultaneously in order to decode combinatorial

signaling (Thor et al., 1999; Goodhill, 2003). Axons are often observed to grow along physical

features in their environment, such as grooves (Tai and Buettner, 1998). In nature, axons

commonly grow in tight bundles, possibly due to growth cones navigating along similar

physical features.

Both actin and microtubules are constantly broken down and rebuilt. These dynamic

processes form the basis of growth cone motility (Buck and Zheng, 2002). For example,

an increase in rate of buildup and a concurrent decrease in the rate of breakdown of actin

within a particular filopodium will cause that filopodium to grow, conversely when the rate

of breakdown is higher than the rate of build-up, the filopodium will retract. Interaction

between the actin and the microtubules is believed to similarly affects the rate of extension

or retraction of the growth cone as whole. Interestingly, growth cone motility is based on

the same mechanisms that of other motile cells, such as white blood cells (Li et al., 1994).

For sensing to affect growth cone behaviour, contact between filopodia and the envi-

ronment somehow affects the rate of actin/microtubule buildup and breakdown within the

growth cone, so that contact with an attractive cue stabilizes filododia and contact with

repulsive cues destabilize them. This phenomenon can be observed when growth cones are

about to turn, at which point a large number of filopodia extend in the direction of future

extension (Zheng et al., 1996). However, growth cone behaviour is complex, often character-

ized by high degree of seemingly random motion which only over longer time spans emerge as

directed growth toward a target structure. There is also a high degree of variability among

axons within a single class of neurons, with as much as a 3-fold difference in propagation

speed (Halloran and Kalil, 1994).

The shape and behaviour of growth cones often vary as they traverse different tissues:

When a growth cone appears to follow a simple cue such as a concentration gradient, it is

typically small and stream-lined, and progresses at a quick and even pace without pauses.

At "choice points", where the growth cones are about to change direction, the growth cone is

typically larger with a more complex shape, it may extend axonal side branches with their

CHAPTER 1. INTRODUCTION 18

own growth cones. .4t such points, the growth cone makes frequent pauses of highly vari-

able duration, and often goes through repeated phases of advancement and rapid retraction

(Halloran and Kalil, 1994).

Growth cone behaviour may be completely altered after a single filopodium makes contact

with a specific cell, such as the case of the guide-post cells which cause extending axons to

go through a 90" turn (O'Connor et al., 1990; Palka et al., 1992). Such abrupt changes

in behaviour indicates that the internal state of the growth cone determines how it reacts

to external signals. It has been shown that changes in the internal concentration of the

important signaling molecule c.4MP causes some growth cones to switch from being attracted

to being repelled by the same signal (Song et al., 1997). Intracellular Ca2+ plays a similar

role altering growth cone behaviour (Gomez and Spitzer, 2000; Zheng, 2000).

Growth cones transform into a synaptic termini during synapse formation. Growth cones

have several features in common with synaptic termini: They commonly secrete neurotrans-

mitters, which also play a role as guidance molecules (Hentschel and van Ooyen, 1999).

Growth cones also carry ligand-gated ion channels, including NMDA receptors. In synapses,

NMDA receptors are involved in the transduction of the glutamate neurotransmitters signals

into action potentials at the postsynaptic terminus. In growth cones, the same receptors al-

low the growth cone to detect extracellular glutamate, causing growth cone turning (Zheng

et al., 1996).

1.3.3 Synaptogenesis

Compared to axon guidance, synaptogenesis is less well understood. It is known that axonal

growth cones select targets for synaptogenesis with extremely high specificity (Brose, 1999).

Given the large number of different neuronal cell types in the target areas of many axonal

pathways, the selection is probably mediated through combinatorial signaling. This means

that each cell type is recognized by the absence or presence of N different signals, in principle

allowing up to 2N different cell types to be distinguished. Important examples of such

combinatorial signaling is the Robo-code (Goodhill, 2003) and the LIM-hd system (Bachy

et al., 2001).

After the initial contact between the two cells, the axonal growth cone is converted into a

presynaptic terminal. Tight binding between the two cells are mediated by a number of cell

C H A P T E R 1. INTRODUCTION 19

adhesion molecules (CAMs). The presynaptic terminal expresses signals that interact with

receptors of the target cell, thereby inducing the target cell to form a postsynaptic terminal

directly opposing the presynapse. Both the presynapse and the postsynapse are highly

specialized structures, each containing cellular machinery for neurotransmitter secretion and

reception, respectively.

In many cases it is not the main trunk of the axon that forms most of the synapses, but

rather side branches (collaterals) which extend well behind extending the tip of the main

axon. One study has found that the growth cone pauses and increases in size at the point

where such collaterals will form after the main growth cone has continued on (Kalil et al.,

2000). This may mean that while the collaterals form from the axon shaft, the growth cone

has marked the spot where this is to occur, again highlighting the importance of the growth

cone in forming neural topologies.

En passant synapses, which are also common in the central nervous system, are synapses

that form directly on the main shaft of the axon. These form through a process that resembles

the formation of collaterals. The axonal growth cone pauses while forming a structure that

will become the presynapse. The axonal growth cone then continues on its way, while the

synapse is completed (Hatada et al., 1999).

CAMs may be involved in more than binding the synapse termini together. There are a

sufficient number of different CAMS that they may be used in combinatorial signaling. The

trans-synaptic signaling inducing the formation of the cellular synaptic machinery may also

be mediated by CAMs. There is even evidence for the involvement of CAMs in long-term

potentiation. (See Brose, 1999 for a review of the role of CAMs in synaptogenesis.)

Synapses are highly dynamic structures. Early in development they are formed and

destroyed at a very high rate as part of the exploratory growth of the nervous system

(Innocenti, 1995). They are also believed to be the site where learning occurs. .4ctivity

dependent synaptic strengthening can cause the conductance of a single synapse to increase

up to 50-fold (Chen and Regerh, 2000). Strong and stable synapses stabilize the structures

that support them, while the loss of synapses can lead to retraction of axonal and dendritic

branches (Innocenti, 1995; Cline, 2001).

CHAPTER 1. INTRODUCTION

1.4 Learning and innateness

The first indications of the existence of genes came from every-day observations of the

phenomenon of inheritability - offspring tends to be more similar to their parents than

to other individuals of the same species. At the same time it was clear that individuals

are also influenced by the conditions under which they live. This gave rise to the central

dichotomy of biology, the perceived opposites of nature and nurture, or in psychological

terms, of the innate and the learned.

This dichotomy reflects the two components of most connectionist models of neural net-

works - the initial network topology represents nature, while the learning process represents

nurture. Connectionist models span the spectrum from simple two-layer "perceptrons" that

may need extensive learning (depending on their task) to elaborate hand-crafted networks

that do not incorporate learning at all, see e.g. Hummel and Biederman (1992).

The primary focus of connectionism has often been on models of learning. One reason

for this may have been the lack of biological information about the processes that shape

neural networks. The early Hebbian model of learning (Hebb, 1949) has also fueled a lot of

research into learning phenomena. The model is simple and powerful, and explains a wide

range of observed learning phenomena.

1.4.1 Nurture

Neuronal tissues are, in comparison to other animal tissue types, highly complex. Neurons

are by far the largest cells in the body4, and they form precise connections with other neurons

over large distances. Is the developmental system that build the rest of our body able to

also build the brain? If not, what alternative processes might be involved?

One possibility is that neurons' unique information-processing abilities lend a helping

hand, i.e., the developmental process is dependent on neural activity, and maybe on experi-

ence. The brains ability to recover from injury seems to support this view - following brain

injury, areas of the cortex can to a large extent take over functions from other, damaged

areas of the cortex (Vicari et al., 2000). In one experiment, the visual nerve was made to

innervate the auditory cortex (Sur et al., 1990), and the resulting stimuli are interpreted

4 ~ h e n measured b y their extent, "tip-to-tip", not when measured b y volume.

CHAPTER 1. INTRODUCTION 21

by the animal as visual (von Melchner et al., 2000). It seems that either visual or auditory

cortex can learn to process visual information simply by the fact that they receive input

from the eyes.

However, there is a paradox in this flexibility: if the cortex is so flexible in how func-

tionality are allocates to different regions, then why is it that the location of cortical centres

are the same in all normal, healthy individuals? While experience clearly influences the

structure of the nervous system, there must also be a genetic component to the arealization

of the cortex.

1.4.2 Nature

If we suspect that there is a genetic component to the developmental control of neural tissues,

it is natural to look at what is known about the development of other types of tissues. This

raises two questions:

Are the mechanisms known from other areas of developmental biology sufficiently pow-

erful to produce the complexity of the nervous system?

Is it likely that a separate, parallel developmental system has evolved just for neural

tissues, and is there any evidence for the existence of such a system?

Investigations into the development of the vertebrate central nervous system have indeed re-

vealed familiar mechanisms: domains of differential gene expression, concentration gradients

of diffusible and membrane-bound signal molecules, and complex patterns of differentiated

cells arising from uniform cell populations in discrete steps of domain subdivisions guided

by signal gradients (Krubitzer and Huffman, 2000; Stern, 2001). All the elements of the

developmental system shared among all animals are also found in the developing vertebrate

central nervous system. Not only brain structure, but also function, is sometime genetically

determined: In one case a congenital language deficiency has been traced to one mutant gene

(Lai et al., 2001). This is a strong indication that in this case, genetic information is neces-

sary, though not sufficient, for the development of a specific, well defined cognitive ability.

These findings clearly indicate that conventional developmental mechanisms are involved in

the nervous system.

CHAPTER 1. INTRODUCTION

However, perhaps there are other, parallel mechanisms at work which are unique to the

brain and which account for the unparalleled sophistication of neural structures? To try to

address this issue, we might consider the evolutionary challenge involved in developing new

developmental mechanisms - the assumption being that if a novel developmental mechanism

appeared to construct the brain, novel mechanisms should also have appeared at other

times to account for the development of other organs, perhaps in other species. The fact is

that novel developmental mechanisms do not seem to have appeared with any appreciable

frequency during the evolution of the species. In fact, as far as a very large group of animal

species called the bilaterians5 are concerned, a single, shared developmental mechanism is

used to form an enormous variety of body shapes, from flounders to praying mantids. To

quote Davidson et al. (2002, p. 1677),"[t]he bilaterians all have more or less the same genetic

toolkit, and in particular rely on essentially the same repertoire of regulatory genes to control

the developmental organization of their body plans".

When a novel structure appears during the evolution of some species, the development

of that structure may come about either through a novel developmental system, or else

through the modification of an existing developmental mechanism. Current evidence appears

to support the latter alternative as the more common mode of evolutionary change. This,

together with the lack of any direct evidence of a special brain-building mechanism, supports

the hypothesis that the brain is formed through the same developmental processes under

genetic control as the rest of the body.

1.4.3 Activity dependent development

If a genetically driven developmental program is necessary for the development of the CNS,

is it sufficient? Verhage et al. (2000) created mutant mice that lacked neurotransmitter

secretion, meaning that during their entire prenatal development, there was no neural activity

in their central nervous system. They found that the brains of the mutant mice at birth were

anatomically indistinguishable from those of normal mice, including Yormation of layered

structures, fiber pathways, and morphologically defined synapses" (ibid., p. 864).

While Verhage and coworkers observed that synapses had formed in their mutant mice,

they could not tell whether the correct synapses where formed. Experiments indicate that

 hat is, all animals with bilateral or leftlright symmetry, including vertebrates and insects.

CHAPTER 1. INTRODUCTION 23

neural activity is indeed required for the correct formation of neural topologies such as

ocular dominance columns and topographic maps (Crair, 1999). In these systems, it appears

that that the activity-independent developmental system can only get it almost right, and

that activity-dependent processes come in at a relatively late stage to fine-tune the neural

connections.

1.4.4 A unified theory of neurodevelopment

The developmental process is the outcome of a tightly integrated collaborative effort of the

old "adversaries", nature and nurture. The following quote is instructive as to how such

questions might be approached:

"[Tlo try to determine how much of a trait is produced by genes and how

much by the environment is as useless as asking whether the drum sounds that

we hear in the distance are made by the percussionist or his instrument. On

the other hand, if we pick up a changed drum sound, we can legitimately ask

whether the difference is due to another drummer or another drum." (Kummer

(1971), quoted in de Waal (2001), p. 8, author's emphasis).

Nowhere is this more true than in the nervous system. Through improved insight into the

developmental processes that form the nervous system, we may come to understand the

interplay between our genes and our environment that shape our brain and mind (Marcus,

2004).

1.5 Previous related work

Our goal is to build a software system which is able to simulate neurodevelopmental pro-

cesses to a relatively high degree of accuracy. This means concurrently simulating the ge-

netic control mechanisms of development, protein signaling which is used to coordinate these

mechanisms in time and space, and neural activity which shapes neural connections through

learning-based processes. In each of these areas, computer simulations have been used as

research tools for a long time. This has given rise to a wide range of approaches to imple-

menting these various mechanisms.

CHAPTER 1. INTRODUCTION 24

When it comes to simulating genetic regulatory systems, Hidde de Jong (2002) 1' ists a

number of different approaches, including Bayesian networks, a range of differential equation-

based approaches, stochastic equations, boolean networks, rule-based formalisms and others.

Differential equations as a way to represent genes has a strong appeal, since a gene's expres-

sion rate is an important component of the time-differential of the corresponding protein's

concentration. However, as will be apparent from the set of actions listed in the remainder

of this chapter, NeuroGene simulations encapsulates many processes which, at the level of

abstraction at which we operate, are instantaneous (such as cell death, cell division, etc.),

making such an approach unsuitable. Another problem with a differential equation based

approach is the large additional memory requirement of an adaptive step Runge-Kutta rou-

tine for solving a very large number of coupled equations. See also Stanley and Miikkulainen

(2003) for a more recent review.

We have instead decided to create a rule-based system, where genes are rules with an

antecedent (called regulation) which defines the expression behaviour of the gene, and a

consequent (called eflects) which encodes the changes caused by the gene's expression. The

genes are encoded in a dedicated genetic programming language. The simulation proceeds

in discrete time steps, and each gene is evaluated within each cell during each time step.

In order to put our system into the context of other similar or not so similar computational

systems, our concepts of genes and cells need to be compared to other conceptualizations of

the same biological entities within other computational frameworks.

1.5.1 Computational conceptions of genes

Genetic algorithm

Genetic algorithm (GA) comes readily to mind as a computational approach which draws

on the biological concept of genes. GA simulates the biological process of evolution, i.e.,

the gradual genetic change in a population over many generations. It is used as a search

algorithm to find near-optimal solutions to (typically) NP-hard problems. The "genes" used

in GA are therefore represented in ways which cater to a straightforward implementation of

evolutionary processes such as point mutation, chromosome cross-over and sexual reproduc-

tion. Genes in GA also need to encode properties of biological organisms (the phenotype).

It is the phenotype that is optimized through the GA. The translation from the GA genes

CHAPTER 1. lNTRODUCTlON

to the phenotype corresponds in principle to the developmental process by which genes de-

termine the structure and function of an individual organism. However, in practice, this

translation rarely bears any resemblance to the biological process of development.

By comparison, we do not seek to simulate evolutionary processes. Instead, our represen-

tation of genes is shaped by our goal of biologically accurate simulations of developmental

processes.

Gene sequence analysis

A wide range of computer software exists for the analysis of actual gene sequences, such as

those discovered by the Human Genome Project. Such genetic sequences consists of very

long strings of the four letters A, G , T and C. Such sequences are meaningless to human

readers without such analysis, which can be used to determine where genes start and end,

what the amino acid sequences of the corresponding proteins are, and what the structure

and function of those proteins might be.

By comparison, we seek an encoding of genetic information that is easily readable by

human users, and which is able to represent causal relationships between genetic and devel-

opmental processes as outlined above. To achieve this goal, we select a level of description

of genes which does not include DNA sequence data or explicit molecular interactions, since

these are not easily grasped by human readers. By abstracting away the details of the molec-

ular interactions we arrive at a representation of genetic information which only retains the

causal relationships between the expression of genes and cellular changes. This is consistent

with how biologists represent some forms of genetic information, as was outlined in section

1.2.6: It is the level of description which emerges from questions 1-2 (page 12).

Gene network analysis

Gene network analysis is the attempt to elucidate the causal relationships between the

expression of large number of different genes. The problem of elucidating the structure of

gene networks is closely related to our goal, which is to simulate such networks and their effect

on development. A common approach to elucidating such networks is to collect a number

of "snapshots" of an organism in different states of gene expression. From each snapshot

the expression rates of a very large number of genes are determined. In the software used

C H A P T E R 1. INTRODUCTION 26

for the analysis of such gene expression data, genes may be represented by a vector, where

each vector element specifies how each other gene affects the expression rate of the gene in

question (Dutilh and Hogeweg, 1999). Alternatively, each gene is represented by a boolean

function. The function takes as parameters the presence or absence of the proteins of all

other genes, and it is evaluated to determine whether or not the gene is expressed in a

particular situation. Finally, differential equations may be used to encode the rate of change

in the concentration of each protein as a function of the current concentration of all other

proteins, as in the system Ingeneue (von Dassov et al., 2000; Meir et al., 2002).

These representations of genes have the same expressive power that we will need for

the encoding of the expression behaviour of genes within NeuroGene. Our general level of

abstraction is also close to what is used in gene network analysis, where the interactions

between genes are represented using logic and/or algebra. However, we do require the

additional ability to encode the effects of gene expression in terms of developmental processes

such as cell division, migration, etc.

Algorithmic gene languages

-4s our understanding of the mechanisms of gene regulation and expression has improved, a

picture has emerged which may be described as "algorithmic", where each gene is a poten-

tially complex computational unit, and gene expression causes changes in the structure and

function of the cell according to the "algorithms" encoded in the genome. This algorithm is

implemented through linear and non-linear processes which construct enhancer complexes

and thereby causally affect gene expression (see figure 1.2, and also the quote on page 6).

These causal relationships can be straightforwardly represented using algebra and/or boolean

logic, with no need to refer to or even understand the underlying molecular interactions. It is

therefore natural to conceive of encoding genetic information in the form of algorithmic pro-

gramming languages. A number of different systems have taken this approach, with different

degrees of adherence to biology.

-4garwal (1995) has created a cellular programming language (CPL), in which a genome

consists of multiple programs, each related to a particular cell or cell type. Cell types are

also explicitly represented, including instructions which cause a cell to change cell type. The

system by Astor and Adami (2000), discussed below, also uses an algorithmic representation

C H A P T E R 1. INTRODUCTION

of genetic information.

1.5.2 Computational conceptions of cells

Lindemayer systems

L-systems (Lindenmayer, 1968) are used for the simulation of developmental processes, pri-

marily in plants (Prusinkiewicz et al., 1995), but they have also been applied to neural

structures (DeVaul and McCormick, 1996). L-systems use a grammar to define how parts

of the organism changes through development. At any point in time, the organism consists

of a number of components, some of which are terminal and some which are non-terminal

with respect to the grammar. The components of the organism at time t which are non-

terminals in the grammar, are expanded according to appropriate productions to form a new

structure at time t + 1. This new structure may consist of both terminal and non-terminal

components, and the process of production expansion is repeated. The conversion of gram-

mar elements into three-dimensional shapes usually involves a turtle based system (Logo

Foundation, 2004). Individual cells may or may not be explicitly modeled in L-systems -

in the case of neural structures, the components generated by the L-system are actually

sub-cellular structures such as axons, dendrites and synapses.

L-systems have the ability to generate complex tree- or plant-like structures with poten-

tially high levels of control. While the mechanism by which L-systems create these structures

is likely very different from the mechanism which forms these structures in nature, from a

pragmatic stand point, L-systems represent a well established methodology for producing

these complex shapes.

Two-dimensional hexagonal cell systems

Simulators used to study gene networks need to represent cells in a way which allows them

to accurately model cell-cell interactions. The system Ingeneue (von Dassov et al., 2000;

Meir et al., 2002) represents a two-dimensional static array of uniform, hexagonal cells. This

data structure allows the representation of interactions between receptors on the surfaces

of adjacent cells. However, it does not allow for cell migration, cell division or cell death.

A slightly more flexible system (Agarwal, 1995) uses a similar 2D hexagonal lattice, but

each cell may occupy more than one hexagon, with the condition that each cell constitute

CHAPTER 1. INTRODUCTION 28

a contiguous area of the lattice. Under this generalization, cell migration and division are

possible. However, the restriction to 2D remains, and the data structure is poorly suited to

incorporate axons, dendrites and other small cellular components.

Representing cell types

Biologists have for a long time recognized the existence of cell types, such as liver cells,

muscle cells and many different kind of nerve cells, etc. Cells of a particular type may

have recognizable shapes, act in particular ways, and will express genes that are specific to

the cell type. However, it is also recognized that cell types are artifacts of the researchers

categorizing their discoveries - as far as nature is concerned, cells differ only by which genes

they express and the structural and functional consequences of particular patterns of gene

expression.

Simulation systems differ by whether they explicitly represent cell types, and what role

the cell type plays in controlling development. The systems by Agarwal (1995) and Cangelosi

et al. (1994) both represent cell types - genes may cause cells to change cell type (a process

called differentiation). The genetic instructions which determine the behaviour of cells is

specific for each cell type. The system created by Astor and Adami (2000) also represent cell

types through a mechanism based on special cell-type genes. Here the genetic instructions

are shared among cell types, but individual genes may be labeled as being expressed only in

certain cell types.

As stated above, cell types do not represent biological reality. Since the effect of cell-

type specific gene expression is simple to achieve without explicitly representing cell types, we

will not do so in implementing NeuroGene. Instead ordinary genes which remain expressed

through the lifetime of cells will be used to identify the cell in terms of its cell type.

1.5.3 Simulating growth cones

The central role of growth cones in the formation of the nervous system have made them

interesting subjects of computer simulations. Hentschel and van Ooyen (1999) simulated the

movements of growth cones under the influence of soluble and membrane bound attractive

and repellent proteins. A goal of that study was to improve the understanding of axon

fasciculation or bundling. They did not include in the model aspects of growth cone structure

CHAPTER 1. INTRODUCTION 29

or function, such as filopodia. Instead, the signals both produced and sensed by the growth

cones are focus of this study.

Meinhardt (1999) looked at the internal amplification that must necessarily occur within

a growth cone in order for shallow external concentration gradients to result in highly

asymmetric growth cone structures. In this study the concentration gradients of signal-

ing molecules within the growth cone are explicitly modeled. These gradients are central

to how the growth cone transduces and responds to external directional cues. This model

may explain why filopodia tend to form preferentially in the direction of axon extension

(i.e. toward attractive and away from repellent signals).

Buettner et al. (1994) developed a model of growth cone motion based on explicit mod-

eling of filopodia. The model consists of the following features: The initiation timing and

lengths of filopodia are stochastic, while the speed of extension and retraction occur with

constant speed. Values for all the parameters of the model where taken from statistical

analyses of the motion of real growth cones in uitro. Using this model, the authors mod-

eled the movement of growth cones over a substrate consisting of areas of permissive and

non-permissive surfaces. The assumption was made that the growth cone would only cross

bands of non-permissive surface if at least N filopodia extended across it and touched the

permissive surface on the other side. Based on this assumption, the model does fairly well

in reproducing the probability of growth cone crossing the non-permissive gaps, at various

gap widths and various concentration of permissive substrate.

In nature, the structural framework of growth cones consists of two types of fibres:

Microtubules give structural integrity to the axon, and extends into the growth cone, while

actin fibres constitute the more dynamic structure within the growth cone itself. Li et al.

(1994) have simulated the actin dynamics of growth cones, modeling a 2D slice through

the three-dimensional growth cone as a hexagonal network of contractile fibres. They are

able to compare the effects of different aspects of the membrane and actin dynamics, such

as membrane adherence to the substrate, the rate of growth and breakdown of actin, the

pressure exerted by the intracellular fluid on the membrane, and a constrictive force acting

on the cell membrane at the neck of the growth cone.

Finally, Tim Hely (Hely, 1998, chapter 5 and Hely and Willshaw, 1998) has constructed

a model of growth cone dynamics which includes both microtubules and actin. The actin

is not modeled explicitly, but the effect of actin dynamics on the growth and shrinkage of

CHAPTER 1. INTRODUCTION 3 0

microtubules are simulated. The model shows how the encounter of a growth cone with

a target cell can stabilize the actin within the contacting filopodium. This in turn causes

selective extension of the axon toward the target cell through interactions between actin and

microtubules within the growth cone.

1.5.4 Simulating neural activity

Precise neural models

Two important software packages exist for the precise modeling of neurons, GENESIS (Bower

and Beeman, 1995) and Neuron (Hines and Carnevale, 2003). These are capable of modeling

single neurons with very high accuracy, to the point of explicitly modeling individual ion

channels. They are also able to model neural networks consisting of tens or hundreds of

neurons using more abstract neural models. However, neither of these incorporate develop-

mental changes in the network structures. They are also computationally very expensive,

making them unsuitable for our use.

Connectionist neural networks

The investigation of connectionist neural networks is an important field of cognitive science.

Such networks represent abstract neural circuits, consisting of nodes (representing neurons)

and connections (representing synaptic connections between neurons). By mimicking neural

activity in the form of either action potential (in "spiking networks") or time-average firing

rates (the more common approach), combined with learning rules which adjust synaptic

conductivities (or "weights"), such networks can replicate important phenomena of learning

and other cognitive processes.

While the higher level of biological accuracy of the GENESIS and Neuron type simu-

lations is appealing, the effort involved in implementing corresponding functionality within

the NeuroGene system is prohibitive. The neural models which have been incorporated

into NeuroGene are thus closely related to the simpler models used in connectionist neural

nets. The neural activity is integrated with the genetic regulation of cellular activity. This

is important, since it allows the bidirectional coupling between genetic and neural activity,

allowing each to affect the other.

CHAPTER 1. INTRODUCTION

1.5.5 Neurodevelopmental simulators

Several software systems have been developed for the simulation of neurodeveloprnent. The

system by Cangelosi et al. (1994) uses genetic algorithm (GA) to discover genomes that

guide the development of neural networks which are able to solve a simple task. The system

defines 16 different cell types, each of which are guided by a different gene. The cells are

able to migrate through the 2D simulation space, divide and grow axonal arbor structures

of regular tree-like geometries. In order to evaluate the organism fitness value for the GA,

an external space is also simulated, through which a virtual robot controlled by the neural

network can move, with the goal.

Fleischer and Barr (1993) have created a system for developing neural networks. It

consists of cells which are free to move about in a 2D environment. The genome is modeled

as a set of conditional differential equations of the form

dstate[i]
if Condition(state, env) then = Consequent(state, env)

dt

where state is a vector of variables defining the state of the cell, and where the terms of

the Condition and the Consequent depend on the current state and the environment env.

Through this mechanism, this system captures both the continuous and discontinuous as-

pects of gene expression. Physical processes such as diffusion in the extracellular space are

modeled as well. They simulate growth cones, but do not explicitly represent filopodia.

Another system (Rust et al., 1999, 2000) again uses genetic algorithm to optimize the

genetic information which controls the developmental process. Neurons are constructed

through processes which are inspired by biological developmental process, relying on extra-

cellular protein gradients, simulated growth cones, interactive branching of extending axons,

etc. A system created by Astor and Adami (2000) uses genes encoded as algorithmic pro-

grams, simulates certain physical and chemical processes, and using a hand-coded genome,

can build a neural circuit which can "learn" Pavlov's conditional response reflex. Finally,

there are other systems for the simulation of neurodevelopmental processes which have more

practical applications, e.g., the one by Peter Eggenberger, which is directed toward the design

of robots (Eggenberger, l997a,b).

CHAPTER 1. INTRODUCTION

1.5.6 Properties of NeuroGene

The system developed by Astor and Adami (2000) embodies many of the features that

are also present in NeuroGene: separate representation of regulation and effects of gene

expression, a common genome for all cells, a genetic programming language, developmental

control of the formation of neural circuits, representation of certain physical and biochemical

processes, including diffusion. Like some other systems, this simulator operates on relative

protein concentrations which are restricted to the range from 0 to 1, with 1 representing the

saturation level of each protein.

Our system improves on that of Astor and Adami in several important ways. What sets

our system apart from earlier works is the range of developmental mechanisms supported,

the close correspondence between genetic control structures and our genetic programming

language, the simulation of ligand-receptor binding which is integral to many competitive

developmental interactions (see e.g. van Ooyen and Willshaw, 1999) and the coupling of

neural activity to the developmental system. All of these elements are central to furthering

the understanding of the development of biological neural networks.

NeuroGene has a more powerful and general representation of protein concentrations,

including distinct membrane bound and diffusible proteins. This allows a more powerful

(and readable) genetic programming language which reflects more closely biological reality.

To further gain biological plausibility, we dispose of the concept of cell types. Instead, we

accommodate asymmetric cell division, which allows a parent cell to give rise to daughter

cells which are arbitrarily different from the parent. All genes are potentially active within

all cells, subject to the expression behaviour of each gene. Absolute protein concentration

levels are used - these are more intuitive, and allow the straightforward implementation

of ligand-receptor binding. Explicit modeling of growth cones, including the competitive

interactions among filopodia allows accurate simulation of axon guidance. We also use a 3D

rather than a 2D simulation space. Powerful and flexible visualization systems may be used

to show the current state of the simulation, both for presentation of results and also as a

tool during the development of new simulations.

Within the NeuroGene data structures, we explicitly represent the 3D spatial relation-

ships between different cell components of the simulation. This sets NeuroGene apart from

the majority of connectionist systems in which "nodes", representing neurons, are typically

CHAPTER 1. INTRODUCTION

fully characterized by the connections they make to other nodes (i.e. the topology), and no

spatial arrangement of the nodes in three-dimensional physical space is given. The spatial

representation of neurons allows biologically plausible representations of sensory input which

often have spatial components. In addition to the obvious case of the visual images, aural

(Kandel et al., 2000, p. 1127), olfactory (from the sense of smell, ibid., p. 630ff), somatosen-

sory information (from the sense of touch, ibid., p. 458) and sensation from internal organs,

such as hunger (ibid., p. 974) are known to be represented in a topographic manner in the

vertebrate nervous system. Even the sensation from whiskers in animals such as cats and

rodents are transferred in a topographic manner to the brain (ibid., p. 707ff). Th' is means

that sensory information from adjacent locations in the body are directed to adjacent target

locations within the brain. In each of these cases, each cell in a population of neurons receive

dissimilar neural input based in their distribution through the 3D space of the brain.

The remainder of this thesis consists of two chapters on methodology, followed by two

chapters outlining experimental results, and finally a chapter on conclusions and future work.

A number of appendices are also included. In chapter 2, I outline the biological mechanisms

which are simulated by NeuroGene, and the approaches used to implement these aspects

of the simulator. In chapter 3, the software engineering aspects of the implementation

of NeuroGene are laid out, including the design of the NeuroGene language parser and

the graphical user interface. In chapter 4 results are given which verify the correctness of

simulations of physical processes, while the results of three simulations of developmental

processes are presented in chapter 5. Conclusions and perspectives on future work is given

in chapter 6.

Chapter 2

Methods I:

Biological principles and algorithmic

analysis

In this thesis I divide the description of the methodology into two chapters. This first

methods chapter outlines the biological processes that NeuroGene simulates. I also discuss

how these mechanisms have been captured in algorithmic form, and the approximations and

simplifications used to make simulations practical. In the subsequent chapter I describe

implementational issues, including the data structures which represent the genome and the

state of the simulation, as well as the system architecture, user interface, file 110 etc. In

simple terms, this chapter is about the biology of NeuroGene, and chapter 3 is about the

software engineering. I will briefly introduce elements of the system design in this chapter

only when it is required to understand the context of the implementation of the biological

processes described.

In section 2.1, I discuss how best to represent genetic information in data structures

within NeuroGene. This includes discussions of which aspects of genes' structure and func-

tion are relevant to the type of simulations we envisage NeuroGene to be able to carry out,

and how these aspects can be abstracted. Given that supplying genetic information for

NeuroGene to work on is an important mode of user interaction with the system, mecha-

nisms of input of genetic information into NeuroGene, and the form of that input, must also

CK4PTER 2. METHODS I: BIOLOGICAL PRINCIPLES 3 5

be considered. In sections 2.2 and 2.3 the representation of cells and the space in which they

exist is discussed. Here the requirements of biological accuracy and computational efficiency

need to be reconciled. In sections 2.4-2.6 the implementation of genetic control over the

simulated developmental process is outlined. This includes the mechanisms of gene regula-

tion, protein production and simulated growth cones. In section 2.7 the implementation of

simulated neural activity is discussed - here we adhere quite closely to common approaches

from connectionism. However, the integration of neural activity with the genetic system

is, to our knowledge, novel. In section 2.8 the overall architecture incorporating the cells,

simulation space, genome and other components is described. Section 2.9 describes how

simulations are initialized, and finally section 2.10 explains how the different elements are

executed and coordinated during NeuroGene simulations.

2.1 Representing genetic information

Early in the planning phase of the NeuroGene simulation system, it became apparent that

we would need a way to encode genetic information that was powerful enough to capture

a wide range of genetic interactions, as well as a wide range of developmental mechanisms.

The requirements of the system were:

0 Genes should be readily human-readable, more specifically they should be readily un-

derstandable by somebody with a biology background and less knowledgeable about

programming and computer science in general.

0 Simulations should run as efficiently as possible, primarily with respect to CPU time,

but also to memory. Since simulations would access genetic information frequently,

this requirement puts demands on the internal representation of genetic information.

Alternative approaches we considered to representing genetic information include:

Encoding based on the DNA code

A possible encoding of genetic information might resemble the DNA encoding. This solution

was never seriously considered, mainly because the DNA code is inherently obscure. Indeed,

while the complete sequence of the human genome is now known, it is an enormous challenge

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 3 6

for the biological community to decode this text. Using some form of nature's genetic

code to encode the genes in NeuroGene therefore violates the language design principles of

expressiveness and maintainability (Louden, 1993), since genomes encoded in this way would

be very hard to read and write.

However, certain elements of the encoding of genetic information in DNA would be

carried over to the representation used in NeuroGene. Genes consist of distinct regulatory

elements and coding elements, which are encoded in distinct sections of the genes' DNA.

Similarly in NeuroGene, the regulatory elements of each gene will be encoded independently

of the part of the gene which determines the effects of the gene's expression. Other elements

of the biological encoding of genes will not be carried over, including the fact that most cells

carry two copies of each gene, as well as the intron/exon structure of genes (see e.g. Muller,

1997).

GUI-based rule editor

One possible approach was to design a graphical user interface (GUI), which would allow

the user to build genes from simpler building blocks. This approach would necessarily be

combined with some file format for storing the genomes, but the file format need not be

human-readable. From a human-computer-interface (HCI) point of view, a programming

language and a graphical user interface can be seen as two different types of user interfaces.

However, a programming language is much more scalable with respect to the complexity of

what it encodes than a GUI. Consequently, we decided against the GUI approach.

Using an existing programming language

We might also encode the genes in an existing programming language. In our case, Java

would be the natural choice, since the rest of the system would be written in Java. There

are two problems with this approach:

Firstly, it was essential that NeuroGene simulated genomes be readily understood by

researchers with a biological background. This meant that the simulated genes should be

encoded at a level of abstraction which is also used by biologists themselves (section 2.1.3).

We chose a level of abstraction where only the causal relationships between gene expression,

signal transduction, neural activity and cellular change are represented, and the molecular

CHAPTER 2. METHODSI: BIOLOGICAL PRINCIPLES 3 7

interactions underlying these relationships are omitted. At this level of abstraction, genes

have constituent parts which define their expression behaviour and their effects on the cell.

Existing programming languages do not have programming constructs that are similar to

genes in this way. Using such a language to represent genetic information would therefore

require significant amounts of programming code not related to the genetic information itself,

probably rendering the resulting genome code obscure to biologists.

Secondly, we would not have easy access to the internal representation of the genome,

since this representation would be compiled Java code. Future development of NeuroGene

may include the simulation of mutations in the context of a genetic algorithm (GA) optimiza-

tion of the genome. Implementing mutation without access to the internal representation

of the genome would not be possible. However, since GA is not implemented yet, and only

may be implemented in the future, this requirement is not absolute.

On the other hand, the advantages to using Java to encode the genetic information are

undeniable. These include the ability to write libraries of genes, as well as easy access

to existing tools such as compilers, editors, etc. It would also remove the need for the

NeuroGene parser system, which would lead to a significant reduction in the complexity of

the NeuroGene system. There are therefore compelling arguments both for and against this

approach, and it is possible that a future version of NeuroGene will use Java to encode the

genome.

Production system

The modern model of gene regulation has a lot in common with the methodology of produc-

tion systems (Luger and Stubblefield, 1998, ch. 5) commonly used in artificial intelligence

and expert systems research.

Production systems consist of a set of rules which embody the knowledge which will be

used to solve a particular problem. A working memory is initialized with the problem state.

Through the application of rules, the working memory is altered until its state is recognized

as a valid solution to the problem. Control of the system comes from a recognize-act loop:

In the recognize phase, all rules whose conditions match the current state of the working

memory are selected. In the act loop, one of these rules is selected (based on some heuristic)

and the working memory is altered according to the action which is associated with that

C H A P T E R 2. METHODS I: BIOLOGICAL PRINCIPLES

rule.

To relate production systems to gene regulation and developmental control in nature,

genes correspond to rules, where the condition of the rule corresponds to the regulatory

elements which determine whether or not the gene is expressed in a given cell at a given

time. A rule's action corresponds to the changes caused by the gene's expression, considered

either narrowly as the production of a certain amount of a particular protein, or more widely

as including the changes induced by expression of other down-stream genes, these proteins'

interactions with cellular structure, etc. The working memory corresponds to the state of

the cell, including the concentrations of all regulatory proteins, and the recognize-act control

cycle corresponds to the gene expression machinery of mRNA transcription and protein

translation. There are therefore many similarities between our approach to the simulation

of gene expression and developmental control and production systems.

Situation calculus

Another A1 approach with similarities to NeuroGene is situation calculus (Levesque et al.,

1998). Within this formalism, a situation s may give rise to a new situation s' by the

application of some action a. A situation s is characterized by relational and functional

Juents. These have values that depend on the situation, such as in a given situation s the

light may be on (relational fluent), and the temperature may be 25•‹C (functional fluent). A

fluent action is a "meta-action" which is evaluated in a given situation s to give some action

a. Which action results depends on the situation s. In NeuroGene, both genes and growth

cone functions would be fluent actions.

For each type of action we can ask two questions: Can the action a occur in situation

s, and, if yes, how is the situation changed by this action. The former question is handled

by precondition axioms, of which there are one for each type of action, e.g. to turn on the

light (action), the light must be off and you must stand by the light switch (precondition).

The answer to the latter is encoded in successor state axioms, for which there is one for each

fluentlaction pair, such as: the room will be lit (fluent) after you have turned on the light

(action).

A challenge for situation calculus is the frame problem (Reiter, 1991), relating to how

to specify all the fluents which are not affected by any given action (turning on the light

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 3 9

does not affect the temperature). With the introduction of concurrent actions (Reiter, 1996)

comes the additional problem of precondition interactions: This problem occurs when two

concurrent actions are individually possible but mutually exclusive. For example, standing

on the curb (situation s), I can catch a taxi (action a l) or a buss (action an) , but I can

not do both concurrently. In developing a situation calculus formulation of NeuroGenel, the

frame problem did not appear to pose serious problem. However, some problems that had

already been encountered and solved were identified as precondition interactions.

Markup language

Given that the choice of approaches has been narrowed down to developing a new program-

ming language, a natural choice might be to base this new language on the widely adopted

XML (DuCharme, 1999) standard for encoding structural data. While XML was initially

designed for storing data, it has recently also become common to use it to store program

code, such as XSL. By adhering to the XML standard, we would be able to take advantage

of a number of existing tools that recognize the XML format, including sophisticated text

editors, existing Java XML parsers, etc. However, code written in markup languages tends

to be very verbose and difficult to read, which made us decide against this approach.

Dedicated genetic programming language

By method of elimination, the choice fell on designing a new programming language for

encoding genetic information. Certain superficial syntactic elements where copied from Java,

including using curly braces ("{" and ")") for delimiting blocks, and the function call syntax.

However, the gene control structure is unique to NeuroGene. It is designed to capture

biologists' description of causal interactions between genes and the cellular system at a

particular level of abstraction. Several other language features, such as cell initialization

blocks (see section 2.9 below) also do not have counterparts in general-purpose programming

languages.

'Available upon request.

C H A P T E R 2. METHODS I: BIOLOGICAL PRINCIPLES

Chronology of system development

NeuroGene draws on a prototype system created by Gary Marcus. This system used the

GUI rule editor approach. For NeuroGene, we initially decided on a dedicated and novel pro-

gramming language for encoding genetic information. This language underwent significant

changes throughout the early development of NeuroGene, including a complete rewrite of

the parser using a different parser generator tool (the first versions used the parser generator

JavaCUP, Hudson et al., 2003). The scope of the language has also grown over time, with

the addition of a symbol table and lexical scoping, the growth cone mechanism, etc.

Alongside the development of the NeuroGene simulator, we have also developed several

developmental simulations, three of which are presented in this thesis. These simulations

have served as tools for debugging the NeuroGene source code. They have also revealed

shortcomings in the capabilities of NeuroGene, and thereby served as guides for the further

work on the simulator itself. This means that the current set of capabilities of NeuroGene

has to some extent been determined by the requirements of these particular developmen-

tal simulations. However, we have endeavored to keep NeuroGene as general as possible,

mainly through two approaches: Firstly, the simulations we have chosen to explore cover a

wide gamut of developmental mechanisms. Secondly, most primitive operations have been

designed with user-definable parameters that allow them to be used in a range of circum-

stances.

2.1.1 Biological justification of actions and queries

Genes in nature can be seen as computational units with input and output channels. The

input channels are the regulatory elements of the gene, through which the abundance of

relevant regulatory proteins determine the expression rate of the gene (see figure 1.2). The

output channel is the rate of production of the protein encoded by the gene, and indirectly,

the effect the increased concentration of this protein has on the structure and function of

the cell. In NeuroGene, this same input/output causal system is modeled using an abstract

representation of both the regulatory elements, the produced protein, and its effect on cellular

properties and behaviour.

However, gene regulation and expression as simulated in NeuroGene represents more

than just the regulation of gene transcription in nature. The NeuroGene gene mechanism

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 4 1

represents both transcription and translation of genes. By virtue of the fact that simulated

genes are evaluated throughout cells, and a gene's expression rate can vary across the cell,

the gene mechanism also represents the effects of intracellular active transport of mRNA

and protein, without modelling the transport explicitly. Furthermore, since simulated gene

expression can be directly affected by extracellular events and conditions using a wide array

of queries, the gene model also represents intracellular signalling pathways which communi-

cate such events and conditions to the sites of protein transcription and translation. Finally,

through the large set of actions listed below, simulated gene expression may directly cause

changes in the state of cells. This means that the NeuroGene gene model also represents

the consequences of molecular interactions involved in bringing about such changes, again

without modelling the molecules themselves or their interactions. In cases where actions

represent changes that in nature involve expression of other genes, a simulated gene which

invokes such actions would represent biological master control genes (such as Pax6 described

in section 1.2.2) whose protein affects the expression rate of these other genes. In the re-

mainder of this thesis, this sense of the term is always intended when referring to NeuroGene

simulated genes.

The regulation of a particular simulated gene is represented by a mathematical formula,

specified using the genetic programming language, which is evaluated within the context

of a cell component at a point in time to give the expression rate of the gene in that cell

component at that time. The mathematical formula is defined in terms of queries. When

the expression rate is evaluated, any queries within the formula are also evaluated to give

values which depend on the state of the cell. Through this mechanism, the influence of the

state of the cell on the gene expression rate is modeled.

In this chapter, a large number of queries will be presented. Some of these, like internal-

ConcentrationOf(p) which returns the intracellular concentration of some protein p, can

be used to represent mechanisms of gene regulation which are very close to what occurs in

nature - intracellular regulatory proteins directly affect gene expressions through binding to

gene regulatory elements. Others, such as insidePreSynapse() which returns t r u e in presy-

naptic cell components and false in all other types of cell components, are more abstract.

To justify such queries, we assume that there exists some mechanism by which expression of

certain genes only affects presynaptic terminals. Importantly, data from biological research

allows us to judge whether such assumptions are warranted. In this case, there is evidence

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 42

that intracellular transport of mRNA and/or protein to specific sub cellular areas, such as

synaptic termini, does occur in nature (Lodish et al., 2000, pp. 809-817). Where available,

relevant biological data will be presented along with the queries. Using these queries, the

expression of some gene as a function of the concentration of some regulatory protein Q can

be specified as (for example)

Here pow() function was included to show the potential for modeling complex expression

behaviour. pow(x, y) evaluates xg, and a square relationship as shown here is common in

nature (Smolen et al., 2000b), and may be explained by two molecules of Q binding to the

gene's regulatory elements. The action express lnternal ly () , which specifies intracellular

expression, will be described in section 2.5 below. Please refer to appendix B for examples

of genomes encoded using the NeuroGene language.

The existence of certain queries, such as cellIncomingWeight() which returns the total

weights of all synapses coming into a cell, does not at present receive strong support from

experimental data. However, including them may still be justified: cellIncomingWeight()

is required for NeuroGene to be able to implement connectionist models of learning which

commonly rely on various forms of normalization of synaptic weights. The inclusion of

such unsubstantiated queries within the genomes of simulations makes underlying assump-

tions readily apparent. The validity and biological relevance of a NeuroGene simulation can

therefore to a significant degree be estimated from an inspection of the NeuroGene genome

controlling the simulation.

The effects of the expression of a simulated gene is represented by actions, of which

a number are also presented in this chapter. Actions model the effect of the presence of

proteins in the cell. Changes in protein concentrations in the cell cause changes in the

structure and function of the cell by affecting systems within the cell, which as a rule consist

of proteins. Such mechanisms are represented by actions. Similarly to queries, there are

actions at different levels of abstraction. However, actions are generally more abstract than

most queries, since they commonly represent cellular changes which involve many interacting

proteins. For example, the action endocytose (p, x) causes to an amount x of some protein

p to be brought inside the cell from its environment. This is a common cellular process which

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

is reasonably well understood (Lodish et al., 2000, pp. 727-733), however, modeling it in

detail including all the proteins involved is beyond the scope of NeuroGene. An example

of a more abstract action is buildPreSynapse(bid, weight), which causes an axon to form

a new synapse with weight weight with a given other cell component. (The parameter bid

will be explained in section 2.6 below on simulated growth cones.) In using this action, we

assume that growth cones are capable of forming synapses, that the axon initiates synapse

formation, and that the synaptic weight is determined when the synapse is formed. The

first two find support in experimental data (reviewed in section 1.3.2). We can infer that

there must be some biological mechanism which determines what the synaptic weight of the

nascent synapse is. Since we do not know this process, the parameter w allows us to specify

the initial weight. In simulating synapse formation, we also abstract away complex changes

in cell morphology and cell membrane specialization that are involved in synapse formation.

Like many actions, buddPreSynapse(b, w) takes numerical parameters. The values

passed to the actions may be computed from queries, such as for example

The statement above models a causal relationship between the concentration of some protein

Q and the synaptic weights of nascent synapses. The large number of queries and actions

supported by NeuroGene allows for a wide range of such causal relationships to be repre-

sented. Some such relationships will be biologically plausible, while many will not. In the

interest of being able to support a wide range of possible simulations at varying levels of

abstraction, a large number of primitives has been included, many of which take parameter

values that further extend their scope. The biological plausibility of a NeuroGene simula-

tion must always be judged based on how actions and queries are used within the genome

controlling the simulation, rather than based on the queries and actions themselves.

The NeuroGene gene model can be used to represent biological genes, but is also capable

of representing a part of a biological gene (such as transcription or translation, allowing

these processes to be modelled individually), or multiple genes (such a master control gene

and all its subordinate genes). There are also situations in which simulated genes are used

to represent biological entities or processes which are not genes. This includes genes which

represent receptor-ligand complexes. While such complexes exist in nature, they are not the

direct product of gene expression (their component elements usually are), and the NeuroGene

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 44

genes which represent ligand-repeptor complexes therefore do not correspond to genes in

nature. Also, simulated genes may represent the consequences of cellular changes (e.g. cell

division) which are triggered when a cell and its environment have particular properties. In

future versions of the NeuroGene system, changes may be made so that such processes are

modelled using a different mechanism from the gene model, see section 6.4.

2.1.2 On the term protein

This is a short aside on the use of the term protein in this thesis. The term protein is

descriptive of the chemical composition of a class of chemicals that are important in all

biological systems. Since all proteins are made in the same way in vivo, the term is also

descriptive of a particular mechanism of production. This mechanism is directly related to

the encoding of information in the genes of all biological organisms, see figure 1.1.

An alternative term would be signal. This describes the role which many, but far from

all proteins play. I will at times refer to chemicals which are not proteins, and which act as

signals in controlling developmental processes. In cases where chemicals are used as signals,

their composition are irrelevant, much in the same way the form of words in human languages

are arbitrary with respect to their meaning - the word "cat" has no relation to furry animals

except for the fact that all English speakers agree that "cat" refers to furry animals. Similarly,

it is not generally relevant to a discussion of the function of insulin to know that it is a small

protein, and similarly irrelevant that dopamine is a biphenol, CAMP a nucleotide, etc. --

what matters is how cells' behaviour is affected by these signaling molecules. A term used

in the biological literature is morphogen, which similarly emphasizes function, since these

chemicals affect the morphology of biological structures.

While proteins by definition are two degrees of separation (transcription and translation)

from the genetic code, other signaling compounds are also created under genetic control,

albeit more indirectly: For dopamine to be produced, the protein (in this case an enzyme)

DOPA decarboxylase must be present - the regulation of the gene encoding the protein

DOPA decarboxylase therefore indirectly also regulates the level of dopamine. Consequently,

all chemical substances discussed in this thesis are produced, directly or indirectly, under

genetic control. Almost all of them play the roles of signals, coordinating developmental

processes over time and space.

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 45

I have chosen to use the term protein throughout this thesis when referring to signaling

molecules of all kinds. While this is somewhat inaccurate use of language, it emphasizes the

close relationship to genetic information, which plays a central role in this thesis. It also

avoids a possible misinterpretation of the term signal, which might be understood as imma-

terial. All signaling molecules are of course material, as opposed to e.g. action potentials,

which is an immaterial representation of information.

2.1.3 Enforcing biological plausibility

All connectionist models raise the question of whether or not they are biologically plausible,

i.e., whether their neural networks could conceivably exist as part of the human brain. Our

goal is to try to settle such questions by allowing the faithful replication (at a certain level of

abstraction) of the biological processes which form neural circuits in the brain, and to form

connectionist models through the simulation of biological developmental processes.

There are two ways in which this goal can be achieved: Either design the simulator in such

a way that biologically implausible processes are precluded, or design the genetic encoding

in such a way that it relates directly to biological processes, making implausible mechanisms

readily apparent. While the first approach may seem more sound, it raises several issues:

To what extent can we characterize what "biologically plausible7' actually means? If we fail

to properly characterize plausibility, we run the risk of needlessly limiting the ability of the

system to simulate interesting processes. Such failure is made all the more likely by the fact

that our understanding of biological systems is far from complete.

Secondly, to what extent can a software system be designed so that its abilities coincide

exactly with some characterization of biological plausibility? If either the abilities go beyond

what is plausible, or else the system is unable to express or simulate one or more plausible

processes, the system will not meet the requirement of enforced plausibility.

And finally, what is the cost in increased complexity of implementing such restrictions?

This includes complexity of the software system itself, as well as complexity of the user's

experience using the system.

The solution we have chosen is to limit the functionality of NeuroGene only when it is

simple to do so, both implementationally, and as seen by the user. Biological plausibility

is enforced primarily by the available set of primitives, since most primitives are justified

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 46

by inferred or actual biological evidence that corresponding mechanisms exist in nature.

Further restrictions are built into the data structure and execution model: Cell components

can not communicate with each other except through chemical signaling and neural activity.

Similarly, the state of the cell component is encoded in protein concentrations and timer

values only.

However, in most cases we have not attempted to implement such limitations. Con-

sequently, biologically implausible NeuroGene simulations are conceivable. The biological

plausibility of NeuroGene simulations must therefore be justified by the researcher who de-

signs the simulations and writes the genomes. This justification must cover simulated gene

regulation and expression, including intracellular transport of proteins, simulated or implied

signal transduction processes such as communication from the cell membrane to the nucleus

(see figure 1.3), the invocation of actions implementing cellular changes, and the interaction

between simulated genetic and neural processes. The justifications can take different forms,

since the simulated processes may be known to occur in nature, or it may be inferred that

a certain process must occur, or the process may merely be judged plausible, e.g., by refer-

ence to similar processes occurring in different systems. Certain types of mechanisms are so

pervasive throughout biology that explicit justification may be considered superfluous, such

as intracellular proteins affecting gene expression.

It is important to note that where, throughout the remainder of this thesis, I state

the capabilities of NeuroGene in terms of being able to simulate genetic control of devel-

opmental processes, I assume that the simulation in question is biologically justifiable by

the standards outlined here. The value of NeuroGene is this: Since NeuroGene simulated

genomes are expressed in terms of gene expression, signal transduction and other biological

mechanisms, it is possible to estimate whether a particular NeuroGene genome is justified,

whether the corresponding simulation is biologically plausible, and consequently whether a

given connectionist model might conceivably form part of the brain.

2.1.4 The design of NeuroGene

The basic requirements of NeuroGene are: 1. To represent genetic information (conjectured

or based on experimental data) in a form which is human-readable and encoded in terms

of biological concepts. 2. To simulate the developmental processes of neural tissues under

CHAPTER 2. AIETHODS I: BIOLOGICAL PRINCIPLES 47

the control of this genetic information. 3. To represent the biological mechanisms of gene

regulation and developmental control as accurately as possible. 4. To simulate neural activity,

including learning. These specifications have given rise to a software system consisting of

the following concepts:

Cells and cell components

Cells and cell components represent the biological cells that make up part of a developing

organism. NeuroGene is designed to simulate the developmental process of such organisms.

Cells are described in section 2.2.

Growth cones

We simulate growth cones, which are central in axon guidance and synapse formation.

Growth cones are transient structures, however, they have permanent effects on the sim-

ulation as they affect the growth of axons and dendrites. The NeuroGene model of growth

cones is described in section 2.6.

Genes

Genes as represented in NeuroGene contain logic which determines under which conditions

each gene is expressed. They also contain specifications of the changes which are triggered

when the genes are expressed. Genes are described in section 2.5.

Genes are executed in the context of a given cell component. During such an execution,

it is determined whether or each gene is expressed in that cell component. The NeuroGene

execution model is given in detail in section 2.10.

Genome

Together the genes of an organism constitutes the organism's genome. In NeuroGene, the

genome will also consists of other entities which together determine the behaviour of the

cells, thereby determining the progress and final outcome of the simulations. These other

elements are described throughout this chapter: timers (section 2.5.4) and receptor-ligand

relations (section 2.4.4). Implementational details of the genome are outlined in section

2.8.1. The input and internal representation of genomes is described in section 3.1.

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

Actions

Actions cause changes to cells under simulated genetic control. Actions result from the

expression of simulated genes. NeuroGene contains a wide range of possible actions, and is

designed to be relatively complete with respect to the range of cellular behaviours observed

in development of biological organisms.

Queries

Queries is a mechanism by which the properties of the current state of the cell component and

its environment is made accessible to genes, which again allows genes to respond to these

properties. Queries, like actions, cover a wide range of cellular mechanisms, and should

ideally be able to account for all ways in which genes may directly or indirectly respond to

cellular environments.

Proteins

Proteins are produced by cells according to the "instructions" of the genome. To each gene

corresponds one protein. A certain amount of this protein is produced by a given cell when

the corresponding gene is expressed in that cell. Details about gene expression are given in

section 2.5 and about proteins in section 2.4.

Physical/chemical environment

The environment represents the space in which the cells exist. It represents the concentra-

tions of proteins in the medium surrounding the cells (the extracellular space). As part of

the environment is implemented functionality which simulates certain physical and chemical

processes (as distinct from the biological processes controlled by the genome). These are

protein diffusion and decay, as well as ligand-receptor binding, outlined in sections 2.4.1 and

2.4.4 respectively.

Neural activity

The information processing abilities of neural networks need to be represented. For the sake

of computational tractability, simple models of neural activity will be used, as outlined in

section 2.7.

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

Execution control

The simulation proceeds in discrete time steps. Each time step consists of a set sequence of

sub-steps, including genome execution, protein diffusion and several others. This is described

in detail is section 2.10.

2.2 Cells and morphology

Neurons are represented in NeuroGene in a way that supports much of the range of mor-

phological variability seen in neurons in nature. In NeuroGene, a neuron consists of the

central cell body (called the soma). From the soma extends zero or more dendrites and

axons. These, as well as the soma, may carry synapses. -4 synapse is represented by a pair

consisting of one presynapse and one postsynapse. All cell components which make up a

cell form a tree data-structure, of which the soma is at the root node. Subtrees which have

an axon as root consist of axons and presynapses only. Subtrees which have a dendrite as

root consist of dendrites and postsynapses only. Presynapses and postsynapses are always

leaf-nodes, axons or dendrites may be leaf-nodes or internal nodes. Internal nodes, including

the soma, may have any number of child-nodes. These relationships are shown in figure 2.1.

Biological cells have a high level of internal complexity, including sub-cellular bodies

(called organelles) fulfilling a wide range of functions from energy conversion to photosyn-

thesis, protein production and modification, etc. This complexity is completely left out

of the NeuroGene simulator - the cell components have no internal structure except for

intra-cellular protein concentrations.

Cells in nature respond to the direct physical interaction with other cells. Detecting such

interactions in a dynamically changing computational representation, known as collision de-

tection, is computationally expensive. In optimizing NeuroGene simulator for computational

speed, we have chosen not to carry out collision detection except when it is explicitly needed.

When direct cell-cell interactions are needed, such as during synapse formation or axon guid-

ance, the simulated growth cone mechanism (described in section 2.6) is capable of collision

detection. This leaves chemical signaling as the means by which cells may detect the pres-

ence of surrounding cells, i.e., a cell may respond to the presence of proteins carried on the

surfaces of surrounding cells, rather than the presence of the cells themselves.

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

$3 y), Dendrite

Axon -
Dendrite -

2

Resynapse (O PostSynapse

Figure 2.1: UML diagram (Liberty 1998, left) showing the possible forms of interactions
between the classes used to represent neurons. Arrows indicate "one-to-many" relationships,
e.g., a soma may be associated with many axons, but each axon is associated with one
soma only. Lines indicate "one-to-one" relationships; each presynapse is associated with one
postsynapse, and vice versa. Right: an example of a data structure created according to
the UML diagram. The tree-topology of the data structure is evident. Arrows indicates the
direction of neural activity flowing across synapses. Below: The cell which is represented
by the example data structure. Synapses are numbered according to the scheme above.
Synaptic termini belonging to other cells than the one shown are displayed in italics (top
right) and broken lines (bottom).

2.2.1 Cell naming

When simulated neurons are created either during simulation initialization, or during cell

division, cells may be given names. Cells' names, which need not be unique, do not change

during the existence of the cells. Cell naming allows subsets of cells within a simulation to

be specified using regular expression matching, see appendix C. Assuming that cells within

a simulation are named according to some sensible scheme, a subset of cells can be defined

as those cells whose names match a given regular expression. Several display modules that

form part of the NeuroGene graphical user interface (GUI, outlined in chapter 3) are used to

visualize different aspects of simulations. This technique is used to allow the user to specify

which cells are to be visualized. Many examples of images created using these modules are

shown in chapter 5 .

C H A P T E R 2. h4ETHODS I: BIOLOGICAL PRINCIPLES 51

When a cell divides, the parent cell ceases to exist, and both daughter cells may be given

arbitrary names. If names are not specified, the daughter cells are given names which are

derived from the name of the parent cell. The form of this derivation makes it possible to

trace the ancestry of any given cell (see appendix C).

2.2.2 Actions

NeuroGene is designed to simulate developmental changes of cellular structures. These

changes are under the control of genetic information which is supplied by the user in the

form of a genome. Listed below are the primitives (actions and queries) which may be used

to alter cell morphology. Each of these applies to a single cell or cell component. The format

used to show each primitive is similar to that used in structured programming languages to

show the signature of functions:

returntype name(parameter1ist)

where parameterlist is a comma-separated list of zero or more parameters, each of which has

a data type, name is the unique name of the primitive, and returntype is the data type of

the value returned by the primitive, e.g., some primitives return numbers, others return lists

of cell components, etc. The different data types which may be used in the genome scripts

are shown in table 2.1 . Actions always have void as their return type2.

These actions will be used, along with other primitives given in the remainder of this

chapter, to specify the genome in the form of text file. The form of this text file, and the

internal representation of the data contained in the file is given in detail in chapter 3. The

actions relating to the cellular structure are:

void migrate (direction dir) cell branch () cell growdxon ()

cell divide Cell (direction dir) void die () cell gmwDendrite ()

cell divideCell(directi0n dir, string namel, string name2)

Note that action names are printed in bold italics, while query names are printed in bold.

The action migrate causes a soma to move the distance specified by the value of dir, or, in

2~xceptions axe actions used to build new cells, axons and dendrites - these actions return references to
the new cell components they create.

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

Type Referent

number
direction
string
boolean
void

A real signed number, double precision.
A vector in 3D space, representing displacements or locations.
An 1D array of characters.
True or false.
No value, indicates that the primitive does not return any value.

protein The name of a protein or the gene which expresses that protein.
growthconeFunction The name of a growth cone function.
timer The name of a cellular timer.
cell A cell component.
cellList A list of cell components.

Table 2.1: Data types recognized within NeuroGene. The void data type is used to indicate
functions that do not return a value. ,ittempts to use the return value from void functions
cause a parser error when the gene is read by NeuroGene. For example, the code snippet
variable x = 3 . 4 * arborsize 0 is valid, since the primitive a rbors ize() is a query with
a return type number (see below) and 3.4 times a number is meaningful. However the code
snippet variable x = 3 . 4 * die 0 is not, since the primitive die() is an action and has
return type void (see below), indicating that it does not return any value, and 3.4 times "no
value" is meaningless and therefore invalid.

the case of axons and dendrites, to grow the same distance. TWO forms of the dividecell

operation cause a soma to divide, either specifying the names of the daughter cells, or using

default names as outlined above. branch causes axons or dendrites to branch; growAxon

and growDendrite cause a soma to sprout a new axon or dendrite; die causes an axon

or dendrite to retract and disappear, or, if the operation is applied to a soma, the cell as a

whole to be destroyed.

The following actions are used to help in debugging genomes:

void red(number r) void green(number g)

void blue(number b) void p r i n t (string s)

void colour(number red, number green, number blue)

red, green and blue alter the colour with which the cell is drawn in the NeuroGene GUI;

colour changes all three colour channels at once. The colour of cell components has no

biological significance, but may be useful in giving feedback to the user about the simulated

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 53

genetic activity and may be used as a debugging tool when designing simulations. print

causes a string to be printed to standard-out .

2.2.3 Queries

The following queries relate to cell morphology:

cell paren t () cell par tner ()

cellList allAxons()l number n u m b e r O f ~ x o n s () ~ boolean insideAxon()'

cellList a l lC hildren () number dist anceToSoma() number length()

number a r b o r Size() number cellsize() string cellName()

Other queries exist for each of the other cell component types.

The query paren t when evaluated returns a reference to the parent cell component. A cell

component's "parent" here has the usual meaning in the context of tree data structures, i.e.,

the cell component directly above in figure 2.1 top right. This reference can be used with

other actions or queries which operate on other cell components. There are several of these

listed in the following sections, examples are actions which cause protein to be transported

between connected cell components, etc. pa r tne r is only valid for synapses, and it returns

a reference to the opposing synaptic terminal, i.e., from a presynapse, the query returns a

reference to the corresponding postsynapse and vice versa. allAxons returns a list of all the

axons belonging to some soma. The language contains a special foreach loop construct with

which one can iterate over such a list, either to query each element of the list, or to execute

actions on them. Similar queries allDendrites, allPreSynapses, etc. are also available,

one for each type of cell component. a l lchi ldren returns a list which is the union of all these

cell component type-specific lists, containing all the cell components of which the current

cell component is parent. numberOfAxons return the number of axons which have the

current cell component as parent, i.e., the length of the list allAxons; insideAxon returns

true if the current cell component is an axon, false otherwise. Also for these queries there

exists one version for each cell component type (numberOfDendrites, allPreSynapses,

insidesoma, etc).

length returns the length of an axon or dendrite (see section 2.10.8 for units of measure-

ments). dis tanceToSoma returns the sum of the lengths of all dendrites from the current

cell component to the soma. cellsize returns a measure of the total size of the whole cell

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

(the soma contributes 1.0, the axons and dendrites contribute the values of their respective

lengths, and synapses contribute 0.01). cellName returns the name of the cell.

2.3 Simulation space

The simulation space in NeuroGene is represented by a three-dimensional array of small

cubic elements, all of the same size. These elements are called WorldNodes. The simulation

space as a whole is referred to as the World, since the NeuroGene system does not represent

anything that is outside this space. Each WorldNode contains zero or more cell components.

This data structure is described in more detail in chapter 3.

2.3.1 Queries

The following queries give information about how cell components are arranged within the

simulation space.

1 direction towardsCellDensity() number cellDensity() I 1 direction awayFromCellDensity() number c e l l ~ C o o r d i n a t e () ~ 1
Other queries exist for the Y and Z dimensions.

towardsCellDensity returns a vector which is pointing in the direction in which the cells

are the most densely packed. awayF'romCellDensity returns the opposite vector, pointing

toward where the cells are the most sparse. cellDensity returns a number representing how

many cell components are close to the querying cell component. These queries return values

that are computed relative to a particular point in the simulation space - this point is

always the location of the cell component that performs the query. Since collision detection

is not implemented, these queries can be used to implement contact inhibition, the process

by which cells' behaviour changes when they come into direct physical contact with other

cells (Browder et al., 1991, p. 366).

cellXCoordinate returns the x coordinate of the cell component. Similar queries cell-

YCoordinate and cellZCoordinate return the other coordinates.

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

2.4 Proteins

In nature, proteins play central roles in maintaining the cell's structure and shape, and are

also involved in all ongoing processes within the cell, including regulation of gene expression.

Proteins make up the cytoskeleton which determines the cell's shape. Ion channels, which

determine cells neural properties, are proteins, as are receptors which detect chemical signals

in the cell's environment, etc. In NeuroGene, proteins' roles in neural activity, morphological

change, etc., has been abstracted away. This abstraction is necessary because mechanisms

by which changes in proteins concentrations affect changes in neural activity patterns, cell

migration or other cellular properties are too complex to model explicitly. Instead, genes in

NeuroGene may affect such changes directly through actions. Consequently, the function of

proteins within NeuroGene is primarily the regulation and coordination of gene expression.

Proteins are also useful as they can be visualized within the NeuroGene GUI, thus allowing

the user to monitor gene expression during simulations.

In NeuroGene, proteins are divided into two classes, soluble (or diffusible) and membrane

bound. Membrane bound proteins are attached to some membrane that is part of a cell.

This may be the cell membrane surrounding the cell, or it may be other membranes that are

part of the cell's interior structure, but which are not explicitly represented in NeuroGene.

Proteins that are bound to the cell membrane are exposed to the space outside the cell, and

may interact with other cells. Proteins that are bound to intracellular membranes are not

exposed, and are "invisible" to other cells. Membrane bound proteins remain bound to the

cells in which they were produced.

Soluble proteins are those that are not bound to membranes. These proteins are free

to diffuse away from their source, much like cigarette smoke spreads through a room. Cell

membranes are impermeable to these proteins.

Protein concentrations are represented for three distinct types of locations: The first is

the extracellular space, which surrounds all cells in the simulation. Only soluble proteins

can be present in this space, since there are no membranes for membrane bound proteins

to attach to. Soluble proteins are free to diffuse through this space. The second is the

surfaces of cell components. Only membrane bound proteins can bind to cell surfaces. These

proteins remain bound to the cell component, and if the cell component migrates through the

simulation space, the proteins move with them. The last is the interior of cell components.

C H A P T E R 2. METHODS I: BIOLOGICAL PRINCIPLES 5 6

The interior may contain both membrane bound and soluble proteins - the membrane

bound proteins are imagined bound to intracellular membrane structures, of which there are

many in nature, but which are not represented in NeuroGene. Protein may be transported

between adjacent cell components using certain actions for internal transport, these will be

outlined below.

Extracellular proteins and proteins bound to cell surfaces can be perceived by other cell

components, while intracellular proteins cannot. -411 soluble and membrane bound proteins

are subject to decay according to protein-specific first-order decay rates, regardless of their

location, while only soluble protein in the extracellular space are subject to diffusion.

2.4.1 Protein decay and diffusion

Diffusion and decay are two simple chemical processes which play central roles in how pro-

tein concentrations evolve over time. Decay applies both to membrane-bound and soluble

proteins. It is a process by which the protein molecules are gradually broken down and dis-

appear. The rate of decay is characterized by the decay rate k, a non-negative real number,

defined according to the equation of first-order decay (Btkins and de Paula, 2002)

where C is the concentration of the protein.

Diffusion does not apply to membrane bound proteins which remain bound to the cell

components that initially produced them. Diffusion within cell components, which does

occur in nature, is also ignored in NeuroGene. Soluble proteins in the extracellular space

tend to spread through this space, away from the cell components that produce them. The

rate of this spread is characterized by the diffusion rate. The diffusion in 1D is governed by

the equation (Kreyszig, 1988, p. 661)~

where C is the concentration of the protein, and x is the one spatial dimension and D is the

diffusion rate, again a non-negative real value. The form of this equation can be rationalized

as shown in figure 2.2,4. In 3D the equation becomes

3 ~ h i s equation describes diffusion, heat flow and electrostatic potentials, and it is introduced in most
general text books on differential equations.

CHAPTER 2. JIETHODS I: BIOLOGICAL PRIXCYPLES

Figure 2.2: A: Informal graphical derivation of the diffusion equat,iori. The net flow of protein
at any point is proportional to the slope d C / d x of' the corlc:e~ltration C ivith respvct to the
spatial coordinate z, the c:oefficient, of proportionality being the rate of diffusion D. The
flow across the line a t x will therefore be larger (since the slope of C is greater) than that
across the line at a + dx, as indicated by the sizes of the two arrows. The net change in
concentration C in the region between z and x + d x is the difference between the flow across
the boundary a t z arid the flow across the boundary a t x + dx. which is then proportional
to the difference between the slope a t x and the slope at x + d x . \?,'hen d x is very srriall
this difference is equal to the rurvature d 2 ~ / d z 2 . B: Arrangenwit of the six face-sharing
IVorldNodes.

In order to simulate diffusion within the NeuroGene si~nulation space, a nurnerical solutio~i

of this equation is needed. This solution makes the following assumptions: Withi11 a single

time step, diffusion orily occurs between face-sharing WorldNodes. see figure 2.2B. It is also

assurried that the rate of difTusion is relatively slow. specifically that the nurnerical value of D

is less than $ in whatever units of time and concentration are used (see section 2 . 1 0 . ~) ~ . This

gives rise to the following simple expression of the c o ~ ~ w i t r a t i o n c:+, in some IVorldNode 0

at time t + l(Cruise, 2001):

"Consider equation 2.4 in the situation CF = 1. C1(= 0 for all 71 # 0. For D > $! Cy+, becorncs negative.
For D > $. CY+, < C;+, for all 7~ # 0, which Incans that more has diffused out of the ce~itral node than
what remains. Both of' these situations are physically in~possiblc. Conwquently the algorithm is only stable
for slow diffusion for which D < 4.

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 5 8

C? for 1 5 n 5 6 is the concentrations of the proteins in the six face-sharing Wor ldNode~.~

Special cases arise when the WorldNode 0 is at the edge of the simulation space. Here,

one or more of the six face-sharing nodes will be missing, since these would represent points

in space which fall outside the simulation space. Two different solutions to this problem has

been implemented in NeuroGene. In the first, which is called open, the concentrations CF

of such missing WorldNodes are set to zero, in the other (closed) case, these concentrations

are set equal to C!. In the open case, the simulation space is effectively surrounded by an

infinitely large volume where the concentrations of all proteins is zero. This means that

proteins are free to diffuse out of the simulation space, hence the designation open. In the

closed case, the simulation space is effectively enclosed in a barrier which is impermeable to

the diffusing protein.

2.4.2 Queries

Essential to the simulation of genetic regulation in NeuroGene is genes' ability to sense

the concentrations of proteins within cells as well as in cells' external environment. The

following queries can be used to retrieve current concentrations of proteins, or the slopes of

concentration gradients, within or in the vicinity of cell components:

number in te rna lconcent ra t ionof (protein s) direction towardsSignal(protein s)

/ number surfaceConeentrationOf(protein s) direction awayFrornSignal(protein s) /
I number externalConcentrationOf(protein s) I
Figure 2.3 shows the definitions of various actions and queries. It is important to note that

many of the actions and queries have different meaning when they are applied to soluble

and membrane-bound proteins. When the protein s is soluble, the queries from some cell

component C return the following values:

externalConcentrat ionOf returns the concentration of the protein in the WorldNodes

computed for the location of the cell component C (figure 2.3A). This computation

5A more stable algorithm exists: known as DuFort-Frankel, which can handle faster diffusion rates. Com-
puting the concentrations at time t + 1 involves the concentrations at both times t - 1 and t . This approach
can not deal with changes in concentrations that are due to other processes than diffusion, such as protein
expression, and it is therefore not suited to our needs.

CH.4 PTER 2. METHODS I: BIOLOGIC.4 L PRINCIPLES

A: The cxtcrnal coxicentratiori
of soluble protein is the con-
centration of protein dissolved
in the extracellular fluid. This
concentration changes through
cxtcrnal expression or con-
sumption of soluble proteins.

D: The intraccllular conten-
tration of protein. Both rrieni-
brane bound and soluble pro-
teins may be carried intra-
cellularly. These roncentra-
tions change through inter~ial
cspcssion or corisuruption of
proteins.

B: T h r external corice~itra-
tion of rriernbrane bound pro-
tein is t h e concentration of pro-
tein bound to the surface of
nearby cell components.

E: Export of ~r~crnbrane bound
proteiris along the cell sur-
face between cell components
belonging to t he same cell.
Import, causes transport in
the opposite direction, i.e..
towards the cell corriporie~it
which executes the action.

C: The surface concentra-
tion of protein. This ap-
plies to membrane hound pro-
teins o d y . This coricentra-
ti011 changes t,lirough exterrial
expression or corisu~riptio~i of
proteins.

F: I~itracellular export of
mernbrarie bourid or soluble
protcin to a r~eigllbouring cell
corriponcut . An import action
causes the transport to occur
in tile opposite directon.

G: Exocytosis of soluble protein from the in- H: Exocgtosc of membrane bound protein from
terior of the cell component t,o the extracellular the intracellular space to the cell membrane. En-
space. Endocytosis represents the transport of docytosis causes transport in the opposite direc-
the protein in the opposite direction. tion.

Figure 2.3: Defiriitions of protein cSoric'mtrations and rriecha~lisrris of protein transport. Sol-
uble protein showr~ as o. ~nernbrarle bound proteiris as o.

C H A P T E R 2. METHODS I: BIOLOGICAL PRINCIPLES 60

involves interpolation between the values of several WorldNodes close to this location.

The implementation of this interpolation is given in chapter 3.

surfaceConcentrationOf always returns zero, since soluble proteins do not associate

with the cell surface (figure 2.3C).

internalConcentrationOf returns the intracellular concentration of the protein in

the cell componentC (figure 2.3D).

towardssignal returns a vector pointing in the direction in which the extracellular

concentration (defined as for externalConcentrationOf) increases the most. Again

interpolation is used.

When the protein is membrane bound, the same queries compute the following values:

externalConcentrationOf computes the amount of the membrane bound protein

bound to cell components in the vicinity of the cell component C (figure 2.3B). For

each WorldNode close to the location of C, the sum of surface concentrations of the

protein for all cell components contained in that WorldNode is computed. These values

are then used to interpolate the value at the location of C.

surfaceConcentrationOf returns the surface concentration of the protein in the cell

component C (figure 2 . X) .

internalconcentrationof returns the intracellular concentration of the protein in

the cell componentC (figure 2.3D).

towardssignal returns a vector pointing in the direction in which the extracellular

concentration (defined as for externalConcentrationOf) increases the most. Again

interpolation is used.

awayFromSigna1 returns the vector which is the inversion of that returned by towardssig-

nal.

2.4.3 Actions

The wide range of biological mechanisms that involve proteins requires a wider range of ac-

tions which manipulate protein concentrations values in ways that reflect commonly observed

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 61

biological phenomena. This involves consumption of protein, as well as transport of protein

under genetic control. Protein production results from gene expression, and is described

in section 2.5 below. The following actions are used to manipulate protein concentrations

within cell components or their immediate environment.

void consumeExternally(protein s, number r)

void consumeInternally(protein s, number r)

void exportInternally(cel1 c, protein s, number r)

void exportSurface(cel1 c, protein s, number r)

void importInternally(cel1 c, protein s, number r)

void importSurface (cell c, protein s, number r)

void endocytose (protein s, number r)

void exocy tose (protein s, number r)

These actions all take as a parameter the name of the protein whose concentration will

be affected by the action, as well as a number r, indicating the amount of change in con-

centration which will be caused by the action. The value for r is specified as part of the

gene program, and can be either a constant value or an expression composed of queries,

mathematical functions (such as square root or logarithm) and constants.

The external concentration of soluble proteins (figure 2.3A), the surface of membrane

bound proteins (figure 2.3C) and internal concentrations of both types of protein (figure

2.3D) are all reduced by the appropriate consume primitives. The following actions also

affect one or more of these concentrations: Transport of protein between neighbouring cell

components that form part of the same cell is done using the export and import actions (figure

2.3E-F). Transport between the intracellular space and the cell surface or the extracellular

space is done using the endocytose and exocytose commands (figure 2.3G-H).

For all these actions, it is assumed that the value given for the parameter r is greater

or equal to zero. For each primitive, if r evaluates to a negative value, the action does

not occur. We have made this design decision in order for the genetic encoding to be as

clear as possible. We hereby avoid the potentially confusing situation where a statement like

export (NT,x) might actually represent an import action if x happened to be negative.

C H A P T E R 2. METHODS I: BIOLOGICAL PRINCIPLES

2.4.4 Ligand binding

Receptor-ligand binding is a chemical process on which many important developmental pro-

cessed depend, particularly those which allow cells to respond to their environment. The

mechanism usually involves two different proteins, one which is called the receptor, which is

bound to the surface of the cell. The other is called the ligand, and it may either be a soluble

protein, or else bound to the surface of another cell. The receptor has a binding site, facing

the outside of the cell, in which the ligand fits the way a key fits in a lock. When the ligand

binds to the receptor, this causes changes in the receptor, which in turn causes signaling

events inside the cell, thereby communicating the extracellular presence of the ligand to the

interior of the cell (see figure 1.3).

While in nature, the ligand proteins may be either soluble or membrane-bound, in Neuro-

Gene ligands must be soluble. As implemented in NeuroGene, competitive ligand-receptor

binding can be used to model a wide range of biological phenomena, however, processes

involving membrane-bound ligands can not be simulated.

The chemical reaction in which one molecule of ligand L binds to one molecule of receptor

R to give one molecule of complex C is described by the following equilibrium

The double arrow e indicates that the reaction is reversible, i.e., once L binds to R it may

fall off again. The strength of binding, or the relative tendency for L to bind to and to

fall off R , is described by the equilibrium constant Kd, given by the equation (Atkins and

de Paula, 2002)

where the square brackets indicate "concentration of'. The smaller the value of Kd, the more

tightly the ligand binds to the receptor. Given some arbitrary initial concentrations [LIo,

[RIo and [GIo of the three chemical species, the equilibrium concentrations can be computed

from the equation

where A may be positive or negative. Solving for A, we get

CHAPTER 2. METHODS I: BIOLOGICA L PRINCIPLES 63

Algorithm 1 Simulation of ligand-receptor binding for one WorldNode instance W.

[LIo t the extracellular concentration of ligand in the WorldNode W
[RIo t the total surface concentration of receptor on all cells in the WorldNode W
[CIo t the total surface concentration of complex on all cells in the WorldNode W

set extracellular concentration of ligand in the WorldNode W to (Lo + A)

f R ([RIO + A)/([RIO + [C]O)
for all cells c in the WorldNode W do

PC t total concentration of receptor and complex carried by cell c
set surface concentration of receptor on cell c to PC f R

set surface concentration of complex on cell c to Pc(l - f R)

end for

Since [RIo, [LIo, [CIo and Kd are all non-negative, and the equilibrium concentrations also

must all be non-negative, the correct solution of the quadratic equation can be determined

a priori: With two solutions Al and A2 such that A l 5 A2, both the terms ([RIo + Al) and

([LIo + A,) in equation 2.7 are negative, giving a mathematically valid but physically invalid

solution. With the solution A2, both these terms are positive, and the solution is valid.

The algorithm used to compute the equilibrium concentrations of receptor, ligand and

complex for a set of cell components within a single WorldNode instance is shown in algorithm

1. In lines 1-3 the values [LIo, [RIo and [CIo as defined above are computed. [LIo can be

retrieved directly from the WorldNode W, [RIo and [GIo are the sums of contributions from

each of the cell components in W. Lines 4-6 compute the value of A by solving the quadratic

equation 2.8 above. With the value for A, the equilibrium values for the concentrations of

receptor, ligand and complex can be computed from equation 2.7, i.e., [R],, = [RIo + A,

[L],, = [LIo + A and [C],, = [CIo - A. On line 7 the concentration of ligand as stored in

the WorldNode is updated to this new value.

When updating each of the cell components in the WorldNode, the following two princi-

ples apply: The total concentration PC of receptor and complex for each cell component (see

line 10) should remain unchanged, and the relative amount of receptor and complex should

be the same for all cell components. f R is the fraction of the combined amount of receptor

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

and complex which is in the free (i.e. receptor) form at equilibrium.

fR is computed on line 8. While iterating over all cell components in the WorldNode (line

9), the total amount p, of receptor and complex carried by the cell component is computed

(line l o) , and the relative amounts of each is adjusted according to the value of fR (lines

11-12).

The algorithm iterates over all cell components twice, once to compute the values in lines

2 and 3, and then to update the values in lines 9-13. The remaining steps of the algorithm

(lines 1 and 4-8) run in constant time. The algorithm therefore has time complexity O(n)

where n is the number of cell components in the WorldNode.

The algorithm makes two assumptions: The first is that the ligand-receptor binding

reaction is a t equilibrium. This approximation is valid if the binding reaction is fast relative

to the duration of a simulation time step. The other assumption is that the total number

of molecules involved is large, meaning that stochastic effects deriving from single molecular

events do not play a significant role. The binding reactions we simulate usually occur within

very small regions of space with low concentrations of ligand and receptor, meaning that the

stochastic nature of interactions between individual molecules may be significant. However,

the computed concentrations represent time-averages. If the duration of the simulation time

step is sufficiently long, the computed values will be a correspondingly precise estimates of

the true average concentrations. See section 2.10 for a discussion of the significance of the

simulation time step duration.

The algorithm has the limitation that the same protein can not be involved in more

than one receptor-ligand-complex relation. This limitation does not exist in nature, where

e.g. the same ligand may be detected by several different receptor each with a different

affinity. However, by excluding this possibility, NeuroGene is still able to simulate a wide

range of competitive processes while keeping the mathematics tractable.

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

2.5 Genes and the genome

The concensus among biologists is that the vast majority of cellular behaviour is governed

by genetic mechanisms. NeuroGene has been designed in such a way that all cellular be-

haviour be governed by simulated genes. This requires that simulated genes be capable of

representing causal relationships such as those described in the quote on page 6 and figure

1.2. Furthermore, the effect of neural activity on gene expression must also be representable.

Finally, the effect of gene expression on neurons, including their growth and morphology,

neural properties and biochemistry must also be representable. This section outlines the

NeuroGene genetic system which makes this possible. The equally important genetic roles

in mutation and inheritance do not come into play in the developmental processes NeuroGene

is designed to simulate, and are not supported.

Gene expression in nature causes the production of the protein encoded by the gene. Of-

ten the proteins are transported to specific target locations within the cell, such as dendrites

or presynaptic termini. In NeuroGene, we need to be able to simulate such targeting, and

we should be able to do so without having to simulate the details of intracellular transport.

The solution is to have all genes being active in each cell component, i.e., all parts of the cell

are "created equal" under the NeuroGene gene mechanism. For genes to affect, for example,

synapses, all that is required is to specify as part of the gene's expression behaviour that

it is "expressed in the synapse". In nature this would signify that protein produced from

the gene is transported to synapses through complex intracellular transport mechanisms. In

NeuroGene, the gene's expression rate is zero in all cell component types except synapses.

The targeting of proteins to the intracellular space, the cell membrane, or the extracellular

space is similarly simplified with respect to the biological model, with such targeting also

explicitly included as part of the genes' regulation behaviour.

2.5.1 Genes

The gene data structure is used within NeuroGene to represent biological genes. By virtue

of being an abstraction, it can also represent multiple genes or biological entities or processes

which are not genes, as outlined above (section 2.1.1). The data structure maintains the

information needed to model the causal relationships which govern the expression and cellular

effects of biological genes, including some select properties of the protein which is produced

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

when the gene is expressed. The genes have the following properties:

0 A name which identifies both the gene and the protein produced when the gene is

expressed.

0 The gene's expression behaviour:

- A symbolic representation of the gene's expression rate as a function of the state

of the cell component. This is evaluated to give both an expression rate (a real

non-negative number) and an expression location (either INTERNAL or EXTER-

NAL).

- The cell component types in which the gene is expressed. This may be one or

more of the following values: SOMA, AXON, DENDRITE, PRE - SYNAPSE and

POST-SYNAPSE.

0 Properties of the protein produced by the gene:

- Whether the protein is soluble or membrane-bound.

- The decay rate, which determines how quickly the protein is broken down after

it is produced (see section 2.4.1).

- Diffusion rate, which determines how fast a soluble protein spreads through the

simulation space away from the producing cells. Membrane-bound proteins do

not have a diffusion rate.

The egects of gene expression, i.e., the actions which result from the expression of

the gene. One implicit effect is always the addition of a given amount of protein to

the appropriate expression location, where both the expression rate and location have

been computed by the gene regulation. Additional effects may also be specified as part

of the gene definition. These may include actions which change the cell's morphology

(grow axons, form synapses, migration through the simulation space, etc.), or any of

the other actions which will be described throughout the remainder of this chapter.

See appendix B for numerous examples of NeuroGene genomes. The details of the internal

representation of the regulation and effects portions of genes will be described in chapter

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 6 7

Algorithm 2 Simulated gene expression.

I: evaluate the gene's expression behaviour in a given cell component to give the expression
rate R and protein target location. The expression rate is a real non-negative number.
Target location is either INTRACELLULAR or EXTRACELLULAR.

2: if R > 0 then
3: if target location is INTRACELLULAR then
4: add an amount R of protein to the intracellular space
5: else if target location is EXTRACELLULAR then
6: if protein is membrane bound then
7: add an amount R of protein to the cell membrane
8: else
9: add an amount R of protein to the extracellular space

10: end if
11: end if
12: evaluate the gene's effects, entering the actions on the ActionQueue.
13: end if

3. The execution of a gene within a given cell component in a given simulation time step

follows algorithm 2. Note that genes are stateless, in that none of their properties change

during the simulated gene expression as outlined. This reflects genes in nature, which never

change during the normal operations of cells.

The algorithm is run for each gene in each cell component each simulation time step.

In line 1, it is determined from the gene's regulation behaviour what the expression rate of

the gene is. Depending on the expression behaviour of the gene, this may depend on the

type of cell component, the concentrations of various proteins in the cell components or in

its environment, its neural state, etc. If the expression rate is greater than zero, the gene is

expressed (line 2).

Depending on the target area of the protein and whether or not the protein is soluble

or membrane-bound, the appropriate amount of the gene's protein will be added to the

appropriate target area (lines 3-11). Finally the other effects of the gene are executed in

line 12. The role of the ActionQueue will be explained in section 2.10.

2.5.2 Justification of the gene algorithm

The biological processes of gene expression is understood quite well in general (Smolen et al.,

2000a), although the particular expression behaviours of many individual genes have yet to

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 68

be elucidated. The algorithm described above attempts to capture three aspects of gene

expression: The regulation of expression, which determines the rate of protein production,

the transport of protein to the proper cellular target area, and the effects of gene expression

on the structure and function of cells.

In the introduction, an outline was given of the stages of elucidation of the structure and

function of a gene (section 1.2.6). It is important to note that the internal representation of

genes within NeuroGene does not include all these aspects of gene and protein structure and

function. However, this abstraction and consequent omission of detail in the representation of

genes does not lead to loss of accuracy, since the omitted detail does not affect those aspects

of gene regulation and developmental control which we are interested in. For instance, we

represent the fact that some regulatory protein affects the expression of a particular gene

(see question 2 on page 12), but we do not represent the molecular mechanism by which

this is accomplished (question 5). Similarly, we represent the fact that a particular protein

causes a particular change in the structure or function of a cell component (question I) , but

again the molecular mechanism of this interaction is omitted (question 6). This allows the

relevant aspects of the genetic information to be represented in symbolic form which is easily

accessible to biologists.

Gene regulation

The range of cellular properties which may influence gene expression have been outlined

in section 2.1.1. The genetic programming language allows queries of these properties to

be compiled into arbitrary mathematical expressions, which may contain conditionals. Such

expressions are able to capture the kind of linear and non-linear phenomena of gene regulation

that has been observed in nature, see e.g. Davidson et al. (2002), quoted on page 6. The

expression rate is evaluated on line 1 of the algorithm. If this rate is greater than zero,

the gene is expressed (line 2). Within this general outline defined by the algorithm, the

particular encoding of the expression behaviour of any particular simulated gene has to be

justified by its designers.

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

Protein expression and sub cellular targeting

Evaluating the gene expression function in the context of a given cell component gives the rate

of production of the corresponding protein within that cell component. At the same time the

destination of the protein (intracellular or extracellular) is determined. This represents an

abstraction with respect to protein production in nature, and conflates five distinct processes:

1. regulatory information flow to the cell nucleus, which in a simulated neuron corresponds

to the soma (see figure 1.3), 2. gene transcription into mRNA, 3. transport of mRNA to the

target area of the cell (i.e. back to the given cell component), 4. translation of mRNA into

protein (figure 1.1), and finally 5 . possible transport of the protein to the cell membrane or

out of the cell.

The justification for this abstraction is two-fold, and follows a familiar pattern used

throughout this thesis: In most cases the abstraction do not influence the outcome, while at

the same time conferring significant gains in computational efficiency and ease of use. Sec-

ondly, in cases where the added detail needs to be included, this is possible within NeuroGene

at the cost of a more complex simulation. There are actions available which can be used to

simulate intracellular transport of mRNA and protein, and separate simulated genes may be

used to independently simulate the transcription and translation of genes, see below.

Gene effects

Simulated gene expression may cause changes to occur to the state of the cell component

or its environment (line 12). In nature, it is not gene expression in itself, but rather the

presence of protein resulting from gene expression, which causes such changes. Our approach

correctly simulates genes whose expression and protein-mediated effects on cellular function

have identical time course. Our model does not capture genes whose proteins persist and

affect cell function after gene expression has ceased.

This limitation has been kept in mind when developing the simulations presented in this

thesis. It is likely that a future version of the NeuroGene simulator will incorporate a more

accurate model of gene expression in which the role of proteins in shaping cell structure and

behaviour is more explicitly modeled.

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

Modeling transcription a n d t ranslat ion separately

The production of proteins in nature is regulated both at transcription (production of an

mRNA copy of the DNA gene) and at translation (production of protein based on the

information in the mRNA). Such independent regulation can be modeled in NeuroGene by

representing the gene by two simulated genes. The first gene represents the regulation at

transcription, and the product of that gene represents the gene's mRNA copy. The second

simulated gene represents translation, the product of which is the protein. The expression

of the second gene requires the presence of the mRNA produced by the first gene, thereby

allowing the regulation of the first gene to indirectly affect the regulation of the second. This

technique will be used in one of the simulations presented in chapter 5 .

Modeling post-translational modification

In nature, many proteins are produced in an inactive form, and require activation through

some form of chemical change, usually involving enzymes. One common example is phos-

phorylation, in which an enzyme attaches a phosphate group (-PO:-) to the inactive form

of a protein to activate it. Such processes can also be modeled up to a point using simu-

lated pseudo-genes. One gene produces the inactive form of the protein, and a simulated

pseudo-gene which represents the activation reaction, produces the active form. For the

active form to be produced, the presence of the inactive form and the catalyzing enzyme are

both required. This is simply captured in the gene regulation of the pseudo-gene. However,

in nature the production of the activated form of the protein causes a depletion in the level

of the inactive form. While this can be captured if necessary using the consume() actions

(see section 2.4.3), it is not as straightforward. Alternative mRNA splicing, a process by

which a single gene may give rise to multiple different proteins, is also not supported.

2.5.3 Actions and queries

The actions listed in the box below are those used to specify the expression rate of a gene.

A number of different actions are given, each specifying a different target location for the

expressed protein. Each action takes a numeric parameter rate, which is the expression

rate. Like all parameters of type number, the expression rate may be a constant value or

an expression involving queries. Only if the computed rate is greater than zero is the gene

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

expressed.

void expressInternally(number rate) number geneExpressionRate()

void expressExternally (number rate)

void runoneGeneon ly (protein p) void dontRunGenes()

Unlike most other actions, these have the semantics of "return':-statements in languages

such as C, C++ and Java, i.e., no actions following one of these actions are executed.

expressInternally causes a given amount of protein to be added to the interior of the

cell component; expressExternally adds the protein to the cell surface (if the protein is

membrane bound) or to the extracellular space (if the protein is soluble).

The action dontRunGenes, when executed in the context of some cell component,

ensures that the genome will not be executed in the context of that cell component. This

can be used to improve the speed of simulations. runoneGeneon ly similarly causes only

one gene to be executed in a given cell component, namely the gene which encodes the

protein p.

2.5.4 Timers

Some genes are known which have expression behaviours with complex time dependence.

Davidson et al. (2002) report that the expression of the gene foxa in sea urchin oscillates,

driven by persistent positive inputs from other genes combined with auto-repression. In some

cases such oscillating gene interaction networks have been created from scratch (Elowitz and

Leibler, 2000; Judd et al., 2000). Smolen et al. (2000b) is a review article on the simulation of

oscillating and other dynamic gene regulatory systems. While the mechanisms driving many

such systems may be well understood, encoding such behaviour in a NeuroGene genome is

greatly simplified by the existence of a timer primitive. Zero or more named timers may be

defined as part of a genome, and the expression of genes may depend on the values of these

timers. Each cell component has its own value of each timer.

void setTimer(timer id, number ticks) number timerValue(timer)

The action se tTimer allows a named timer to be set to some positive value. Each time

step, all non-zero timers in all cell components are decremented. The query t imerva lue

may be used to query a given cell component for the current value of some named timer.

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

MIGRATE
MIGRATE 0.93

0.76 \ 1 MIGRATE

L

growth cone
ted cgtgTE
.,-."a

MIGRATE - - - - _ 0.62 nnc c-7

Figure 2.4: Example showing the auction mechanism of a growth cone consisting of twelve
filopodia. The bid value and action is shown for each filopodium. These have been chosen
arbitrarily for the purpose of illustration. The winning filopodium has a bid of 1.1, and
causes a MIGRATE action to give the situation on the right.

2.6 Growth cones

A growth cone is a bulbous structure on the tip of an extending axon or dendrite. From

this dynamic structure extends numerous fine fibres known as filopodia, which appear to

sense and probe their environment, and thereby guide the advancement of the growth cone.

Growth cones are instrumental in wiring up the nervous system, from navigating long dis-

tances between tissues to forming specific connections based on chemical cues. The details of

the mechanisms by which the growth cone accomplishes this process are not well understood.

We have tried to capture the general outline of the process using an auction paradigm among

filopodia, see figure 2.4. In the auction process, all the filopodia that make up one growth

cone compete through a bidding process. The winner of the auction is the filopodium with

the highest bid value. The action resulting from the growth cone process is determined by

the winning filopodium alone, and the location of that filopodium is used in executing the

action. For example, the action may be to MIGRATE, in which case the axon migrates

to the location of the tip of the winning filopodium. The other possible action is to form

synapses with other, nearby cell components.

In order to form synapses with other cell components, filopodia are able to detect the

C H A P T E R 2. METHODS I: BIOLOGICAL PRINCIPLES 73

presence of other cell components in their environment. They are also able to sense the

surface properties of these cell components, including the concentration of membrane bound

proteins, which allows for simulation of specific synaptogenesis processes. This is the only

mechanism by which collision detection is available in NeuroGene.

Each filopodium computes its bid value and action based on a growth cone function,

which is defined by the user. The bid value may be computed based on all of the information

perceived by the filopodium, and as such, may define a wide range of behavioural patterns of

the growth cone. A genome may contain zero or more growth cone functions, each identified

by a unique name.

2.6.1 Invocation of growth cone mechanism

Growth cones in nature form in response to genetic activity. In NeuroGene, this means that

for an axon or dendrite to form a growth cone, a gene which is expressed in that axon must

cause the growth cone to form, i.e., that the effect of gene expression (see line 12 of algorithm

2) is the formation of a growth cone governed by a particular growth

an action is encoded in the genome using this primitive:

void growthcone (growthconehnction gcf)

Note that this action is not added to the queue of pending changes.

cone function. Such

Instead, the growth

cone is constructed immediately. The action resulting from the growth cone (such as cell

migration) is then added to the queue, as will be explained in the section on the ActionQueue

below. growthcone () is arguably a meta-action, since it is evaluated within a cell component

to give an action, which is subsequently applied to the cell component.

2.6.2 Growth cone functions

A growth cone function defines the behaviour of a type of growth cone. It does this by

defining how the bid value and corresponding actions are computed. A growth cone function

has the following properties:

0 A name which identifies the growth cone function.

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 74

0 A function which is used to compute the bid value as well as the resulting action. The

bid value is used in the auction among all filopodia. This is similar to the way genes'

expression behaviour are represented, where the expression rate (corresponding to the

filopodium bid value) and the protein target location (corresponding to the action) are

computed concurrently.

The geometry of the growth cone, including the number of filopodia, their length, etc.

0 Parameters for the search for neighbouring cell components, including maximum search

range, etc. This is explained in more detail in section 2.6.4.

See appendix B.2.2, lines 131-137 and 150-205 for two examples of growth cone functions.

The algorithm for simulating growth cones is outlined in algorithm 3. location is a point in

3D space which represents the location of the tip of a filopodium. This value is initialized on

line 1 with the location of the parent axon, i.e., the axon which is carrying out the growth

cone action. This means that the first filopodium's location coincides with the location of the

axon or dendrite. Subsequent filopodia will have locations that are generated stochastically

(line 25). On line 2, bestBid is initialized to zero. For other bids to be considered in

the auction, they must be greater than bestBid - this means that all negative bids are

disqualified in the auction. If there are no qualifying bids, the growth cone mechanism does

nothing.

The for-loop in lines 3-26 then generates a set number of filopodia, computes the bid

value for each, and decides the winner of the auction. In line 4, the region of the simulation

space close to the filopodium location is searched for other cell components. This is the

collision detection part of the algorithm. The cell components found are added to the set

Neighbours. Line 5 defines a branch point in the algorithm depending on whether any

neighbouring cell components were found or not.

If no neighbour cell components were found, lines 6-13 will run. On line 7 the bid value

and action is computed from the user-defined growth cone function described above. If the

bid value is higher than the highest bid value encountered so far (line 8), then the resulting

action and bid value are stored (lines 9-12). Since the currentNeighbour is not defined (line

6), the winning filopodium also does not define a corresponding neighbouring cell component

(line 12).

C H A P T E R 2. METHODS I: BIOLOGICAL PRINCIPLES

Algorithm 3 Growth cone simulation.

I: location is initialized to the location of the parent axon
2: bestBid t 0
3: for number of filopodia in the growth cone do

Search the simulation space for cell components whose locations are close to location.
These cell components make up a set called Neighbours, which may be empty.
if no neighbours were found, i.e., Neighbours = 0 then

currentNeighbour is undefined
Evaluate the growthcone function using the current value of location. This computes
a bid and an action. bad is a real number, and action, is one of MIGRATE,
P R E S Y N A P S E or POST-SYNAPSE.
if bid 5 bestBid then

bestBid t bid
bestLocation t location
bestAction t action
best Neighbour becomes undefined

end if
else

for all cell components currentNeighbour in the set Neighbours do
Evaluate the growthcone function as above, computing bad and action.
if bid > bestBid then

bestBid t bid
bestLocation t location
bestAction t action
bestNeighbour t currentNeighbour

end if
end for

end if
location set to a randomly selected point close to the location of the parent axon.

26: end for
27: if bestAction = MIGRATE then
28: Parent axon migrates to bestLocation.
29: else if bestAction = P R E - S Y N A P S E then
30: Parent axon migrates to bestLocation and forms a synapse with bestNeighbour so

that the presynaptic terminal belongs to the axon and the postsynaptic terminal to
the neighbour.

31: else if bestAction = POST-SYNAPSE then
32: Same as for PRE-SY N A P S E , except that the synapse has the opposite orientation,

with the postsynaptic terminal belonging to the axon and the presynaptic terminal to
the neighbour.

33: end if

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 76

If one or more neighbours were found in the search on line 4, then lines 15-23 will run.

We iterate over all the neighbours found (line 15), and evaluate the growth cone function

as before (line 16), evaluating the resulting bid value (line 17) and storing the results of the

leading bidder (lines 18-2 I) , including the neighbouring cell component (line 21).

The user-defined function used to evaluate the bid value (lines 7 and 16) may make

references to the currentNeighbour, including queries to surface protein concentrations of

the neighbour, its distance from location, etc. This is part of the simulation of growth

cones' ability to sense their environment, including signaling molecules on the surfaces of

surrounding cells, functionalities which are important in both axon path finding and synapse

formation. On line 7, the neighbour cell component is not defined, and queries will always

return zero for surface concentrations of, and infinity6 for the distance to the neighbour.

After the neighbours (if any) have been processed and the corresponding bid values com-

puted and compared, the location of another filopodium is computed through a stochastic

mechanism (line 25). Here the length of the filopodia, as defined in the growth cone func-

tion, is used to select this new location, specifically the distance from location of the next

filopodium to the parent axon will be equal to this length. The outer loop then runs again,

once for each filopodium in the growth cone.

After all filopodia have been processed, the resulting action is stored in bestAction,

the location of the filopodium which won the auction is stored in bestLocation, and the

neighbouring cell component (if any) which gave rise to the highest bid value is stored in

bestNeighbour. This last field may or may not be defined at this point, depending on

whether the auction winner was selected at line 8 or line 17. In either event, a final set of if-

statements (lines 27-35) execute the winning action. Note that the actions PRE- SYNAPSE

and POST- SYNAPSE require that bestNeighbour be defined, while the other action does

not.

2.6.3 Justification of growth cone algorithm

Our approach to simulating growth cones is based on observed growth cone structure and

behaviour, rather than a detailed understanding of the molecular mechanisms which underlie

this behaviour. Consequently, we do not explicitly model any elements of the intracellular

'~ava's double data type can represent positive and negative infinity.

CHAPTER 2. AIETHODS I: BIOLOGICAL PRINCIPLES

skeleton underlying growth cone structure and motility.

The growth cone model as outlined in algorithm 3 consists of the following elements:

Generation of filopodia at stochastically selected locations, computation of bid values and

following auction, and implementation of action according to the winning filopodium. The

generation of filopodia is justified from the physical structure of a growth cone, which consists

of a core from which a number of fibres extend in more or less random directions. In our

model, the locations of the filopodium tips are chosen so as to be at a constant distance from

the centre of the growth cone - this is also based on the appearance of growth cones in

nature. The remaining parameters determining the physical manifestation of the simulated

growth cones, such as the length and number of filopodia, can be set by the user. The choice

of values for these parameters must therefore be justified by the user.

The behaviour of growth cones in nature suggests that the filopodia, as they probe the

environment of the growth cone, each represents different potential actions that the growth

cone might take. In nature, growth cone migration occurs when one filopodium becomes

enlarged while the others are retracted, indicating that the growth cone has somehow se-

lected one action among several potential actions, discarding the others. Synapse formation

is similarly initiated by initial contact between filopodia and the target cell. We use an auc-

tion mechanism to model this process of "winner-takes-all" competition. The behavioural

characteristics of the simulated growth cone is then expressed through the computed bids

and the associated actions (see lines 9, 18 and 11, 20 respectively).

Our model of growth cone function is not closely related to any of the earlier models

outlined in section 1.5.3. However, there are some similarities to the model by Meinhardt

(1999). In this model, chemical signals within the growth cone are explicitly represented.

Through the simulation of activation and inhibition of the production of these chemicals, a

"winner-takes-all" mechanism is produced as an emergent property. This chemical mechanism

was initially proposed by Allan Turing (1952), and is widely recognized as being applicable

to many forms of patterning in development. We also retain some elements of the model

by Buettner et al. (1994), in that we explicitly model filopodia within a stochastic model of

growth cone dynamics.

Our model of growth cone function is relatively more abstract than our gene model.

There are two reasons for this: First, a detailed simulation of growth cones based on what is

know about them would be computationally very expensive, since it would involve the explicit

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 78

representation of intracellular skeletal elements, and their build-up and breakdown. Secondly,

the mechanisms which determine growth cone behaviour are not well enough understood for

such a model to be complete. While there are good theories for how growth cones transduce

a single concentration gradient, we do not understand how multiple chemical signals are

detected concurrently, or how the information from each type of receptor is integrated to

give a particular behavioural pattern. Since our goal is to model a wide range of growth

cone behaviour, including the most complex behaviour observed, a more abstract model is

required. We believe that a very wide range of behaviours can be captured through our

auction mechanism. Some of the capabilities of the model is demonstrated in a simulation

system presented in chapter 5 .

Our model is based on the assumption that a simple competitive mechanism under-

lies growth cone function, and that the complexity of growth cone behaviour is manifested

through this competition, particularly in the comparison of the competitive strengths of the

filopodia. Our model is supported by observations of how growth cones behave, not by an

understanding of why they behave that way. It is therefore likely that it may have to be

revised as our understanding of growth cones improve. However, lacking this understanding,

the high level of abstraction of our growth cone model gives a good starting point for the

simulation of axon guidance.

2.6.4 Optimization of collision detect ion

Measurements showed that the performance of the growth cone mechanism was severely

impacted by the search for neighbouring cell components (line 4). This search amounts to

finding a set of cell components that fall within a given distance from a particular point in

3D space (location in algorithm 3). The search has two components: An appropriate set of

WorldNodes must first be selected, and then a linear search is conducted within each of these

WorldNodes for cell components that meet the search criterion. Since nothing can be done

to improve upon the linear search within each WorldNode, the initial optimization effort is

directed at reducing the number of MiorldNodes that need to be considered:

CH;1 PTER 2. METHODS I: BIOLOGICAL PRINCIPLES

Maximum range of search

This is a user-definable setting. No cell components which are farther from location than

this range will be considered. This radius is used to reduce the number of WorldNodes that

need to be considered in the search.

A maximum number of neighbours

Only the N closest cell components will be included in the set of neighbours. This is used to

dynamically reduce the search range described above. When N potential neighbours have

been found, the search range can be set to the distance of the most distant of these N

potential neighbours, thereby potentially cutting down on the number of WorldNodes that

need to be considered.

Ordering of WorldNodes

During the search the WorldNodes are visited in approximate order of increasing distance

from location. This means that the closest neighbouring cell components will be found first,

and will allow the search to be aborted as soon as the required number of neighbours or the

required search range has been reached.

Filtering eligible cells

The filter is a boolean expression which is evaluated in the context of each potential neighbour

cell component. Only if the expression evaluates to true will the cell component be included

in the set of neighbours. This does not reduce the number of WorldNodes that need to be

considered for the search - instead it reduces the number of neighbours in the resulting

Neighbours set. This in turn will speed up the remainder of the growth cone algorithm

since the loop in lines 15-23 will run through fewer iterations.

2.6.5 Time complexity of the growth cone algorithm

The growth cone algorithm's main iterative loop (line 3-26) is repeated once for each

filopodium in the growth cone. This number is user-definable. It does not appear else-

where in the algorithm, making the algorithm linear with respect to the filopodium count

CH24PTER 2. METHODS I: BIOLOGICAL PRINCIPLES 8 0

f . The neighbour search in line 4 is, in spite of the optimizations given above, linear in

the number of cell components c in the vicinity of the parent axon, i.e., the "density" of cell

components. Since the search is carried out once for each iteration of the outer loop, the

overall time complexity from these two factors is O(cf) ,

The growth cone function is specified by the user as part of the genome. Since the precise

form of this function is therefore unknown, the complexity of evaluating the growth cone

function is also unknown. However, since iteration is not typically involved in executing the

growth cone function, it will in most cased be evaluated in constant time. Assuming that

this is the case, lines 6-13 run in constant time.

The for-loop on line 15 introduces a linear dependence on the number of neighbouring cell

components. As described above, this number may be limited to a user-defined parameter

N , the maximum number of neighbour cells found. The body of the for-loop executes in

constant time, just like lines 6-13. The time complexity of this stage is therefore 0 (N) . The

selection of a new filopodium location (line 25) also runs in constant time. The neighbour set

is traversed once for every filopodium, giving an overall time complexity of O((c + N) f). If

N is large relative to c so that the size of the neighbour set is limited by the cell component

density c, the complexity becomes O(c f). The execution of the resulting action (lines 27-33)

involves adding the new action in the ActionQueue (section 2.10), which is a constant time

operation.

2.6.6 Actions

A number of actions are used within growth cone functions to define the behaviour of the

growth cone, specifically the computation of the bid value and the action of each filopodium.

The growth cone related actions are:

void buildPostSynapse (number bid, number weight) void migrate (number bid)

void buildPreSynapse (number bid, number weight)

corresponding to the MIGRATE, PRE - SYNAPSE and POST - SYNAPSE constants in al-

gorithm 3. These are defined similarly to the gene expression primitives (see section 2.5.3),

and they have the same "returnn-statement semantics. The actions which try to build

synapses have an additional parameter which specifies the initial synaptic weight of the

synapse.

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

2.6.7 Queries

Growth cones' enhanced ability to sense their environment through collision detection is

reflected in an extended set of queries that may be used within the context of growth cone

functions. These queries are:

number growthconeCellDensity()

1 number ne ighborRange0 I I number growthconeConcentrationOf(protein signal) 1
1 number ne ighborconcent ra t ionof (protein signal)

Below are listed the values computed by the queries in a filopodium F whose parent cell

component (typically an axon) is C, and whose neighbour cell component is N. When the

protein s is soluble, the queries from the filopodium F compute the following values

internalconcentrat ionof returns the intracellular concentration of the protein in

the parent cell componentc, see figure 2.5A.

surfaceConcentrationOf always returns zero, since soluble proteins do not associate

with the cell surface, figure 2.5B.

externalConcentrationOf returns the extracellular concentration (as stored in World-

Nodes) of the protein interpolated at the location of F (same as for other cell compo-

nents), see figure 2.5C - the concentration measured at @ is returned.

growthconeConcentrationOf returns the extracellular concentration (as stored in

WorldNodes) of the protein interpolated at the location of C. In combination with

externalConcentrationOf, filopodia can compute the concentration difference from

their roots to their tips, which is their way of perceiving concentration gradients, see

figure 2.5C - the concentration measured at 8 is returned. The name of this query

has been chosen since the query is relative to the location of the centre of the growth

cone structure, which is identical to the location of the parent cell component C.

neighborconcentrat ionof always returns zero, again since soluble proteins do not

associate with the cell surface, see figure 2.5E.

When the protein is membrane bound, the same queries compute the following values:

CHAPTER 2. METHODS I: BJOLOGIC.4L PRIXCIPLES

4: The intracellular concentration of protein.
Thc internal concentration of both n~cmbrane
bound and solublc proteins are identical to thobe
of the parent axon or dendrite.

C: The external concentration of soluble protein
is cornputed us shown in figure 2.3A. Here, t,wo
diflerent queries exist, one which measures the
concentration relative to the tip of thc filopdoia
(for oue filopodium indicated by a 8): and all-
other which measures it relative. to the centre of
the growth colic (at 5 9) .

B: The surface concentrations of niembranc
bound proteins arc also identical to those of thc
parent neurite.

D: The external concentration of membrane
bound protein is rrieasured as described in figure
2.3B: with two queries measuring either relative
to the location of the tip of the filopodia (at 8) or
relative to the location of the centre of the growth
cone (at :?).

E: Unlike other cell co~npolicnts, filopodia perceive the prcsence and surface concentrations of nearby cell
components. Within each filopodiur~i, thc querv returns the surface coxicentration of the corresponding
rwighbouri~ig cell component. as indicated by dashcd lines. R is the distance to the neighbour.

Figure 2.5: Definitions of protein coricentratio~ls as perceived by growth cones. Soluble
proteins are shown as o! niembra,rie bound proteins as 0 .

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 8 3

0 internalConcentrationOf returns the intracellular concentration of the protein in

the cell componentC, as shown in figure 2.5A.

surfaceConcentrationOf returns the surface concentration of the protein in the cell

component C , figure 2.5B.

externalConcentrationOf returns the extracellular concentration (i.e. summed over

cell components within each WorldNode) of the protein interpolated at the location of

F (same as for other cell components), see figure 2.5D, measured at the location @.

growthconeConcentrationOf returns the extracellular concentration (as summed

within each WorldNode) of the protein interpolated at the location of C. See figure

2.5D. location 8.

0 neighborconcentrationof returns the surface concentration of the protein in the

cell component N. This allows filopodia to distinguish between cell components in

their environment, e.g., for the purposes of forming synapses with high selectivity, see

figure 2.5E. If the neighbour is not defined, this query returns zero.

The following queries are also specific to growth cone functions.

neighbourRange returns the distance from the location of the filopodium tip to

the neighbour, shown as R in figure 2.5E. If the neighbour is not defined, infinity is

returned.

cellDensity returns a number representing how many cell components are close to F

(same as for other cell components). This query parallels externalConcentrationOf,

except that is computes the cell density in stead of the protein concentration.

growthconeCellDensity returns a number representing how many cell components

are close to C. This query parallels growthconeConcentrationOf, computing cell

density rather than protein concentration.

2.7 Neural activity

The variety and flexibility of neuronal activity observed in nature has lead to the proposal

of a wide range of computational models of neural activity, varying in precision, temporal

C H A P T E R 2. METHODS I: BIOLOGICAL PRINCIPLES 84

resolution, computational cost, etc. NeuroGene is designed in such a way that different cells

may use different models of neural activity at the same time. However, the overall execution

model of NeuroGene (described in section 2.10) currently limits these models to those that

operate in discrete time, excluding e.g. spiking neuron models. Two neural models have been

implemented, a linear and a non-linear model.

The different cell component types play the following roles in the implementation of

neural activity:

Soma may receive neural activation from any number of dendrites and postsynapses,

and transmit activation via any number of axons and presynapses, all of which are

children of the soma (keeping with the child-parent nomenclature of the tree data

structure).

Axons receive neural activation from their parent, which is either a soma or another

axon segment. They transmit activation via any number of child axons and presy-

napses. Axons thus transmit neural activity away from the soma.

Dendrites receive neural activation from any number of child dendrites and postsy-

napses. They transmit this activation to their parent, which is either a soma or another

dendrite segment - thus transmitting neural activity toward the soma.

Presynapses receive activation from their parent, which is either a soma or an axon.

They transmit the activation to their corresponding "partner", which is always a post-

synapse. The postsynapse is usually part of a different neuron.

Postsynapses receive activation from corresponding presynapses. They transmit the

activation to their parent, which is either a dendrite or a soma.

2.7.1 Bidirectional neuro-genetic coupling

It is thought that activity driven developmental processes may underlie the flexibility of the

growing vertebrate nervous system, and the ability to simulate such processes is an important

requirement of NeuroGene. The NeuroGene genetic programming language contains actions

for altering the neural properties of cells, including synaptic weights, threshold potential,

refractive periods, etc. Queries also exist for modeling the effect of neural activity on gene

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 8 5

expression. Through these primitives, we achieve bidirectional coupling between genetic and

neural activity, again omitting mediating regulatory proteins and other molecular mecha-

nisms. By combining different classes of primitives, NeuroGene can be used to simulate the

process by which neural activity causes axon growth, as reported by Carmichael and Chesse-

let (2002), or affect intracellular protein transport, as seenby Meyer-Franke et al. (1998), or

affect gene expression in general, as reviewed by West et al. (2002). Conversely, using neural

actions, genes may affect the neural properties of a cell, by e.g. changing firing thresholds

or synaptic weights. Genetic and biochemical control of neural properties has been observed

in nature, see e.g. the study by Yuan et al. (2002) who found that synaptic plasticity was

altered by phosphorylation of ion channels. Phosphorylation is a common mechanism for

rapid regulation of intracellular processes.

2.7.2 A linear model of neural activity

The linear neural model of some cell i is characterized by the following parameters: The

membrane potential pi, the leakage rate Ti and the threshold Ti. The membrane potential

of cell i at time step t is computed from activity

at time step t - 1:

p: = p;-l exp(-ri)

levels of a set of M afferent (or input) cells

where wji is the synaptic weight from afferent cell j to target cell i, and a; is the activity of

cell j in time step t. For cells using the linear model, the activity a$ of cell j in time step t

is defined as

where Ti is the threshold value for cell i. With the exception of synaptic weights wij, all

these parameters apply to a cell as a whole.

2.7.3 A non-linear model of neural activity

The non-linear model extends the linear model to include the following additional parame-

ters: the predicate F which is true if the cell is firing and false otherwise, the firing duration

f and the refractive duration d. Also, the threshold Ti has a different meaning than above:

here it determines whether or not the cell begins to fire in a given time step, i.e., F becomes

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

Yes pi > T i U b i n o m i a l (P) ? - Firing
a4 = 1 Loop f times

Receptive Refractive
a: = 0 a i=O 3 Loop d times

p: = p:-' e q (- T) + z:L1 O ; - ' W ~ ~ = 0

Figure 2.6: Flow-chart defining a non-linear model of neural activity. Expressions of pt
shown how the membrane potential is computed in the receptive and refractive states. Cells
are initially in the receptive state. l n n o m i a l (P) is true with probability P and false with
probability 1 - P. When P > 0, receptive cells fire with a probability P even though the
membrane potential pt is below threshold. f is the number of time steps the cell remains in
the firing state, and d is the number of times steps it remains in the refractive state.

true in time step t iff pi > Ti. The activity of the cell depends on F: If the cell i is firing

in time step t then a; = 1, otherwise a: = 0. Once the cell starts to fire, it remains in the

firing state for f time steps. After the cell ceases to fire, it remains in a refractive state for

d time steps. During the refractive period, the cell in not receptive to neural activity. After

the refractive period is over, the membrane potential is reset to zero, and the cell becomes

receptive again.

The non-linear neural model also has a probability P E [O,1] of spontaneously firing.

This is needed to allow us to model certain stochastic behaviours exhibited by some neurons

(Feller et al., 1997). The cell can be in one of three states: receptive, firing or refractive,

see figure 2.6, where the term l n n o m i a l (P) represents spontaneous firing. In the receptive

state, equation (2.10) defines the evolution of the membrane potential, just like in the linear

model.

2.7.4 Actions and queries

Actions exist for altering the values of neural model parameters, as well as queries for get-

ting the current values of these parameters implementing neuro-genetic coupling as outlined

above. The set of actions and queries consequently depends on which neural model is being

CHAPTER 2. -METHODS I: BIOLOGICAL PRINCIPLES 8 7

used for a particular cell. An error is generated when an inappropriate action or query is

used, leading to the interruption of the simulation.

Linear model

For each parameter of the linear neural model (leakage rate ri, threshold value Ti and

synaptic weights wij) there exists queries for retrieving their current values (in bold), and

actions for changing their values (in bold italic). In addition, there is a query for retrieving

the current membrane potential pi, however this value is computed from the neural model,

consequently the corresponding action for altering this value does not exist.

number leakageRate() void setLeakageRate (number rate)

number threshold() void set Threshold (number)

number synapticweight () void se t synapt ic Weight (number)

number membranepotential()

All these parameters apply to the whole cell, except for the action for altering the synaptic

weight of any synapse, and the corresponding query for getting the current synaptic weight

of the synapse - these apply to the current cell component only, and cause an error if they

are executed within a cell component which is not a synapse.

Additional primitives for t he non-linear model

The additional parameters of the non-linear neural model (see figure 2.6) gives rise to addi-

tional actions and queries. Most of these are for setting parameter values or for retrieving

their current values. The query cellIsFiring returns the firing state of the cell, t r u e if the

cell is firing, false if not.

number firingDuration() void setPiringDuration(number)

number refractoryDelay() void setRefractoryDelay(number)

number firingProbability() void set~iringProbability(number)

boolean cellIsFiring()

These queries and actions all relate to parameters of the non-linear neural model, i.e., the

firing duration f , the refractory delay d, the probability of spontaneous firing P. Similarly

to the linear model, the firing state of the cell is computed by the model. Therefore the

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

peripheral arbor
arbor
cell

Figure 2.7: Image showing which parts of a neuron are included in various cell wide queries.
In black is shown a neuron, consisting of a central soma and two highly branched axons or
dendrites. The queries are carried out by the cell component indicated by an arrow. The
"peripheral arbor" is the part of the axon that is "distal" to the querying axon segment. This
is the subtree of which the querying segment is the root, as shown by the smallest box. The
"arbor" as a whole is the whole axon which includes the querying axon, but does not include
the soma or any other axons or dendrites (medium box). The "cell" includes the whole cell
(largest box).

query cellIsFiring() retrieves the firing state F of the cell, but no action exists for altering

this state.

Cell-wide queries

A number of normalization schemes from the connectionist literature assumes that cellular

activity may be affected by the combined weight of many synapses. The following queries

compute synaptic weights summed over defined sets of synapses, and thereby allow the

straightforward implementation of various normalization schemes.

number arborIncomingWeight () number peripheralArborIncomingWeight ()

number a rbo rou tgo ingwe igh t () number peripheralArborOutgoingWeight ()

number cellIncomingWeight () number cellOutgoingWeight ()

All of these queries compute the sum of the synaptic weights of all synapses within a partic-

ular well-defined region of a simulated neuron. Figure 2.7 shows an example of which subset

of a neuron's cell components are included in the different types of queries:

Cell: Relative to the cell component i within which the query is executed, it defines

the set of all cell components which together make up the cell to which i belongs.

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

This is the largest box in figure 2.7.

Peripheral arbor: Again relative to the cell component i , this includes the cell component i

itself, and all children (direct or indirect) of i. This is the smallest box in figure

Arbor: This includes the cell component i itself, all parent cell components of i up to

but not including the soma, and all children of these cell components. This is

the intermediate box in figure 2.7.

For each subset, there is a query which returns the total weight of all postsynapses (Incoming-

Weight) and presynapses (Outgoingweight) within that subset of the cell. The incoming

weight is the sum of the weights of all synapses via which neural activity may reach the cur-

rent cell (the one of which the querying cell component is part) from other cells. Outgoing

weight is the weights of all synapses via which neural activity may reach other cells from

the current cells. For example, the query a rboroutgoingweight () will compute the sum

of all the outgoing synapses that fall within the set of cell components defined as the arbor

above. As usual, we have implemented these queries, and leave it to the experimenter to

justify their use in any given context.

2.7.5 Exogenous neural input

As a compliment to the mechanisms for simulation of neural activity, NeuroGene also con-

tains a system for generating exogenous neural activity. This activity is presumed to origi-

nate in some neural system that is not explicitly included in the NeuroGene simulation. This

functionality may be used to simulate visual stimulation or other forms of sensory input, or

activity originating in other neural systems.

The system is based on the following concepts: Exogenous activity is generated by neural

activity sources. This activity may pass through filters before it is passed to receiving cells.

Any number of different sources may exist within the same simulation, and together with

the filters a large variety of different activity patterns may be generated. Currently about

fifteen different filters and sources have been implemented, these are listed in appendix D.

Any number of cells may receive input from a single source. Each cell receives neural

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 90

input from the source based on the location of the cell in 3D space. How the location infor-

mation affects the generated activation depends on the particular sources and filters used,
see appendix D. The use of spatial information in generating exogenous activation patterns

allows the activity to be spatially coherent, i.e., correlation between inputs received by two

different cells decreases with increasing inter-cell distance. This approach also harmonizes

well with the emphasis we place on the spatial locations of cells and cell components in

our design of the simulation space and cellular data structures. In chapter 5 we show how

this system is used to generate simulated binocular visual input with varying inter-ocular

correlation.

2.8 Simulation architecture

The simulation data structure as a whole represents the current state of the simulated

biological system, as well as the genetic information governing how the simulation changes

over time. I t also manages the computations involved in conducting the simulation itself.

However, it is not involved in the display, analysis or other interaction with the user. These

functions are handled by components outlined in chapter 3. See figure 2.8 for a UML diagram

(Liberty, 1998) showing the interactions between the classes which make up the simulation

system.

The simulation system has been designed with computation speed as a primary require-

ment. As a consequence, the simulation classes are closely integrated and relatively inter-

dependent.

2.8.1 Genome

The Genome stores the genetic information governing the activity of all cells. It stores all

genes in a way that makes executing the genes for a given cell component efficient. It also

stores all defined timers, growth cone functions and ligand-receptor binding relationships.

The details of the internal representations of the genome are given in chapter 3.

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

I SimulationController I

I Genome Os1 Growthcone

1

execute() ji,,, execute() 1 , CellComponent

P SignalInteraction

I Resynapse I I Postsynapse I l ~bs trac t~eura l~ode l l

Simulation & ActionQueue

lock 1 execute() regulation

enqueue() effects

SignalArray
P

b I I

World -

---+ Associations

-----r> Inheritance

f,

Figure 2.8: UML diagram of the simulation system. Each box represents a class. The top
field of each box contains the name of the class, the middle field zero or more properties
of instances of the class, and the bottom field zero or more methods of the class. Associa-
tions indicate "has-a" relationships, e.g. a Simulation instance has (owns) a World instance,
an ActionQueue instance and a Genome instance. Numbers on the association relations
indicate how many instances are owned, e.g. a WorldNode has one SignalArray, while a
CellComponent has two SignalArray instances (representing internal and surface concen-
trations respectively). Inheritance shows "is-a" relationships, e.g. a Soma is a (special kind
of) CellComponent. In terms of implementation in an object-oriented language like Java,
associations are represented by properties, e.g. the class Simulation has a property of type
World. Inheritance is represented through class inheritance, e.g. the class Soma extends
the class CellComponent. The class SimulationController is part of the simulation control
system described in chapter 3, see figure 3.7.

1

1 ..n

WorldNode 1 L

Figure 2.9: Three cells shown within a grid of MTorldNodes. Broker1 lines show the bounda.ries
between \,\iorldNodes. All t.hree panels show the same situation, but with different shading of
cell comporierits to highlight different aspect,s of the data st,ructure. Le.ft: Each cell is shown
with uniform shading, one cell in white. and two different rells in black. Circles represent,
the Somas, of which each cell has exactly one. Lines represent the axoris arid dendrites,
which are not distinguished in t,his figure. Triangles represent the syiapt,ic terminals, two
of which rnake up one synapse. Note that each cell may span multiple WorldNodes, arid
that the t ~ v o synaptic terminals making one synapse each belong to a different cell. Centre:
Individual cell components are shown in contrasting shading. Kote that axon and dendrites
are segrnerited such that each segment is contained within a single WorldNode. All axon arid
dendrite segments are straight, so that e.g. the white "..:."-shape in the top right WorldNode
represents two segments. Also note that each cell has the topology of a tree, with the soma
as the root node. Right: Cell components are shaded according to the WorldrVode that,
contains them. Note that a IVorldNode may contain cell cornporierits belonging to different.
cells.

2.8.2 World and cells

The World represents the sirnulation space in which the sirriulated system exists. The physi-

cal space is subdivided into a 3D array of sniall cubic elernerlts (M7orldNodes), all of the sanie

size. The length of an edge of the cube is one in the arbitrary unit of length used throughout

the simulation system (see section 2.10.8). Each WorldNodr may contain any number of

cell cornporierits (see figure 2.9 right), stored in a singly linked list,. This data structure

is chosen for rapid modification of the collect.iori of cell components, anticipating that the

cell components belonging to a given WorldWode rnay change often during the course of a

sirnulation. The cells t,hemselves are represented by doubly linked tree struct,ures cornposed

of cell co~nponents (figure 2.9 centre). While the cells may span multiple iVorldiVodes (figure

2.9 left), each cell component is contained within a single WorldNode (figure 2.9 centre). -4

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 93

doubly linked structure is chosen here since cell components representing a single cell inter-

act in many ways, and fast access to both parent and child entities in the tree structure is

required.

2.9 Simulation initialization

Many neurodevelopmental processes occur in the context of partially or fully formed organs,

consisting of large number of cells, with particular spatial arrangements and even particular

neural interconnections already in place. NeuroGene needs a powerful mechanism for speci-

fying the starting point for simulations, including the initial arrangements of cells. We chose

to use a second scripting language for this purpose. The scripting language is similar to the

gene scripting language, and it uses much of the same infrastructure, including the parser.

The language also allows the specification of complex inter-cellular connectivity patterns

(through axons, dendrites and synapses), initial protein concentrations, etc. The geometry

scripting language has some features that are absent in the gene language, including itera-

tion (for, while and do-while). It also has syntax for specifying arbitrary cell initialization

blocks, using most of the actions available to the gene scripting language. Using this feature,

cell components may be initialized to have arbitrary protein concentrations, neural proper-

ties, etc. Variables and multi-dimensional arrays of type cell (see table 2.1) can be used

to construct complex neural circuits. Exogenous neural flters (see section 2.7.5) are also

constructed based on instructions in the geometry script, and cells are initialized to receive

neural input from such filters.

2.10 Execution model

NeuroGene simulations progress in a series of discrete simulation time steps. Each time step

consists of a set number of stages that are carried out in a fixed order. Each of these stages

will be described in turn in sections 2.10.1-2.10.6. These stages are executed sequentially in

this order during one simulation time step.

An important goal of the NeuroGene execution model is to achieve simulated parallelism

among genes and among cell components. Consider a situation with two genes gland g:!

being expressed concurrently within the same cell component. If the changes caused by the

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 94

simulated expression of the gene gl were applied to a cell component before some other gene

y2 is evaluated within that same cell component, the expression of g2 might be affected by

the result of expression of gl . The end result might be different if g2 was evaluated before

gl. In nature genes act in parallel. In order to simulate this faithfully? the execution order

of genes must not affect the outcome of simulations.

2.10.1 Process pending changes

In order to ensure that genes act in parallel, genes cause no changes to cell components

until all the genes and all cell components in the simulation have been processed. A queue

of pending changes (the ActionQueue) is used to store actions until all genes have been

processed. The pending changes on the queue are applied here in stage 1 of the subsequent

simulation time step. Each action in the queue applies to a particular cell component, and

describes some change in the state of that cell component.

Assuming that making the changes to the simulation as specified by each element in

the queue is done in constant time, the time complexity of processing the complete set of

pending actions is O(n) where n is the number of pending actions. The dependence of

n on the number of genes and the number of cell components will depend greatly on the

particulars of the simulation in question, but it will generally vary linearly with the number

of cell components, and also approximately linearly with the "size" of the genome, however

one chose to measure this.

Visualization of growth cones

It may seem counter intuitive that the processing pending changes is the first stage in a

time step. This is related to the visualization of growth cones in the GUI: The growth cone

model (see algorithm 3) goes through the following steps: I: Create n filopodia. 11: Select

a winning filopodium. 111: Add the action determined from the winning filopodium to the

queue of pending actions. IV: Processing the pending changes.

Steps I , 11 and 111 occur as part of the execution of genes, more specifically as part of

the effects section of one or more genes, see algorithm 2, line 12. In step I V the pending

changes resulting from growth cones are processed along with all other pending changes as

described above. In order for the user to be able to use the NeuroGene visualization tools to

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

Figure 2.10: Growth cone shown similar to how they are drawn in the NeuroGene GUI.
The same growth cone is shown, either as it appears when pending actions are implemented
at the beginning of the subsequent time step (left), or at the end of the current time step
(right). In the image on the left, the "winning" filopodium (see section 2.6) is marked with
a *. Assuming that the growth cone operation is MIGRATION, the resulting action is a
migration to the location of the tip of the winning filopodium. On the right is an image of
what the same growth cone looks like after this action has been processed. This image is
less instructive in showing the result of the growth cone operation, in particular the winning
filopodium can not be seen.

understand (and debug) the behaviour of growth cones, growth cones have to be visualized

after step 11 is complete but before step IV is commenced. Figure 2.10 shows the difference

between drawing the image showing the same growth cone after 11 (left) and after IV (right).

A typical use of the NeuroGene GUI is to pause the simulation so that its state no longer

changes, and then use the visualization mechanisms of the GUI to investigate the state of

the simulation. For the visual display to be interactive while the simulation is paused, the

visualization cannot happen during or as a part of the simulation time step, it has to occur

between the end of one time step and the beginning of the next. Consequently, rv must be

postponed until the subsequent time step.

2.10.2 Update neural state

Stage 2 is similar to the stage 1 in that it updates the neural state of the simulation to that

computed in the previous time step.

CHAPTER 2. METHODS I: BIOLOGICXL PRINCIPLES

2.10.3 Protein diffusion and decay

As outlined in section 2.4.1, extracellular concentrations of all soluble proteins are updated

to reflect the diffusion of these proteins through the extracellular space. All protein concen-

trations in the simulation (including membrane bound and intracellular concentrations) are

then reduced to reflect the decay of each protein.

Computing the diffusion of one protein for one WorldNode instance is done in constant

time. The same is true for simulating decay. Adjusting the extracellular protein concentra-

tions for the effect of diffusion and decay therefore has time complexity O(np) where n is

the size of the simulation space, and p is the number of soluble proteins. Computing the

decay of proteins within or on the surfaces of cells has time complexity 0 (c p) where c is the

number of cell components and p is the number of proteins.

2.10.4 Ligand-receptor binding

In this stage of the simulation time step, the ligand-receptor binding model shown in algo-

rithm 1 is applied to each WorldNode in the simulation space. After this step, the concentra-

tions of all ligand, receptor and complex proteins in all WorldNodes will be at equilibrium.

As mentioned above, the complexity of the model of ligand binding for one WorldNode is

linear in the number of cell components Ni in each WorldNode i. For the simulation as a

whole, the complexity is therefore linear with respect to Ci Ni where the sum is over all the

WorldNodes in the simulation space, i.e., the total number of cell components in the simula-

tion as a whole. It is also linear with respect to the number of receptor-ligand relationships

in the genome.

2.10.5 Execute genes

In this stage of the simulation time step, the genome is "executed". This means that for

each gene in the genome, the genetic model as shown in algorithm 2 is applied to each cell

component in the simulation.

In this process, gene expression will cause protein to be added to cell components and

WorldNodes, according to the expression profile of genes as defined as part of the genome

(see lines 4, 7 and 9 in algorithm 2). The actions of adding the appropriate amounts of

CH'4PTER 2. METHODS I: BIOLOGICAL PRINCIPLES 9 7

proteins to cell components and WorldNodes are not executed immediately, instead they are

added to the ActionQueue to be executed later.

Also resulting from gene expression are other actions, such as cell division, migration,

axon growth, etc. (see line 12 in algorithm 2). These actions are likewise put in the queue

of pending actions to maintain parallelism.

Genes which invoke a growth cone action cause the growth cone mechanism to be exe-

cuted immediately. The growth cone action in turn may add other actions (such as migrate

or synapse formation actions) to the ActionQueue for later execution. Since the growth

cone structure is not detectable by other cell components, and otherwise does not alter the

simulation data structure in any way, this does not violate the requirement of parallelism

among cell components.

Assuming that the gene model shown in algorithm 2 runs in constant time, the complexity

of this step is O(cg) where c is the number of cell components in the simulation and g is

the number of genes in the genome. The assumption regarding constant time performance

will usually be valid, but this will depend on the exact form of the regulation and effects

portions of the genes in the genome, which is under the user's control when they design the

genome.

2.10.6 Neural activity

In this stage the neural activity level of all cells are computed. NeuroGene only supports

discrete-time models of neural activity, where the activity of each cell in time step n can be

computed from the neural activity levels of all cells in time step n - 1. In this stage of the

simulation time step, all cells (i.e. all somas) are visited, and the activation levels for time

step n are computed. The activation of cells will not be updated to these new values until

stage 2 of the subsequent time step.

2.10.7 Ordering of computation stages

The six stages above together constitute one simulation time step. At the end of the time

step, the simulation may enter into a paused state in which no further computation oc-

curs, or it may immediately commence the computation of the subsequent simulation time

step. While in the paused state, the simulation may be resumed at any time. Pausing and

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES 98

resumption is controlled by user from the NeuroGene GUI, as will be outlined in chapter

3 (section 3.3). The functions by org . neurogene . simulation. Simulation. doStep () and

org . neurogene .world. World. execute (Genome) coordinate the execution of each simula-

tion time step.

Within each of the six stages, a larger or smaller portion of the simulation system as

shown in figure 2.8 is traversed. If the system is seen as a tree structure, with Simulation as

the root node, these traversals are depth-first from the root, and extends to various depths

of the data structure depending on the simulation stage in question. To summarize, the

stages of the simulation time step proceed in the order listed below, where n refers to the

current and n - 1 to the previous time step. It is suggested that figure 2.8 be consulted while

reading this list, this may help clarify the relationships between the various classes involved.

In the function identifiers below, the capitalized class names precede the function names.

1. Process pending changes from previous time step. Before this stage, cell components

and protein concentrations are those of time step n - 1, specifically those of stage 5

of the previous time step. The class ActionQueueElement has been omitted from figure

2.8 for clarity. The functions involved in processing this step are:

(a) org . neurogene . simulation. Simulation. dostep ()
(b) org. neurogene. simu1ation.ActionQueue. execute ()

(c) org. neurogene. simulation. ActionQueueElement . execute (1

2. Update neural state to that computed in stage 6 of time step n - 1. Note that of all

cell components in the simulation, only Soma instances are affected in this stage. The

functions involved are:

(a) org.neurogene. simulation.Simulation. dostep()

(b) org .neurogene .world. World. execute (Genome)

(c) org. neurogene. world. World. exec-updateActivity()

'using the standard Java naming convention for software components, the initial part designates the
package org.neurogene.world, the capitalized name is the class name World, and the name followed by 0
is the function name execute(Gen0me). Following this standard, the source code of this class is to be found
in a file called World. java, in the directory org/neurogene/world. The name of the function parameter is
omitted.

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

(d) org.neurogene. world. WorldNode. exec-updateActivity ()

(e) org.neurogene. cell. Soma.updateFiringState()

(f) org . neurogene . activity . SomaAct ivityMode1. updateFiringState0 [abstract]
This module is omitted from figure 2.8 for clarity - it is an abstract base class

from which AbstractNeuralModel extends. Which is overloaded by the functions

i. org. neurogene. act ivity .AbstractNeuralModel. updateFiringState ()

ii. org.neurogene.activity.NonLinearNeuralModel.updateFiringState()

3. Compute protein concentration changes due to diffusion and decay. .After this stage

is complete, all protein concentrations are correct for time step n with respect to

diffusion and decay. The following functions complete this stage, where World.exec--

computeDif fusionDecay () computes the diffusion and decay for extracellular proteins,

and SignalArray . computeSignalDecay 0 computes the decay of membrane bound and

intracellular protein concentrations:

(a) org. neurogene. simulation. Simulation. dostep()

(b) org . neurogene . world. World. execute (Genome)
(c) org . neurogene .world. World. exec-computeDif f usionDecay ()
(d) org .neurogene. cell .Cellcomponent . computeSignalDecay (1

(e) org . neurogene .signal. SignalArray . computeSignalDecay 0

4. Compute protein concentration changes due to ligand-receptor binding. Before this

stage receptor-ligand-complex concentrations may not be at equilibrium, due to changes

in protein concentrations which may have occurred in stages 1 and 3. After this stage

is complete, all protein concentrations are at equilibrium with respect to all defined

receptor-ligand relationships. The equilibrium concentrations are computed by the

following functions:

(a) org . neurogene . simulation. Simulation. dostep ()

(b) org. neurogene .world. World. execute (Genome)

(c) org . neurogene . world. World. exec-computeLigandBinding(Genome)
(d) org . neurogene . simulation .Genome. exec-computeLigandBinding(Wor1dNode)

C H A P T E R 2. METHODS I: BIOLOGICAL PRINCIPLES

(e) org. neurogene. signal. SignalInteraction. execute (WorldNode) [abstract]

Which is overloaded by the function

i. org.neurogene.signal.SolubleLigandBoundReceptor.execute(WorldNode)

5 . Execute the genome. No changes to the simulation occur during this step. All actions

resulting from gene expression, including protein expression and actions resulting from

simulated growth cones, are added to the queue of pending actions by Actionqueue. -

enqueue 0. These will be processed in stage 1 of time step n + 1. It is during this stage

that growth cones are also simulated.

(a) org . neurogene . simulation. Simulation. dostep ()
(b) org . neurogene .world. World. execute (Genome)

(c) org . neurogene . world .World. exec-genome (Genome)
(d) org . neurogene .world. WorldNode . exec-genome (Genome)
(e) org . neurogene . simulation. Genome. execute (CellComponent)
(f) org . neurogene . parser. ast . GeneAstNode .execute (CellComponent)
(g) org. neurogene .parser. ast . GrowthConeFunctionAstNode . execute (Cellcomponent)
(h) org .neurogene . simulation. Actionqueue. enqueue ()

6. Compute neural activity of all cells. Again, no changes are made to the simulation

during this step. New activation values (for time step n + 1) are computed from the

current (time step n) values, and stored separately. The values will be updated in

stage 2 of time step n + 1.

(a) org . neurogene . simulation. Simulation. dostep ()
(b) org . neurogene . world. World. execute (Genome)
(c) org .neurogene .world. World. exec-computeActivity ()

(d) org . neurogene .world. WorldNode . exec-computeActivity ()
(e) org.neurogene. cell. Soma. integrateAndFire ()

(f) org.neurogene. activity. AbstractNeuralModel . integrateAndFire () [abstract]
This function is overloaded in two different classes to implement the linear and

non-linear neural models (see section 2.7):

CHAPTER 2. METHODS I: BIOLOGICAL PRINCIPLES

i. org.neurogene.activity.LinearNeuralModel.integrateAndFire()

ii. org .neurogene. activity .NonLinearNeuralModel. integrateAndFire0

Each stage is completed for the entire simulation, including all WorldNodes and cell com-

ponents, before the next stage begins. -4 single call to Simulation.doStep0 causes the

computation of exactly one simulation time step, causing each of the six steps to be exe-

cuted exactly once, in the order they are listed above.

This ordering has been selected with the goal that both the genome and the user should

"see" the simulation in the same consistent state. With respect to the genome, this means

that throughout the processing of stage 5 above, protein concentrations should reflect the

diffusion, decay and receptor-ligand binding relations as defined as part of the genome. This

is ensured in stages 3 and 4. All cell components should also be in a state that reflects the

genetic changes resulting from the previous time step. This is ensured in stage 1 and 2.

The user will be able to visualize and inspect the simulation in the state it has at the

completion of stage 6 - it is at this point in the simulation time step that visual GUI

components are updated to reflect the state of the simulation.

2.10.8 Units of measurements

NeuroGene has been designed without reference to any universal constants or other param-

eters that define the units of measurement of the numbers used to represent the state of

a simulation. However, many of the parameters of a simulation, as defined as part of a

genome, do have units. The values used for these parameters will therefore define the units

of time, distance, concentration and electric potential that NeuroGene will use. The unit of

time chosen will be equal to the duration of a simulation time step. The unit of distance will

likewise become the lengths of the edges of each WorldNode, and the unit of concentration

will become the unit of all concentrations computed by NeuroGene. The parameters and

their units are summarized in table 2.2 , together with the equation from which the units

can be derived. Also listed are examples of commonly used units. The unit M (molar) is

the concentration unit used in chemistry. One molar is defined as 6.022 x molecules per

litre - for a compound with molecular weight of x, the concentration of 1M corresponds to

x grams per litre. Molar (or variants like mM or pM) must be used as unit of concentration

when ligand-receptor binding is simulated.

CHAPTER 2. AIETHODS I: BIOLOGICAL PRINCIPLES

Parameter Units Example Definition (equation)

Physical parameters

Decay rate Ic T-I s-l dC/dt = -IcC (2.1)
Diffusion rate D L ~ T - ~ cm2s-l ~ / a t = D ~ ~ c / ~ z ~ (2.2)
Ligand-recept or

binding constant Kd C M Kd=[RI[L] / [C] (2.6)

Biological parameters

Gene expression rates CT-I Ms-I --

Cell migration speed LT-I cms-' -

Membrane potential, etc. P mV

Table 2.2: Units of measurement of various physical and biological parameters used in Neuro-
Gene simulations. C represents concentration, T represents time, L represents a unit of
distance and P electric potential. If the parameters are given in the units given as exam-
ples, then all concentration values computed by NeuroGene will have units of M ("molar",
unit of concentration used in chemistry), the length of one edge of a WorldNode will be one
centimetre (cm), and the duration of a simulation time step will be one second (s). If other
dimensions are required, all that needs to be done is to ensure that the values of all physical
parameters are adjusted to use the appropriate units.

2.11 Summary

NeuroGene simulations are based on data structures which are able to represent a collection

of neurons within a 3D environment. The neurons may interact through various chemically

and electrically mediated mechanisms, and are controlled by genetic information. In this

chapter I have outlined what these data structures look like, and the algorithms that are

used to simulate biological processes that occur as part of neurodevelopmental simulations.

Our goal has been to create a simulator which can model a wide range of different devel-

opmental processes. Some of these processes, as they occur in nature, are well understood,

while others are not. Poorly understood processes, such as growth cone function, can only

be simulated using abstractions, since the details of the mechanism are unavailable to us.

This has lead to a system where certain processes may be modeled with a high level of

detail (such as receptor-ligand binding), while others are simulated using abstractions based

on phenomenological descriptions only, such as the growth cone model. Modeling of gene

CHAPTER 2. h!fETHODS I: BIOLOGICAL PRINCIPLES

expression falls somewhere in between these extremes.

We have limited the ability to simulate biologically implausible processes only when

such limitations are conceptually and implementationally simple. Finally, we have tried

to optimize the mechanisms and data structure for fast execution, and secondly, for small

memory requirements.

In the next chapter, the software engineering aspects of the design and implementation of

NeuroGene will be presented. The chapter centres mainly on the user interface of NeuroGene,

consisting of the genetic programming language and the graphical user interface.

Chapter 3

Methods 11:

System architecture

In this chapter I outline the overall architecture of the NeuroGene system. This includes the

input and internal representation of genetic information, the graphical user interface (GUI),

file 110 and performance optimization - in short, the aspects of the NeuroGene system

which are not directly related to the simulation of biological phenomena.

In section 3.1, the implementation of the parser used to read gene and geometry scripts is

described. The data structure used for internal representation of such scripts is also outlined.

In section 3.2, the overall design of the NeuroGene system, including the simulation engine,

GUI, file 110 components, etc., is described. Also in this section, design patterns which

play important roles in the architecture are described in some detail. In section 3.3 the

implementation of the GUI is described. Section 3.4 is concerned with improvements to the

performance of NeuroGene. Finally section 3.5 describes the subsystem for input from and

output to files.

3.1 The NeuroGene language

The NeuroGene genetic programming language is used to specify the genetic information

governing the behaviour of the simulated cells. Following standard compiler implementation

techniques, the language is specified in the form of a context-free grammar. An automatic

parser-generator is used to create a parser based on this grammar. When presented with

CHAPTER 3. A4ETHODS 11: SYSTEM ARCHITECTURE 105

an input script, the parser builds an abstract s y n t a x tree (AST) data structure. The AST

is used as the internal representation of the information contained in the input script. The

instructions encoded in the input script are executed by recursively traversing the AST.

3.1.1 Abstract syntax tree

Figure 3.1 shows an example of a simple grammar in BNF notation (Louden, 1993), as

well as an example of the parsing of a string that confirms to this grammar, including the

resulting abstract syntax tree. The grammar consists of six productions (po-p5). These

define a language which consists of numerical expressions involving the operators '+' and

'*', as well as parentheses. Each production has exactly one non-terminal symbol on the

left, which makes this a "context-free" grammar. Figure 3.1A shows an example of a string

in the language. B-F shows the stepwise parsing of this string. In B the string as a whole

is parsed by matching production po, dividing the string at the first occurrence of the "+"
token. In C productions p3 and pl are used on the left and right, respectively. In D, p2 is

applied, etc. While the image in H reflects the complete parse of the string, the abstract

syntax tree produced by the parsing is the simplified representation shown in I.

3.1.2 AST classes

A total of more than 200 different Java classes together implement the AST data structure

produced by the NeuroGene parser. Such a large number of classes is needed since each

class only implements one simple operation. This has two important advantages: One is

that execution of the gene script by traversing an AST data structure is fast, since the

execute() function (see figure 3.3) of each node, which implements the traversal of the AST,

is very simple. It also makes each AST node class simple and easy to write and maintain.

All AST node classes are derived from the abstract base class AstNode. Figure 3.2 shows

part of the inheritance tree of the AST classes. Extending from the base class AstNode

are a number of other abstract classes which represent expressions of different types, such

as numerical (FloatAstNode) , truth values (Bool.4stNode), strings (StringAstNode) , etc.

Extending these type-specific classes are other classes (only a few examples are shown)

which implement simple functions such as addition, cosine, the comparison <, if-clauses,

etc.

C H A P T E R 3. METHODS 11: S Y S T E M ARCHITECTURE

L

PIT

po: <sum> + <term> + <sum>
p l : <sum> -+ <term>
p4: <term> + <factor> * <term>
p3: <term> + <factor>
p4: <factor> + (<sum>)
p5: <factor> + number

<fa?n

j t e ~
2.3 <fa t o n 9

Figure 3.1: Example of a simple context free grammar and the parsing process based on the
grammar. Non-terminal symbols are shown like <this>, all other symbols (*, +, left and
right parentheses and number) are terminal. Terminal symbols match exactly one token,
non-terminal symbol may match one or more tokens.

C H A P T E R 3. METHODS 11: S Y S T E M A R C H I T E C T U R E

I \

I PlusFloatAstNode I I CosFloatAstNode I

AstNode

lhs: FloatAstNode
rhs: FloatAstNode

DirectionAstNode

result: Vector3D

Figure 3.2: Inheritance diagram of AstNode. Included are all classes that directly extend
AstNode, and some representative examples of classes which implement specific functionality.
Abstract classes shown in light outlines, and concrete classes in heavy outlines.

execute() StringAstNode

A result: String

Figure 3.3 shows an example of how an AST data structure representing a numerical

expression (112.3+3. 7" (4.5~synapticWeight ())") is used to evaluate that expression. During

execution each node in the AST tree structure executes all subtrees below it. It then re-

trieves the values from the subtrees and computes it's own result value. The result values

are thus computed depth first. After the tree representing the entire expression has been

traversed in this manner, the resulting value may be retrieved from the root node of the

tree. Expressions representing boolean expressions (such as synapticweighto 5 0.75) are

evaluated in a similar way.

Classes which extend the VoidAstNode class represent operations that don't have result

values, but which cause changes to the simulation system, i.e., actions. An example is the

BoolAstNode

result: boolean

Void AstNode

,essThanBoolAstNod OrBoolAstNode SetSynWeightAstNode IfAstNode

lhs: FloatAstNode lhs: BoolAstNode weight: FloatAstNode

CHAPTER 3. METHODS 11: SYSTEAI ARCHITECTURE

execute (CellComponent cell) {
lhs .execute (cell) ;
rhs . execute (cell) ;
result = lhs . result () + rhs . result () ;

execute(Cel1Component cell) { execute (CellComponent cell) {
1 result = cell.getSynapticWeight();

1

Figure 3.3: Evaluation of an expression by an AST data structure, similar to the one shown in
figure 3.1G. The execute() functions for some of the classes are shown, showing the recursive
calls which cause the whole AST data structure to be traversed (PlusFloatAstNode), and
how information is retrieved from the cell component (GetSynapticWeightFloatAstNode) .
In the case of ConstantFloatAstNode, the execute() function does nothing.

AstNode class which represents the action to change the synaptic weight of a synapse (see

SetSynWeightAstNode, figure 3.2). When such AST nodes are traversed, they enter new

actions into the ActionQueue (section 2.10).

3.1.3 Language definition

The syntax of NeuroGene7s genetic programming language is loosely modeled on the syntax of

the Java programming language. It has static typing (the types of all variables are established

when the input script is parsed), and uses lexical scoping of variables (Louden, 1993). A

number of simple examples written in this language appear in figures in the remainder of

this chapter.

Figure 3.4 shows an example NeuroGene gene and the AST data structure which is

constructed during parsing and used for internal representation of the gene. Note that the

data structure is not strictly a tree, since nodes such as the query "InternalConcentrationOf"

C H A P T E R 3. METHODS II: S Y S T E M ARCHITECTURE

Figure 3.4: A short example of a gene together with the abstract syntax tree (AST) data
structure representing the gene. Nodes with heavy outlines will have been allocated by the
LibraryFunctionTable system, see section 3.1.7.

gene Foo {
diffusion = 0.2;
decay = 0.1;
diffusible = false;

refers to the "Gene" AST node which represents the protein whose internal concentration

regulation {
if(internalConcentrationOf(Bar) > 0.2) {

expressExternally(
cos(externalConcentrationOf(Gaa)));

1

is to be queried. However, when the gene is executed, such links are not followed. This is

indicated by the link being shown as a dashed line. Such links are instead used to retrieve

Gene: Foo
Diffusion: 0.2

Decay: 0.1
Diffusibleble: false

identifying information from gene nodes needed to execute the query.

1
effects {

migrate(towardsSignal(Gaa));
1

1 t
Towardssignal

InternalConcentrationOf

ExternalConcentrationOf Gene: Bar
Diffusion: ...

Gene: Gaa - - - - - - - - - - - - - - - - - -

Diffusion: ...

3.1.4 Language efficiency

The design of a programming language, like the design of other types of user interfaces, is as

much an art as a science. There are many measures for judging language design, some are

listed in table 3.1. Depending on the intended use of the language and the target audience,

C H A P T E R 3. METHODS II: S Y S T E M ARCHITECTURE

Property Description

High priority language properties

Readable The meaning of a program is readily apparent
Consise syntax There are no redundant syntactic elements
Expressive It is easy to encode complex procedures and structures
Orthogonal A given construct has the same meaning in all contexts

Medium priority language properties

Uniform Constructs with the same meaning look the same
Conventional The language follows accepted notations and conventions

Low priority language properties

Restrictable A user with limited knowledge can use the language
Simple Programs are as simple as possible (but not simpler)
Tkanslatable It is easy to make a compiler for the language
Extensible New functionality can easily be added to the language
General The language can be used in a wide range of situations

Not applicable (see text)

Precise The meaning of a program is defined in all cases

Table 3.1: Measures of language efficiency, taken from Louden (1993, p. 50ff). The measures
are ranked according to their relative importance in the design of the NeuroGene gene
language.

some measures may be considered more important than others. Our target audience is biol-

ogists with limited programming experience. This means that properties such as readability,

concise syntax and expressiveness are important. Some requirements which are important

for any programming language include orthogonality and uniformity. While we have tried to

remain consistent with accepted notations and conventions, the language does also contain

novel constructs which closely match the semantics of genes in nature.

The definition of the NeuroGene language is not given formally. Doing so would require

a formal description of the underlying execution model of the language, i.e., the NeuroGene

simulator as a whole, which also does not exist. The properties of the language is rather

given in the form of NeuroGene as an authoritative implementation of a parser and execution

model, which define the syntax and the semantics of the language, respectively. From such

a definition, the language can be said to be precise, in that the meaning of any genome is

CHAPTER 3. METHODS II: SYSTEM ARCHITECTURE 111

defined by the effect of that genome on any cellular system during a NeuroGene simulation.

Restrictability is the language property that a user with a limited knowledge of the

language is able to produce useful program code. Experience has shown us that more than a

complete overview of the language, a good understanding of the NeuroGene execution model

is invaluable in order to be productive in writing genes.

The genetic programming paradigm of the NeuroGene language is to our knowledge novel.

As is commonly the case with programming language inventions, they are not fully formed

at their inception, but need some time in use before all their implications become apparent.

This should then lead to adjustments in the syntax and semantics of the language to make

the language constructs more intuitive. We intend to continue the work on NeuroGene in

general, and on the genetic programming language in particular. The work reported here

has served to map out the required capabilities of the language - future work may involve

simplifications of the language, both conceptually and implementationally.

3.1.5 Data types, variables and scoping

NeuroGene gene scripts may contain expressions and/or variables representing values of the

following types: Real numbers, truth values (boolean), text strings and directions (i.e. vectors

in 3D). Variables of these types follow the rules of lexical scoping. A variable's scope is the set

of statements within the input script from which that variable may be referenced (Louden,

1993). Scopes are delimited by '{' and ')', just like in C, C++, Java and several other

languages. Scopes may be nested, i.e. one scope, including the delimiting curly brackets,

may be contained within another scope. The former is nested inside the latter, and the

latter is an outer scope relative to the former. A variable defined within a given scope S is

accessible within S from the point of definition onward, and also in any scope nested within

S to any depth. The variable is not accessible in scopes that are outer scopes to S. Two

variables with the same name may not exist within the same scope. A variable in a nested

scope may have the same name as a variable defined in an outer scope. The former will hide

the latter within the nested scope, making the outer scope variable inaccessible where the

nested scope variable is defined.

Symbols in the scripts may refer to genes or growth cone functions. These all have global

scopes, i.e., all symbols defined in the script may be referenced from anywhere within that

C H A P T E R 3. METHODS II: S Y S T E M ARCHITECTURE 112

script. This is similar to the scope rules of functions in C and public functions in C++ and

Java.

3.1.6 Parser implementation

The parser is implemented using JavaCC (Sun Microsystems, 2003c) which generates LL (1)

parsers with the following properties:

Left-to-right (the first L in LL(1)): The input is scanned from left to right, i.e.,

beginning with the first token in the input file, and proceeding sequentially to the last

token in the file.

0 Left-derivative (the second L in LL(1)): This means that in each production, the

terminal and non-terminal symbols in the production are handled in order starting with

the left-most symbol and ending with the right-most symbol. Such parsers are also

referred to as top-down, since the parser starts with the start symbol of the grammar

((sum) in figure 3.1), and builds the parse tree from the root downward.

0 Recursive descent: The parsing processes by which the parse tree is assembled is

handled by a number of recursive functions, (at least) one for each production in the

grammar.

0 One token syntactic lookahead (the "1" in LL(1)): The parser processes the tokens in

the input script in order from the first token in the file to the last. With one token

lookahead the parser will only consider the first token not yet parsed when selecting

the appropriate production in choice situations, for example, whether po or pl should

be used to expand (sum) in figure 3.1. In going from ,4 to B, the correct choice is to

use po, while going from B to C, pl is used.

JavaCC allows individual productions within the grammar to use more than one token look-

ahead, which means that the generated parser is locally LL(k) with k > 1. This allows

for greater freedom in designing the language, since a grammar which is ambiguous with

lookahead of one may not be with a greater lookahead.

Semantic lookahead allows the programmer to write an arbitrary condition which must

be satisfied for a given production to match the input. This allows the language to be

CHAPTER 3. METHODS 11: SYSTEM ARCHITECTURE

1 gene Foo {
2 r e g u l a t i o n {
3 if(internalConcentrationOf(Bar) > 0.1) C
4 expressInternally(log(internalConcentrationOf(Bar)));
5 1
6 1
7 1
8 gene Bar {
9 . . .

l o 1

Figure 3.5: An example gene script in which a gene is encountered for the first time in an
embedded scope.

more precisely specified than what is possible with just a context-free grammar, including

e.g. disallowing access to variables that are not defined.

Lexical scoping of symbols is implemented using a simple symbol-table consisting of a

stack of hash tables. An empty hash table is pushed onto the stack when a '{' is encountered,

and popped when '1' is encountered. In order to locate a given symbol, all hash tables

currently on the stack are searched from the top downward, i.e. from the current scope

outward, until the symbol is found. If all the hash tables are searched without finding the

symbol, parsing fails.

Some symbols are always added to the global scope, even though they are encountered for

the &st time in a nested scope. This is used for symbols which represent genes and growth

cone functions. This removes the need for forward declaration of genes1, and allows the genes

and growth cone functions to be included in the genome script in arbitrary ordering. See for

example the genome shown in figure 3.5. Here? the expression rate of a gene Foo depends on

the concentration of some protein B a r . The protein B a r is referenced by the regulation code

of gene Foo on line 3. The gene B a r is added to the global scope of the symbol table during

the parsing of line 3, even though the symbol was encountered in a nested scope. When the

symbol B a r is encountered again on line 4, it exists in the symbol table, which ensures that

the same symbol is referenced on lines 3 and 4. The properties of the gene B a r are then

 orwa ward declarations are required in C and C-+ but not in Java. In C, if a function Foo calls a function
Bar, and Foo for some reason precedes Bar in the source file, then a forward declaration of Bar must be
included before the definition of Foo. The forward declaration of Bar includes the function signature only.

CHAPTER 3. METHODS 11: SYSTEhl ARCHITECTURE 114

filled in during the parsing of the definition of the gene on lines 8-10 (details omitted here

for clarity). If no gene called Bar is found in the file, a parser error is triggered after the

entire gene file has been parsed.

3.1.7 Library function table

The actions and queries of the NeuroGene language follow the syntax of function calls, as

shown throughout chapter 2. The library function table is used as a common system to verify

the form of the function call and also to create the AST node instances which represent the

function calls in the AST data structure.

The library function table is populated at application initialization, and does not change

during the subsequent operation of the NeuroGene application. Each entry is the table

consists of the following fields:

a The name of a function. This is the string which is used in the gene script to invoke

the function call.

a A reference to the constructor used to allocate a new instance of the AstNode class

implementing the function call.

a The context in which the function may be called (see below).

Reflection (Sun Microsystems, 2004, package java.lang.reflect) is used to generate new in-

stances of AstNode classes representing function calls. The Java reflection system allows

the use of references to constructors of Java classes (in this case AstNode classes). These

references are used to create new instances of AstNode classes. The super-class of the class

implementing a query defines the type of the query, e.g. all functions with a numeric return

type extend (directly or indirectly) the abstract class FloatAstNode (see figure 3.2).

The library function table is used for two things: first it is used to verify whether a given

function call is valid in a given context. This involves verifying that

a The function with the given name exists.

a The correct number of parameters are passed to the function and these are of the

correct types. The required parameter list is determined from the parameters taken

by the AstNode constructor instance.

C H A P T E R 3. AIETHODS 11: SYSTEM ARCHITECTURE

The return type of the function is appropriate.

This is verified during semantic look-ahead from within the parser. Once the validity of the

function call has been established, the library function table is used to allocate the AstNode

instance which implements the function call. The AstNode instance is initialized with the

parameter values that were passed to the function call. In figure 3.4 all the nodes with heavy

outlines are created using the LibraryF'unctionTable system, while the remaining nodes are

created directly by the parser. The library function table supports function overloading,

i.e. multiple functions may share the same name, as long as they are distinguished by their

valid contexts and/or parameter lists.

The advantages to this implementation are several. Firstly, it is possible to add new

function calls to the NeuroGene language without changing the parser. Secondly, the library

function table is a central repository for information about all the library functions of the

language, allowing implementation of automatic help systems, etc. In the current implemen-

tation, the library function table may be run as a stand-alone application, and may be used

to generate lists of defined library functions.

3.1.8 Grammatical contexts

As a consequence of the syntax of gene and growth cone function definitions, there are actions

and queries which are appropriate only in certain parts of the input text. For example, it

is appropriate to put a command for some morphological change (e.g. cell division) in the

effects section of a gene, but not in the regulation section. Figure 3.6 shows an example

of contexts in a sample gene script. To write a parser that generates parser errors when

functions are referenced where they should not be, the concept of grammatical contexts has

been introduced. Each function in the gene language is tagged with the grammatical contexts

in which it may appear. Semantic lookahead is used to ensure that a function name will only

match to a function if that function is valid in the context where the name is encountered.

If the function is not allowed in that context, the matching fails, and a parser error results.

3.1.9 Mat hemat ical functions

All the actions and queries given in chapter 2 are represented by entries in the library function

table. In addition the table contains a number of functions which represent mathematical

CHAPTER 3. METHODS II: SYSTEM ARCHITECTURE

(context is G E N O M E)
gene Foo (

regulation (
(push: context is R E G U L A T I O N)
if (internalConcentrationOf (Bar) > 1e-4) (

expresssurface (7.5e-2) ;
>

>
(pop: context i s G E N O M E again)
effects (

(push: context is E F F E C T S)
migrate(towardsSignal(Bar));

>
(pop: context is G E N O M E again)

>

Figure 3.6: Contexts changing through the parsing of a gene definition. The function call
migrate() is defined as being valid in the E F F E C T S context, but not in the REGULATION
context. As it appears here, the function call is valid, however, if migrate() appeared in
the REGULATION context, a parser error would result since the semantic lookahead would
fail.

operations. These may be used to encode mathematical expressions in the genome script.

Implemented functions are

Trigonometric functions: Sine, cosine, tangents and their inverse functions, as well as

the two-parameter inverse tangents. Trigonometric functions use degrees as unit of

angles.

Stochastic functions: Functions returning numbers with uniform probability distribu-

tion, Gaussian distribution, boolean stochastic values and 3D vectors with a predeter-

mined length and stochastic direction. Also implemented a function for seeding the

random number generator.

Vector functions: Scalar ("dot") product and vector ("cross") product, and unit vector

for computing a vector of unit length parallel to a given vector.

Exponential functions: Natural exponent and logarithm, square root, and a function

for evaluating xY

CHAPTER 3. METHODS 11: SYSTEM ARCHITECTURE 117

Rounding: Functions for rounding off, up or down to the nearest whole number.

Other: Also included are functions for computing the absolute value, and the largest

and smallest of two numbers.

Many of these functions are implemented by calling functions in the Java Math class, and

have identical properties to the Java implementation of the corresponding functions. The

implementation of these functions within the NeuroGene language is therefore trivial, see

the class org.neurogene.parser .ast .MathAstNode.

3.1.10 The geometry scripting language

The geometry scripting language is similar to the gene scripting language, and it uses much of

the same infrastructure (including the parser). Compared to the gene language, the geometry

scripting language supports additional data types. Variables may refer to cell components,

which makes it possible to construct complex neural networks directly at simulation initial-

ization. Activity sources and filters (see section 2.7.5) may also be referenced by variables

in order to build signal processing systems for simulated exogenous neural activity.

3.2 System architecture

The NeuroGene system consists of two major components, a simulation system, as described

in chapter 2, and a GUI front-end controlling the simulation. The GUI front-end allows

the user to retrieve information about the current state of the simulation. The system

has been designed in modules that interact through simple interfaces. See figure 3.7 for

a UML diagram of the classes that make up the NeuroGene graphical user interface and

control infrastructure. All the data structures and functionality described in chapter 2 are

implemented within the module labeled "Simulation" in figure 3.7. The front end described

here controls the simulation by calling Simulation.doStep0, which in turn triggers the six

stages of a simulation time step as described in section 2.10.7.

The NeuroGene system architecture went through a major re-design during the winter of

2003/2004. Eric DeWitt of Gary Marcus' lab made significant contributions to this process,

through discussions and suggestions. The large majority of the work implementing these

changes was done by the author. The re-design involved mainly the components shown

C H A P T E R 3. METHODS 11: S Y S T E M A R C H I T E C T U R E

I SimulationController I

Simulation f,
FileIoJob +

----, Associations - Inheritance

TwoDMapView ODCMapView TopographMapView -La-

Figure 3.7: UML diagram of the NeuroGene system. The simulation system (described
in detail in chapter 2) is here shown as a simple entity labeled "Simulation". This entity
represents the entire system shown in figure 2.8.

in figure 3.7, including their interactions through various design patterns outlined below.

It established the layered system architecture and the unified approach to communication

between these layers. The simulation system itself was not significantly altered.

3.2.1 The Observable pattern

The architecture is arranged in layers, where components in upper layers depend on specifics

in lower layers, but where the lower level components are independent of those at in upper

layer. The top layer consist of the MainController, below which is the SimulationController,

then the Simulation below that. They are independent in the sense that the upper layer

component can be radically altered or even replaced without needing to make any changes

to the lower level component.

When an upper layer needs to communicate to a lower layer (e.g. MainController tells

SimulationController to change the simulation from being "running" to being "paused"), this

C H A P T E R 3. METHODS II: SYSTEM ARCHITECTURE 119

is straightforwardly implemented by having the Maincontroller call a function in the Simu-

lationcontroller instance. This means that the MainController implementation does depend

on the details of SimulationController. In order to simplify the design of the system, this

form of dependence is avoided in the opposite direction. This is achieved through the user of

the "Observable" pattern. In this pattern an upper layer component (the observer) registers

itself with the lower level component (the observable). The observable sends notification

of events to all registered observers. The observable maintains a list of all the registered

observers. Registration normally occurs at application initialization, but can also happen

e.g. when a new view is created.

For example, the SimulationController maintains a list of TimeStepListeners - these

are objects that have registered themselves with the SimulationController in order to receive

notification about when simulation time steps are completed. In order to be registered,

these objects must implement a Java interface called TimeStepEventListener (listener being

a common synonym for observer). This interface defines a single function

public abstract void timeStepCompleted(TimeStepEvent event)

The list contains among other objects the MainController, however, the SimulationController

does not need to be "aware" of this. When a time step is completed, the SimulationController

generates a TimeStepEvent, and calls timeStepCompleted() on each TimeStepListener in the

list, passing the event object as argument. The TimeStepEvent contains details about the

event (e.g. how many time steps have been completed so far in the simulation, etc.) which

can be retrieved by the various listeners according to their needs.

For each type of event, an event class and a listener interface is defined. See table

3.2 for a list of all event types generated by the simulation. This pattern is used for all

communication from Simulation -+ SimulationController, File10 -+ SimulationController and

SimulationController -+ Maincontroller. Several additional types of eventllistener pairs are

used within the GUI system, such as from SecondaryView instances -+ MainController.

To demonstrate the versatility of this pattern, the following mechanisms are all imple-

mented using the TimeStepListener observer pattern:

Update of the GUI (see figure 3.8) to show the current time step counter and duration

of last time step.

C H A P T E R 3. METHODS II: S Y S T E M A R C H I T E C T U R E

Event Cause

ExceptionEvent An error has occurred in the simulation
FileIoEvent File 110 is complete or has been interrupted
FileIoProgressEvent File 110 in progress, used to generate user feedback
RunStateChangedEvent Simulation has gone from e.g. running to paused
SimulationEvent Change in some parameter of the simulation
TimeStepEvent Simulation time step has completed

Table 3.2: The types of events generated by the simulation. For each of these events there
is a corresponding listener (or observer) interface implemented by all classes that need to
receive the events. Each event object contains information describing the event. E.g. the
TimeStepEvent contains the number of time steps computed so far, the ExceptionEvent
contains the cause of the error, etc. FileIoProgressEvents are used to generate messages of
the type "10% complete", "20% complete", etc.

0 Update GUI views of various kinds to reflect changes in the state of the simulation

system as simulations progress.

0 Automatic file saving every N time steps, including saving the simulation state and

saving GUI views to image files.

Time dependent exogenous neural input filters, e.g. caching filter which clears the

cache at the end of each time step, and strobe filter which changes from bright to

dark, etc. (see appendix D).

All these mechanisms are implemented without altering the simulation system itself in any

way.

3.2.2 Visitor pattern

This pattern is used for display and analysis of the simulation state. The visitor pattern

allows a complex data structure, like the complete simulation system, to be traversed without

the entity that does the traversal (the visitor) needing to know how that data structure is

constructed. The visitor implements an interface with functions like e.g.

public void visit(Wor1dNode node)

public void visit (Cellcomponent cell)

CHAPTER 3. AfETHODS 11: SYSTEM ARCHITECTURE 121

The classes which make up the simulation data structure ensures that these functions are

called for each world node and each cell component in some order. The visitor may retrieve

and store information from some or all of these objects in order to do some analysis of the

simulation data structure, or it may paint an image of the simulation on the screen, etc.

This pattern is used with the same purpose as the Observable pattern above, which is

to make the simulation data structure independent of the details of the display and analysis

code which it interacts with. In this case either the simulation system or the visitors may

each be radically altered without needing to change the other. New visitor classes may also

be created and incorporated into the NeuroGene system, thereby extending the visualization

or other capabilities of the system, without having to alter the simulation system.

3.3 Graphical user interface

The NeuroGene graphical user interface is constructed using the Model-View-Controller

(MVC) pattern. This pattern is used primarily in user interfaces. The software system is

divided into components which each plays one of the following three roles:

Model

Maintains the internal state of whatever the GUI allows the user to interact with. In the

context of NeuroGene, the main model will be the simulation itself, but other components

may also play the model role.

View

Displays data from the model. Also allows the user to interact with the model, and contains

visible components (buttons, drop-down menus, etc.) allowing the user to issue commands

to modify the state of the model.

Controller

Coordinates the interactions between the model and the view, e.g. triggering updates of the

view in response to changes in the state of the model, and issues commands to the model in

response to user interactions.

CHAPTER 3. METHODS 11: SYSTEM ARCHITECTURE

File Simulator Views Logging Kelp - - - - - - - - - - - - - - - . - - - - - - - - - - - - --

l ime step: 363438 Ei Genome is compiled
Time per step: 1.08 sec

Simulation is running @ Simulating neural activity

@ Simulation autosave: 10000

' 3.3.1 GUI main controller

The main controller coordinates the users interaction with one main view (a control panel)

and any number of secondary views (showing cells, diagrams representing synaptic connec-

tivities, etc., see the various views in figure 3.7) and the main model, represented by the

simulation controller.

3.3.2 GUI main view

The main view (see figure 3.8) is a control panel which shows the most important information

regarding the state of the simulation, and allows the user to control the simulation. Drop

down menus allow the user to open secondary views showing more specific information about

the simulation.

3.3.3 Secondary views

Secondary views are used to display the current state of the simulation. The most important

type of view is the cell view, which displays the cells currently being simulated (see numerous

examples in chapter 5). This view allows for the visualization of protein concentrations, both

extracellular, intracellular and surface concentrations. It also allows zooming, panning and

rotation of the cellular assembly using mouse gestures ("click-drag"). - -

Other views visualize synaptic connectivities among cells. The views are written accord- :i ;•÷

ing to the JavaBean coding standard as outlined in appendix E. This allows us to use a ,+ >. ..- - 4
-:Li

7

- :-F j

CHAPTER 3. METHODS II: SE'STEM ARCHITECTURE 123

general property sheet (Taylor, 2001) to show and modify the properties of each view, which

makes it simple to add new views to the system as the need arises.

3.4 Performance

NeuroGene has been optimized for execution speed. This optimization has been carried out

using Java profiling tools (Shirazi, 2000), which measure the time spent running different

parts of the NeuroGene code. A profiler is well suited to find performance bottlenecks,

allowing the user to focus on performance bottlenecks where improvements to computation

speed will have the greatest impact on the overall performance.

We have also built-in profiling functionality into NeuroGene itself. NeuroGene has the

capacity to measure the time it spends on the various stages of a simulation time step. I t

can also measure the time which is spent on each of the different genes in the genome. These

features give the user information that may help in improving the speed of simulations by

altering the genome.

3.4.1 Java code generator

The most powerful performance enhancement of the NeuroGene simulation is the ability to

translate a genome into Java code, which can be compiled to a class file. This java class can

then replace the AST data structure as the mechanism for executing the genome. The speed

advantage to doing this is significant. Depending on the nature of the simulation the speed

may be improved by as much as an estimated 25-30%. This gain is speed arises from the

removal of the overhead involved in traversing the AST structure. Using the java package

Instant J (Meier, 2002), the NeuroGene application can itself compile the generated Java

code, giving on-the-fly Java code generation, compilation, and installation of the compiled

class into the NeuroGene system.

3.5 File 1 / 0

The file input/output system in NeuroGene is accessed through a single class called File10

(see figure 3.7). This class mediates access to a number of other classes which implement

CHAPTER 3. METHODS 11: S Y S T E M ARCHITECTURE 124

the actual file operations, according to the "Faqade" pattern (Grand, 1998). The various file

formats used for input and/or output are listed below:

Gene and geometry files

These files are written in the NeuroGene scripting languages for specification of genomes

and initial simulation geometries. Files of both types are read using the NeuroGene parser,

see section 3.1.

Compiled genome files

As outlined above, NeuroGene can save the current genome to a file in the form of Java

source code. NeuroGene can also load a compiled Java .class file containing the definition of

the genome. The generation of the java file and compilation can also be done on the fly, in

which case file 110 is not involved.

Program state files

The current state of the NeuroGene simulation can be saved to file. To accomplish this,

the Java mechanism of serialization (Sun Microsystems, 2004) is used. To save hard-drive

space, these large files are compressed using the gzzp algorithm (Sun Microsystems, 2003a,b)

as they are written to disk, typically achieving about 75% compression.

Image files

Graphical images created by NeuroGene can be saved to file using the file formats PNG

(Portable Network Graphics, PNG development group, 2004)) a raster image file format

with lossless compression similar to GIF, or EPS (Encapsulated Postscript), a vector image

file format, using EpsGraphics2D (Mutton, 2004). PNG is appropriate for images that are

going to be used on the screen, and may be used to create animations. EPS files are better

suited for printing. All images of simulations used in this thesis were generated directly from

NeuroGene and saved in EPS format. Graphical images of NeuroGene simulations may be

automatically saved to file at set intervals. This is used for creating animations showing the

progress of the simulations, and also allows the user to easily monitor the progress of the

simulation.

C H A P T E R 3. METHODS II: S Y S T E M ARCHITECTURE

Image autosave files

It can often be cumbersome to set up the various views to be autosaved to file at regular

intervals. To simplify simulation setup, a set of such image autosave jobs may themselves

be written to, or read from, a file. This is done using the java.beans.XMLEncoder class

which produces a description of a Java class using the XML file format (DuCharme, 1999).

Using this mechanism requires that the views are written according to the JavaBean coding

standard, see appendix E. The resulting files are human readable and may be altered using

a simple text editor.

3.6 Summary

The NeuroGene language used to encode genomes have been designed to follow widely ac-

cepted conventions while also introducing novel constructs which represent aspects of simu-

lated biological mechanisms. These constructs are not available in other programming lan-

guages, which necessitates the implementation of the genetic language in the first place. The

language is implemented using modern techniques, including automatic parser-generator,

which takes as input a context-free grammar describing the system, and generates as output

a Java-class capable of parsing strings in that language and generating AST representations

of those strings.

While the NeuroGene simulation system is designed for speed, the GUI and simulation

control system has been designed to be highly modular, anticipating that alternative systems

may be developed in the future. Through the use of the visitor and observer patterns

and JavaBean based tools, the different components of the GUI are decoupled and less

interdependent. This makes each component simpler, and also makes it easier to modify and

enhance the system in the future. Some such enhancements, such as the addition of new

view components, are anticipated in the current design. Both the cellular view and those

for visualizing neural interconnections are highly customizable. By virtue of having been

written according to the JavaBean standard, additional functionality is accessible, such as

saving view configurations to file, etc.

This completes the description of the NeuroGene implementation. In the following two

chapters, experimental results obtained from NeuroGene will be presented. The next chapter

CHAPTER 3. METHODS 11: S Y S T E M ARCHITECTURE

presents results which validate the correctness of the implementation of simulations of various

physical processes.

Chapter 4

Results I:

Verification of algorithms and

implement at ion

NeuroGene simulates a number of physical processes, including diffusion, decay and ligand-

receptor binding. In order to have confidence in the results of NeuroGene simulations, it is

important that these simulated physical processes give results that are in close agreement

with what would be observed in nature. In this chapter I will outline the physical laws

governing these processes, report the numerical results as computed by NeuroGene, and

discuss the level of agreement between the two in an effort to establish the overall accuracy

of NeuroGene simulations with respect to physical processes.

The physical environment as simulated in NeuroGene is discrete (see section 2.8.2), while

3D space in nature is continuous1. Several measures have been taken within NeuroGene

to simulate a continuous environment, notably relating to how protein concentrations are

perceived by cell components. In this chapter I will also discuss these measures and report

their performance.

In this chapter, the results of simple NeuroGene simulations will be presented. These

 h he physical/philosophical discussions as to whether space and time are discrete or continuous need
not concern us here. According to these discussions, the smallest indivisible unit of time and space, if they
exist, are much smaller than the scale of time and space at which biological development can reasonably be
described.

CHAPTER 4. RESULTS I: VERIFICATION OF IIMPLEMENTATION 128

simulations generate numerical data which can be compared with the physical processes sim-

ulated by NeuroGene. This allows us to estimate the precision and accuracy of the Neuro-

Gene implementation, particularly with respect to the simulation of physical and chemical

processes. Sections 4.1 and 4.2 deal with how cell component perceive extracellular concen-

trations and concentration gradients. Sections 4.3 and 4.4 deal with the chemical processes of

first-order decay of proteins and of equilibrium receptor-ligand binding. Section 4.5 presents

data generated by NeuroGene's simulated diffusion computations under various conditions,

and compares it to the solutions to the diffusion equation as derived in appendix F. Finally,

section 4.6 outlines the techniques used to verify the implementations of the parser, AST

data structure, gene and growth cone simulations and neural models.

4.1 Measuring extracellular concentrations

In nature, the concentration of a protein at a particular point P in 3D space within a

developing organism is best defined as the number of molecules of the protein in a small

volume centred at P, divided by the size of that volume in the limit where the size of the

volume approaches zero. In NeuroGene, 3D space is discretized into a 3D array of equally

sized cubic elements known as world nodes. The concentration of each protein is stored

explicitly within each world node, and signifies the number of molecules within the world

node divided by the size of the world node.

The concentration at an arbitrary point P within that array might be defined as the

concentration stored in the world node which contains P. However, this leads to aliasing

effects in the common case where two adjacent world nodes contain different concentrations

of the protein: Consider a cell C which moves slowly through the 3D array of world nodes,

measuring the concentration of the protein as it goes. As long as C stays within one world

node, it will always measure the same concentration value - however, as it moves into the

adjacent world node, the measured concentration will suddenly change to a new value. In

NeuroGene, such jumps in measured concentration values are avoided using linear interpo-

lation in 3D. Concentration values at general points (x, y, z) are computed from the values

in the world nodes at points (X, Y, Z)2 close to the point (x, y, z) using linear interpolation.

'1n the following lower case symbols x, y, . . . represent real values and upper case symbols X, Y, . . .
represent integer values.

C H A P T E R 4. RESLTLTS I: VERIFICd4TIOS OF I.l/lPLE.A4E.\7Tr\TIO-Y 129

Figure 4.1: Computing the conceritration at a point (r r : ; 71: 2) (circle) by successive interpola-
tion in 3D. The vertices of the cube shown coincide with the centres of the eight WorldNodes
surrounding t,he point (z, y, z) . First four interpola,tioris in the vertical (Z) direction, then
two in the Y direction and lastly one in the S directio~i.

Higher degree polyriornial interpolation was also tried, but the); were found t,o be poorly

suited for this purpose. 111 partkular, concentra.tiori gradients established through diffusion

tend to have exponential shapes, which are poorly rnatched by polynomial functions.

With k~ iowr~ concentration values f (X) and f (X + I) , with X represent,ir~g locat,ior~s at,

the centre of world nodes, the concentratio11 value f(x) a t some non-integer location x with

X 5 :c < X + 1 (i.e. X = 1x1) is computed usirig simple linear interpolation

In 3D, three such computations are carried out iri sequence (Press et al., 1986) t,o give the con-

centration a t f (z, :y, z) from the values at eight points surrounding (x, :y, 2): i.e. f (X, Y. Z) ,

. f (X + l , Y , Z) , f (X + l , Y + l , Z + l) . Irlterpola,t,ionbet,~reen f (X , Y , Z) arid f (X , Y , Z + l)

gives the value of J (X, Y, z) with Z < z < Z + 1, see figure 4.1. Four such irlterpolatior~s are

done toco~rlput~e f (X , Y , z) ; f (X + l , Y , z) , f (X , Y + l . z) arid f (X + l , Y + l . z) . Interpola-

tion between f (X I Y, z) and f (X, Y + 1; z) gives the value of f (X , y, 2) with Y 5 y < Y + 1:

and similxly, interpolation between f (X + 1. Y, z) and f (X + 1, Y + 1, r) gives the value of

f (X + 1, :y, x) . In the last interpolation these give t,he value of j (x , :y, z) .

Near the edges of the simulatioms space, some of the data points involved in the iri-

terpolation will be rriissing: since the corresporidirig Ll,vorld30des fall outside the simulated

CHAPTER 4. RESULTS I: VERIFICATION OF IMPLEMENTATION

Figure 4.2: Protein concentration values computed by NeuroGene from two different con-
centration gradients, u(x) = exp (- i x) (left) and u(x) = 1 + sin (~ T x) (right). Vertical grid
lines indicate boundaries between world nodes.

space. In these cases extrapolation is used, based on available data points from within the

simulated space. If the simulation space has the length L (always an integer), then the

leftmost concentration value (i.e. the leftmost world node) is at x = 0 and the rightmost

at x = L - 1. However, cell components can have positions in the range from x = -4 to

x = L - 4 , meaning that concentration values may need to be computed at such locations

too. In these cases extrapolation is used in stead, so that concentration values in the range

from x = -!j to x = 0 are computed by linear extrapolation from the values at X = 0 and

X = 1.

Figure 4.2 shows the extracellular concentration of a protein, as measured by NeuroGene

the method outlined above (crosses), compared with the mathematical function used to cre-

ate the concentration gradient (broken line) and the actual values stored in the world nodes

(solid line). As can be seen in the figure, the computed protein concentration reproduces the

mathematical function used to compute the concentrations with high accuracy. However, an

artifact at the right edge of the right hand figure shows how the extrapolation fails to follow

the function. This is because the last data-point used in the extrapolation is at x = 9. The

gene and geometry scripts used to initialize this experiment are listed in appendix B.1.1.

In conclusion, 3D linear interpolation is effective in overcoming the aliasing problems

introduced by the discrete representation of protein concentrations in the simulation space,

CHAPTER 4. RESULTS I: VERIFICATION OF IIklPLEMENTATION

Interpolated concentrations

WoddNode concentraitons
I I I I I I I

4 () 4 () 4 () 4 Locationofcells
I I I I I I I

Figure 4.3: Aliasing problem deriving from the production of extracellular protein. A 1D
array of equidistant cells each express a signal at the same rate. Some world nodes contain
two cells and receive twice as much protein as other world nodes containing only one cell.
Interpolation of these world node concentrations does not recover the ideal uniform protein
concentration.

and represents a significant improvement over using the values as stored in the world nodes

directly. Note that interpolation does not solve the aliasing problem deriving from the

production of protein, as demonstrated in figure 4.3. This problem arises from the fact that

all extracellular protein produced by a cell component is added to the world node containing

that cell component, regardless of where within the world node the cell component in located.

4.1.1 Extracellular concentration of membrane bound signals

The methods outlined above can be used to compute the concentrations of membrane bound

proteins as well as soluble ones. The extracellular concentration of some membrane bound

protein P, as measured by some cell component C, is related to the amount of the protein

P which is bound to the surface of cell components in the vicinity of C, not counting that

which is bound to C itself.

There are two possible definitions of this concentration: Either the concentration is in

amount of protein per unit volume of extracellular space, or it is the amount per unit surface

area of the surrounding cell components. I will refer to these alternatives as the volume

and surface models, respectively. In the following, these two alternatives are compared for

suitability.

Consider the case where a number of axons invade a region of space initially occupied by

a single cell component carrying a high concentration of some protein P. Under the surface

model, the invasion of axons, which are low in P , will cause the measured concentration of

CHAPTER 4 . RESULTS I: VERIFICATION OF IMPLEMENTATION

P in the vicinity to drop. Such a drop will not occur in the volume model.

Consider the same situation, except that the invading axons express another protein Q

on their surface, all axons carrying the same concentration of Q. Under the volume model,

as increasing numbers of axons arrive, the measured concentration of Q will increase. Under

the surface model it will stay the same as more axons arrive, since the total surface area and

total amount of protein increase by the same amount.

While either model may seem reasonable, the volume model was finally chosen. This

decision was based on observations in a simulation of topographic projections, where invad-

ing axons needed to accurately read a concentration gradient of membrane bound proteins

carried on tectal cells (see chapter 5). We found that the surface model interfered with this

reading, since the concentration values would depend on the number of invading axons in the

vicinity of the one reading the concentration value - this greatly hampered the simulation.

The volume model does not have this problem.

A third possibility is to let the choice of model be up to the user. This is possible, but

since we have not yet encountered a situation in which the surface model is superior to the

volume model, only the volume model is currently available.

4.2 Measuring extracellular concentrat ion gradients

Many developmental mechanisms rely on protein concentration gradients. There is evidence

that growth cones (Baier and Bonhoeffer, 1992; Goodhill, 1998) can directly detect the direc-

tion and magnitude of such concentration gradients. The NeuroGene gene language contains

queries for directly measuring concentration gradients. The results of these computations is

a vector in 3D space, representative of V f (x, y, z) but normalized for overall concentration.

In order to compute the x component of this gradient vector, a function g,(x, y, z) is defined

as follows

The denominator here ensures that the resulting vector represents the gradient relative to

the overall magnitude of the concentration. Using the relative rather than absolute difference

in concentration means that a magnitude of the computed gradient will be constant along

C H A P T E R 4. RESULTS I: VERIFICATION OF IMPLEMENTATION 133

a gradient with an exponential shape (see figure 4.4 left). This is a desirable property given

that gradients established by diffusion tend to have exponential shapes.

Divide-by-zero problems are avoided by defining

gx(x, y, Z) represents the change in concentration between adjacent WorldNodes along the

x-dimension. Similar function gy(x, y, Z) and g,(x, y, x) are used to compute the other two

components of the vector:

Since f (x,y, x) is only known at integer values of x, y and x, it follows that g,(x,y, x) is

only known at integer values of y and z and half-integer values of x. In order to compute

g,(x, Y, Z) where x is any real value and Y and Z are both integers, an interpolation must

be done between the values g, (X - i, Y, Z) and g, (X + i , Y, 2). Here X is chosen so that

X - < x < X + i, i.e. X is x rounded to the nearest whole number. Interpolation along the

y and x dimensions proceed as described for measuring extracellular concentrations above.

This means that g,(x, y, Z) is computed by linear interpolation of the values g,(x, Y, Z) and

g,(x, Y + 1, Z) , with Y = Lyj, and g,(x, y, x) by interpolation of g,(x, y, Z) and g,(x, y, Z +
1) with Z = 1x1. The y and z components of the gradient are similarly computed by

interpolations of the functions gy (x, y, z) and g, (x, y, x) respectively.

Figure 4.4 shows two different concentration gradients, an exponential gradient on the left

and a sine on the right. See appendix B.l . l for the scripts used to set up this experiment.

In each figure, the gradient shape is shown using solid lines. The gradient slopes solved

symbolically using

are shown in broken lines. The factor c is a scaling value chosen to match the measured

data in magnitude. Finally, the gradient slope as measured by NeuroGene using the method

outlined above is shown with crosses. The measured data shows good agreement with the

ideal values. The adjustment for overall magnitude gives the result that the gradient of an

CHAPTER 4. RESULTS I: VERIFICATION OF IAIPLEMENTATION

Figure 4.4: Computed protein concentration gradients from shown concentration profiles.
Concentrations (labeled "Conc") are governed by the functions u(x) = exp($x) (left) and
u(x) = 1.2 + sin(g7rx) (right). Vertical grid lines indicate the boundaries between world
nodes.

exponential function is constant (left). The interpolation involved in computing the vector

components can be spotted near x = 6 in the right hand image, where a sharp maximum

in the symbolically solved gradient function is missed by the interpolation routine. Note

also that the interpolation is done between points that fall on half-integer values of x, since

the gradient values that form basis for the integration are known at the boundaries between

adjacent world nodes.

Figure 4.5 shows the direction and magnitude of the protein concentration gradient vec-

tors computed from a concentration function of the form

This function has circular symmetry about the origin, meaning that concentration gradient

vectors should always be pointing toward the origin. From figure 4.5 it can be verified using

a ruler that all the vectors are indeed pointing toward the origin, accurately reflecting the

variation of this function. The gene and geometry scripts used for this experiment are listed

in appendix B. 1.2.

The symbolically computed data in figure 4.5 (marked "ideal") was generated from the

CHAPTER 4. RESULTS I: TiERIFICATION OF TMPLEMENTATION

equation

While data measured with NeuroGene was adjusted for overall concentration (see equation

4.6), the symbolically computed data was not. I t can be seen that this adjustment affects

the magnitude of the vectors (solid and broken arrows differ slightly in length), but that the

direction of the vectors are only affected to a small degree (arrows are always very close to

parallel).

In summary, the concentration gradient components computed by NeuroGene closely

match the first derivative of the concentration with respect to spatial dimensions, subject

to some artifacts arising from the interpolation. No systematic error is observed in the

computed gradient vectors close to the edges of the simulation space or anywhere else.

4.3 Simulated decay

Proteins in NeuroGene are subject to simulated first-order decay. The decay rate of a protein

is quantified by the rate constant k, and the evolution of the concentration C of some protein

is defined by

with k > 0. It can be seen that k has the unit of sec-I or per second. Within NeuroGene,

the unit for this quantity should in stead be per simulation t ime step. This means that the

concentration Cn in time step n is

where C O is the initial concentration at n = 0. In the implementation, this is simplified to

give

cn+' = Cn exp (- k) + can;' (4.11)

where can;' is the amount of the protein added during time step n + 1. Figure 4.6 shows

the concentration as function of time as computed by NeuroGene. There is close agreement

between the values are computed by NeuroGene (squares) and the symbolic solution (solid

line). See appendix B.1.3 for the relevant scripts.

CHAPTER 4. RESULTS I: VERIFICATION OF IMPLEMENTATION

0.8

0.7 0.1
0.6

0.5

0.4 Measured
Ideal - 0.01

0.3

0.2

0.1

0 0.001

Figure 4.6: Decay of protein with decay rate 0.02 and
represent the same data and differ only in the scale
and logarithmic on the right.

Measured
ldeal -

initial concentration 1.0. Both figures
used for the y-axis, linear on the left

4.4 Receptor ligand binding

In order to verify the receptor-ligand binding simulation (see section 2.4.4), the following

simple simulation was set up: Three proteins are defined, called Ligand (which is soluble),

Receptor (which is membrane bound) and Complex (also membrane bound). These are

defined to be related through a receptor-ligand binding relationship, with a association con-

stant Kd = 10V2M. The simulation space consists of a single world node, which initially

contains no protein, i.e. L = 0 at t = 0. In this world node there are two somas A and B.

These are initially given a certain amount of receptor (0.02 for soma A and 0.1 for soma B)

on their surface. As the simulation progresses, an increasing amount of Ligand is added to

the world node. The total level of receptor (i.e. both ligand-bound and free) in both cells is

never altered. The gene and geometry scripts used to initialize this experiment are listed in

appendix B.1.4.

The concentration of Ligand in the world node (L) and Receptor and Complex at both

cells (RAand CA for soma A, RB and CB for soma B) were then recorded as more Ligand

was added to the world node. The results are shown for selected time steps in table 4.1.

The gene and geometry scripts used are listed in appendix B.1.4. From this table it may be

verified that the following properties of receptor-ligand binding are accurately simulated by

C H A P T E R 4 . RESULTS I: VERIFICATION OF IMPLEMENTATION 138

Soma A Soma B

Ligand (L) Receptor (RA) Complex (C A) Receptor (R B) Complex (C B)

0 0.0200 0 0.100 0
1.71 x 10-l2 0.0200 3.41 x 10-l2 0.100 1.71 x lo-"
1.38 x 10-'I 0.0200 2.76 x 10-I' 0.100 1.38 x 10-lo
1.11 x 10-10 0.0200 2.21 x lo-lo 0.100 1.11 x 1 0 - ~
1.77 x 0.0200 3.54 x lo-g 0.100 1.77 x lo-$
1.14 x 10 -~ 0.0200 2.83 x lo@ 0.100 1.41 x
1.13 x 0.0200 2.26 x 0.100 1.13 x
1.81 x 0.0200 3.62 x 10V6 0.100 1.81 x
1.45 x 10V5 0.0200 2.90 x 0.0999 1.45 x 10V4
1.17 x 0.0198 2.32 x l0W4 0.0988 1.16 x
4.85 x 0.0191 9.23 x lo-" 0.0954 4.62 x l0V3
1.01 x lo-3 0.0182 1.84 x 0.0908 9.19 x
5.47 lo-3 0.0129 7.07 x 0.0646 0.0354

0.0179 7.16 x 0.0128 0.0358 0.0642
0.223 8.60 x lo-4 0.0191 4.30 x 0.0957
0.986 2.01 x lo-4 0.0198 1.00 x lo-3 0.0990

Table 4.1: Simulation of ligand-receptor binding by two somas (A and B) competing for the
same reservoir of ligand.

Mass balance

No protein is unaccountably added to or removed from the simulation. The total amount

of receptor (bound to ligand and free) is maintained during these computations. For the

receptor, this holds for each soma individually (RA + C A = 0.0200 and RB + C B = 0.100

within each line), and consequently also for the system as a whole (RA+RB+CA+CB = 0.120

within each line).

CHAPTER 4. RESULTS I: VERIFICATION OF IMPLEMENTATION

Chemical equilibrium

Chemical equilibrium is maintained for each cell and for the system as a whole: The system

is at chemical equilibrium if the relation

holds (see section 2.4.4). For each line in table 4.1 it can be verified that the two cells are

individually at equilibrium
RAL - RBL

= Kd
CA CB

and the system as a whole is also at equilibrium

Competition

Receptor-ligand binding is a simple mechanism by which competition may be implemented in

nature. The total amount of receptor carried by the two cells directly determines the amount

of ligand that will bind to each of them. This means that the ratio cA/CB = 0.200 in each

line, which is also equal to the initial value (when L = 0) of the ratio RA/RB. Simulated

ligand-receptor binding is therefore suitable for implementing competitive processes, and the

receptor concentration of each competing cell component represents directly the competitive

strength of that cell component.

As shown, NeuroGene's computation of equilibrium concentrations of ligand, receptor

and ligand-receptor complex on two dissimilar cell components is consistent with all the

properties of chemical equilibria, and represent a valid approach to implementing competitive

mechanisms between cell components.

4.5 Simulated diffusion

In order to verify the simulated diffusion computation (see section 2.4.1), a couple of simple

systems will be solved symbolically and also computed numerically using NeuroGene. The

symbolic solutions to the diffusion equation is given in appendix F.

The solutions differ depending on whether the NeuroGene simulation space is open or

closed. Open means that the edges of the space is permeable to diffusing protein, and the

CHAPTER 4. RESULTS I: VERIFICATION O F IMPLEMENTATION 140

concentration of all proteins outside the simulation space is zero. Closed means that the

edges of the simulation space is not permeable. NeuroGene allows for the six faces of the
simulation space to be set to open or closed individually. In the following, symbolic solutions

will be compared with the numerical results from the NeuroGene simulator.

4.5.1 Open simulation space

As shown in appendix F , the solutions to the diffusion equation with open simulation space

with diffusion coefficient D have the form

exp (- ~ i ' 7 r 2 (s + + ' 1) t

where L,, Ly and L, are the dimensions of the simulation space. For the purposes of testing

the NeuroGene simulation, we may choose a simple function of the form u(x, y, z, t) and

subsequently compute the initial concentration function f (x, y, x) = u(x, y, x, 0) which will

be used to initialize NeuroGene simulations. Initially use the function with B1 = 1 and

B, = 0 for all n # 1.

U (X , Y , ~ J) = sin (E) sin (2) sin (z)
which gives the initial condition

u (x , Y J , O) = sin (E) sin (z) sin (z)
in 3D. 1D and 2D forms are easily derived in the same way. Figures 4.7-4.9 show the

evolution of a system with this initial concentration function in ID, 2D and 3D respectively.

In each figure, the same data is presented using a linear and logarithmic scale for the vertical

axis. The three figures are less alike than they appear. The timespan of each is quite different,

the diffusion occurring faster in the 3D case than the 1D case (see captions). Figure 4.10

shows the I D case (i.e. same geometry as figure 4.7) but with a threefold faster diffusion

rate. All these functions show relatively good agreement between the simulated diffusion

data from NeuroGene (squares) and the symbolic solutions to the diffusion equations (solid

CHAPTER 4. RESULTS I: VERIFICATION OF IMPLEAIENTATION

Figure 4.7: Diffusion from a simple initial concentration function in ID, simulation space

dimensions L, = 32, Ly = L, = 1 with u(x,O) = sin () The vertical axis shows

concentrations (linear scale on the left, logarithmic scale on the right), and the horizontal
axis represents the spatial coordinate. There are 1000 simulation time steps between curves
on the left, 2000 steps between curves on the right.

Figure 4.8: Diffusion from a simple initial concentration function in 2D, simulation space

dimensions L, = Ly = 32, L2 = 1 with u(z, y, 0) = sin (2) sin (E) measured at y = $ L ~ .
There are 500 simulation time steps between curves on the left, 1000 steps between curves
on the right.

C H A P T E R 4. RESULTS I: VERIFICATION OF IMPLEMENTATION

Figure 4.9: Diffusion from a simple initial concentration function in 3D, simulation space
dimensions L, = Ly = Lz = 32 with u(z, y, r , 0) = sin (E) sin (z) sin (E) measured at

y = i~~ , z = ;L,. There are 250 simulation time steps between curves on the left, and
every 500 steps between curves on the right.

Figure 4.10: Same simulation as that shown in figure 4.7, except that the rate of diffusion is
3 times higher (0.15), with 250 simulation time steps between curves on the left, 500 steps
between curves on the right.

CHAPTER 4. RESULTS I: VERIFICATION OF IMPLEMENTATION 143

lines). The gene and geometry scripts used to set up these experiments are listed in appendix

B.1.5.

4.5.2 Closed simulation space

Again as shown in appendix F, the concentration of a diffusing protein in a closed simulation

space is governed by functions of the general form

exp (- h 2 n 2 (6 + + ' 1) t

A simple choice of function to use for testing NeuroGene diffusion simulations is the one

given by A. = Al = 1 and A, = 0 for all n > 1. The function with A. = 1 is chosed to

ensure that concentrations are never negative.

1
u(x,y,z , t) = 1 +cos (2) cos (2) cos (z) exp (- ~ n ~ ($ + - + l) t)

L; L:

which gives the initial condition

u(x.y,z,O) = 1 + cos (2) cos (z) cos (E)
Figure 4.11 shows the evolution of this initial concentration profile under diffusion. Again

there is a difference in speed between the ID, 2D and 3D case, and again there is good

agreement between the symbolic solution and the numerical calculation by NeuroGene. The

scripts used for these experiments are also listed in appendix B. 1.5.

In conclusion, the simulation of diffusion as computed by NeuroGene closely matches

the analytical solutions to the diffusion equation. The match is notably better in the closed

than in the open case. The reason for this difference is not currently understood. However,

in both cases the match is good enough for the simulations reported in this thesis, as well as

other simulations that may be envisaged. A basic intuition here is that any developmental

program which is so sensitive to the value of a protein concentration as to be disrupted by a

deviation as seen in figures 4.7-4.10 is going to be so fragile as to be biologically implausible.

C H A P T E R 4. R.ESULTS I: Tr'ERIFICATIOX OF IMPLEMENTATION

Figure 4.11: Diffusion in a closed simulation space, shown with a linear scale on the vertical

axis only. Top left: in 1D (L , = 32, L, = L, = 1) with u(x.0) = 1 + cos (E), 0,

500,. . ., 8000 time steps. Top right: in 2D (L , = L, = 32, L, = 1) with u(x, y,O) =

1 + cos (E) cos (z), at y = 0 and at 0, 200, . . ., 4000 time steps. Bottom: 3D (L, = L, =

L, = 32) with u(z , y, r , 0) = 1 + cos (E) coa (z) cos (E), at y = 0, r = 0 and at 0, 100,

. . ., 3000 time steps.

CHAPTER 4. RESULTS I: VERIFICATION OF IMPLEMENTATION

4.6 Verifying other aspects of the implement at ion

Standard debugging techniques were employed to verify the correctness of the implemen-

tation of algorithms, such as the simulated gene and growth cone mechanisms, as well as

the neural models of activity. This includes using interactive debugging tools for single-step

execution of the algorithms under a range of different circumstances that would cover all

possible paths through the code in question. This was possible since these algorithms are

relatively simple and limited in scope. In particular, the implementation of the gene and

growth cone algorithms can be verified independently of the AST data structures which

determine their behaviour.

As noted earlier (section 3.1.2), the classes implementing the AST data structure are

numerous, but in most cases very simple. The verification of the language semantics, as

implemented by the execute() functions of each AST class, is therefore relatively straight-

forward. Single-step execution within interactive debugging tools was also used to verify

the implementation of the language semantics in the context of the simulation system as a

whole.

A parser written using a tool like JavaCC (Sun Microsystems, 2003c) consists of two el-

ements: The grammar specification and the actions associated with each production within

the grammar. The implementation of the grammar specification is verified by parsing exam-

ple input scripts, since an error in the grammar specification causes parser errors on correct

input. The parser has been tested against a number of different input scripts (see appendix

B).

While the grammar contains a large number of productions, the actions associated with

each are in most cases very simple, and often follow a repetitive pattern. Bugs in this part

of the parser are therefore relatively easy to discover and correct. During development of

the parser and the AST classes, the following technique was used to verify the correctness of

both: The AST classes were equipped with recursive-decent tostring0 functions. When

tostring0 is called on the root node of some AST data structure, a text representation of

the AST data structure as a whole is returned. Furthermore, the text representation was

designed to be identical (disregarding insignificant white-space) to the input script which

was used to create the AST data structure in the first place. Any deviations between the

two, indicative of an error either in the parser or in the AST data structure, is easily spotted

CHAPTER 4. RESULTS I: VERIFICATION OF IMPLEMENTATION 146

by eye, using automatic text-comparison tools, or even by resubmitting the produced text

to the parser.

4.7 Conclusion

The goal of this chapter has been to demonstrate the accuracy of the simulation of physical

processes by NeuroGene. Given the constraints imposed by e.g. the discretization of the

simulation space, the computations underlying the NeuroGene simulations perform satisfac-

torily with respect to the requirements of the developmental systems under investigation.

Chapter 5

Results 11:

Developmental simulations

NeuroGene has been designed to be able to simulate a wide range of developmental phenom-

ena. The simulations presented in this chapter involve three developmental mechanisms that

all play central roles in the development of the nervous system. These are patterning, axon

guidance and activity-driven development. In each case, we have chosen to simulate systems

which have been the subject of scientific study for many years, and which are relatively well

understood. Using NeuroGene as a tool, we have been able to develop a novel model for the

axon guidance mechanism underlying the formation of topographic maps. The new model

explains a wider range of observed biological phenomena than other previously proposed

models, and brings new insights into the mechanism of axon guidance.

Patterning is the process by which an initially uniform mass of cells become subdivided

into contiguous domains of cells which differ in properties, which may ultimately develop into

organs with different roles in the life of the organism. While patterning plays an important

role in the development of the vertebrate central nervous system (see e.g. Scholpp et al., 2003,

Bishop et al., 2002 and F'ukuchi-Shimogori and Grove, 2001), we have chosen to simulate one

of the the most studied and best understood examples of patterning, the initial establishment

of segments in the embryo of the fruit-fly.

Axon guidance is the process by which axons extend and grow toward a specific target

area, forming specific connections to particular target cells. Axon guidance has been studied

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS 148

in many contexts in insects and vertebrates - however, the best understood system is

the topographic projection from the eye to the mid-brain in vertebrates. This connection

transmits the visual image from the retina to the brain. The mid-brain target area, known

as the tectum or superior colliculus (depending on the species) receives the neural activity

from the eye in such a way that adjacent sites in the target area receive input from adjacent

sites in the retina. Effectively, the image projected on the retina is replicated in the form

of neural activity in the tectum. The topographic projection is an important structural

motif in the brain - they are found throughout the somatosensory systems which process

information from all our senses, and many speculate that they may also play a role in higher

cognitive function.

In activity dependent development and learning, patterns of neural activity cause changes

in the synaptic weights of neural connections. Again the best studied examples are from the

vertebrate visual system. We simulate the concurrent processes of visual field refinement

and the formation of ocular dominance columns. The former is the process by which initial,

diffuse and imprecise connections of a topographic projection, formed through axon guidance,

are sharpened through synaptic modifications. In the latter process, target cells which

initially receive equal activation from each eye become dominated by one or the other eye.

In this chapter, I present simulations involving these three important developmental

mechanisms. In the first (section 5.1), phenomena of tissue patterning through diffusible

chemical signals are simulated. Here we use a well understood system from fruit fly devel-

opment, but similar processes may be involved in the development of the vertebrate brain.

such as in the formation of the segmented vertebrate hind brain (Barrow et al., 2000).

The second set of experiments (section 5.2) simulate the initial formation of topographic

connections from the retina to the main target area in the mid brain. This process depends

on axon guidance by chemical signals, and is not activity dependent. We present a novel

model for the formation of such maps which was developed using NeuroGene. There is a

wealth of experimental data on the changes in this connection resulting from changes in the

geometry or biochemistry of the retina or the mid brain target. The test of any model is the

degree to which it can explain this results. Our model, which relies on the explicit modeling

of growth cones, is able to explain a very wide range of experimental observations.

Finally, simulations of the activity-dependent refinement process of the same topographic

connection is presented in section 5.3. These simulations use a learning mechanism which

C H A P T E R 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS 149

is based on chemical signaling across the synaptic gap, where all molecular interactions are

explicitly modeled. The last two simulations both involve the development of the same axonal

projection from the retina to the tectum. Not included here is the simulation of the formation

of the initial synaptic connections between the RGC axons and the tectum. NeuroGene does

not at present have the capability to model this complex arborization process. The addition

of this functionality to NeuroGene is possible, and this would make NeuroGene much more

of a complete tool for the study of neurodevelopment. While this and other mechanisms

are also involved in the formation of the visual system and the nervous system as a whole,

these three simulations presented here clearly demonstrate the wide range of processes which

NeuroGene can currently simulate.

5.1 Patterning: Drosophila segment at ion

The fruit-fly (Drosophila melongaster) is widely used in research aimed to better understand

developmental processes. One of the first events in the development of the fruit-fly is the

emergence of patterns of gene expression which determine the future locations of the seg-

ments of the fruit-fly body. Starting from a uniform population of cells, a pattern of cell

differentiation is established, where initially identical cells start to show differences in the

genes that are expressed within them. The cells subsequently go through different devel-

opmental programs which are determined by these early gene regulation events. Through

non-linear gene regulation mechanisms, slight differences in the concentrations of regulatory

proteins early in development lead to cells going through completely different developmental

programs, and ultimately fulfilling different roles in the fully formed organism. Variations

on this basic mechanism causes the formation of organs and other structures in all complex

animals.

An important gene in this context is Even-skzpped, so named because mutants which lack

this gene are missing every other segment (the even-numbered ones) in the body. In the early

stages of development of the fruit-fly, cell division and migration establish a situation where a

single layer of cells line the inside surface of the egg. Gene expression in these cells is initially

controlled by a number of diffusible regulatory proteins. These factors establish a pattern

of bands perpendicular to the long axis of the egg. This pattern delineates the cells which

will eventually become the segments of the fully developed fruit-fly larva. The first band

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIILrlULATIONS 150

to appear is band number two counted from the head. We here simulate the establishment

of segment number two of the fruit-fly embryo through the regulation of Even-skipped and

related genes.

Figure 5.1 shows the gene network underlying the simulation (Muller, 1997; Held, 2002).

Two broad concentration gradients (Bicoid and Nanos) together give rise to a sharply de-

fined expression pattern of Even-skipped. This happens because of numerous enhancing and

inhibiting interactions between a total of eight different compounds (seven proteins and one

mRNA). This gene network includes many examples of gene-gene interactions which go be-

yond simple boolean logic, but which are straightforwardly represented in the NeuroGene

language. See for example the interaction from Hunchback to Kruppel, which is enhancing at

low levels of Hunchback, and inhibiting at high levels, a s well as the Nanos inhibition of the

translation of Hunchback mRNA to protein. The latter requires that the transcription and

translation of Hunchback be modeled separately. Hunchback is therefore represented by two

simulated genes, one which expresses the Hunchback mRNA (representing transcription),

and another which expresses the Hunchback protein (translation). The latter simulated gene

requires the Hunchback mRNA in order to be expressed, thereby simulating the role of the

mRNA in translation Brook (1998).

5.1.1 Results

Figure 5.2 shows the NeuroGene simulation of this system. Soma instances represent the

cells of the fly embryo, as shown on the top left. The arrangement of the different genes are

the same as in figure 5.1. On the left is shown the concentration distributions of proteins and

Hunchback mRNA at the outset of the simulation. All protein concentrations are initially

zero (blue) with the exception of Bicoid and Nanos, which are initialized to have broad

concentration gradients extending across the extent of the organism, and HunchBack mRNA

which is present at a constant level throughout the embryo.

The situation after the simulation has reached a steady-state is shown on the right. All

genes except Bicoid and Nanos are expressed by the somas, and therefore will only have high

concentrations close to where the somas are. The concentration profiles of all the proteins

and the Hunchback mRNA shown in figure 5.2 match the experimental data summarized in

figure 5.1. The gene and geometry scripts for these siniulations are included in appendix B.

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS

- Enhancement

-1 Inhibition

- - - -
- -

-' - .-- - ,--c--- x- ; - /- -. =-e
Figure 5.1: Gene network responsible for establishment of the first i&g&&'of~k~~- : -=--', -.

melongaster. Boxes show the concentration distribution of each prat.aiP QX &A, with the
fly's head (anterior) to the left asd tail (g~sterior) to the right. -:-

- .

Figure 5.2 Start point (left) and steady state situation (right) of the NeuroGene simulation
of the Evenstripe system of Drosophila melongaster. The arrangement of the different genes
are the same as in figure 5.1. Blue small circles on the top left show the location of the
cells which are hidden in the other images. Colour scale: Blue represents concentrations
< 1 x 10-lo and red concentrations > 2 x lo-* moles/L.

- - - - -

C H A P T E R 5 . RESULTS 11: DE V E L OPALTNTAL SIMULATIONS

5.1.2 Discussion

Patterning processes often rely on the establishment of protein concentration gradients

through diffusion. Such gradients may then directly or indirectly establish well defined pat-

terns of differential gene expression. This in turn may give rise to additional concentration

gradients of other proteins, thereby establishing increasingly complex patterns. The simula-

tion of Even-skipped is an example of such increasing levels of pattern detail, as the broad

gradients of Nanos and Bicoid regulate Hunchback, Knirps and Giant, which in turn define

the highly restricted expression domains of Kruppel and Even-skipped. As figure 5.2 shows,

NeuroGene is capable of encoding the genetic regulatory network controlling Even-skipped

expression. Based on the gene network and on the simulation of physical processes including

diffusion, NeuroGene simulates the formation of expression domains similar to those which

are observed in nature.

5.2 Axon guidance: Topographic map formation

The ability of the vertebrate central nervous system to act as a sophisticated information

processing device depends on precise neural interconnections between its various parts. These

connections are formed through axon guidance, by which an extending axon, tipped by

a dynamic growth cone, navigates to its proper target site where it forms synapses with

appropriate target neurons. Topographic maps is a type of neural structure which is formed

through sophisticated axon guidance. While a set of parallel connections from one tissue

to another might seem like a simple structure to build, the resilience of this mechanism to

experimental tampering (Goodhill and Richards, 1999) points to a complex developmental

process.

-4s mentioned in section 2.3, topographic projections are observed in many parts of the

brain involved in early processing of sensory information, including visual, auditory, olfactory

and somatosensory input (Kandel et al., 2000) with some systems containing several such

projections. The same mechanism and even the same proteins may be involved in the

formation of these topographic projections, at least within the visual pathway (Marin et al.,

2001).

While no definite proof exists, it is possible that topographic projections also play a

CHAPTER 5. RESULTS II: DEVELOPMENTAL SIMULATIONS 153

role in cognitive functions. For example, Rodriguez et al. (2004) report a computational

model of the thalamus and sensory cortex capable of simple storage/recall and hierarchical

classification. Topographical connections are central in the model's hierarchal classification

task, while the non-topographical connections implement the storage/recall mechanism. In

an experimental study, the role of topographic projections in learning in rodents and humans

was investigated (Diamond et al., 2003), looking at the sense of touch. In the human trials,

subjects learned to distinguish two different frequencies of vibration, using one particular

finger tip. The researchers found that when testing the subjects using another finger tip, the

learning did not transfer, indicating that the site of learning was associated with the trained

fingertip only.

A more detailed study, reported in the same paper, was carried out on the sense of

touch conveyed by the whiskers of rats. All but one whisker was removed on each rat

during the training session. In the test phase, the trained whisker was removed, and a

"prosthetic" whisker was attached with glue to the base of another, previously removed

and therefore untrained whisker. The researchers found that the rats' ability to repeat the

learned behaviour decreased with increasing distance between the trained and tested whisker,

indicating that the learned ability is transferred to nearby but not to distant whiskers. This

is strong evidence that the topographic relationship between the whiskers is maintained at

the site where the learning of the task takes place.

Topographical projections are also interesting from a theoretical viewpoint. Artificial

neural networks with a topographic topology may be trained, using common connectionist

learning rules, to represent universally qualified one-to-one mappings (UQOTOMs, Marcus,

2001, chapter 3). Such mappings are by definition able to generalize outside the training

space, something which is otherwise an elusive goal in connectionism.

The topographic projection from the retina to the mid-brain has been extensively studied

in many species under a wide range of experimentally manipulated conditions. As predicted

by Roger Sperry in 1963, the development of the well formed projection depends on proteins

expressed in concentration gradients both in the RGCs (including their axons and growth

cones), and on proteins expressed in the tectum. The tectum expresses a class of proteins

known as ephrins. Ephrins are divided into two classes A and B, each of which has a number

of members (ephrinAl - ephrinA5 and ephrinBl - ephrinB3) (Eph nomenclature committee,

1997). The RGCs in turn express a class of proteins known as Eph-receptors. Eph receptors

C H A P T E R 5 . RESULTS 11: DEVELOPMENTAL SIMULATIONS

temple - nose

/

'E C a I 1 ,/

\ I r
. : I / / ; retina

I
tectum / / I 1 ' .I i

down

back-front

Figure 5.3: Expression pattern of ephrinA/B in the tectum and EphA/B in the retina.
Horizontal and vertical ramps show the directions of concentration gradients of ephrins in
the tectum and of Eph receptors in the retina. The projection from the eye to the tectum is
crossed both vertically and horizontally, as indicated by diagonal lines.

also fall into two classes A and B (with members EphAl - EphA8 and EphBl - EphB6

respectively, ibid) . EphA receptors generally bind to and detect ephrinA proteins only, and

EphB receptors detect ephrinB only. However, within each class A and B the receptors are

generally "promiscuous", i.e. most EphA receptor types detect many of the ephrinA proteins

with varying sensitivities, and the same goes for EphB and ephrinB (ibid). For the sake of

simplicity, I will in the following only refer to these proteins by classes, and not go into the

distinguishing properties of the individual proteins and receptors.

All these proteins are expressed in gradients from low concentration at one edge of the

topographic map to high concentration at the other. The ordering of the topographic projec-

tion along the horizontal dimension depends on the interaction between tectal ephrinA and

retinal EphA, while ordering along the vertical dimension depends on interaction between

ephrinB and EphB, see figure 5.3.

Note that in the horizontal dimension, high EphA axons map to low ephrinA tectum,

while in the vertical, high EphB maps to high ephrinB tectum. From this arrangement

of gradients it is evident that the ephrinA/EphA interaction is repellent, leading the high

EphA axons (which are most sensitive to ephrin-4) to regions with low ephrinA levels. The

CHAPTER 5. RESULTS II: DEVELOPMENTAL SIMULATIONS 155

ephrinB/EphB interaction is attractive, since the high EphB axons, which are most sensitive

to ephrinB, wind up in the part of the tectum where the ephrinB levels are high.

A number of models have been proposed to account for the map formation process, many

of which have been submitted to computer-based simulations (Hope et al., 1976; Whitelaw

and Cowan, 1981; Gierer, 1983; Overton and Arbib, 1982; Fraser and Perkel, 1990; Weber

et al., 1997; Yates et al., 2004). None have yet been able to account for all the experimental

observations, particularly relating to neural structures resulting from experimental modi-

fications of the eye and/or mid-brain during early stages of development before the map

normally forms, see appendix G. Here we report a new model which accounts for many, but

still not all observed phenomena.

5.2.1 Implementation

The NeuroGene simulation of topographic maps rely on the model of growth cones described

earlier (see section 2.6). The gene script is given in appendix B.2.2. In these simulations,

the growth cones are involved in guiding the RGC axons to the tectum, as well as in the

sorting mechanisms giving rise to a fully formed topographic projection.

The genes which together implement the NeuroGene simulation of topographic map

formation fall into three classes: First are simulated genes which are analogous to genes

which are known to exist in nature. All the genes in the fruit fly segmentation experiment

above belong to this category. In the following, ephrin and Eph receptor genes fall into this

category. Secondly, some simulated genes are not known to have directly analogous genes

in nature, but their function is typical for a wide range of genes known in nature. The

simulated cell identity genes are such genes. Thirdly, there are simulated genes for which

the existence of analogous genes in nature can be inferred from circumstantial evidence.

This includes the simulated genes defining cardinal axes: We know that Eph receptors and

ephrins are expressed in concentration gradients, and we can infer the existence of some

genetic mechanism by which this is accomplished. In some cases, the genetic mechanism of

the regulation of these genes are known (e.g. EphA3, see Schulte and Cepko, 2000), however

such details are not relevant to the simulation at hand, and a simple mechanism of regulation

of EphA and EphB are used in stead. Similarly we can infer the existence of genes which

cause the formation and which control the activity of growth cones.

CHAPTER 5 . RESULTS II: DE VEL OPIIIELNTA L SIMULATIONS

1 growthconeFunction f indTectum {

2 f ilopodiumCount = 4;
3 f ilopodiumLength = 0.2;
4 searchRange = 0.0;
5 neighbourcount = 0;
6 migrate (externalConcentrationOf (ret inoTectalGradient)) ;

7 1

Figure 5.4: Growth cone function for climbing a concentration gradient of the protein retino-
TectalGradient. Lines 2-5 define the shape of the growth cone, while line 6 defines its simple
behaviour. The growth cone shape used here is not based on experimental observations.
However, the simulation is not sensitive to the growth cone shape in this case.

The growth cone program for finding the tectum uses a concentration gradient established

by a diffusible protein produced by the tectum. The gene retinoTectalGradient expresses

this protein, which is released by tectal cells and diffuse through the extracellular space.

A corresponding gene is not known to exist in nature - the simulated gene represents the

mechanism by which retinal axons navigate to their target tissue, which in nature may involve

multiple genes. Through diffusion this protein establishes the concentration gradient which

RGC axons use to navigate toward the tectum. The growth cone program which causes an

axon to navigate this gradient toward its source is simple (see figure 5.4): The bid value

for each filopodium is simply the perceived external concentration of the signal forming the

gradient. This means that whichever filopodium perceives the higher concentration, i.e. the

filopodium which is closer to the target area, will win the competitive auction of the growth

cone algorithm.

When the RGC axons reach the tectum, they detect a tectum-specific protein, tectal-

CellMarker. This causes the RGC growth cones to switch from a "find the tectuml'-mode to

a "sort-map" mode upon axon arrival at the tectum. The various simulated genes which are

used to implement this system within NeuroGene are listed below.

Cell identity genes

As outlined in section 1.5.2, cell of a particular cell type are identified by the genes which

are expressed within them, and the functional and structural consequences of such gene

expression. Genes which uniquely identify a cell type are cell identity genes. The simulated

C H A P T E R 5. RESULTS II: DEVELOPMENTAL SIMULATIONS

1 gene retinalCellMarker {
2 diffusible = false;
3 regulation (
4 if (surfaceConcentrationOf(RetinalCellMarker) > 0.1) {
5 expressExternally(0.25);
6 1
7 1
8 1

Figure 5.5: Implementation of a self-enhancing cell identity gene. Once this gene is activated,
leading the surface concentration to exceed 0.1, the test on line 4 will be satisfied, and the
gene will continue to be expressed forever.

cell identity genes are auto-enhancing, meaning that the presence of the protein produced

by each such gene causes the gene to be expressed. This gives such genes the property

that once they are expressed, they continue to be expressed. We have implemented such

genes for tectal cells (tectalCellMarker) and retinal cells (retinalCellMarker, see figure 5.5).

When the simulation is set up, tectal cells are initialized (see section 3.1.10) with a non-zero

concentration of the protein tectalCellMarker, ensuring that the gene is expressed in these

cells. All other cells are initialized with zero concentration of tectalCellMarker. The proteins

are membrane bound and expressed on the surface of cells, allowing other cell components to

detect the protein and thereby identify the cell type. For example, the retinal growth cones

"know" that they have reached the tectum when they detect the protein tectalCellMarker in

their environment.

Genes defining cardinal axes

These simulated genes are expressed in linear gradients, and are used to establish ephrin

and Eph receptor gradients. While corresponding genes are not known to exist in nature,

clearly there must be some genetic mechanisms which establish the observed concentration

gradients of ephrins and Eph receptors as well as those of many other proteins. These

simulated genes are hypothetical, however, they represent the mechanism which causes the

formation of concentration gradients which are known to exist in nature. There are four

such genes, used to establish the two cardinal axes in the retina and in the tectum.

CHAPTER 5 . RESULTS 11: DEVELOPMENTAL SIMULATIONS

Ephrin genes

The simulated ephrin genes represent genes which have been identified and studied in nature.

These genes are expressed in gradients across the tectum where they act as ligands to the Eph

receptors carried by incoming RGC axons. While precise measurements of absolute protein

concentrations are difficult to make in tissues, the concentration gradient of ephrinA2 in

the retina of goldfish has been observed to have an approximately exponential shape, with

about 2-fold difference in concentration between the two extremes of the gradient1. In our

experiments, ephrinA is expressed in an exponential gradient decreasing from the back to the

front edge of the tectum (see figure 5.3), the exact shape of the gradient given by Aexp(-Bx)

with A = 0.5, B = ln(5) and 0 5 x < 1. The expression rate of ephrinA is thus 0.5 at the

back edge of the tectum (where x = 0) and 0.1 at the front edge (where x = 1). As will be

shown, the system is tolerant to variations in A and B.

While the sorting of RGCs axons in the midline-side dimension has many similarities to

the mechanisms driving the sorting in the front-back dimension, it has been studied less,

and we have less experimental data to draw on in designing the simulation. For this reason,

we use a slightly modified form of the back-front mechanism to implement the sorting in

the other direction, and modify the growth cone definition to integrate the sorting cues in

both dimensions. This gives rise t o the simulated genes ephrinB2 and ephrinB5. The only

modification we make is that we change the ephrinB - EphB interaction to be attractive

unlike the repellent ephrinA - EphA interaction, compare lines 189-193 and 198-202 in the

gene script in appendix B.2.2. The simulated ephrinB gene is expressed in an exponential

gradient increasing from the side to the midline edge of the tectum (see figure 5.3).

Eph receptor genes

There are two Eph receptors carried by RGC axons, one for the midline-side (or nasal-

temporal) dimension (EphA3) and one for the top-down dimension (EphB3), see figure 5.3.

These are both expressed in exponential gradients on the surface of the RGCs, including

their axons. The function used is Aexp(-Bx) + C, with A = 0.176, B = 5 and C = 0.074,

' ~ r . Sara Dunlop, University of Western Australia, personal communication during a presentation hosted
by ICORD, University of British Columbia, April 2 - 2002, with the title "Optic nerve regeneration: maps,
molecules and making connections".

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS 159

where x is the internal concentration of the proteins which define the horizontal coordinates

of the retina. This gives expression rates of EphA of 0.25 at the temporal end of the retina to

0.075 at the nasal end. The map formation model is tolerant to changes in these parameters,

as will be shown below. A corresponding gradient of EphB is established, increasing from

the upper to the lower edge of the retina (see figure 5.3).

5.2.2 The topographic mechanism

We introduce a novel model for the formation of topographic maps. This model is based on

the concept of a pecking order between RGC axons. The behaviour of each RGC axon is

determined by the presence or absence of other RGC axons with relatively higher pecking

order in the vicinity. The pecking order is defined by the axonal concentration of EphA

and EphB - the higher the concentration, the higher the pecking order. The model can be

summarized as follows:

For a given axon A, if there are no axons in the vicinity of A which have higher

pecking order than A, then A moves toward the more attractive end of the target

gradient, otherwise it moves toward the less attractive end.

In the horizontal dimension, the ephrinA gradient in the target area is repellent, so that

the more attractive end of the gradient is the anterior, low-ephrinA end. In the vertical

dimension, ephrinB is attractive, meaning that the attractive end of the gradient is the high-

ephrinB at the mid-line. The roles of the ephrinA/B and EphA/B gradients are therefore

well defined: the ephrinA/B gradients give directional information to the invading axons,

as has already been suggested (Hope et al., 1976). The EphA/B gradients determine the

behaviour of the axons in such a way that low EphA/B axons cede their place to relatively

higher EphA/B axons, and high EphA/B axons ignore low EphA/B axons.

This algorithm relies on RGC axons being able to switch from being attracted to being

repelled by the same ephrin gradients, depending on the Eph receptor levels of surround-

ing RGC axons. This is similar to the CAMP and Ca2+-dependent switching in growth

cone behaviour observed in several systems, see section 1.3.2. In support of this model of

map formation, switching between attractive and repellent growth cone behaviour toward

EphA/B signaling has also been observed (McLaughlin et al., 2003a, p. 63).

C H A P T E R 5. RESULTS 11: DE VELOP.4 IE*VT/\ L SI.4 lULAT1OLW

Figure 5.6: This figure shows how the "pecking-order" rnechanisrns gives rise to il sorted
t,opographical projection. A: a properly sorted map. B: two dissimilar axons meet in an
inirnature map. The high-EphA axon (dark) is not affected by the low-Eph.4 axon, and
moves t,oward the low-ephrinA end of the map. The low-EphX axon is induced by the high-
EphA axon to shift toward the high-ephrin.4 end of the m a p C: A high-EphA axon with
an inappropriate location causes nearby low-EphA axons to shift to the left, giving room
for the high-EphA axon to move to the right. D: A low-EphA axon in an inappropriate
location surrourided by high-EphA axoris shifts toward the higher ephrinA. The surroundirig
high-EphA asons are not affected by the wayward low-EphA axon.

Figure 5.G shows how this algorithrn leads to a sorted topographic projectio~i. Figure

5.6A shows a fully sorted map, where high-EphA axons (dark lines) project to low-ephrin.4

tectum (light circles), and low-EphA axons (light lines) project to high-ephrinA tectuni

(dark circles). In 5.6B, two RGC axons with diff'erent EphA levels meet? initially in an

inverted order with respect to proper sorting. The high-EphA axon is not affected by the

low-EphA axon, and moves t,oward tho low-ephri11.4 part of the tectam, i.e., toward the

right. The low-EphA axon detects the presence of the high-EphA axon. Coriseyuently, the

low-EphA axon moves toward the higher-ephririA part, of the target area. i.e., toward the

left,. This leads to the proper ordering of the two axons beirig restored. Figure 5.GC:-D

shows the situation in which a single high-EphA axon (3 . K) or l ~ w - ~ p h . \ axon (LCD)

is misdirected in an otherwise properly sorted projection. In 5.6C, the aberrant, avo11 is

higher pecking-order than all the surrouriding axons, rrieanirig that it will nligrat,e toward

lower ephrin.4 concentrations. Its presence causes properly sorted axons t,o migrate up the

C H A P T E R 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS 161

ephrinA gradient, but this effect is transient, and the proper sorting will be reestablished

once the high-EphA axon has left. In 5.6D a low-EphA axon is in an aberrant location.

The presence of high-EphA axons in its vicinity will cause this axon to migrate toward the

higher-ephrinA part of the target area.

The results of our simulations show that this model can create topographic order in both

horizontal and vertical dimensions simultaneously. We also show that this model replicates

a wide range of results from in-vivo experiments, beyond what any other published model

is able to do.

NeuroGene has proved an invaluable tool in the development and verification of this

model. We use the NeuroGene simulated growth cones to implement the model, which is

encoded in the form of a growth cone function. The bid values computed by this function

are such that the winning filopodium causes the axon to migrate according to the model

as stated above. This encoding requires the explicit representation of the growth cone's

interaction with its environment in terms of the protein concentrations it detects and the

internal signal processing it performs. This makes it easy to relate the model to what is

known about RGC growth cones, their receptors and their behaviour.

5.2.3 Results

The retinotectal system has been subject to a wide range of experiments in which the retina

or the tectum were modified through surgery at an early stage in development. More recently,

genetic manipulation has also been used. The resulting maps are then studied to determine

whether and to what extent the normal process of map formation has been disrupted by

the experimental modifications. See Goodhill and Richards (1999) for a review of early

experiments, and Brown et al. (2000) and Hornberger et al. (1999) for important studies

using genetics to experimentally modify the projection.

In the following, we report the results of a series of NeuroGene simulations which seek

to replicate the findings from in vivo experiments in which either surgical modifications or

genetic manipulations were used to alter the context in which topographical projections form.

In each experiment we use the same simple geometry to represent the retina and the tectum,

two parallel 2D sheets of cells, separated by a certain distance. The concentration gradients

within each cell sheet are arranged so that axons forming a normal projection will cross in

CHAPTER 5. RESULTS II: DE V7ELOPMENTL4 L SIAUJLATIONS 162

the space between the two layers. This was done so that the initial projection formed when

the RGC axons first reach the tectum is highly dissimilar from the final projection. The

precision of the resulting projection can also be estimated in this geometric arrangement,

since an ideal projection is one in which all axons cross through a single point half-way

between the two cellular sheets.

Wild type

The term "wild-type" is common biological jargon referring to the naturally occurring pro-

cesses as found "in the wild", and not subjected to experimental modifications. It represents

the standard situation to which experimentally modified systems are compared. The results

of the wild-type experiment is shown in figure 5.7.

In the initial situation (figure 5.7A) axons extend approximately parallel from the retina

(top) to the tectal target area (bottom). As the simulation progresses (figure 5.7A-I) axons

shift across the tectal area, until most axons cross to the opposite side of the tectum, with

axons high in EphA (shown in red) project to tectal areas low in ephrinA (shown in blue)

and low EphA axons (blue) project to high ephrinA tectal areas (red). The projection is

near ideal, with nearly all axons crossing each other in a small area between the two cellular

sheets. A handful of axons remain in inappropriate locations. There is evidence that in

nature, activity dependent processes cause neurons with such errant axons to die, thereby

improving the quality of the topographic projection.

Figure 5.7J-K shows the topographic ordering in the vertical direction. In 5.7K1 high

EphB axons are shown in yellow and low EphB axons in blue, while high ephrinB tectum

is shown in red and low ephrinB tectum in blue. The topographic model is able to sort the

projection along both dimensions simultaneously with high precision.

Changes in gradient shapes

Figure 5.8 shows a set of eight experiments carried out to verify that the topographic map

forms regardless of the particular slope and overall magnitude of the retinal EphA and

tectal ephrinA gradients. These experiments are all slight modifications of the "wild-type"

experiment - the only changes being in the expression rate of EphA or ephrinA as function

of position along the retinal or tectal axis. If the EphA or ephrinA gradient in the wild

- '.
Figure 5.7: Simulation of map formation in wild-type. A-I are images of a wild type ex-
periment shown at 1,000, 4,000, 7,000, 10,000, 13,000, 16,000, 19,000, 22,000, and 25,000 J

time steps. J and K the same situation as I, but seen from different angles. L is the same
situation and view angle as K, but here the ephrinB and EphB proteins are visualized in the , I

- 6 - - 8 - - - r . - tectum and the RGCs, respectively. - ,
-

- 1

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS

Figure 5.8: Experiments showing the resistance of the map formation model to variations in
gradient shapes. A: high magnitude of retinal EphA; B: low magnitude of retinal EphA; C:
high slope of retinal EphA; D: low slope of retinal EphA; E: high magnitude of the tectal
ephrinA; F: low magnitude of the tectal ephrinA; G: high slope of tectal ephrinA; H: low
slope of tectal ephrinA. See text for details of these gradient shapes.

CHAPTER 5. RESULTS II: DEVELOPMENTAL SIMULATIONS

Figure 5.9: A: Expansion of the topographic projection caused by removal of half the retina:
Half the normal number of axons form a map covering the entire tectum. The axons also r ep
resents half the normal gradient in EphA concentrations. B: Compression of the topographic
projection caused by removal of half the tectum: The normal number of axons, representing
the normal range of EphA concentration gradient, form a map covering the reduced tectum.
The tectum represents half the normal gradient in ephrinA concentrations.

type experiment is described by a function Aexp(-Bx) with A > 0, B > 0 and x varying

from zero to one across the retina or tectum, the modified gradients where given by the

following functions: High magnitude: PA exp(- Bx) ; low magnitude: $A exp(- BX) ; high

slope: Aexp(-2Bx); low slope: A ~ X ~ (- & B X) . Note that since B > 0, all these gradients

will have maxima at x = 0, all with maximal concentration equal to A except the "low

magnitude", which has the maximal concentration of ;A. These experiments show that the

map formation does not depend on the particular shape of the concentration gradients either

in the retina or the tectum.

Mismatch

The kind of arbitrary changes in the shape of concentration gradients, as outlined above,

are not generally possible to make in vivo. However, in one experiment, a similar result

C H A P T E R 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS 166

was obtained though surgical means: The temporal half of the retina was removed from a

goldfish, as well as the posterior half of the tectum. The remaining nasal RGCs projected

in topographic manner to the anterior tectum, which is normally innervated by temporal

axons (Goodhill and Richards, 1999; Horder, 1971). In this experiment, low-EphA nasal

axons were able to form a topographic projection in an area of the tectum where the ephrinA

concentration was lower than normally encountered by nasal axons. This is one manifestation

in uiuo of the tolerance of the map formation mechanism to variations in overall ephrinA

concentrations. We show in figure 5.8E and F that our model of map formation displays the

same form of tolerance to gradient variability.

Expansion and compression

Early experiments involved removing part of the retina (Schmidt et al., 1978) or part of

the tectum (Finlay et al., 1979; Cook, 1979), and observe the resulting map. In the case

of removing part of the retina, it was observed that the remaining RGC axons innervated

the entire tectum, maintaining topography, giving rise to an "expanded" map. It the reverse

case, where part of the tectum was removed, it was found that the RGC axons all ended up

targeting the remaining tectal region, also this time maintaining topography, leading to a

"compressed" map.

The expansion experiment we simulate by reducing the number of RGCs by half, and also

reducing the difference in EphA levels across the horizontal axis of the retina by half. The

compression experiment is simulated by halving the size of the experiment in the horizontal

dimension while doubling the density of RGCs, thereby reducing the size of the target area

and the gradients within it while maintaining the number of RGCs and their gradient. See

figure 5.9 for the results of the expansion and compression experiments.

Compound eye

In experiments by Gaze et al. (1963) and Hunt and Jacobson (1973), animals (frogs in

both cases) were surgically altered so that their retina consisted of identical half-retinas

mounted back-to-back, creating a retina with symmetric Eph receptor gradients. In different

individuals, two nasal, temporal or dorsal half-retinas were used, giving retinas in which

EphA increased or decreased toward the vertical midline (double nasal and double temporal

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS

Normal Double nasal Double temporal Normal Double ventral

:

Figure 5.10: Experiment in which the retina consists of two nasal half-retinas, so that +

opposite gradients exists in the left and right half of the retina. A-C: Simulation of the
double nasal case. A: All axons are shown; B: Only the cells in the left hand half of the
retina are shown, they form a non-crossed projection; C: Only the cells in the right hand
half of the retina are shown, forming a crossed projection. D: Simulation of the double
temporal case. E: Simulation of the double ventral case. Axons are coloured according to
their EphA concentrations (A-D) and EphB (E). The tectum is coloured according to the
ephrinA concentration (A-D) and ephrinB (E) .

respectively), or in which EphB decreased toward the horizontal midline (double ventral),

see figure 5.10, top. The rest of figure 5.10 shows results of NeuroGene simulations with

retinas altered in corresponding ways. Figure 5.10A-C shows the projection from a double

nasal retina. Figure 5.10A shows axons originating from both half-eyes, while figures B and

C show each of the two half-eye projections separately. Each half-eye forms a complete

projection of uniform density covering the whole of the tectal target, causing half the eye

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS

' in

Figure 5.11: Experiment in which two eyes innervate the same tectum, one of which is
reduced in size. All three images show the same situation; A: all RGC axons are shown; B:
Only RGC axons from the intact eye are shown; C: Only axons from the partly ablated eye
are shown. Note that the map in B is not expanded in the area where axons from the other
eye innervate.

to form a crossed projection and the other half to form a non-crossed projection. Figure

5.10D-E shows the projections formed by two temporal half-retinas, and by two ventral half

retinas, respectively. As is observed in the in vivo experiments, the axonal level of EphA

and EphB determine the termination point of RGC axons.

Oneand-a-half eye

The following experiment, carried out in goldfish, offers an instructive complement to the

expansion experiment described above: Half the retina was removed from one of the eyes,

and the nerve from this eye was diverted so that it innervated the tectum which was already

innervated by the nerve from the intact eye (Schmidt et al., 1978). It was found that the

axons from the reduced eye made connections covering only half the tectal target area,

specifically the tectal area which was already innervated by axons from the corresponding

half of the intact eye. This shows that the axons from the intact eye prevent the axons

from the half-eye from innervating the entire tectum. In figure 5.11 we show the results of

simulations of this system using our model of map formation. In figure 5.11A is shown the

projections from both eyes, in 5.11B only from the intact eye and in 5.11C only from the

manipulated eye.

CHAPTER 5 . RESULTS 11: DEWLOPhU3VTAL SIMULATIONS

Eph knock-in

In an elegant genetic experiment Arthur Brown and coworkers (2000) caused a subset of

retinal cells to express a higher than normal amount of EphA receptors. This subset was

dispersed randomly throughout the retina, and the increase in EphA receptor concentration

above their "wild-typen-levels was the same for all these cells. This gives rise to a population

Pw of RGCs which express their wild-type level C$ of EphA corresponding to their location

x, and a population Pki which express a level of EphA which is higher by an amount Cki,

i.e., C . + Cki, where Cki is constant for all RGCs in Pw. Brown et al. found that all the

RGCs in both populations projected their axons to locations within the normal extent of

the tectal target area. However, the two populations formed two distinct, non-overlapping

maps. One map was formed by the Pw population, which lay to the posterior (i.e. at higher

ephrinA levels) than the map formed by the Pki population. The important conclusion from

this experiment is that it is the relative, not the absolute, level of EphA receptor carried by

the RGCs which determine their ultimate termination zone in the tectum. See figure 5.12

for the results of our simulation of the EphA knock-in experiments. The colours of RGC

axons in figures 5.12A-J reflect their EphA concentrations, while 5.12K shows the RGCs

in Pw as blue and those in Pki as red. Figure 5.12L shows that the sorting in the vertical

dimension is not affected by the higher levels of EphA.

The experimental system devised by Brown et al. allowed them to vary the amount Cki

by which the EphA concentration was increased by inserting one or two copies of an altered

gene. They got qualitatively different results in the two kinds of experiments. In the low-

EphA knock-in experiment, they found that the two maps overlapped to a much greater

extent than in the high-EphA knock-in experiment described above. They also found that

the two maps, while clearly distinct in the posterior tectum, fused into one in the anterior

tectum (Brown et al., 2000, figure 5). To investigate this effect, we have run a ID version

of the experiment shown in figure 5.12, with either high (100% of maximal wild-type EphA

levels) of low (30% of max) levels of EphA knock-in. We chose to use 1D experiments here,

since they tend to converge better. We also altered the orientation of the tectal ephrinA

gradient so that an ideal projection does not require axons to cross over - this makes the

resulting images easier to interpret. The results of these experiments are shown in figure

5.13. Figure 5.13A shows the wild-type experiment for reference. The projection forms a

CHAPTER 5. RESULTS II: DEVELOPMENTAL SIMULATIONS

Figure 5.12: Simulation of the topographic map formation with the experimental mo
tions after Brown et al. (2000). EphA knock-in experiment. A-J are images shown for
6,000, 12,000, 20,000, 50,000, 70,000 and 80,000, 90,000, 100,000, 130,000 time steps. K is .
the same image as J, except it is co-loured for the level of knock-in EphA. L shows the same
situation as J and K, but rotated 90 degrees and coloured for EphB and ephrinR.

. - - - - . - -- , A=l-* 5: '. -- - . ._, -
I -

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS

D retinal point of origin
. - . , -5

1

retinal point of origin F

Figure 5.13: Results from simulations with varying levels of EphA knockin. These figures
can be compared directly to experimental results shown in Brown et al. (2000), figure 5.

C H A P T E R 5. RESULTS II: D E W L O P M E N T A L SIMULATIONS 172

single map on the tectum. This is also shown in figure 5.13D, where the termination point

of each axon is shown as function of the location of the RGC along the retinal axis. Figure

5.13C and F shows the projection with 100% EphA knock-in. The two distinct populations

of RGCs form two non-overlapping maps on the tectum. The experiment of the intermediary

level of EphA knock-in (30%) is shown in figure 5.13B and E. Here the two populations of

RGCs form clearly distinct maps only in the posterior (high ephrinA) portion of the tectal

target area (to the right in figure 5.13B and in the upper portion of 5.13E. In the anterior

tectum the maps converge. This is very similar to what was found by Brown et al. It is

likely that activity-driven refinement could cause the maps to fuse into one in the anterior

tectum, as was seen by Brown et al., while maintaining the distinct maps in the posterior

tectum.

To our knowledge, these findings have not yet been matched to this level of precision

by any simulated map formation model. All models of map formation which we are aware

of are summarized in appendix G. Of those models that match a range of experimental

observations comparable to that matched by our model (Whitelaw and Cowan, 1981; Fraser

and Perkel, 1990; Weber et al., lgW), they match only poorly the biological realities of the

retinotectal system: Whitelaw and Cowan's system is based on synaptic learning and ignores

axon guidance, and relies on parallel rather than anti-parallel chemical gradients. Fraser and

Perkel use simulated annealing to form their maps. Weber et a1.k system is formulated as

a set of equations solved using Euler's method. Other systems which incorporate more

biological detail (Hope et al., 1976; Overton and Arbib, 1982; Gierer, 1983) fail to reproduce

important experimental observations: Neither Hope et al. nor Gierer attempt the compound

eye, one-and-a-half eye or mismatch experiments. The arrow model (Hope et al. 1976,

extended by Overton and Arbib, 1982), which is closely related to our model, generally fares

better: They successfully simulate both the compound eye and mismatch experiments, albeit

in 1D only, at the cost of introducing several additional parameters without clear biological

interpretations. The recent model by Yates et al. (2004) incorporates more biological detail

than our model, including axon branch formation. They are able to match both EphA

knockin and ephrinA knockout experiments. However, their model, which is implemented

in a 1D version only, does include a large number of parameters without obvious biological

interpretations.

- -

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS

. > . . .
~ = .

Figure 5.14: Projection of 25 distinct populations of nasal receptor cells onto a target area -.

representing the nasal bulb. EphrinA is increasing from left to right and ephrinB is i
. .r. - ? - - from bottom to top. -- . -

- -

-~ .

The nasal projection

The Ephlephrin signaling system is also involved in the formation of top6@&hic
-

the olfactory system (Knoll et al., 2001). However, this system differs in several ways from .

projections in the visual system. This makes it interesting to investigate whether we are

able to simulate topographic map formation in the olfactory system using the same model -

- - - -
of map formation. . -

The olfactory system consists of approximately 1,000 different primary receptor cell types.

Each cell type is sensitive to one particular odorant molecule (St. John et al., 2002). The .
- y -

2 -

receptor cells are distributed randomly across the nasal surfaces which are exposed to the - =;I
--

. - air stream through the nose. Each receptor cell projects an axon to the target area in ; Z?!
. - -7

the olfactory bulb in the brain. This projection is such that all cells belonging to one of --I -*ci
r I . 4
-5

the N 1,000 cell populations project to one or usually two distinct and invariant (between - "
individuals) locations in the target area. The resulting projections are thus not parallel as -

, i
> --

in the visual system, but in stead convergent on small target areas specific for each cell type. -L-z

x 2 =

Figure 5.14 shows the results of simulating the nasal projection from 25 distinct pop 2
= - = ! q

CHAPTER 5. RESULTS II: DEVELOPMENTAL SIMULATIONS 174

All neurons within each population have identical concentrations of EphA and EphB. These

concentrations, CEphA and CEphB, are related to the number N, identifying each population

(see legend, figure 5.14) as follows:

C E ~ ~ A = Aexp(Bx) where x = 0.1 + 0.2div(Np, 5)

C E ~ ~ B = Aexp(By) where y = 0.1 + 0.2mod(Np, 5),

and A and B have the same values as in the "wild-type" retinotectal simulation, div(x,y)

is the largest integer 5 E , and mod(x, y) is the modulus given by x - ydiv(x, y). This

means that for example all neurons belonging to the population with Np = 16 will have the

same EphA and EphB concentrations as a retinal neuron in the retinotectal simulation with

fractional coordinates x = 0.1+0.2div(16, 5)= 0.7 and y = 0.1+0.2mod(16, 5)= 0.3. The

level of EphA and EphB carried by an axon here depends not on the location of the neuron

within the nasal surface, but rather on which population the neuron belongs to, which in

turn is determined by which odorant receptor is carried by the neuron.

Nasal neurons were randomly assigned to the different populations. As is shown in figure

5.14, the map formation model causes axons from the same population to cluster in the target

area, in spite of the fact that they originate in disparate locations on the nasal surface. On

the left is shown a simulation where all populations are of approximately the same size. On

the right populations 3, 5 , 9, 14 are reduced in size, and population 18 is larger. Increased

variability in the sizes of populations does not disrupt map formation, although it is notable

that large populations do not appear to lay claim to larger areas of the target than smaller

populations.

This experiment shows that the map formation model performs well under conditions that

are markedly different from the retinotectal projection, but which are similar to projections

which are known to involve the same signaling molecules in nature.

5.2.4 Discussion

The experiments above show that the model of map formation based on EphA "pecking-

order" is able to replicate a wide array of phenomena observed in topographic projection in

vivo. It also shows NeuroGene as a powerful tool in the investigation of axon guidance as a

developmental process. Part of the strength of NeuroGene is that it allows the same genetic

CHAPTER 5. RESULTS II: DEVELOPMENTAL SIMUL.4TIONS 175

system to be tested in the context of numerous different geometric contexts, differing both

in the spatial arrangement of cells and their initial genetic state as defined by their protein

concentrations.

We make the assumption that growth cone detect concentration gradients by compar-

ing the concentrations of signal molecule at the tips of filopodia and at their base. This

assumption is backed by theoretical arguments (Goodhill and Urbach, 1999) but no direct

observations. We also assume that filopodia individually integrate the various chemical

signals depending on the nature of those signals, such that the presence of different neigh-

bouring RGC axons cause filopodia to respond differently to the signals they receive. This

is supported by the observation that changes in growth cone behaviour may be induced by

contact with a single filopodium (O'Connor et al., 1990; Palka et al., 1992). Finally, we

assume that the area of the tectum covered by each RGC axon remains constant throughout

the simulation. RGC axon branching, which is known to occur in nature, may cause some

RGC arbors to grow at the expense of others. The model by Yates et al. (2004) takes such

branching into account, and constant RGC arbor size is an emergent property of the model.

Role of axon-axon interactions

The importance of axon-axon interactions in the formation of topographic maps was revealed

by the experiments of Brown et al. (2000). Without such axon-axon interactions, it is very

difficult to understand how, in the context of this Eph knock-in experiment, an axon with the

normal level of EphA should project to a location much more posterior than normal. Only

by being able to detect the larger than normal number of axons with higher Eph level than

its own, can it make such an adjustment. In principle such a detection might be mediated

through some change in the tectal target induced by the invading axons - however, a simpler

mechanism, involving direct axon-axon interactions, must also be considered. In our model,

axon-axon interactions have two effects: They lead to the proper sorting of axons based on

EphA levels through the mechanism of a pecking order, and they cause the approximately

even spacing of axons across the target area.

CHAPTER 5. RESULTS II: DEVELOPMENTAL SIMULATIONS

Figure 5.15; A: Neurotrophic mechanism xof axon-axan repulsion at 9000 time steps (steady

f amon-axon repulsion . -,
- - - - _ r - - -

It might seem like the requirement of creating a map with uniform density might be

ply by making axons repel one another, as suggested by Flanagan and Vanderh

p. 325). In order to investigate the effect of axon-repulsion, 1D map formati

were run in which repulsion was implemented as follows: a neurotrophic2 protein, which we

named BDNF after an actual gene (brain-derived neurotrophic factor, which perhaps could -- - -

play a similar role, ibid.), was expressed uniformly by all tectal cells. Invading RGC axons

absorb this protein at a uniform rate. Consequently the protein becomes depleted where

there are numerous axons. By making this protein attractive to the RGC axons, these are

attracted to areas where there are fewer RGC axons, which amounts to a general repellent

interaction among RGC axons.

The result of this simulation in 1D is shown in figure 5.15. The resulting map is generally -
i -
r - of uniform density, showing that the neurotrophic model is effective in maint
1 .
I. . ,. axon repulsion. However, there is a clear tendency in the density of the m

steadily from the attractive low-ephrinA end of the map (to the left) to the high-ephrinA ' - = 1.

end of the map (to the right). The image shows the steady-state situation, meaning that

each axon is at a point of equilibrium: for each axon, the inherent tendency to move down - . : I
the gradient, away from the repellent ephrinA, is balanced by an equal tendency to move up

- 1
2'"l'rophic" is derived from the Latin to eat. However, neurotrophic signals do not literally support the

life function of neurons, they are signals which tell the neuron not to die but to grow.

CH,4 PTER 5. RESULTS 11: DE VELOP,MENT,4 L SIMULATIONS 177

this gradient. This latter tendency can only come from axon-axon repulsion. For axon-axon

repulsion to create a net tendency to move in one direction, the distribution of axons must

necessarily be non-uniform. More specifically, the axon density must be higher on the left

in order to create a net tendency for axons to move to the right. Such an axon distribution

causes a faster consumption of the neurotrophic factor on the left, generating a concentration

gradient increasing to the right. This in turn generates the tendency for axons to shift to

the right, a tendency that at steady state is exactly balanced by the tendency to move to

low ephrinA.

The problem revealed by the experiment shown in figure 5.15 is not specific to the

neurotrophic BDNF-based implementation of axon-axon repulsion, but inherent in axon-

axon repulsion as the force opposing wholesale axon migration to the left. We also discovered

other problems arising from repellent interactions among axons, such as the difficulty with

which mis-sorted axons pass by each other in order to form a proper topography - in order

for two mis-sorted axons to swap places, they must come into close proximity with one

another, which is difficult when there is a strong repellent force acting on them.

Our model presented earlier establishes how a more sophisticated axon-axon interaction

leads to a sorted topography, rather than hindering its formation. While under a repellent

scheme axon-axon interactions would cause an axon to move away from other axons, in our

model, axon-axon interactions cause certain axons to move in a posterior direction, regardless

of the relative locations of the interacting axons. As shown by our simulations, this form

of axon-axon interaction can form basis of a topographic sorting mechanism, without the

drawbacks manifested by a simple repellent interaction.

To our surprise, we found that while our map formation model enforces complete and

uniform innervation of the entire available tectal target area, it does not do so by equal

spacing of axons. Rather it causes equal spacing of EphA levels in these axons. This can

be seen in the one-and-a-half eye experiment (see figure 5.11) where the additional axons

from the manipulated eye does not cause local expansion of the map from the intact eye,

instead causing local variability in the density of axons within the target area. Similarly, the

number of axons within each of the populations in the nasal projection does not determine

the area occupied by these populations within the target area. In both cases, this can be

explained by the fact that RGC axons with equal EphA concentrations do not interact with

each other under our model.

CHAPTER 5. RESULTS 11: DEVELOPhIENTAL SIMULATIONS

Complete coverage of the tectum

This same process also ensures that the map covers the entire target area, as is seen in all

of the experiments reported here: High EphA axons will move the anterior as far as they

can go, precluding any gaps in the map at the anterior edge. Conversely, low EphA axons

will be pushed to the posterior as far as they can go. All other axons wind up in positions

where their inherent tendency to move in the anterior direction is opposed by the presence

of higher EphA axons. Our experiments show that when the majority of axons have found

such a point of balance, a properly sorted map of approximately uniform density results (see

e.g. figure 5.7). In this context it is interesting to compare to the experimental finding that

a minimum of 10-20% of the normal number of RGC axons are needed for a topographic

map to form3. In our model, if too few axons reach the tectum, their spacing would be too

large for axon-axon interactions to be effective, and the map formation mechanism fails.

Roles of Eph receptors and ephrin in retina and tectum

In the early days of the investigation into the phenomenon of topographic map formation, a

relatively simple picture emerged: The tectum expresses ephrinA, RGC axons express EphA

which are receptors for ephrinA, and through the interactions between these molecules, the

map is formed. Several new discoveries have revealed new complexities in this picture:

EphrinA (Davy et al., 1999) and ephrinB (Hindges et al., 2002; Mann et al., 2002) may

act as receptors of EphA and EphB, respectively, giving rise to bidirectional signaling

between cells carrying ephrins and Eph receptors. When the EphA of cell A binds

ephrinA on cell B, bidirectional signaling causes events (possibly leading to changes in

gene expression) within both cell A and cell B.

RGC axons express ephrinA and B in gradients which go in the opposite direction

to the EphA and EphB gradients (Hornberger et al., 1999), i.e. ephrinA is highly

expressed in the nasal retina where the EphA levels are low, while ephrinA levels in

the temporal retina are low.

Tectal cells similarly express EphA and EphB in gradients that are opposite to the

tectal gradients of ephrinA and ephrinB (Connor et al., 1998)

3 ~ r . Sara Dunlop, personal communication, see footnote 1 on p. 158.

CH-4 PTER 5 . RESULTS 11: DEVELOPMENTAL SIMULATIONS 179

0 Eph receptors and ephrin can interact "cis" as well as "trans" (Feldheim et al., 2000;

Hornberger et al., 1999), meaning that Eph receptors and ephrin which are bound

to the surface of the same cell may interact with each other. Such interactions are

biologically significant, at least in RGC axons (Hornberger et al., 1999).

Our model is consistent with many of these observations. The ephrin expressed by RGC

axons may be the receptor which is used to detect the Eph receptors carried by other retinal

axons. The cis-interactions between ephrin and Eph within the same cell membrane may be

involved in the comparison of the Eph levels between self and other RGC axons, allowing

the cell to directly compare the amount of interaction through concurrent cis and trans

interactions. This also fits our model, in that nasal axons (high in ephrinA) are sensitive

to temporal axons (high in EphA), while temporal axons (low in ephrinA) are oblivious to

nasal axons (low in EphA). This hypothesis relies on the assumption that the sensitivity

of cells to EphA increases with the concentration of the receptor to 13phA, i.e., ephrinA. If

this assumption is correct, it would be a repeat of the relationship that has already been

established for the opposite interaction, in which increased EphA levels increase RGC axons'

sensitivity to ephrinA.

It is not clear what role is played by the EphA expressed by the tectum. However, there

is some evidence that tectal EphA does not actually play any role: Studies have shown that

altering the expression of EphA in the tectum does not disrupt the formation of topographic

projections (Knoll and Drescher, 2002).

Binary behaviour gives resilience to changing conditions

As shown above, the model of topographic map formation works under a wide array of

conditions, including variations in the geometric arrangement of cells a s well as the genetic

state of RGC axons. The key to why this model shows such resilience is the simple binary

behaviour of the growth cones. The behaviour depends on comparisons with neighbouring

axons, causing one behaviour if the neighbour is above in the "pecking order", and another

if it is below. How much above or below its own level is not relevant. From the comparison,

the growth cone makes a binary decision, either to move up or down the ephrin gradient.

This can be restated as follows: Depending on the state of the growth cone, the tectal ephrin

gradient is either attractive or repellent, and each growth cone may rapidly switch back and

CHAPTER 5 . RESULTS 11: DEVELOPMENTAL SIMULATIONS

forth between being attracted or being repelled by this gradient.

Such a binary behavioural pattern of the growth cone is consistent with a number of ex-

perimental observations: As mentioned in section 2.6, growth cones may interpret the same

signal as attractive or repellent depending on the concentration within the growth cone of the

signaling molecule cAMP (Song et al., 1997; Ming et al., 1997). cAMP is an important intra-

cellular signaling molecule used in many different contexts, and its concentration can change

rapidly, e.g. in response to external stimuli. Such rapid change in behaviour is seen when

growth cones reach the so-called "guidepost cells" in the grasshopper limb bud (O'Connor

et al., 1990). Here, the growth cone switches from a behaviour where it follows one signal

and disregards another, to a behaviour where it ignores the first and follows the second in

stead. While the ephrinA/EphA interaction is typically repellent, it is also known to mediate

attraction in the olfactory system (Knoll et al., 2001, 2003). Similarly, the EphBlephrinB

interaction can be attractive or repellent, depending on the location of the axon relative to

the axon's proper termination zone (McLaughlin et al., 2003a). Together these findings show

that every aspect of our map formation model find support in experimental observations.

5.2.5 Conclusion

As shown by the experiments reported above, NeuroGene includes the functionality required

to simulate complex axon guidance processes. By explicitly simulating axonal growth cones

with filopodia, we have developed a new model for the activity-independent formation of

topographic maps within the vertebrate visual system. This model takes into account the

receptors and ligands carried both by RGC axons and tectal target cells. It accounts for a

number of observations from experiments involving disruption of the developmental process

through surgery or genetic manipulation. Since the model is expressed in the biological terms

of the NeuroGene genetic language, the model relates directly to the biological interactions

as they occur in vivo, such as protein expression and perception, growth cone motility,

etc. NeuroGene has proved a powerful tool for investigating the properties of the model,

in particular its behaviour under subtly different conditions, such as variations in gradient

shapes and magnitude, axon density, etc. We have also been able to show that the model

can form the topographic projections of the olfactory system.

The simulated genes which form the basis of the simulation of topographic map formation

CHAPTER 5. RESULTS II: DEVELOPMENTAL SIMULATIONS 181

fall into three categories: Simulated genes which represent actual genes known to exist in

nature, simulated genes for which genes with corresponding functions can be inferred to exist

in nature, and finally genes for which corresponding genes may not exist in nature, but whose

properties and behaviour fall within the gamut of what has been observed in nature. In the

first category fall the EphA/B and ephrinA/B genes. These are known to exist in nature,

and they are known to be expressed in concentration gradients across the source and target

areas, respectively, of topographic projections. This expression pattern is replicated within

the NeuroGene simulation. The gene knockin, which is used to implement the EphA knockin

experiments, represents the gene Isl2, which was manipulated by Brown et al. (2000), and

therefore also falls in this category.

In the second category fall the genes defining the cardinal axes of the retina and the tec-

tum. The regulatory systems underlying the expression pattern of ephrinA/B and EphA/B

in nature are only now beginning to be mapped out (Diaz et al., 2003; Takahashi et al.,

2003). In order to simulate the expression behaviour of these genes, a simple framework

of four regulatory genes is postulated. These postulated genes are expressed in linear con-

centration gradients defining two perpendicular axes in each of the retina and the tectum.

Since these proteins do not decay, their concentrations are set within each cell at simula-

tion initialization, and subsequently never change. These simulated genes fulfill the roles

of regulatory genes which we can infer exist in nature, but whose properties, and precise

mechanism of affecting EphA/B and ephrinA/B expression, are unknown. Another gene in

this category is retinoTectalGradient, which represents the guidance cue or cues which lead

RGC axons from the retina to the tectum in nature.

Cell identity genes are in the last category: To our knowledge, no single gene is known

to be expressed only in RGCs or only in tectal cells. However, different types of cells

are commonly distinguished by the genes which they express (see section 1.5.2). Postulating

genes which are expressed only in RGCs or tectal cells, and which determine their behaviour,

is therefore in line with phenomena whch are commonly observed in nature.

The three simulated genes growRgcAxon, FindTectum and SortMap do not represent

genes in nature (see appendix B.2.2, lines 104, 115 and 138 respectively). These simulated

genes have the purpose of triggering actions - either the formation of an initial axon

or the creation of axonal growth cones using different growth cone functions. By placing

these actions in distinct genes, the actions are triggered by the state of the cell and the

CHAPTER 5. RESULTS II: DE VEL OPAilENT-4 L SIMULATIONS 182

concentrations of proteins, rather than the rate of expression of other genes. These simulated

genes then represent molecular interactions (as specified by their regulation clauses) which

cause changes (specified in their effects clauses) in cellular structure and behaviour. These

interactions are encoded in the form of genes in order to overcome the limitation in the

NeuroGene gene model (see section 2.5.2 - Gene effects). It follows that the concentrations

of the growRgcAxon, FindTectum and SortMap proteins have no influence over any aspect

of the simulation4.

The NeuroGene genetic framework is closely modeled after the mechanisms of genetic and

developmental control in nature. This means that where detailed biological knowledge exists,

it can be directly incorporated into the simulated genes which control the developmental

simulation. This includes the expression profiles of proteins which establish concentration

gradients used to guide RGC axons within the tectal target area, as well as RGC growth

cones' reaction to encountering ephrinA and ephrinB gradients. Where biological knowledge

does not exist, but where biologically plausible mechanisms can be inferred or postulated,

these can also be incorporated to give a possible account for the developmental process as a

whole.

5.3 Activity dependent development:

Ocular dominance and refinement

The third simulation we present involves activity-dependent developmental processes, and

showcases NeuroGene's neuro-genetic coupling. The developmental system we simulate is not

accurately described as learning, although it does rely on modification of synaptic conduc-

tances according to a Hebbian learning rule. This distinction can be expressed as follows: In

learning, the synaptic changes are related to the experiences of a particular individual, while

in activity dependent development, the result of development is the same in all individuals,

as long as their experiences fall within what can be considered natural.

As an example, consider the process of imprinting in birds: A wide range of birds will

associate "mother" (a concept that is somehow inherent) with the first moving thing they

4 ~ a c h of these genes is labeled terminal in the gene script. This means that the proteins produced by
these genes are not actually represented within NeuroGene. This is done for performance reasons, but the
terminal tag also indicates that a gene is not involved in the regulation of any other genes.

CHAPTER 5. RESULTS II: DEVELOPMENTAL SIMULATIONS

see after birth. This association is life-long and cannot be changed. In nature this is nor-

mally the actual mother of the young bird, but experiments have shown that birds can even

be imprinted on a balloon. Here, the result of what must be a genetically predetermined

process is highly dependent on exactly what it is that the bird sees, making this an ex-

ample of learning. By contrast, consider human infants born in a modern hospital, in a

South-American jungle, or in an arctic igloo. Each child experiences completely different

visual images. However, these visual stimuli drive developmental mechanisms of visual field

refinement, as simulated below, which ultimately give rise to mature visual systems which

are functionally indistinguishable. This is possible because development only relies on the

common properties of the visual images experienced by each, such as spatial and temporal

coherence, and is not affected by the particulars of their disparate experiences. Only expo-

sure to unnatural visual experience, such as being raised in the dark (Takacs et al., 1992)

or under strobe light (Brickley et al., 1998), can alter the activity dependent developmental

program.

Some activity dependent development is driven by endogenously generated neural activ-

ity, which ultimately originate in spontaneously firing neurons. In such cases, influence of

experience from the external world can be ruled out. Yet, in some cases, processes which

are driven by such endogenous activity early stages, are driven by external stimuli later in

development, such as after birth and eye-opening.

Activity dependent development may then be seen as yet another means by which genes

exert control over the developmental process. This applies to endogenous neural activity,

since tendencies for neurons to fire spontaneously is under genetic control. It also applies to

exogenous neural activity, since a general anticipation of what constitutes "natural" external

stimuli can be incorporated into the genome through natural selection.

A general tool for the simulation of neurodevelopment such as NeuroGene must be able to

simulate these types of processes. NeuroGene incorporates a framework for the simulation of

neural activity, including the ability to support multiple neural models at the same time, as

well as bidirectional coupling between neural activity and gene expression, see section 2.7.1.

This allows activity dependent and independent developmental processes to be investigated

within the same simulation.

In order to showcase these capabilities, we have simulated the activity dependent re-

finement process of the topographic map, which also causes formation of ocular dominance

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS 184

columns. These processes occur after the initial retinotectal connections have been formed by

activity independent processes based on axon guidance, as discussed above. In the activity

dependent stage of topographic map formation (Debski and Cline, 2002; Goodhill and Lowel,

1996), the initial map is refined through a process in which synaptic weights are adjusted,

new synapses formed and inappropriate synapses removed, leading to a highly ordered to-

pographic map. Resulting from this process, each RGC connects to a very small number of

target cells, and adjacency-relationships between RGCs is maintained in their connections.

Abolishment of neural activity during this stage causes the map to remain in an unrefined

state into adulthood, with diffuse RGC connections presumably giving rise to blurry vision

(Gnuegge et al., 2001; McLaughlin et al., 2003b).

The source of the neural activity driving this process depends on the species in question,

in particular on the timing of map refinement relative to the time of birth and eye-opening.

In animals in which the refinement process occurs before eye opening, the process is driven

by endogenous neural activity originating from spontaneously firing cells in the retina. In

animals for which eye-opening occurs at a developmentally earlier stage, external visual

stimuli drive the refinement process. We have simulated the refinement process both using

endogenously generated neural activity and simulated visual stimuli.

The endogenous activity in retinal neurons prior to eye-opening takes the form of waves

traveling across significant stretches of the retina (Wong, 1999). All RGCs which fall within

the area covered by an activity wave, fire. At any point in time only a small fraction of

RGCs fire - this means that two RGCs which fire at the same time are likely to be located

close together in the retina - this information is extracted by the tectal cells and used to

drive the refinement process. Disruption of these waves causes disruption of refinement and

ocular dominance column formation (McLaughlin et al., 2003b). Simulations have shown

that retinal waves in conjunction with Hebbian learning (Hebb, 1949) can establish highly

refined topographic connections with ocular dominance (Swindale, 1996). See figure 5.16 for

a schematic representation of how activity waves form basis of the refinement process.

Activity-driven changes in the retinotectal map simultaneously effect another kind of

change: The formation of ocular dominance columns. This process causes each tectal neuron

to receive input from only one eye, where initially all tectal cells receive approximately equal

input from both eyes. Adjacent tectal cells tend to be dominated by the same eye, leading

to contiguous areas of the tectum dominated by one eye or the other. For a review of earlier

CHAPTER 5. RESLTLTS II: DE VELOP.VIEKTA L SIA41iL.4TIOKS 185

Figure 5.16: Refinement by moving waves and Hebbian learning. Each tectal cell (bottom
row, one cell shown in detail) is connected to five retinal cell (top row) each wit,h a connectior~
strength of 1. Each tectal cell rieeds input fro111 three or rnore retinal cells before i t fires.
Links between cells which fire in synchrony are strengthened, as represented by an increase
in line width and numbers above the retinal cells. After the wave has passed, central links
has been strengthened rnore than peripheral ones. Through ~iorrnalization and repetition,
this leads to refinement, eventually giving as result the topographic projection as show11 at,
the bottom right.

modeling efforts to understand these procsesses, see Smindale (1996).

5.3.1 Simulated retinal waves

Sponta.neously generated waves of neural activity travel across the retina prior to eye opening

(Wong, 1999). Waves may originate at any point in the retina, and propagate across some

portion of it before dying out.. Wiaves often, but riot always: die out in regions of the retina

which recently supported another wave - this indicates that cells' refractive delays may be

involved in regulating the extent of the waves.

Feller et. al. (1997) developed a corrlputat,ional model which reproduces Inany of t,he

features of retinal waves. Accordirig to this 11iode1, waves are driven by a class of retinal

neurons know11 as "stellate" or starburst cells. nanied after the c:haracteristic star-shapes of

their dendritic structures. At the developmental stage when waves occur, these cells are

connected t,o each other as well as t,o retirial ganglion cells. Elliott and Shadbolt (1999) used

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS 186

this model to generate waves of neural activity to drive their simulations of refinement, and

we have chosen to do the same here.

According to Feller et al., waves are initiated by spontaneous firing of starburst cells.

Through connections among the starburst cells, a sufficient number of spontaneous firing

cells drive neighbouring starburst cells above their firing threshold which sets off the wave.

As the wave propagates, it brings other starburst cells in front of the wave above their firing

threshold, thus sustaining wave propagation. After the starburst cells cease to fire, they

enter a refractive period during which they are unable to fire. As the wave enters an area of

the retina in which a large proportion of starburst cells are refractive, an insufficient number

of cells are brought to fire to sustain the wave, and it dies out.

In their model, retinal ganglion cells (which are about 10-fold more numerous in the retina

than starburst cells) act as a "readout-layer": Through connections from nearby starburst

cells, RGCs are caused to fire when a propagating wave passes by. While some starburst cells

may be refractive within a wave, causing "holes" of inactive starburst cells within the wave,

the wave of activity in the RGCs will always be continuous, since RGCs do not become re-

fractive. This means that the probability that two adjacent RGCs fire in synchrony is higher

than the corresponding probability for starburst cells. This is important, since the refine-

ment mechanism relies on extracting this correlation from the neural activity originating

from the waves.

While neural action potentials occur at a millisecond time scale, an elegant study by

Butts and Rokhsar (2001) have shown that the information content in retinal waves with

respect to the spatial relationships among RGCs exists on a much slower time scale, in the

range from 0.1--2 seconds. This means that simulating retinal waves using simple neural

models based on average firing states, such as those implemented in NeuroGene, is sufficient

for capturing the functional aspects of the retinal waves.

5.3.2 Learning algorithm

While it is simple to write a NeuroGene gene which encodes a Hebbian learning rule (see

figure 5.17), a more explicitly biological mechanism was used to implement learning in the

simulations reported here. The learning rule, taken from Elliott and Shadbolt (1998a,b, 1999,

2002), is outlined in detail in appendix H. This learning rule uses the biological mechanisms

C H A P T E R 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS

1 postsynapse gene HebbianLearningFb.de {
2 regulation {
3 if (cellIsFiring () && partner () . cellIsFiring0) {
4 expressInternally (1.0) ;
5 1
6 1
7 effects {
8 setSynapticWeight(synapticWeight () + delta) ;
9 1
10 1
11

12 postsynapse gene Normalizeweights {
13 regulation {
14 expressInternally(l.0);

15 1
16 effects{
17 setsynapticweight (synapticweight () /cellIncomingWeight 0) ;
18 1
19

Figure 5.17: Simple Hebbian learning implemented in the NeuroGene gene language. The
learning and multiplicative normalization are implemented in separate genes, both of which
are expressed exclusively in postsynaptic terminals. Measures would need to be taken to
ensure that these genes do not run in the same simulation time step, since different genes
are executed in an arbitrary order within each cell component. This could for instance be
done using timers, see section 2.5.4.

of ligand-receptor binding (see section 2.4.4) to implement the retrograde cross-synaptic

communication needed to implement the Hebbian learning rule. Under this learning rule,

when a presynaptic cell fires, it expresses an amount of receptor on its surface (see figure

5.18A). When a postsynaptic cell fires, it in turn produces a certain amount of a soluble

protein which may bind to these receptors (figure 5.18B). The fact that a presynaptic cell

has receptors with ligands bound to it can then be taken as an indication that both cells have

fired in synchrony (figure 5.18C), and as such may be used as a basis for implementation of

a Hebbian learning rule.

The learning rule proposed by Elliott and Shadbolt (1998a) exists merely as a postulate

at this point, as it has not been shown that Hebbian learning is implemented in precisely

this way in nature. However, the learning rule relies on biologically plausible mechanisms.

C H A P T E R 5. RESULTS II: DEVELOPA/IENTAL SIMULATIONS

Figure 5.18: Hebbian learning mechanism as implemented using receptor-ligand interactions.
One target cell (circle) received input from two axons. A: One of the two axons fires. In
addition to the transfer of neural activity to the target cell, this causes the expression of
receptor (small semicircles) on the surface of the presynaptic terminal. On the non-firing
axon (right) no such expression occurs. Note that the receptors are not involved in the
transfer of neural activity across the synapse to the target cell, this occurs through processes
which are not shown here. B: As a result of the neural activation received from the left
axon, the cell may fire. This causes the cell to express a soluble protein (NT, small dots). C:
The NT ligands bind to the receptor proteins carried only by those axons which have fired.
The presence of the receptor-ligand complex on the presynaptic terminal can be taken as an
indication of the axon and the target cell firing in synchrony, and can therefore be used as
the basis of a Hebbian learning rule.

Neet and Campenot (2001) reviews the evidence for presynaptic binding and internalization

of neurotrophic factors. Neural activity triggering exocytosis at the presynaptic terminal

forms the basis for synaptic transmission of action potentials, and similar exocytosis has

also been observed at the postsynaptic terminal (Maletic-Savatic and Malinow, 1998a,b).

Our simulation also rests on general observations of the integration of genetic and neural

activity, as outlined in section 2.7.1. The competitive aspect of the mechanism is straight-

forwardly implemented in NeuroGene using its receptor-ligand binding functionality. The

genes responsible for the actual learning algorithm are listed in appendix B, section B.2.3.

Cell death versus no cell death

As outlined in appendix H, the learning rule above comes in two varieties (see equation

H.2), one of which gives a competitive advantage to postsynaptic cells whose total incoming

synaptic weight is lower than that of other cells (equation H.2, case 2). This competitive

advantage ensures that no cells will lose all their connections, in the terminology of Elliott

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS 189

and Shadbolt (1998a), this would constitute the "deathn5 of that cell, and they call this

form of the learning rule NCD ("no cell death"). Under the other form of the learning rule

(equation H.2, case I) , there is no such competitive advantage, and cells consequently are

allowed to "die" - this is the CD ("cell death") form of the learning rule. In Elliott and

Shadbolt (1998b, 1999) the NCD form is used, although they do not discuss this choice. We

found that using the CD form, a large minority of RGCs would lose all their connections to

the tectum and "die" (data not shown). Consequently, we followed Elliott and Shadbolt and

used the NCD form in all experiments. It is clear that in nature, neurons, including RGCs,

do perish as result of losing all their synaptic connections.

Ligand-receptor binding

The binding of NT to the NT receptor is governed by the receptor-ligand binding functional-

ity as implemented in NeuroGene. The binding is characterized by the dissociation constant

Kd, for which we use a value of 10-121vi. This is a typical value for strong ligand-receptor

interactions observed for neurotrophic factors in nature (Neet and Campenot, 2001). Exper-

iments showed that the refinement process is not sensitive to variations in this value, giving

similar results with weaker binding (Kd = ~ o - ~ M) .

The NT receptor with a molecule of NT bound to it is represented by the protein N T -

complex. The gene encoding this protein is never expressed (indicated by the fact that it

has no regulation or effects section, see lines 89-92). The concentration of NTcomplex and

NTreceptor always reflect the amount of receptor that has a molecule of N T bound to it,

and the amount that is free of N T , respectively, see algorithm 1.

With this machinery in place, the learning rule reduces to the following simple form (see

appendix H, equation H. 12)

where sii is the synaptic weight between retinal cell i and tectal cell x in time step n,

[GIxi is the concentration of the NTcomplex on the surface of the RGC presynaptic terminal

connecting RGC i to tectal cell x , and E is the learning rate. The gene which implements

this learning rule is shown in figure 5.19. The regulation section of this gene serves to limit

'"Death is put in quotation marks since Elliott and Shadbolts definition of cell death differs from the
one used in NeuroGene. see section 2.2.2.

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS

presynapse gene learn {
regulation (

if (surf aceconcentrationof (retinalCellMarker) > 0) (

expressInternally(0.1) ;
1

1
effects {

variable delta = surfaceConcentrationDf (NTcomplex)
- synapticweight (1 ;

setsynapticweight (synapticweight (1 + learning-rate*delta) ;
1

1

Figure 5.19: The gene implementing the learning rule. The gene is expressed in RGC
presynapses only, and requires the retinal cell marker protein in order to be expressed. The
protein produced by this gene is not used for anything.

its expression to RGC presynaptic terminals only, while the learning is implemented in the

effects section of the gene.

5.3.3 Implementation

The simulation involves three cell types, retinal ganglion cells (RGCs), tectal cells, and

starburst cells. In the NeuroGene simulation, the cells are arranged in cell-type specific

layers as shown in figure 5.20. Note that the arrangement of starburst and ganglion cells

in separate layers in figure 5.20 and in the NeuroGene simulation are for clarity only, and

does not correspond to the spatial arrangement of these cells within the retina. However,

the topology of interconnections between startburst and ganglion cells are accurate to what

is found in nature.

The retina consists of simulated starburst cells, each of which has an excitatory con-

nection to all other such cells within a given diameter (D,, in figure 5.20). These cells

generate propagating waves of neural activity (Wong, 1999) which are important in driving

the activity-dependent development. Simulated retinal ganglion cells (RGCs) receive neural

input from all starburst cells within a given diameter D,,, and pass neural activity on to

simulated tectal cells within. Retinal cells (both starburst and RGCs) are interconnected

also across the edges of the cellular sheet so that the sheet forms a torus, i.e., cells near the

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS

Starburst cells

Retinal ganglion cells

Figure 5.20: Experiment for ocular dominancelrefinement with endogenously generated neu-
ral activity. Connections whose weight are subject to learning are shown in broken lines.
The retinas contain connections spanning opposite edges to give a torus, the tectum does
not. The arbor diameters (D,,, D,, and DTt) are much larger than shown here. Note that
the starburst and ganglion cells are shown in separate layers for clarity only - in the retina
the cells occupy the same space, but maintain the connection pattern indicated here.

top are connected to cells near the bottom, and the same from side to side.

The neural models implemented in NeuroGene compute the average activity level of each

neuron during each simulation time step, see section 2.7. In the following, the details of the

neural models used for the various cell types will be outlined.

Retinal ganglion cells

As outlined in section 2.7.1, it has been shown that neural activity affects the expression of

some genes. Neural activity more often enhances than represses gene expression. Several

simulated genes which are subject to this form of regulation are expressed in retinal and

tectal cells in our simulation. One such gene, expressed in RGCs, is timeAverageActivity.

The concentration of the timeAverageActivity protein represents the recent activation level

of the cell. This simulated gene is postulated, and is required in order to implement the

learning algorithm of Elliott and Shadbolt. However, it's regulation is straightforward, and

falls within the range of activity dependent gene regulation as seen in nature: When the

cell is firing, an amount E (equal to the learning rate, see equation 5.1) of this gene is

expressed. When the cell is not firing, the gene is not expressed. The decay rate of the

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIOLS 192

timeAverageActivity protein is equal to - ln(1 - E), so that a fraction 1 - E of the existing

protein concentration is retained at each time step. This means that the concentration of

this protein at all times reflects the value of the term a? as defined in appendix H, equation

H.13.

The relationship between the expression rate and decay rate of this protein may seem

contrived. This relationship emerges from Elliott and Shadbolt's formulation of the learning

rule. We have run experiments which showed that the decay rate could be increased 10-

fold or decreased 100-fold or more relative to the value of - ln(1 - E) without disabling the

learning mechanism (data not shown). This means that the expression rate and decay rate

of the protein timeAverageActivity are free to vary independently to a significant degree,

making the emergence and maintenance of such a learning system under natural selection

plausible.

Retinal cell presynaptic terminals also express a gene Nneceptor, which is a receptor to

the protein N T ("neurotrophic factor"). Neurotrophic signaling molecules similar to NT, as

well as their receptors have been found in nature, some of which do show activity-dependent

expression (Bonhoeffer, 1996). However, the precise properties of NTreceptor are postulated

as part of this learning algorithm. The decay rate of the NTreceptor protein is "fast", i.e.,

we use a value of 1.0, meaning that a fraction exp(-1.0) E 0.367 of the receptor remains

after each time step. Like the gene above, Nneceptor is expressed in an activity dependent

fashion: When a retinal cell i fires, the gene is expressed in a given synapse connecting the

cell i and tectal cell x at a rate given by siiay, where s i i is the synaptic weight in time step

n, and a: is the concentration of the protein timeAverageActivity as defined above. When

the cell i is not firing, the gene is not expressed.

As shown in table 5.1 , RGCs use a non-linear neural model (see section 2.7) with a high

leakage rate, meaning that the cells have no "memory" of activation received in the past.

They are not refractive, and fire for one time step - this means that their firing state is

a reflection of the activation they received from spontaneously firing starburst cells in the

previous time step.

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS

Starburst Retinal ganglion Tec tal

Properties of neurons

Neural model
Spontaneous firing prob. (P)
Firing threshold (Ti)
Firing duration (f)
Refractive duration (d)
Leakage rate (ri)

Neural interconnections

Receive activation from
Synaptic weights (wij)
Arbor diameter
Number of connections

per afferent cell

Starburst
1.0

D,, = 4.2

Non-linear
0.0
6.0
1
0

1000.0

Starburst
1.0

D,, = 4.2

19

Linear
-

1 .o
-

-

100.0

Retinal ganglion
Variable

Drt = 13.4

Table 5.1: Neural properties of starburst, retinal ganglion, and tectal cells. Synaptic weights
from retinal ganglion cells to tectal cells are subject to learning, for their initial values,
see main text. Symbols refer to the neural models as described in section 2.7. The arbor
diameters (see figure 5.20) are given in units of the closest spacing of cells within the cell
layers.

Tectal cells

A neurotrophic factor N T is expressed by tectal cells. The expression rate is mTl/w (see

appendix H, equation H.3 with To = 0) where m is the membrane potential of the tectal

cell, and w is the sum of the synaptic weights of all synapses connecting to the tectal cell.

The parameter TI has the values of 0.02. The decay rate of the N T protein is also "fast",

i.e., the decay rate is the same as that of NReceptor above.

As shown in table 5.1, tectal cells use the linear neural model. The tectal cells do not

have a threshold and do not fire. Instead the membrane potential represents the amount of

neural activity received by the cell. Interestingly, there is some evidence that tectal cells are

in fact not brought to fire by RGCs during the developmental stage simulated here (Kolls

and Meyer, 2002). However, the details of this neural model are taken from Elliott and

Shadbolt (1998a), and are not based on precise biological data. The leakage rate is set at

the high value of 100, causing the membrane potential to effectively reset to zero at each time

C H A P T E R 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS 194

step. These cells consequently have no "memory" of previously received activation. While

these parameters are chosen in adherence with the Elliott and Shadbolt learning rule, it can

be seen from figure 5.16 that any normalized Hebbian-like learning rule should be able to

capture the refinement process.

Synaptic weights from RGCs to tectal cells are initialized to values according to the

expression (Elliott and Shadbolt, 1999, p. 7953)

where d is the distance between the tectal cell and the projection of the retinal cell onto

the tectum, DTt defines the size of the arbor (see figure 5.20 and table 5.1, the factor of 2

converting this diameter into the radius), r is a stochastic value with a uniform distribution

in the range [0, 11 chosen individually for each synapse, and P defines the level of noise in

the initial weights, we used P = 0.7. This formulation of initial weights means that synaptic

connections will be slightly stronger toward the centre of the arbor than at the edges, a

bias which the refinement process will enhance until the central weight is many orders of

magnitude higher than peripheral connections.

Starburst cells

Starburst cells as we simulate them are genetically simple, in that they only express a single

simulated "cell marker" gene. However, their neural model is interesting: They use a non-

linear model (see table 5.1) with a non-zero probability of spontaneous firing, i.e., they may

fire even though their membrane potential is below threshold. This phenomenon is observed

in retinas in nature (Wong, 1999). Once they fire, they continue to do so for five simulation

time steps, after which they go into a refractive period. The duration of the refractive period

varies stochastically among the cells, and this duration is periodically re-randomized for each

cell, as suggested in Elliott and Shadbolt (1999). The refractive periods are taken from a

normal (Gaussian) distribution with mean of 45 and standard deviation of 15 simulation

time steps.

Starburst cells generate coherent waves of neural activity

Starburst cells drive spontaneous waves of neural activity in the retina (Wong, 1999). This

occurs because starburst cells fire spontaneously, and because they are connected to other

CHAPTER 5. RESULTS II: DEVELOPMENTAL SIAIULATIONS 195

starburst cells within a given radius (see D,, in figure 5.20). When several interconnected

starburst cells happen to fire around the same time, they bring neighbouring starburst cells

above their firing threshold, causing a self-reinforcing chain reaction which is manifested as

a traveling wave of activation. The wave is terminated when it reaches areas where most

starburst cells are refractive and therefore unable to fire. After the wave has died out, the

probability of a new wave being initiated will increase with time as more and more cells

cease to be refractive.

The activity within the waves are transmitted to the RGCs, which in turn supply the

neural activity which drives the refinement process in the tectum. The population of RGC

cells becomes a "readout layer" (Feller et al., 1997) for the starburst cells, reflecting the

current activation levels of the starburst cells within a given diameter D,, . Importantly, an

RGC is brought to fire even though less than all the starburst cells connected to that RGC

fire. This means that while some starburst cells within a propagating wave may happen to

be refractive and therefore do not fire, all RGCs within the wave fire. There will therefore

not be "holes" of inactive RGCs within the activity wave.

As shown in figure 5.20, the connections between starburst cells and RGCs span the edges

of the cell layers, topologically forming a torus. This ensures that the wave propagation

patterns are uniform across the entire retina, both in frequency of waves and in the direction

of propagation. If these connections where absent, waves would propagate predominantly

toward the edges of the retina, which would disrupt the refinement process in the tectum.

Figure 5.21 shows the activity pattern as produced by this method. The resulting

neural activity in the RGCs (shown in green) is highly coherent (i.e. adjacent cells tend to

fire together, without any "holes" of inactive RGCs), even more so than the neural activity

pattern of starburst cells (shown in red). This means that the activity pattern contains

information about cell adjacency relationships. The learning mechanism uses this adjacency

information to drive the refinement process. The lack of correlation between waves in either

eye drives the development of ocular dominance.

5.3.4 Results with endogenously generated neural activity

Figure 5.22 on page 197 shows the results of a refinement experiment using endogenously

generated waves of neural activity. At the outset (top row, page 197), each RGC is connected

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS

I

- 8

Figure 5.21: Patterns of endogenously generated neural activity in the retina, as simulated in
NeuroGene. There is one time step between adjacent images, which should be read in comic-
book order. Starburst cells are shown in red, and RGCs in green. Filled circles indicate cells
firing. Note that while the waves may have "holes" of inactive cells among the starburst cells,
there are no such "holes" in the activity pattern of RGCs.

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS

- . - I . '

Figure 5.22: Refinement and ocular dominance with endogenously generated neural activity.
Left hand column shows ocular dominance. Middle two columns show connections strengths

I . ;.
from one RGC in eye0 (column 2) and eye1 (column3). Red represents a connection strength - -

of 1 or greater, blue a connection strength of 10-l2 or less. Right hand column shows .- d

topography of eye0, the more regular the pattern, the better the topographic projection ,.;

from the eye to the tectum. Rows show situations at (previous page) 300, 600, 1,200, 2,000,
4,000, (this page) 8,000, 16,000 and 34,000 iterations respectively.

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS 199

to a large number of tectal cells - this is shown in the middle two columns in figure 5.22.

Each image shows the connections from a single RGC in one eye to the tectum, each circle

represents the weight of the connection from that RGC to a particular tectal cell. As the

simulation progresses, connections are selectively weakened until only a small number of

connections from each RGC remains. Note that the choice of the "no cell death" form of

the learning rule (see section 5.3.2) means that no RGCs will loose all its connection to the

tectum. An RGC in one eye which is situated near the centre of an ODC dominated by

the other eye will retain connections to the closest tectal cells dominated by its own eye, as

can be seen in the right hand eye in figure 5.22. From this effect it follows that the widths

of ocular dominance domains has an upper bound determined by the initial arbor size of

connections from RGCs to the tectum.

The left hand image in each row shows the ocular dominance. Each circle represents a

single tectal cell. A white circle indicates that the activation coming into that cell comes pre-

dominantly from the left eye (as determined from synaptic weights), a black circle indicates

that the tectal cell is dominated by the right eye. A gray circle indicates that about equal

amounts of neural activity is received from each eye. Initially all tectal cells receive similar

input from either eye. As the simulation progresses, each tectal cell becomes dominated by

one or the other eye. Neighbouring cells tend to be dominated by the same eye, giving rise

to domains of equal dominance known as ocular dominance columns (ODCs).

The right hand image in each row shows the topographic ordering or the projection from

the left eye. This visualization approach is taken from Elliott and Shadbolt (1999), and it is

constructed as follows: For each RGC x there exists a tectal cell y such that the connection

strength from x to y is higher than the connection strength from x to any other tectal cell.

The location of the RGC x within the 2D layer of RGCs is indicated by PSGC, similarly

the location of the tectal cell y is indicated by P&. Consider two RGCs x and a'. If the

distance from PgGC to pgGC is less than some threshold, then a line is drawn connecting

the points PgCt and pict in the image. This is repeated for all possible RGC pairs x and XI.

In an ideal topographic projection, PSGC = PECt for all x (since these are 2D locations

within the plane of each cellular layer). This means that for an ideal projection, the resulting

image would show a regular net of lines. All deviations from ideality will be represented by

deviations of P;,, from the value of the corresponding PgGC, manifested in the image by

irregularities in the net of lines. As the initial weights from RGCs to tectal cells are chosen

Figure 3.23: ODCs axid topographies of the two eyes.

randomly: the i~iitial topography is highly disordered. As the sirriulatior~ progresses, areas

of higher order emerge. This happeris iri lock step with the emergence of ocular dominance

columns. As refinement improves, the topographic projectiori fro111 the left eye is highly

ordered in those areas where the left eye d~rninat~es, while disorder rerriair~s in areas where

t,he right eye dominates. Figure 5.23 shows the topographic order of both eyes together with

the pattern of ocular domina.nce. I t shows how in areas where one eye dominates, that eye's

topographic order is high, arid the other eye's order is low. This is similar t o results obtained

iri earlier siniulations (Elliott arid Shadbolt, 1999).

5.3.5 Results with simulated visual data

Ocular domiriance columns and receptive field refinement occurs in some species after eye-

opening, when neural activity in the retina is caused b~ visual sti~xiuli from the outside

world. I11 order to simulate such processes, a system for generating exogenous neural activity

patterns has bee11 irriplernerited as part of NeuroGerie. This system is described i r i detail in

section 2.7.3, and the different sources and filters are described in appendix D.

An outline of the filter modules used t,o generate visual stimuli for these siniulation is

shown iri figure 5.24. The binary value source generates rariclonl activity (1.0 or 0.0 with

50/30 pr~babilit~y) on which the rest of the filters will work. The data separates irit,o two pipe

lines, one for each eye. In the left eye pipe line, a recurrent filter iritroduces inter-time step

coherence in the input data. The Gaussian filters srnooth out the activity to create input

that are plausibly similar to what might read1 t,he bra i~i from the visual sensory system.

CHAPTER 5. RESULTS II: DEVELOPMENTAL SIh4ULATIONS

I Gaussian filter I I Gaussian filter

\ /
Binary value source

Figure 5.24: Exogenous neural activity modules assembled to give different but related visual
input to the two eyes. Some helper filters have been omitted from this picture for clarity,
see appendix D for a complete description.

The right-eye pipe line contains a random flip filter which alters the incoming data by a set

amount (flips 0.0 + 1.0 and 1.0 + 0.0 with a given probability p), causing the information

reaching each eye to differ by a well-defined amount. The cell layer shown at the top consists

of two distinct cell populations, representing the two eyes, receiving input from the left and

right pipelines, respectively. This method for generating simulated visual input is based on

Elliott and Shadbolt (1999) and Feller et al. (1997).

The advantage of this approach over the endogenous neural activity scheme outlined

earlier is that the inter-eye correlation p can be modified in order to investigate any effects on

refinement and ocular dominance. Such simulations can then be compared with experimental

data produced by either reducing or increasing inter-eye correlation in animals. The inter-eye

correlation may be increased by rearing animals under strobe-light (Brickley et al., 1998),

while the correlation is decreased typically by inducing strabismus ("lazy eye") by cutting

the muscles controlling the eye, or else using contact lenses.

Figure 5.25 shows the same visualizations as those in figure 5.22, except in this exper-

iment, the refinement process was driven by simulated visual input. The experiment was

done with a smaller number of cells than the endogenous activity experiment. This was

necessary since the rate of convergence was much slower than in the experiments driven by

endogenous neural activity, on the order of 200,000 time steps rather than 35,000. Both

CHAPTER 5. RESULTS II: DEVELOPMENTAL SIMULATIONS

Figure 5.25: Refinement, ocular dominance and topography as simulated using exogenous
simulated visual input. Rows show situations at 25,000, 50,000, 100,000, 149,000, 173,000
and 218,000 iterations.

C H A P T E R 5. RESULTS II: DEVELOPMENTAL SIAWLATIONS 203

sets of experiments show the gradual emergence of ocular dominance columns, as well as the

progressive refinement of tectal cell receptive fields, the latter with a somewhat slower time

course. The ocular dominance columns in the exogenous activity experiment are significantly

narrower than in the endogenous activity experiment above. A number of different factors

may have lead to this deviation. Together with the slower rate of convergence, the narrower

ODCs represent the only significant differences between the two experiments. The reasons

for these differences are not clear, but contributing factors may include:

Inter-eye correlation, which is higher in the exogenous activity experiments. With

endogenous activity, there is no inter-eye correlation. As will be shown below, inter-

eye correlation greatly affects ODC widths.

Overall level of neural activity, which may differ between the two kinds of experiments.

Temporal coherence, which is higher in the endogenous activity experiment. The

analysis of the Elliott and Shadbolt learning rule with respect to temporal coherence

is complex. The authors do not investigate this in their publications, and I will not

attempt to do so here. However, temporal coherence does have an effect, to the point

that some temporal coherence was introduced in the simulated visual activity, see

appendix D, figure D.1.

In general not too much should be made of the rate of convergence, or indeed the speed of

any developmental process we simulate, given that we have no reliable way of relating the

duration of a simulation time step to the developmental time of an organism.

Effect of inter-eye correlation

Under endogenous generated activity as described above, the neural activity in the two retina

is uncorrelated, i.e., the correlation is 0.5, if 1.0 indicates perfect correlation and 0.0 per-

fect anti-correlation. After eye-opening both eyes receive similar though not identical visual

stimuli, giving an inter-eye correlation somewhere in the range 0.5-1.0. Experiments have

been carried out in which the inter-eye correlation has been either increased or decreased

through the use of contact lenses or surgery inducing strabismus to decrease inter-eye corre-

lation (Lovel, 1994), or else rearing the animals under strobe-light which increases correlation

Figure 5.26: Occular doniiriarice st.ripes generated with different inter-eye correlation of
neural activity. A: 0.03. B: 0.23: C: 0.4, D: O.5? E:0.6, F:0.73. GA1.95.

(Brickley et al., 1998). Such experirrients have show11 a marked influence of the inter-eye

correlation on the ocular dominance columns. Decreasing inter-eye correlat,ion by inducing

strabismus causes sharper ~egregat~ion of neural input into st,ripes, arid increase stripe widths

(Shatz et al. 1977; L6wl 1994, reviewed in Swindale. 1996, pp. 170-171).

Using the exogenous ~ieural activity modules: the two retina can be exposed to sim-

ulated visual input with arbitrary inter-eye correlation by altering the Hip-probability of

the "Random flip filter" as shown in figure 5.24 frorri 0.0 (giving perfect currelatio~i) to 1.0

(perfect anti-correlation). Figure 5.26 shows t,he ocular dominance colurnns are computed

by NeuroGene at a number of different flip-probabilities. Antti-correlation causes very wide

C H A P T E R 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS 205

ocular dominance stripes to form. As the inter-eye correlation is increased, the stripes be-

come gradually narrower until they finally disappear. These results match the experimental

data summarized above, with increasing inter-eye correlation giving rise to narrower ocular

dominance stripes (Lovel, 1994; Goodhill and Lowel, 1996).

5.3.6 Discussion

The simulated genes employed in the simulation of the activity dependent development may

again be classified as to their justifications. The three genes NT, NTreceptor and NTcom-

plex together model a receptor-ligand system, with the two first representing the ligand and

the receptor. A very large number of such systems are known to exist in nature, indeed

such interactions (with soluble or membrane-bound ligands) form the basis for almost all

inter-cellular communication in all species. NTcomplex represents the complex of ligand and

receptor. Such genes do not exist in nature, however it is required by the NeuroGene simula-

tion of ligand-receptor binding. Note that this gene is never expressed, as the corresponding

protein is only formed by the association of molecules of NT and NTreceptor. We model the

ligand-receptor binding using an equilibrium constant (Kd = 1 0 - 1 2 ~) which is typical for

strongly binding ligand-receptor systems in nature (Neet and Campenot, 2001).

The expression of the simulated gene NT is dependent on synaptic weights and the

membrane potential, while Nfieceptor is regulated by neural activity and regulatory proteins

as well as synaptic weights. The expression of the simulated gene timeAverageActivity is

similarly affected by neural activity and regulatory proteins. It is well established that

neural activity can affect gene expression (see section 2.7.1). The influence of synaptic weight

on gene expression is more speculative. However, such influence is implied by a wealth of

connectionist models of learning, so it seems reasonable to make the same assumption in

this thesis.

The three simulated cell identity genes starburstCellMarker, tectalCellMarker and reti-

nalCellMarker are justified as before by the fact that many cell types are identifiable (if not

actually defined) by unique patterns of gene expression. Actions which occur continuously

within cells of a particular type is encoded in an effects section of the appropriate cell type

gene, see starburstCellMarker.

Lastly, the role of the simulated gene learn is to execute actions within cell components,

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS 206

specifically to alter the weights of plastic synapses according to the learning rule. This action

is placed in a separate gene in order to overcome the limitation of the NeuroGene gene model

as currently implemented. This simulated gene consequently does not map to any gene in

nature - rather it maps to molecular interactions which cause synaptic weights to be altered

in response to neural activity.

The developmental processes which cause receptive field refinement and ocular dominance

column formation have been simulated before, see Swindale (1996) for a review. Simulations

are reported here in order to demonstrate the capabilities of NeuroGene to simulate learning

processes. We have shown that the simulated genetic system of NeuroGene is able to control

a learning process, and that chemical signaling, as simulated by NeuroGene, can convey the

cross-synaptic retrograde information flow needed to implement a Hebbian learning rule.

5.4 Conclusion

In this chapter we have reported three different simulations we have carried out using the

NeuroGene developmental simulator. These show the ability of NeuroGene to simulate

developmental processes involving patterning, axon guidance and activity dependent devel-

opment. The first, taken from the early stages of the development of fruit-fly, shows how

NeuroGene can be used to simulate the development of patterns of differential gene expres-

sion, and consequently of differential cellular function and structure, from a starting point

consisting of identical cells and broad, simple protein concentration gradients.

The second experiment shows the application of NeuroGene to the study of a complex

axon guidance process, leading to the initial ordered connection from the eye to the mid-

brain in vertebrates. This simulation relies on an explicit model of the function of axonal

growth cones, including their ability to sense proteins and other cells in their environment,

and the competitive process underlying their navigational abilities.

In the third experiment, we have used NeuroGene to simulate an activity driven devel-

opmental process. This simulation relies on models of neural activity implemented as part

of NeuroGene. The learning rule is implemented using the same genetic framework which

controls all other developmental processes. The learning rule we use is based on biological

mechanisms, including ligand-receptor binding, which is also implemented in NeuroGene.

Recent biological research shows that patterning, axon guidance and activity dependent

CHAPTER 5. RESULTS 11: DEVELOPMENTAL SIMULATIONS 207

development all play important roles in the formation of the nervous system (Marcus, 2004).

Furthermore, many of the fundamental mechanisms by which the nervous system is formed

are similar to those known to be involved in the formation of the rest of the body, including

gene regulation and chemical signaling (ibid.). While the existence of additional develop-

mental mechanisms unique to the nervous system can not be ruled out, evidence is lacking

(ibid.). In this thesis I have demonstrated the capabilities of NeuroGene with respect to the

simulation of patterning, axon guidance and activity dependent development. The simulator

has been designed to be flexible, making it a tool which can be used to study these types of

processes, concurrently, and under a wide range of different circumstances. I believe Neuro-

Gene has the potential to become an powerful tool in the investigation of such developmental

mechanisms, potentially including more complex mechanisms which presumably underlie the

formation of more complex neural circuitry.

There are several processes of neural development and structures which are not involved

in these simulations. Some, such as cell migration, are supported by NeuroGene, while others

are not. Importantly, the support for the construction of elaborate dendritic structures

similar to those seen in nature is currently lacking. Furthermore, the extracellular matrix

(ECM, Browder et al., 1991), a rigid network of protein and complex carbohydrates which

surround the neurons and give them structural support, can not be represented by NeuroGene

at this stage. The ECM is thought to play a role in the guidance of axons. The inability of

NeuroGene to represent or model physical contact between cells also makes it unable to model

certain processes, including fasciculation (axon bundling) and the role of glial cells (Kandel

et al., 2000) in giving structural support to neurons. However, as has been demonstrated by

the three example simulations presented here, the capabilities of NeuroGene are sufficient for

carrying out simulation directly incorporating biological information, and also for developing

a novel model of axon guidance in topographic map formation.

Chapter 6

Conclusions and future work

In this chapter I summarize the work that is presented in this thesis, and put it in into the

context of future research challenges in bringing together cognitive science and developmental

biology. Our approach to simulating biological phenomena is summarized in section 6.1, while

the software engineering aspects of the implementation are outlined in section 6.2. Inherent

limitations to the NeuroGene simulation system are described in section 6.3. Our plans for

future work on this project are described in section 6.4, before concluding remarks are given

in section 6.5.

6.1 Simulating biology

A central challenge in the design and implementation of NeuroGene has been to capture

a wide array of biological phenomena and mechanisms in the form of data structures and

algorithms. Central issues pertain to how to ensure biological plausibility of NeuroGene

simulations, and how to chose the appropriate level of abstraction in representing biological

processes within the simulator.

6.1.1 Biological plausibility

A core goal of NeuroGene has been to be able to carry out simulations which may or may

not be based on known biologically phenomena, but which would be biologically plausible.

This raises the question of whether or not the NeuroGene should be designed to restrict the

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 209

simulations to what is biologically plausible. After consideration we have come down firmly

against such a design, for several reasons:

0 We do not have a complete description of what is and what is not biologically plausible.

NeuroGene should be a tool for exploring developmental concepts which might not

be fully plausible, for instance where certain aspects of a developmental process are

poorly understood.

It is much harder to make a system which is limited to only biologically plausible simu-

lations, since this involves creating limitations to capabilities which are not warranted

from a software engineering point of view.

Such a system is not just harder to implement, but it is also much harder to use, since

barriers will be placed in the way of the user, many of which may be counterintuitive.

None the less, there are many areas where biologically implausible situations can be ruled

out in a way that is conceptually and implementationally simple. An example is the en-

coding of protein concentrations: Negative protein concentrations are physically impossible.

NeuroGene has therefore been designed so that concentrations are always greater than or

equal to zero. Very high concentrations are also biologically implausible and (if they are

high enough) physically impossible. However, since NeuroGene is agnostic with respect to

the units of measurement used, there is no natural limit we could use as an upper limit to

concentrations values. The only upper limit on the protein concentrations within NeuroGene

is therefore the capacity of the float Java-type, approximately equal to 3.4 x

6.1.2 Levels of abstraction

When designing NeuroGene, we were often faced with design questions regarding which level

of abstraction to choose in implementing various features. These are difficult questions: If

too much detail is included it becomes unnecessarily complicated to implement simulations,

or too computationally expensive to run them. If too much is left out, we lose the biological

accuracy which is the motivation behind making NeuroGene in the first place.

The NeuroGene data structures often acted as guidelines in choosing the level of ab-

straction. The data structure representing the NeuroGene cellular assemblies is necessarily

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 210

limited in the level of detail with which it can represent the real world. For example, while

protein concentrations can in principle be measured at any point within the 3D space of

a real developing organism, NeuroGene can only represent those concentrations at a finite

number of points in space, and values at intervening points must be approximations.

While abstractions are required in implementing the NeuroGene simulation, we have not

attempted to achieve what might be described as a uniform level of abstraction. Firstly, it is

not immediately clear how two abstract representations of two different processes might be

compared to one another in terms of relative levels of abstraction. Secondly, in a number of

cases we found that different levels of abstraction of the same underlying biological process

might be appropriate in different contexts. Several such cases are described below. In these

cases, the more abstract level is the "default", but there are mechanisms is place for simulating

the details of the underlying biological process.

Careful examination of the many different biological processes simulated within Neuro-

Gene shows that a mixing of different levels of abstraction is indeed a necessity. As counter-

examples, if only low-level abstractions were permitted, then poorly understood mechanisms

such as growth cone navigation or arborization could not be included in the system. Con-

versely, if a higher level of abstraction was chosen, well understood mechanisms such as

ligand-receptor binding would be excluded. In both cases, the goal of creating a general tool

for the study of all aspects of neurodevelopment would be impossible to realize.

As already mentioned, we have also wanted to make it possible to simulate processes

for which a detailed understanding of the biological mechanism is lacking. In such cases,

an abstract representation of the process is required to make up for the lack of detailed

knowledge. The simulation of growth cones is an example of such a case. When it comes to

other mechanisms, we do have a much better understanding, and we are able to model the

process in more detail, such as in the case of ligand-receptor binding. However, also in these

cases may a more abstract approach have benefits, particularly if the computational cost of

the simulation may be significantly reduced.

In the following, a several aspects of the NeuroGene simulation system are discussed in

terms of the chosen level of abstraction, including how simulations operating at different

levels of abstraction may be implemented within NeuroGene.

CHAPTER 6. CONCLUSIONS A N D FUTURE WORK

Gene expression

In designing the NeuroGene gene model, we were faced with the decision of either using an

abstract representation of gene expression where genes are either "on" or "off", or else to use

non-negative real values to represent the expression rate. See Smolen et al. (2000b) for a

discussion of these two approaches to simulating gene expression. We found that in order to

simulate the formation of protein concentration gradients, a binary "on"/"off model of gene

expression is not sufficient. Since such gradients play such an important role in developmental

processes, including the topographic map formation simulated here, real-valued expression

rates were required. However, due to the non-linear expression behaviour of many genes in

nature, an encoding of simulated gene expression behaviors was chosen which can represent

both linear and non-linear expression behaviours.

Protein synthesis

In nature, protein synthesis is a process which consists of several stages (see figure 1.1):

Transcription of DNA into mRNA, transport of mRNA to ribosomes, translation of mRN.4

into protein, possibly post-translational modification of the protein, and finally transport of

the protein to its destination. In NeuroGene, these stages need not be simulated in detail

- a simulated gene is expressed to give the protein in the appropriate location in one step.

However, in nature, gene expression may be regulated at all stages of the gene expression

process. In order to simulate such regulation in NeuroGene, the intermediary products, as

well as the processes which interconvert them, must be explicitly represented. This can by

done by representing each stage in the process as a separate simulated gene. The product

produced by the first gene would be the mRNA. The second gene would require the presence

of mRNA in order to produce the nascent protein, while a third gene, representing the post-

translational modification, would require the presence of the nascent protein to produce

the mature protein. Additional genes may be used to implement transport of the various

intermediary gene products if needed. A simple example of this approach was seen in the

case of the Hunchback gene in the fruit fly segmentation experiment, in which the mRNA

and the protein are both modeled separately, see section 5.1.

CHAPTER 6. CONCLUSIONS A N D FUTURE W O R K

Soluble versus membrane bound proteins

We have chosen to distinguish between soluble and membrane bound proteins. These two

kinds of proteins have different behaviours and play different roles in developmental pro-

cesses, which warrants representing them differently. In NeuroGene, as in nature, soluble

proteins diffuse freely through the extracellular space, while membrane bound proteins re-

main bound to the surfaces of cell components. Diffusion within the cell membrane is ignored

in NeuroGene - only through simulated active transport can membrane bound proteins

move between adjacent cell components within the same cell.

Within the interior of cell components, no distinction is made between the two kinds of

proteins. Intracellular membrane bound proteins are imagined bound to the numerous intra-

cellular membranes, such as the ER, golgi, etc., however, these structures are not represented

within NeuroGene.

Intracellular, surface-bound and extracellular proteins

We have also chosen to distinguish between the intracellular and surface concentrations of

proteins. This allows us to simulate a range of phenomena which are important in chemical

signaling, such as endocytosis and exocytosis, intracellular signaling cascades, etc. While

many simulations would in principle be possible without representing the intracellular pro-

tein concentrations, using membrane bound proteins only to encode the "state" of each cell

component, such simulations would in many cases be essentially different from the biological

reality they represent. For instance, in cases where mRNA molecules are explicitly modeled,

it would be inaccurate and counter-intuitive to represent mRNA as membrane bound and

exposed on the cell surface. This would force the user to mentally convert between the bio-

logical situation which is to be simulated and NeuroGene's representation of that situation.

This contradicts our overarching goal of biological accuracy.

Communication from cell membrane to genome

In nature, passing of information from receptors on the surface to the genome in the cell

nucleus is usually a complex process involving numerous intermediate signaling molecules.

NeuroGene allows genes to directly query the concentrations at the cell surface. However,

using genes which express intracellularly, the mechanisms of intracellular signaling pathways

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

may be simulated.

Molecular mechanism of protein targeting

In nature, when a given protein is found primarily in certain parts of cells (e.g. in synapses

only), this is the result of intracellular transport of either mRNA or protein from the cell

body to the synapses (Lodish et al., 2000, pp. 809-817). In the NeuroGene gene model, genes

are potentially expressed in any part of the cell. Genes may be written so as to be expressed

only in certain types of cell components, such as synapses or dendrites. This allows the user

to implement protein targeting without the complex details of the intracellular transport.

However, intracellular transport mechanisms are in place which allows such processes to be

simulated in detail when that is needed.

Molecular mechanism of morphology and cellular behaviour

All morphological change brought about under genetic control are in nature mediated by

chemical changes to the cellular cytoskeleton or other intracellular structures (see section

2.2). For example, changes in cell shape may be brought about by causing the cellular skeletal

structure to disintegrate in some parts of the cell and build up in other parts (Browder et al.,

1991, chapter 9). These processes fall outside the scope of our simulator to simulate explicitly,

since the cellular skeletal structures are not represented within NeuroGene. We have in stead

devised primitive operations which make it simple to specify processes like cell division, axon

growth etc.

6.2 Implementing NeuroGene

The implementation of NeuroGene has involved a number of software engineering chal-

lenges. In the area of computer graphics, mechanisms of scientific visualization have been

implemented. Other modules have been implemented to visualize synaptic weights in var-

ious ways. The large majority of images representing simulations in this thesis have been

produced directly from NeuroGene without any post-processing. Beyond the cellular views,

a moderately complex graphical user interface has been constructed. The user interface was

redesigned with valuable input from Eric Dewitt.

CHAPTER 6. CONCLUSIONS AND FUTURE W O R K 214

The parser used to process input scripts uses a stack-based symbol table to implement

lexical scoping, as well as a dynamic library function table for lookup of language primitives.

For optimal speed and responsiveness, NeuroGene is implemented using multi-threading,

where the user interface, the simulation itself, and other secondary processes such as file 110,

each run in a different execution context. While each thread has its own program counter,

all share the same memory space, which requires locking and other forms of concurrency

control.

Implementing the physical aspects of the simulation requires diffusion, decay and ligand-

receptor binding to be expressed within the context of the NeuroGene data structure and

execution model. The 3D interpolation and extrapolation used to compute extracellular

protein concentrations is also used. Verification of the correctness of the implementation

required the symbolic analysis of these processes in order to express them in a form which

is directly comparable to the numerical values produced by NeuroGene.

6.2.1 Designing the gene language

We decided that the best way to present genetic information to the NeuroGene system would

be in the form of text written in a specially designed genetic scripting language. The design

of a new programming language is a complex task, fraught with subtle issues that may only

become apparent when implementation is complete and the language is in use. Our target

audience for our genetic language was trained biologists, not computer scientists, which made

the design more challenging.

The NeuroGene language got its basic syntactic elements from C, C++ and Java-like

languages. The language evolved along with the rest of the system, and new features were

added to the language as new functionality was added to the simulator.

The gene language contains the gene construct, for which general purpose languages have

no counterpart, and which is designed specifically to capture the mechanism of developmental

control through gene expression. It contains two parts, the first of which, the regulation part,

is semantically similar to a function in a language like C or Java, but with a specific return

type consisting of a tuple of a real value and a value designating the desired location for

the protein being produced by the gene. The regulation part may also not return any value,

indicating that the gene is not expressed.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 215

Inherent in the idea of the regulation section is that it should have no side-effects. If the

regulation section of a gene causes morphological changes or other kinds of changes to cells,

it would be in conflict with a fundamental aspect of the biological concept of a gene. This

justifies the the added complexity of incorporating this constraint into the language. This was

accomplished by making certain language primitives available only in certain grammatical

contexts, see section 3.1.7.

The gene e$ects section is designed to include the instructions which will be executed

as a result of a gene's expression. Semantically the effects section is similar to a function in

C or Java with a void return type (i.e. they don't return any value), but with side effects,

involving changes to the cells' shapes, neural properties, etc. Finally, the construct of a

growth cone function resembles the gene regulation section - again it has a return type

consisting of a tuple of a real number (the bid) and an action type (migrate, form synapse,

etc.). Like the regulation section of genes, growth cone functions should have no side effects.

While these elements do have semantic equivalents in general purpose languages, the

creation of a special purpose language allows us to use a succinct syntax that is meaning-

ful to people with a biological background, thereby fulfilling an important design goal of

NeuroGene.

6.2.2 Biological primitives

Making NeuroGene has involved the development of a set of primitive actions and queries

which can capture the developmental processes and genetic control mechanisms underlying

the simulations that we have wanted to carry out. Queries are used within the context of

genes and growth cone functions to retrieve information about the state of cell components

and their environment, relating to protein concentrations, properties of the neural model,

etc. They have been designed to be biologically meaningful, relating to the cellular structures

which are represented by the NeuroGene data structures, rather than the data structures

themselves. In this sense, the primitives form an important aspect of the NeuroGene user

interface, and should therefore present a view of the cellular structures that is consistent

with that presented by the visual GUI elements.

The actions have been designed to be equally biologically meaningful, but also as general

as possible. As such, most take parameter values of different types. In the context of a gene,

CHAPTER 6. CONCLUSIONS AND FUTURE W O R K

1 gene Foo C
2 regulation {
3 . . .

3
5 effects C
6 setSynapticWeight (surf aceConcentrationOf (Bar)) ;
7 setThreshold (sqrt (synapticweight (1)) ;
8 3
9 3

Figure 6.1: Example of a gene effects section which reveals the unusual semantic properties
introduced by the parallel execution model of NeuroGene.

the action primitives are invoked with arbitrary parameter values, which may be supplied

in the form of constant values specified in the gene script, or else computed from the return

values from queries. In this, the NeuroGene language aligns closely with the conventions of

general purpose programming languages.

6.2.3 Execution model

The goal of the NeuroGene execution model is to make it appear as if the genetic code of

different genes within different cell components runs in parallel even though it is running in

the sequential environment of the Java Virtual Machine. This is the reverse of the goal of

parallel programming, which is commonly to implement, on parallel machines, algorithms

which are typically conceived as sequential.

The NeuroGene execution model, and its implementation of simulated parallelism is sim-

ple - actions are not executed until all genes in all cell components have been processed, at

which point all pending actions are executed. This does alter the semantics of the NeuroGene

language relative to general purpose languages, as illustrated in figure 6.1. In this gene, the

parameter value passed to the setThreshold0 function in line 7 will be based on the old

value of the synaptic weight, not the value set by setsynapticweight() on line 6. This is

because the parameter values passed to setThreshold0 on line 7 are evaluated before the

action resulting from the setsynapticweight() command on line 6 is implemented.

CHAPTER 6. CONCLUSIONS AND FUTURE W O R K

6.3 Limitations

The most important limitations to the capabilities of NeuroGene derive from discretization

of time and space. There are fundamentally different approaches which avoids either or both

of these problems, but these introduce other drawbacks. For instance, continuous time can

be simulated if all changes occurring during the simulation can be expressed in terms of

differential equations. This is straightforward for changes in protein concentration, harder

for such changes as cell migration, and virtually impossible for cell division and other changes

which can be regarded as discontinuous on the time-scale NeuroGene simulations. Similarly,

continuous space could be implemented if the extracellular concentration gradients of all

proteins were represented by analytical functions. Such an internal representation would

necessarily grow with the number of sources producing the protein and the duration of the

simulation. This means that the complexity of the internal representation potentially grows

without bound, severely limiting the capabilities of the simulation system.

In order to be free to implement a wide range of biological primitive actions, and also

be able to support complex concentration gradient shapes arising from many sources, we

chose a simulation design based on discrete time and space. As a consequence, the protein

gradient shapes can never become more detailed than the pitch of the WorldNode grid allows.

Similarly, the neural models are currently limited to those that can operate with discrete

time.

In order to make simulations as fast as possible, the basic design decision was made

that collision detection computations would not be carried out except where needed by

growth cones. Consequently, any developmental process which relies on the direct interac-

tion between cell components though other means than extracellular protein signaling, must

involve the growth cone mechanism. Growth cones perform collision detection, and from

within growth cone functions, the properties of other cell components can be queried. This,

in principle, makes NeuroGene able to simulated complex axon guidance processes where

extending axons navigate their environment though interaction and recognition of surround-

ing cell structures. The growth cone mechanism is sufficiently general that it may also be

used to guide dendrite growth and even cell migration.

CHAPTER 6. CONCLUSIONS AND FUTURE W O R K

6.4 Future work

For the future, we are hoping to continue the work on NeuroGene, applying it to problems not

only in the area of neurodevelopment, but also using it as a tool to further the understanding

of cognitive processes. In more specific terms, there are certain areas of the system that may

be the subject of improvement.

6.4.1 Improving the gene model

An improved model of gene expression would take better account of the fact that it is not

gene expression in itself, but rather the presence of proteins, which cause cells to undergo

changes in morphology and behaviour. Such an improved gene model would not invalidate

the three developmental simulations presented in this thesis: The topographic map formation

and ocular dominancelrefinement simulations contain some simulated genes which do not

represent genes as they occur in nature (FindTectum and SortMap in the former and learn

in the latter). In the improved gene model, these would be modeled by something other

than simulated genes, which I will here call triggers. Genes would then only cause the

production of proteins, and the presence of proteins would in turn activate triggers, causing

morphological and functional changes in cell components. It follows that the effects sections

of simulated genes would no longer exist.

The activation of triggers would be implemented in the same way as the activation

of genes. The triggers would therefore have a structure similar to the regulation portion

of simulated genes, in that they would contain conditionals and actions, the conditionals

determine in each cell component at each time step whether the actions are implemented

or not. Since there will be no need for gene effects sections, genes in the new model would

be a special case of triggers, as genes are limited to actions representing protein expression.

Similarly, the regulation of simulated genes would represent the interactions of regulatory

proteins with DNA of genes, while the corresponding regulation of triggers would represent

a much wider range of possible molecular interactions.

The implementation of triggers would be done concurrently with a redesign and simpli-

fication of the gene language. This redesign would predominantly simplify the syntax of the

language, while not substantially altering the semantics beyond the changes outlined above.

CHAPTER 6. CONCLUSIONS A N D FUTURE W O R K

6.4.2 Framework for building dendritic structures

The formation of dendritic arbor structures is an important element of neurodevelopment

which has not been explored in this thesis. The results of dendrite outgrowth, probably

guided by growth cones (Fiala et al., 1998), these complex tree-like structures form numerous

synapses with axons of other neurons. It is believed that their shape and the placement of

synapses across their extent significantly affects neurons' information processing properties.

Biological science is still a long way from being able to understand the genetic and

activity-dependent mechanism of dendrite growth. In order to include the ability of simulate

such growth within NeuroGene requires a more abstract framework, such as that of the

turtle mechanism introduced as part of the Logo programming language (Logo Foundation,

2004). Turtles were initially used in Logo programs which control mechanical robots. Turtles

exhibit the properties of a location and an orientation in 3D space, and through rotation and

migration commands, turtles can be used to build highly complex structures. Turtles can be

associated with cell components, and queries and actions relating to the state of the turtle

can be used both within genes and growth cones. Components of this system has already

been implemented, but they have not yet been exploited in any developmental simulations.

Turtles form an integral part of the genetic control system as simulated in NeuroGene.

This means that the invocation of the turtle mechanism occurs under genetic control (simi-

larly to the invocation of the growth cone mechanism, see section 2.6.1), and that values of

the various parameters which determine the turtle behaviour may be composed of queries,

allowing the biochemical, morphological and neural state of a cell component to affect this

behaviour.

The last two simulations presented in this thesis both simulate developmental stages of

the same neural projection from the retina to the tectum. With the capabilities outlined

above in place, we would be able to combine both into a single simulation starting with the

initial axon growth from the retina, and ending with a fully formed and refined retinotectal

connection with ocular dominance columns.

6.4.3 Developmental modules

An important technique used in the study of the brain and mind is that of divide-and-conquer

modularization. The oldest approach to such decomposition was to locate structural modules.

C H A P T E R 6. CONCLUSIONS A N D FUTURE W O R K 220

such as the cortex, hippocampus, thalamus, cerebellum, etc., each of which can be assigned

more or less defined functions. Through experimental and accidental lesions of different

parts of the brain, a lot has been revealed about the functions of these various structural

modules. This has also led to a well-established map of arealization of the cortex where

many regions are known to normally process information from particular senses, such as

visual and auditory cortex, etc. (Krubitzer and Huffman, 2000). However, when it comes

to higher cognitive functions such as language, a similar assignment of functions to areas of

cortex breaks down (Marcus, 2004, pp. 128f).

A second approach is to look for functional modules, for example trying to map out the

visual system from the eye to the cortex, or the auditory system from the ear to the cortex.

As far as higher cognitive functions such as planning and problem solving are concerned,

there is little biological evidence as to whether or not functional modules exist, or where

they might be located. However, convincing theoretical arguments have been put forth for

the existence of such modules also in higher cognition (Hadley, 1999, 2003).

The increasing understanding of developmental biology now allows us to map out a third

kind of brain modularity, that of developmental modules. A particular developmental module

is characterized by how it is built during the development of the brain. The same module

may be used in different contexts, with minor modifications in the mechanisms.

Topographic maps constitute one example of a developmental module. Topographic

maps are known to exist in most of the sensory pathways in the brain, including the vi-

sual, auditory, olfactory and somatosensory - in each case the information processed by

the neural circuitry of the map is different, but in each case the map serves the role of

transmitting information between different systems while maintaining the spatial encoding

of that information. In many cases, these maps are built using closely related developmental

mechanisms, and using the same set of molecular markers for axon guidance.

Some interesting relationships may be emerging between the different modes of mod-

ularization: We see that the developmental module of topographic maps are involved in

structural modules with similar roles (the projection of sense data from the periphery to

the brain) within different sensory modes. If this close relationship between developmental

and structural modules is the rule rather than the exception, we can anticipate that devel-

opmental biology will become an important source of new information which will shed light

on difficult questions within cognitive science.

CHAPTER 6. CONCLUSIO-S AND FUTURE W O R K 221

How can NeuroGene be extended so as to make it a useful tool in the discovery and

investigation of developmental modules? For NeuroGene to be able to handle large develop-

mental simulations, the simulated genetic code must be modularized in some way. For such

modules to be useful and self-contained, it is important that such modularization reflect the

phenomenon of developmental modules. Through developing a scheme for modularization

of NeuroGene gene code, it is possible that we may arrive at a better understanding of

what developmental modules are, and the mechanisms by which they interact both during

development and during evolutionary processes.

6.5 Conclusion

The mechanisms which support perception, higher cognition and motion control in humans

and other organisms is implemented in a information-processing substrate which consists of

neurons. Among the different areas of artificial intelligence research, connectionism alone

takes this fact explicitly into account. It is therefore within the field of connectionism that

biological knowledge about neuronal systems can be most directly incorporated. This can be

done for instance by constructing artificial neural networks in which neurons have properties

that are derived from those measured in real neurons, and in which the topologies of neural

interconnections are similar to neural micro-circuits as observed in nature. Furthermore,

the way in which neural networks respond to patterns of activation, e.g., by modification of

synaptic conductances (or weights) according to learning rules, can also be modeled on bio-

logical data on synaptic plasticity. The current explosion in biological data on the structure

and function of neural systems make this research approach potentially very fruitful.

Increasing understanding of how genes exert control over organisms have shown that

"nature" and "nurture" are not separate mechanisms competing to shape the organism. A

better understanding may be that genes (nature) determine how an organism responds to its

environment (nurture) (Marcus, 2004). Seen over evolutionary history, the environment has

in turn shaped genes through the process of natural selection. The resulting, highly adapted

genomes may include elements that anticipate the environment in which the organism exists.

This further blurs the line between the two, since such genetic elements can use naturally

occurring environmental factors (such as spatially and temporally coherent visual input) to

drive development a1 processes.

C H A P T E R 6. CONCLUSIONS A N D FUTURE W O R K 222

There is no reason to believe that such tight interaction of genetic information and en-

vironmental influences does not also extend to higher cognitive functions (Marcus, 2004).

While the influence of experience on the cognitive abilities of an individual has been recog-

nized for centuries, the discovery of a single genetic mutation leading to a specific and serious

language impairment (Lai et al., 2001; Pinker, 2001) reveals the central role that genes may

also play in supporting cognitive function.

While in this case, a particular gene has been shown to be necessary for the development

of normal language skills, no-one would argue that it is sufficient. Most cognitive abilities

probably form as a result of both genetic and environmental influences, neither sufficient on

its own (Marcus, 2004). To fully understand the processes that shape our cognitive abilities!

we therefore need to understand how these two kinds of processes interact.

Artificial neural networks represent the environment and the network's interaction with

the environment through its input and output nodes. However, few have extended the anal-

ogy of the artificial neural network to also include the developmental mechanisms which

create and modify the network, and the genetic information which controls and coordinates

these processes in nature (for some that have, see section 1.5.5). Through such an extension,

the interplay between genetic and environmental factors in shaping neural systems can be

investigated. NeuroGene has been designed to combine connectionism's approach to sim-

ulating neural processes with a representation of the genetic and developmental processes

which create and modify natural neural networks.

The three developmental simulations reported in this thesis show that NeuroGene is

able to capture a wide range of developmental phenomena as seen in nature, including

patterning, axon guidance and activity-dependent development. NeuroGene has shown itself

as a valuable research tool: Using NeuroGene we have developed a new model for the activity-

independent formation of topographic maps through axon guidance. This model replicates

a wide range of experimentally observed phenomena, and due to the direct relation between

the NeuroGene language and biological mechanisms, the model is directly formulated in

terms of the biological processes. In order to demonstrate the capabilities of the system,

three examples of NeuroGene simulations have been included in this thesis. These show that

NeuroGene is capable of simulating three developmental mechanisms which are important in

the formation of the nervous system. We do not consider these simulations to represent the

limit of the capabilities of NeuroGene. While there are some inherent limitations in the design

CHAPTER 6. CONCLUSIONS AND FUTURE W O R K 223

of the system, we hope to be able to use NeuroGene as a vehicle for further investigations

into the interactions between genetic and environmental factors in the development of neural

systems.

Appendix A

List of terms

The following glossary has been compiled in order to make this interdisciplinary thesis ac-

cessible to as wide an audience as possible. Within this list, all words in italics have their

own entries in the list.

abstract syntax tree A data structure used to represent a string of text written according

to a particular grammar. The AST is built by a parser as it reads the input string.

action In the NeuroGene genetic programming language, actions represent changes in the

states of cell components brought about under genetic control. Actions represent all the

types of changes in cells' morphology and activity which may be brought about through

gene expression. Actions take the form of function calls, most of which return no value.

Many actions take parameters which modify the effect of the actions. The values of the

parameters can depend on the state of the cell component or its environment through

the use of queries.

action potential A transient reduction in the membrane potential of a neuron, traveling as

a wave along an axon, thereby carrying information between neurons. Action potentials

are sustained by ion channels.

ActionQueue A data structure used within NeuroGene to store pending changes brought

about by the execution of actions, but not yet applied to the simulation data structure.

APPENDIX A . LIST OF TERMS 225

The ActionQueue is required in order to ensure parallelism between genes and cell

components, and it plays an important role in the NeuroGene execution model.

activity level An abstract representation of the membrane potential which is better suited

for the implementation of models of neural activity. The activity level of a neuron is a

number between 0 and 1, with 0 representing the resting potential and 1 representing

the cell generating an action potential. See section 2.7.

amino acid Building blocks of proteins. There are twenty naturally occurring amino acids

which are used to build all proteins in all living organisms.

AST See abstract syntax tree.

axon The main output device of a neuron. The axon consists of a long thin extension of the

cell, which may reach many millimetres away from the soma, carrying action potentials

to target cells.

cascade A particular kind of gene network, which has the topology of a tree. The gene at

the root of the tree is the master gene - activating the master gene causes all the genes

within the cascade to be activated. Through cascades, very complex developmental

processes can be controlled by a single gene.

Cellcomponent The abstract Java class used to represent all cell components in Neuro-

Gene. Derived concrete classes include Soma, Neurite, PreSynapse and Postsynapse.

cell components In order to represent neurons of complex shapes, smaller components of

the neuron are represented as separate entities within the NeuroGene data structure.

Cell components represent the central portion of neurons containing the nucleus (the

soma), as well as short, straight, unbranched segments of axons and dendrites and

presynaptic and postsynaptic termini.

collision detection The computational process of detecting physical contact between sim-

ulated physical objects moving within a 3D environment. This is in general a computa-

tionally expensive operation, since every possible pair of objects need to be considered,

APPENDIX A. LIST OF TERMS 226

giving 0(n2) time-complexity where n is the number of potentially interacting objects.

In NeuroGene, collision detection is only implemented in the context of simulated

growth cones.

complex See ligand-receptor complex.

connectionist neural network Abstract models of neural circuits which implement vari-

ous forms of learning. Networks consist of nodes, which represent neurons, and connec-

tions, which represent synapses between neurons. Neural activity is usually represented

by nodes either firing or not firing. Learning rules define how the weight of synapses

(i.e. their conductance of activity) change as function of activity of nodes.

decay The process by which proteins and other molecules are broken down and disappear.

In nature, many molecules are broken down by enzymes, making the rate of decay

dependent on the abundance of these enzymes. In the context of NeuroGene, such

dependences are not modeled. The rate of decay of each protein is characterized

by a constant first-order decay rate k, giving the following time dependence of the

concentration C: = -kc.

dendrite The main input devices of a neuron. These form synapses with the axons and

somas of other cells, through which the cell receives neural activity.

design pattern A recurring programming problem with a recognized and widely appli-

cable solution. This solution typically require the capabilities of an object oriented

programming language such as C++, Java or others. Important patterns used in the

implementation of NeuroGene include the Visitor, Observer and Command patterns,

as well as the Model-View-Controller (MVC) pattern.

development In biology, the term development refers to the process by which a fertilized

egg changes into a complete organism capable of sustaining life, access nutrients and

give rise to new offspring. This is distinct from evolution.

differentiation The process by which a cell takes on (or commits to) one of several potential

roles during development. This is usually an irreversible process. See also patterning.

APPENDIX A. LIST OF TERMS

diffusion The process by which soluble proteins spread through the environment, away

from their source. In NeuroGene, only diffusion through the extracellular space is

simulated. The rate of diffusion is characterized by a diffusion coefficient D, giving the

time dependence of the concentration C: = D$$. See appendix F.

DNA DeoxyriboNucleic Acid. The chemical compound used to encode and store the in-

heritable information of plants and animals. DNA exists as two paired anti-parallel

strands, each of which consists of a chain of nucleotides. There are four nucleotides,

represented by the letters A, T, G and C. These are pairwise complementary, with A

binding to T and G to C. The nucleotides in the two strands of a DNA molecules are

arranged in such an order that each nucleotide in one strand is always paired with the

complementary nucleotide in the other strand. The structure, including the stored in-

formation content, can be copied intact by separating the two strands and using one or

both single strands as templates for the formation of novel strands. The novel strand

is constructed while maintaining nucleotide complementarity with the original strand,

thereby maintaining the information content in the novel strand. This mechanism is

used both when the genome as a whole is duplicated prior to cell division, and also for

the production of mRNA.

enhancer A region of the DNA sequence of a gene which influences under which conditions

the gene is expressed. See figure 1.2.

enzyme A particular kind of protein, whose role it is to facilitate (catalyze) chemical re-

actions. In most enzymes, reactions are facilitated when the molecule or molecules

which are to react bind to the enzyme in a particular orientation, which is optimal for

the reaction to occur. Many enzymes increase the rate of reaction by many orders of

magnitude.

equilibrium The term chemical equilibrium applies to reactions which are reversible, i.e.,

the reactants can react to form products, and the products may also react "backwards"

to form reactants. Such a reaction is at equilibrium when the forward and reverse

APPENDIX A. LIST OF TERMS 228

reactions happen at the same rate, meaning that the concentrations of reactants and

products do not change. All reversible reactions are characterized by an equilibrium

constant, which defines the relationship between the concentrations of the various

chemicals when the reaction is at equilibrium. In the context of NeuroGene, the

reversible reaction of the binding of ligand L to a receptor R for form a lzgand-receptor

complex C is modeled. Such reactions are at equilibrium when the equation

is satisfied, with Kd the equilibrium concentration, and square brackets signifying

l l ~ ~ n ~ e n t r a t i o n of?'.

evolution The process by which biological species become and remain adapted to their

environment and other species with which they interact, such as predators and prey.

Evolution occurs through gradual change to the genes within a population over many

generations. The driving forces behind this process is the stochastic mechanisms of

mutations to individuals' genomes, and the non-stochastic process of natural selection,

in which highly adapted individuals survive at the expense of less adapted ones. This

is distinct from development.

expression See gene expression.

extracellular space The space surrounding the cells that make up a (real or simulated)

organism.

filopodium Transient fibrous extensions from a growth cone. Filopodia are involved in the

growth cone's ability to sense its environment and in choosing an optimal path of axon

growth.

fire Neurons are said to fire when the generate an action potential.

firing duration In a discrete time model of neural activity, once a simulated neuron reaches

the firing state, it may remain in this state for an extended period. The duration of

APPENDIX A. LIST OF TERh4S

this period is the firing duration. See section 2.7

gene The fundamental unit of inheritable information, encoded in DNA as part of the

genome of an organism. A gene consists of regulatory elements and a protein coding

region.

gene expression The process by which the protein encoded by a particular gene is pro-

duced. The properties and function of a cell is to a large extent determined by the

proteins which it contains. It is therefore important that gene expression is tightly con-

trolled. Such control involves regulatory proteins during transcription, and additional

control is exerted during translation.

gene network A set of genes, whose corresponding proteins are regulatory proteins affect-

ing the expression of other genes within the same set.

gene regulation See gene expression.

genetic algorithm A search algorithm which simulates the biological process of evolution.

It is used to search for near-optimal solutions to computationally hard problems.

genome The set of all genes of an organism.

genotype The characteristics of an organism as encoded in the organism's genome. Indi-

viduals with different genotypes may have identical phenotypes. A common example is

that of dominant/recessive genes: A gene which has two forms (alleles), represented by

A and a, with A being dominant, will give rise to two phenotypes. Keep in mind that

all cells in an organism contains two copies of each gene. The phenotype reflecting the

recessive allele a will only be visible in individuals with two a alleles, i.e., aa. The two

other genotypes, Aa and AA, will both have the phenotype reflecting the dominant

allele A.

grammar A formal specification of the syntax of a formal language, typically a program-

ming language. Most commonly used for specifying programming languages are context-

free grammars. Such grammars consists of one or more productions. On the left hand

APPENDIX A. LIST OF T E R M S 230

side of each production is a single non-terminal symbol, and on the right hand side is

a list of one or more terminal and/or non-terminal symbols. The grammar also defines

a root symbol. For a string to be a valid member of the language, the string must be

reducible to the root symbol through the conversions represented by the productions

in the grammar.

growth cone A dynamic structure an the tip of a growing axon or dendri te . Through

extending numerous filopodia, the growth cone senses its environment and navigates,

sometimes over long distances, to reach its target area. Here the growth cone is involved

in the formation of highly specific synaptic connections based on chemical signaling

from the target tissue. See section 2.6.

growth cone function A formal definition of a behaviour of growth cones simulated ac-

cording to the NeuroGene growth cone algorithm, see page 224.

hash table A data structure for storing and fast retrieval of elements. Retrieval is based

on hash-values computed based on the contents of each element. Ideally all elements

should have different hash values. When this is the case, retrieval of an element from

the table is done in constant time, i.e., the time of the operation is independent of the

number of elements in the table.

hyper polarization A hyper-polarized n e u r o n has a m e m b r a n e potential which is more

negative than the rest ing potential . Such a neuron is less likely to generate an act ion

potential than a comparable neuron at the resting potential. Processes which cause

neurons to become hyper-polarized inhibit neural activity.

ion Atoms or molecules which carry an electrical charge. Different ions are abundant both

within cells and in the extracel lular space. Ions carry all currents which are involved

in the transmission of a c t i o n potentials .

APPENDIX A. LIST OF TERMS 231

ion channel Complex proteins which are embedded in the cell membrane, and which allow

ions to pass through the cell membrane. Ion channels are highly specific to which

ions they let through (there are channels for Na+, K+ , Ca2+, C1- and others). They

are also specific as to when and why they open or close. Some open in response to

chemical signaling (see neurotransmitter), other open or close in response to changes

in the membrane potential. Finally, ion channels have different and highly specific tem-

poral behaviours, with some staying open for an extended period while others close

rapidly, etc. Together the distribution of different ion channels across the surface of a

neuron determines to a large extent its electrical and information processing properties.

leakage rate The rate of decay of the membrane potential toward the resting potential. In

order for a neuron to be brought above the threshold potential, action potentials coming

into the cell must outweigh the leakage rate. This rate applies prior to the generation

of an action potential, and should not be confused with the return to resting potential

after an action potential has beacrossen generated.

learning The modification of synaptic conductances (or weights) resulting from neural ac-

tivity. In the context of abstract connectionist neural networks, even simple learning

rules have been shown to be able to capture complex learning behaviours. The first

and best known learning rule is that of Hebb (1949), which states that if activity orig-

inating in neuron A often contributes to bringing some other neuron B to fire, then

the connection from A to B tends to become stronger, increasing in conductivity or

synaptic weight.

ligand A molecule which binds to a receptor to form a ligand-receptor complex. In general,

ligands may be either soluble or membrane-bound. In the NeuroGene simulation of

ligand-receptor binding, ligands must be soluble.

ligand-receptor complex The molecule formed when a ligand binds to a receptor.

APPENDIX A . LIST OF T E R M S

master gene See cascade.

membrane The cell membrane surrounds the cell, maintaining its structural integrity, and

separating the intracellular environment from the extracellular space. This function is

vital for the function of the cell, since the intracellular space is completely different

from the extracellular space in terms of dissolved chemicals, electric potential, etc.

Cells also have numerous intracellular organs (known as organelles) which are also

surrounded by membranes. This internal structure is not represented in NeuroGene.

See also membrane potential.

membrane bound Proteins which remain associated with the cell membrane of the cells

that produce the proteins are membrane bound. An important class of membrane

bound proteins is receptors, which act as "antennae" allowing the cell to react to chem-

ical changes in the extracellular space close to the cell.

membrane potential The electronic voltage across the membrane of cells. While most

cells have non-zero membrane potentials, these play a particularly important role in

neurons, where changes in the membrane potential serve as a means to transmit in-

formation between interconnected neurons. See also resting potential and threshold

potential.

moles One mole is defined as 6.022 x loz3 molecules - for a compound with molecular

weight of x, one mole corresponds to x grams. 6.022 x loz3 is known as Avogadro's

number. See also molar.

molar One molar is defined as 6.022 x loz3 molecules per litre - for a compound with

molecular weight of x, the concentration of 1 M corresponds to x grams per litre. See

also moles.

morphology The technical term for the physical size and shape of cells or cellular struc-

tures. Morphological changes covers changes in cell shape (such as growth of axons

and dendrites and the formation of synapses), as well as the location of cells (i.e. cell

migration) and number of cells (cell division).

mRNA Messenger RNA, a particular type of RNA which is used to transmit genetic infor-

mation from the genome to sites of protein production (t ranslat ion) . Transcription is

APPENDIX A. LIST OF TERMS

the process of creating a copy of a gene's DNA code in the form of a messenger RNA

molecule. See also RNA.

Neurite The Java class used to represent axons and dendrites.

neurite A common term covering both axons and dendrites. Sometimes used to refer to

non-differentiated nerve fibres which subsequently become either axons or dendrites.

In this thesis the term has the former meaning.

neuron A cell specialized for the processing and transmission of information through electric

impulses.

neurotransmitter A chemical which is used in synapses to transmit an action potential

from the presynaptic to the postsynaptic terminal. The presynaptic terminal has spe-

cialized machinery for the production, release and re-absorption of neurotransmitter,

while the postsynaptic terminal contains machinery for the detection of the neuro-

transmitter. The presynaptic terminal responds to an action potential by releasing

neurotransmitter, and the postsynaptic terminal responds to the neurotransmitter by

opening ion channels, thereby making the membrane potential less negative and po-

tentially causing an action potential in the postsynaptic cell.

nucleus Cellular component which contains the cell's only copy of the entire genome stored

in DNA.

parent In the context of tree data structures, the parent node p of a node n is defined as

follows: there is an edge connecting n and p, and the shortest path from p to the root

node is shorter than the shortest path from n to the root node.

parser A software component which can read an input string and generate an abstract

syntax tree representation of that string. Parsers are typically generated automatically

based on an annotated grammar of the underlying programming language.

APPENDIX A. LIST OF TERMS 234

patterning The process through which an initially uniform population of cells become

subdivided into (usually spatially contiguous) domains of cells with different properties.

See also differentiation.

phenotype The characteristics of an organism as expressed in the organism's shape and

function. See also genotype.

PreSynapse The Java class used to represent presynaptic termini.

presynaptic terminal See synapse.

protein Complex molecules involved in all processes of a living organism. Proteins consist

of long chains made up of hundreds or thousands of amino acids. The properties of

the proteins are determined by the sequence of amino acids. Proteins are produced

through the process of translation.

protein coding region The part of a gene which contains the information which through

the processes of transcription and translation specifies the sequence of amino acids

which make up a protein expressed by the gene. Through this process, a given gene

can be said to code for a particular protein.

Postsynapse The Java class used to represent postsynaptic termini .

postsynaptic terminal See synapse.

query In the NeuroGene genetic programming language, queries represent ways in which

the state of cell components and their environment may affect gene expression within

those cell components. A query takes the form of a function call, which returns a

value of the appropriate type. This value can then be used within the gene to compute

its expression rate or to modify the effects of gene expression through parameters to

actions. Queries play a similar role in growth cone functions.

APPENDIX A. LIST OF TERMS 235

receptor A protein which is bound to the cell membrane and which can bind to extracellular

signaling molecules. Such binding triggers intracellular signaling events which may lead

to changes in gene expression. Receptors are also important in intracellular processes,

but this cannot be represented in NeuroGene. See ligand-receptor binding.

refractory delay A period of insensitivity to incoming neural activity after a neuron has

produces an action potential (i.e. "fired").

regulation See gene regulation.

regulatory element See regulatorg protein.

regulatory protein A protein which binds to specific sequences of DNA. The DNA se-

quences which bind regulatory proteins are known as regulatory elements. The pres-

ence of regulatory proteins at regulatory elements of a given gene facilitates or hinders

the transcription of the genes, thereby affecting the rate of expression. The activity of

regulatory proteins is the most important mechanism by which gene regulation occurs.

resting potential The membrane potential of a neuron which has not generated an action

potential recently, typically in the range of -70mV, with the inside of the cell being

more negative. After a neuron generated an action potential, the membrane potential

decays gradually toward the resting potential.

ribosome Cellular machinery responsible for the translation of mRNA into protein.

RNA RiboNucleic Acid. A chemical compound similar to DNA, also consisting of four

different nucleotides. The information content in DNA is translated into RNA using

nucleotide complementarity. See also mRNA and DNA.

soluble Soluble proteins do not associate with membranes, but diffuse freely through solu-

tions, such as that which fills the extracellular space.

Soma The Java class used to represent somas.

APPENDIX A. LIST OF TERM 236

soma The central part of a neuron, containing the cell nucleus with the genome. All activi-

ties of the cell are controlled from the soma through gene expression. The decision for

the cell to fire an action potential is also taken at or near the soma.

spontaneous firing Some neurons generate action potentials spontaneously, i.e., even when

they have not received action potentials from other cells. See section 2.7.

stack A data structure which holds a collection of items. The data structure supports only

two operations, push, which adds an element to the collection, and pop, which removes

an element. Pop always removes the element which was the last to be added to the

collection.

synapse A neural connection between two neurons, consisting of a presynaptic and a postsy-

naptic terminal. Synapses are asymmetric structures, and the flow of act ion potentials

can only occur in the direction from the presynaptic to the postsynaptic terminal.

Action potentials travel across the synapse in the form of a pulse of chemical signal-

ing molecules, which at the postsynaptic side is converted back into an electric action

potential. See neurotransmitter.

threshold potential When a neuron receives act ion potentials from other cells, its m e m -

brane potential becomes less negative. When the membrane potential reaches the

threshold potential, the neural generates an act ion potential. The threshold potential

is typically close to zero mV.

transcription The first step of gene expression. The information in the coding region of

a gene is copied from the DNA of the genome to a molecule of mRNA. The process

is regulated by regulatory proteins. This process occurs in the cell nucleus. Gene

regulation is primarily implemented through the regulation of transcription. See also

translation.

transcription factor See regulatory protein.

APPENDIX A. LIST OF TERMS 237

translation The second step of gene expression. The process by which protein chains are

assembled from amino acids. The sequence of amino acids in the chain is determined by

the information carried in a molecule of mRNA. This information originates in the DNA

of the organisms genome. Amino acids are added one by one to the growing protein

chain. At each addition, the type of amino acid is determined by the information

carried by a molecule of mRNA using the universal genetic code. This process is

carried out by cellular machinery known as ribosomes, which are dispersed throughout

the cell. Through interactions between the mRNA and proteins, translation can be

enhanced or reduced, giving an additional level control over protein production, in

addition to the regulation of transcription.

universal genetic code The sequences of amino acids in the of an organism's proteins

is encoded in the DNA of the organism's genome using the genetic code. This code

translates from triplets (or "codons") of DNA nucleotides to particular amino acids.

There are four different nucleotides, giving 43 = 64 different codons. Each of these

code for one of the 20 naturally occurring amino acids, or for the special symbol "stop"

which terminates translation. Almost all known biological organisms share the same

genetic code.

World NeuroGene class used to represent the simulation space.

WorldNode NeuroGene class used to represent a small, cubic volume element of the sim-

ulation space.

Appendix B

Gene scripts

In this appendix, gene and geometry scripts used to initialize and control various Neuro-

Gene simulations are listed. In addition to giving details about the relevant experiments,

these scripts also give examples of the syntax of gene and geometry scripts. Comments are

indicated in the same way as in C++ and Java, using /* . . . */ and // The notation

of the form "5.3e-2" used throughout these scripts represents numbers in exponential form,

i.e., 5.3 x 10V2.

B . l Scripts for verification of implementation

The following scripts were used to construct the experiments reported in chapter 4, in order

to demonstrate the correctness of implementations of various algorithms in NeuroGene.

B. 1.1 Verification of concentration measurements

The first set of experiments were used to validate the measurements of extracellular pro-

tein concentrations, which are computed by linear interpolation from values in particular

WorldNodes, see section 4.1.

Gene script

1 /*
2 * This gene is never expressed, see the geometry script.

APPENDIX B. GENE SCRIPTS

3 * /

4 gene Protein{

5 d i f f u s i b l e = t r u e ;

6 decay = 0;

7 d i f f u s i o n = 0 ;

8)

9 /*

lo * The r o l e of t h i s gene is t o r e p o r t t h e measurements by p r i n t i n g them

11 * t o t h e console u s i n g t h e p r i n t () a c t i o n . I t a l s o moves t h e c e l l

12 * component t o a new l o c a t i o n each s imulat ion time s t e p .

13 */

14 te rminal gene Measure (

15 r e g u l a t i o n {

16 express () ;

17 1
18 e f f e c t s (

19 p r i n t (" " +

20 () + " \ t N +
21 externalConcentra t ion0f (Pro te in) + "\t I f +

22 towardss igna l (P ro te in) ;

23 migrate([O.l ,O,O]);

24 1

25

Geometry script

1 import "ConcMeasurement .gene1' ;

2 space (10,10,10) ;

3 // An exponent ia l p r o t e i n concentra t ion g rad ien t is e s t a b l i s h e d .

4 s i g n a l (P r o t e i n , exp(x/3)) ;

5 // Build t h e c e l l component which w i l l do t h e measurement.

APPENDIX B. GENE SCRIPTS

B. 1.2 Measurement of gradient field

The following scripts were used to set up the experiments used to verify the evaluations of

protein concentration gradient vectors. This computation also relies of linear interpolation,

see section 4.2. The genome is very similar to the one shown above, except that the simulated

gene Measure does not cause cell components to migrate.

Gene script

1 gene Protein(

2 diffusible = true;

3 decay = 0;

4 diffusion = 0;

5)

6 terminal gene Measure (

regulation (

express () ;

>
effects (

print("" +

cellXCoordinate() + "\t" +

cellYCoordinate() + "\tt' +

externalConcentrationOf (Protein) + "\ttt +

towardssignal (Protein)) ;

)

APPENDIX B. GENE SCRIPTS

Geometry script

This script builds a 2D array of cell components. All of these will measure the gradient

vectors during a single simulation time step.

1 import "GradMeasurement . gene" ;

2 // These cons tan t s d e f i n e t h e s i z e of t h e s imulat ion space .

3 v a r i a b l e X = 6;

4 v a r i a b l e Y = 6;

5 space (X ,Y, I) ;

6 // Estab l i sh t h e p r o t e i n concen t ra t ion g rad ien t with s p h e r i c a l symmetry.

7 s igna l (Pro te in , O.l*sqrt(2*X*X - x*x - y*y)) ;

a / / This constant d e f i n e s t h e d i s t a n c e between t h e c e l l components.

9 v a r i a b l e PITCH = 0.25;

l o fo r (va r i ab1e xx=-0.4999; xx <= X - 0 . 5 ; xx += PITCH) (

11 for(var iab1e yy=-0.4999; yy <= Y - 0 . 5 ; yy += PITCH) (

12 buildSoma(xx, yy , 0) ;

13 3

14 3

B.1.3 Protein decay

The following scripts were used to verify the NeuroGene protein decay simulation. The

results of this verification are given in section 4.3.

Gene script

1 /*

2 * The decay of t h i s p r o t e i n w i l l be measured.

3 * /

4 gene Protein(

5 d i f f u s i b l e = f a l s e ;

6 decay = 0.05;

APPENDIX B. GENE SCRIPTS

7)

8 /*
9 * This gene is used to keep track of the duration of the simulation.
10 */

11 gene Counter (

12 diffusible = false;

13 decay = 0;

14 regulation (

15 expressExternally(l.0) ;

16 >
17)

18 /*

19 * This gene will measure the concentrations of both proteins
20 * defined above.
21 */

22 terminal gene Measure (

23 regulation (

24 express 0 ;

25 >
26 effects (

27 print ("" + 1 + surf aceConcentrationOf (Counter) +

28 " " + surf aceConcentrationDf (Protein)) ;

29 >
30)

Geometry script

This geometry scripts constructs a simulation with a single cell component. The cell com-

ponent is initialized to express a concentration of 1.0 of Protein on its surface.

1 import "Decay.geneM;

2 space(l,l,l);

APPENDIX B. GENE SCRIPTS

3 buildSoma(0, 0, 0) (

4 expressExternally (Protein, I. 0) ;

5 1;

B. 1.4 Ligand-receptor binding

The following scripts were used to verify the computation of ligand-receptor binding. The

simulation is constructed so that ligand is produced by one cell component, and two other

cell components, carrying differing amounts of receptor, compete for this ligand. As the sim-

ulation progresses, increasing amounts of ligand is produced. The results of this verification

are given in section 4.4.

Gene script

1 /*

2 * This gene defines the propertied of the receptor protein. In this
3 * simulation, the gene is never expressed, instead the cell components
4 * are initialized to carry a certain amount of receptor, see the
5 * geometry script.
6 */

7 gene Receptor (

8 diffusible = false;

9 decay = 0;

10 1
11 /*

12 * This gene defines the properties of the ligand. Its expression depends
13 * on the Producer gene.
14 */

15 gene Ligand (

16 diffusible = true;

17 decay = I;

18 diffusion = 0;

APPENDIX El. GENE SCRIPTS

19 regulation (

20 if (internalConcentration0f (Producer) > 0) C
21 expressExternally (int ernalconcentrat ionof (Producer)) ;

22 1
23 1

24 1
25 /*

26 * This gene defined the properties of the ligand-receptor complex. Such
27 * genes are never expressed.
28 */

29 gene Complex (

30 diffusible = false;

31 decay = 0;

32 1
33 /*

34 * This statement defines the receptor-ligand relationship, with a
35 * binding constant of 0.01.
36 * /

37 receptorDefinition(Ligand, Receptor, Complex, le-2);

38 /*

39 * This gene is self-enhancing, so that its concentration is doubled
40 * every time step.
41 */

42 gene Producer (

43 regulation (

44 if (internalConcentration0f (Producer) > 0) (

45 expressInternally(internalConcentrationOf (Producer) ;

46 1

4 7 1

48 1
49 /*

50 * This gene measures the concentratons of ligand, receptor and complex.

APPENDIX B. GENE SCRIPTS

51 * Its expression is suppressed by Producer.
52 * /
53 terminal gene Measure (

regulation (

if (internalConcentrationOf (Producer) == 0) (

express 0 ;

I
I
effects (

print (

"" + externalConcentration0f (Ligand) +

"\t" + surf aceConcentrationOf (Receptor) +

"\t" + surfaceConcentrationOf (Complex)) ;

I

Geometry script

A simple geometry scripts creates a simulation consisting of one producer soma and two

somas carrying receptor and competing to binding the ligand produced by the producer cell.

Note that the competitor cells express different amounts of the receptor.

1 import "LigandBinding . gene" ;
2 space(1, 1, 1);

3 buildSoma(0, 0, 0, "Producer") (

4 expressInternally(Producer , le-12) ;

5 I;

6 buildSoma(0.1, 0.1, 0.1, "CompetitorA1') (

7 expressExternally (Receptor, 0.1) ;

8 I;

9 buildsoma(-0.1, -0.1, -0.1, "CompetitorB1') (

10 expressExternally(Receptor, 0.02);

APPENDIX B. GENE SCRIPTS

B.1.5 Simulation of protein diffusion

The following scripts were used to verify the NeuroGene simulation of diffusion. All ex-

periments use the same gene script, while different geometry scripts are used to define the

various different situations under which diffusion simulation is carried out. The results of

this verification is given in section 4.5.

Gene script

1 /*
2 * This gene defines the properties of the protein whose diffusion
3 * is simulated.
4 */

5 gene Protein (

6 diffusible = true;

7 diffusion = 0.05;

8 decay = 0.0;

9 1
10 / *

11 * This gene measured the concentration of the protein and prints
12 * it to the console.
13 */

14 terminal gene Observe (

15 regulation (

16 if(internalConcentrationOf(Protein) == 0)(

17 print(externalConcentrationOf(Protein));

18 >
19 >
20)

APPENDIX B. GENE SCRIPTS

Geometry script: For "open" experiments

The following geometry script is used to initialize simulations in which the protein is free to

diffuse out of the simulation space. In the 1D case, a long narrow simulation space (1 x 1 x 32

WorldNodes) is created, which is open to diffusion only through the 1 x 1 end surfaces. In

the 2D case, a flat simulation space (1 x 32 x 32 WorldNodes) is created, where the thin 1 x 32

edge surfaces are open to diffusion. In the 3D case, a cubic simulation space (32 x 32 x 32

WorldNodes) which is open to diffusion through all surfaces is created.

In each case a 1D row of cells parallel to the X axis and passing through the centre of

the simulation space is constructed. These cells report the extracellular concentration of the

diffusing protein in each simulation time step.

1 import "Diffusion.gene";

2 v a r i a b l e p i = 180;

3 // These va r i ab les de f ine t h e dimensions of t h e s imula t ion space .

4 v a r i a b l e Lx = 32;

5 v a r i a b l e Ly = 1;

6 v a r i a b l e Lz = 1;

7 // Create t h e i n i t i a l p r o t e i n concentra t ion g r a d i e n t .

8 s i g n a l (P r o t e i n , s i n (p i * (x+O. 5)/Lx)*sin(pi* (y+O. 5) /Ly) * s i n (p i * (z+O. 5) /Lz)) ;

9 space(Lx, Ly, Lz);

l o / / Define which faces a r e permeable t o d i f f u s i n g p r o t e i n . The f i r s t

11 / / parameter applied t o f a c e s perpendicular t o t h e X-axis, t h e second

12 // t o t h e Y-axis and t h e t h i r d t o t h e Z-axis .

13 closed(fa1se , t r u e , t r u e) ;

14 / / Build a row of c e l l s .

15 fo r (va r i ab1e x = 0; x < Lx; x++)(

16 buildSoma(x, 0 , 0 , " I t + x) ;

17

To create the 2D and 3D experiments, the same script is used as is shown above, except

lines 4-6 are replaced with

APPENDIX B. GENE SCRIPTS

va r i ab l e Lx = 32;

va r i ab l e Ly = 32;

va r i ab l e Lz = 1;

to create the 2D experiment, and with

va r i ab l e Lx = 32;

va r i ab l e Ly = 32;

va r i ab l e Lz = 32;

to create the 3D experiment. In addition the statement on line 13 is replaced with '!closed(

f a l s e , f a l s e , t r u e) ;" or "closed(f a l s e , f a l s e , f a l s e) ;" in the 2D and 3D cases,

respectively.

Geometry script: For "closed" experiments

The following script was used to initialize the simulations used to verify diffusion computa-

tions in the case where the simulation space is closed, i.e., proteins are not free to diffuse

out of the simulation space. Again, ID, 2D and 3D experiments of the same dimensions as

above were run, using the three variables Lx, Ly and Lz to define those dimension.

1 import "Diffusion.gene";

2

3 va r i ab l e p i = 180;

4 va r iab le Lx = 32;

5 va r i ab l e Ly = 1 ;

6 va r i ab l e Lz = 1 ;

7

8 s igna l (P ro t e in , l+cos (p i* (x+O. 5) /Lx)) ;

9 space(Lx, Ly, Lz) ;

l o c losed(t rue , t r u e , t r u e) ;

11

12 fo r (var iab1e x = 0 ; x < Lx; x++)(

13 buildSoma(x, 0 , 0 , "I ' + x) ;

APPENDIX B. GENE SCRIPTS

The initial concentration functions were also varied between the ID, 2D and 3D experiments,

so that line 8 was changed to

signal (Protein, l+cos (pi* (x+O. 5)/Lx) *cos(pi* (y+O. 5) /Ly)) ;

in the 2D version and to

signal (Protein,

I+cos(pi* (x+O. 5) /Lx) *cos (pi* (y+O. 5) /Ly) *cos(pi* (z+O. 5) /Lz) 1 ;

in the 3D version.

B. 2 Neurodevelopmental simulations

In the following, the gene scripts used as basis for the developmental and neurodevelopmental

simulations reported in chapter 5 are listed.

B.2.1 Gene script for fruit-fly Even-stripe system

The following gene script is used to simulate the development of initial segmentation in

fruit-fly. This experiment is reported in section 5.1.

1 gene Nanos (

2 diffusible = true;

3 decay = 0;

4 diffusion = 0;

5)

6 gene Bicoid (

7 diffusible = true;

8 decay = 0;

9 diffusion = 0;

10)

APPENDIX B. GENE SCRIPTS

11 gene Hunchback-mRNA (

12 diffusible = true ;

13 decay = 5e-2;

14 diffusion= le-2;

15 regulation(

16 if (externalConcentration0f (Bicoid) > 2e-6) (

17 expressExternally(1e-5) ;

18 >
19 >
20 >
21 gene Hunchback (

diffusible = true;

decay = 5e-2;

diffusion = 5e-2;

regulation (

if (externalConcentration0f (Nanos) < le-6) (

expressExternally (externalconcentrat ionof (Hunchback-mRNA) ;

1
1

31 gene Knirps (

32 diffusible = true;

33 decay=5e-2;

34 diffusion = le-2;

35 regulation (

36 if (externalconcentrat ionof (Hunchback) < le-11) (

37 expressExternally(le-5) ;

38 >
39 >
40 >
41 gene Kruppel <
42 diffusible = true;

APPENDIX B. GENE SCRIPTS

43 decay = 5e-2;

44 diffusion = le-2;

45 regulation (

46 if (externalconcentrat ionof (Hunchback) < le-7

47 && externalConcentrationOf(Knirps) < le-7) (

48 expressExternally(le-5) ;

49 3

50 1
51 3

52 gene Giant (

53 diffusible = true;

54 decay = 5e-2;

55 diffusion = le-2;

56 regulation (

57 if (externalConcentrationOf (Bicoid) > 3e-6) (

58 expressExternally(le-5) ;

59 1

60 3

61 3
62 gene Evenstripe (

63 diffusible=true;

64 decay = 5e-2;

65 diffusion = le-2;

66 regulation(

67 if (externalConcentrationOf (Bicoid) > 5e-7

68 && externalConcentrationOf (Hunchback) > le-9

69 && ext ernalconcentrationof (Kruppel) < le-6

70 && externalConcentrationOf (Giant) c le-10) (

71 expressExternally(le-5) ;

72 >
73 3

74 1

APPENDIX B. GENE SCRIPTS

B.2.2 Gene script for topographic map

The following gene is used in the simulation of the development of initial (activity-independent)

topographic map formation between the retina and the optic tectum. The first few genes

are cell identity gene for the various cell types involved in the simulation. These genes are

all self-enhancing, and they are also important in enhancing other genes which are expressed

only in certain cell types.

1 gene tectalCellMarker (

2 diffusible = false;

3 decay = 0.3;

4 regulation (

5 if (surfaceConcentration0f (tectalCellMarker > 0) (

6 expressExternally(1e-4);

7 >
8 1

9)

lo gene retinalCellMarker (

diffusible = false;

decay = 0.2;

regulation (

if (surfaceConcentration0f (retinalCellMarke > 0) (

expressExternally(0.1);

>
>

The next set of genes are the Eph receptor genes. These are expressed in retinal ganglion

cells (RGCs), including their axons and growth cones. The expression pattern of these genes

is defined by a number of numerical parameters.

APPENDIX B. GENE SCRIPTS

19 constant EphA3-A = 0.25;

20 constant EphA3-B = - 1.2 ;

21 constant LO = 0.25; // amplitude of the high end of the gradient

22 constant Ll = 0.075; // amplitude of the low end of the gradient

23

24 constant B = -5;

25 constant A = (Ll-LO)/(exp(B)-I);

26 constant C = LO - A;

27 /*

28 * The EphA3 gene is expressed in a gradient along the horizontal
29 * dimension of the retina.
30 */

31 gene EphA3 (

32 diffusible = false;

33 decay = 0.6;

34 regulation (

35 if (surfaceConcentrationOf (retinalCellMarker) > 0) (

36 variable x = internalConcentration0f (nasalTemporalGradient) ;

37 expressExternally (A*exp(B*x)+C

38 + LO * internalConcentrationOf (knockin) ;
39 >
40 >
41 >
42 /*

43 * The EphB3 gene is expressed in a gradient along the vertical
44 * dimension of the retina. It is otherwise a direct copy of the
45 * EphA3 gene.
46 */

47 gene EphB3 (

48 diffusible = false;

49 decay = 0.6;

50 regulation (

APPENDIX B. GENE SCRIPTS

5 1 if (surfaceConcentration0f (retinalCellMarke > 0) (

52 variable y = internalconcentrationof (dorsoVentralGradient) ;

53 expressExternally (A*exp(B*y)+C;

54 3
55 3

56 3

The next set of genes are the ephrins. These are expressed in gradients in the tectal target

area which are innervated by RGC axons.

57 constant ephrinA2-intercept = 0.5;

58 constant ephrinA2-exponent = log(5) ;

59 /*

60 * ephrinA2 is expressed in a gradient along the horizontal dimension of
61 * the tectum.
62 */

63 gene ephrinA2 C

64 diffusible = false;

65 decay = 0.6;

66 regulation (

67 if (surfaceConcentration0f (tectalCellMarker > 0) C

68 variable x = internalconcentrationof (ApGradient) ;

69 express~xternally(ephrinA2-intercept

70 * exp (-ephrinA2-exponent * x) ;

71 3

72 3

73 3

74 /*

75 * ephrinB2 is expressed in a gradient along the vertical dimension of
76 * the tectum. It is otherwise a direct copy of the ephrinA2 gene.
77 */

78 gene ephrinB2 (

APPENDIX B. GENE SCRIPTS

diffusible = false;

decay = 0.6;

regulation (

if (surf aceconcentrationof (tectalCellMarker > 0) (

variable y = internalconcentrationof (LmGradient) ;

expressExternally(ephrinA2-intercept

* exp(-ephrinA2-exponent * y)) ;

1
1

The following genes are used to i) define the coordinates of RGCs and tectal cells (the four

first) or ii) defining the level of EphA3 knockin in the experiments after Brown et al. (2000).

The concentrations of the proteins defined by these genes are all initialized at simulation

setup, and do not change during the simulation. These genes all have default properties:

They are soluble with decay rate and diffusion rate of zero.

89 gene nasalTemporalGradient (1
90 gene dorsoVentralGradient (1
91 gene ApGradient (1
92 gene LmGradient (1
93 gene knockin (1

The following gene defines a soluble protein which is expressed in the tectum, and which

diffused towards the retina, thereby establishing a concentration gradient which RGC axons

follow in order to navigate to the tectum.

94 gene ret inoTect alGradient C
95 diffusible = true;

96 decay = 0.1;

97 diffusion = 0.1;

98 regulation (

APPENDIX El. GENE SCRIPTS

99 if (surf aceconcentrat ion0f (tectalCellMarker > 0) (

100 expressExternally (0.1) ;

101 3

102 3

103

The following gene and growth cone function define how RGC axons navigate from the retina

to the tectum.

104 terminal gene growRgcAxon (

105 regulation (

106 if (surfaceConcentration0f(retinalCellMarker) > 0 &&

107 insidesoma() && timerValue(wait)==O && numberOfAxons()==O) (

108 express (1 ;

109 1
110 1
111 effects (

112 growAxon (;

113 1
114

The next gene defines the condition under which growth cone are formed using the growth

cone function f indTectum. These conditions are such that this will only occur in RGC axons,

and it is suppressed by the external presence of tectal cell marker protein, which indicates

that the axons have arrived in the tectum and the growth cone behaviour needs to change.

iisterminal gene FindTectum (

116 regulation (

117 if (insideAxon0

118 %% surfaceConcentrationDf (retinalCellMarker > 0

119 && externalConcentration0f (tectalCellMarker < le-4) (

120 express () ;

APPENDIX B. GENE SCRIPTS

121 1

122)

123 effects (

124 growthcone (f indTectum) ;

125 1

126)

127 /*

128 * The growth cone function is simple, the bid value being equal to the
129 * extracellular concentration of the guiding protein.
130 */

131 growthconeFunction f indTectum (

132 filopodiumCount = 4;

133 filopodiumLength = 0.2;

134 searchRange = 0.0;

135 neighbourcount = 0;

136 migrate (externalConcentrationOf (retinoTectalGradient) 1 ;

137)

The next gene and growth cone function define the behaviour of RGC axons which cause these

to form and maintain a sorted topographic projection in two dimensions. This behaviour

is enhanced by the extracellular presence of tectal cell marker protein, meaning that RGC

axons will change to this behaviour once they reach the tectum.

138 terminal axon gene SortMap (

139 regulation -(

140 if (insideAxon0

141 && surfaceConcentrationOf(retinalCellMarker > 0

142 && externalConcentrationOf (tectalCellMarker) >= le-4) C

143 express 0 ;

144 1
145 1

146 effects (

APPENDIX B. GENE SCRIPTS

147 growthcone (sortMap) ;

148 1
149)

The following growth cone function encodes the topographic map formation algorithm as it

has been outlined in section 5.2.

// the filter ensures that only retinal axons

// are considered as neighbours

filter = surfaceConcentrationOf(retinalCellMarker) > 0

&& insideAxon (1 ;

/ / The bid value is computed based on a number of different gradients

// which are evaluate here. These are either between the tip and the

/ / base of the filopodium (e.g. retinotec-gradient) or between the

// axon itself and its neighbour (e .g. EphA-difference) .

variable retinotec-gradient =

externalConcentration0f (retinoTectalGradient1

- growthconeConcentration0f(retinoTectalGradient~;

variable ephrinA-gradient = externalConcentrationOf(ephrinA2)

- growthconeConcentrat ionof (ephrinA2) ;

variable EphA-difference =

surf aceconcentrat ionOf (EphA3) - neighbourConcentrationOf (EphA3) ;

APPENDIX B. GENE SCRIPTS

variable ephrinB-gradient = externalConcentrationOf(ephrinB2)

- growthconeConcentration0f (ephrinB2) ;

variable EphB-difference =

surfaceConcentrationOf (EphB3) - neighbourConcentrationOf (~phB3) ;

// the score is used to store the bid value as it is being evaluated.

variable score = 50 * retinotec-gradient;

// The relative pecking order with the neighbouring RGC axon

/ / determines whether the ephrinA gradient is attractive or

/ / repulsive. EphA-difference>O indicates that the axon is higher in

// pecking order than the neighbouring RGC, in which case the ephrinA

// gradient is repulsive.

if (EphA-difference > 0) (

score -= ephrinA-gradient;

) else if (EphA-difference < 0) (

score += ephrinA-gradient;

1
// Here the pecking order in the vertical dimension is determined.

/ / If the axon is higher in the pecking order than the neighbour

// (when EphB-difference>O), then the ephrinB gradient is attractive,

// otherwise 'it is repulsive.

if (EphB-difference > 0) (

score += ephrinB-gradient;

) else if (EphB-difference < 0) (

score -= ephrinB-gradient;

1

/ / This is the actual growth cone command with the bid value.

migrate (score) ;

APPENDIX B. GENE SCRIPTS

B.2.3 Gene script for refinement and ocular dominance

The following gene script is used to simulate the activity-dependent developmental processes

reported in section 5.3. As in the genome listed above, the first genes are self-enhancing cell

identity genes. In the case of the starburst cell marker gene, the gene's effect section causes

the duration of the refractive period of each cell to be continuously re-randomized with

stochastic values from a Gaussian distribution.

1 soma gene starburstCellMarker C

2 diffusible = false;

3 decay = 0.2;

4 regulation C
5 if (surf aceconcentrationof (starburstCellMarker) > 0) C
6 expressExternally (le-2) ;

7 3

8 3

9 effects C
10 // continuously re-randomize the refractive period of

11 // starburst cells.

12 set~efractoryDelay(gaussian(60,20)) ;

13 3

14 3
15 soma gene tectalCellMarker C
16 diffusible = false;

17 decay = 0.3;

18 regulation C

19 if (surf aceconcentrationof (tectalCellMarker) > 0) (

20 expressExternally (le-4) ;

21 3

22 3

23)

24 gene retinalCellMarker (

25 diffusible = false;

APPENDIX B. GENE SCRIPTS

26 decay = 0.2;

27 regulation C
28 if (surf aceconcentrat ionof (ret inalCellMare > 0) C

29 expressExternally (I) ;

30 >
31 1

32 1

The following genes together implement the Elliott and Shadbolt learning algorithm, see

appendix H. The following parameters define the parameter values of the algorithm.

33 constant learning-rate = le-2;

34 constant fast-decay = I ;

35 constant T1 = 2e-2;

36 constant TO = 0;

37 constant lambda = le6;

The concentration of the protein expressed by this gene represents the recent average firing

rate of the cell component.

38 presynapse gene timeAverageActivity C

diffusible = true;

decay = -log(l - learning-rate);

regulation C
if (cellIsFiring0

&& surf aceConcentrationDf (retinalCellMarker > 0)

expressInternally (learning-rate) ;

1

1

APPENDIX B. GENE SCRIPTS 262

The gene NT encodes the soluble protein which acts as a retrograde messenger to the presy-

naptic terminal notifying this of the current level of the membrane potential of the postsy-

naptic cell.

48 soma gene NT (

diffusible = true;

decay = fast-decay;

diffusion = 0;

regulation (

if (surfaceConcentrationOf (tectal~ellMarker) > 0) (

variable weight = 0;

f oreach (cellvariable i in allPost synapses (1) (

weight += i . synapt icWeight (1 ;

>
variable expression = TO;

if (weight > 0 && membranePotential0 > 0) (

expression += TI * membranePotential0 /weight ;
>
expressLocally (expression) ;

1
>

The receptor of the NT intercellular signaling molecule is expressed by presynaptic termini.

66 presynapse gene NTreceptor (

67 diffusible = false;

68 decay = fast-decay;

69 regulation (

70 if (surf aceconcentrationof (retinalCellMare > 0) (

71 if (cellIsFiring()) (

72 // since the expression of TimeAverageActivity that

APPENDIX B. GENE SCRIPTS 263

73 // happens in the current time step is not yet detectable

74 // in another gene, the expressed amount (equal to the

75 // learning rate) needs to be included here

76 variable rho = lambda*(learning-rate +

77 internalconcentrat ionof (timeAverageAct ivity))

78 /arboroutgoingweight 0 ;

79 expressExternally (synapt icWeight (1 *2*rho) ;

80 1 else C
81 variable rho = lambda*

82 int ernalconcentrat ionof (t imeAverageAct ivity)

83 /arboroutgoingweight 0 ;

84 expressExternally (synapticweight 0 *l*rho) ;

85 1
86 1

87 1

88 3

The complex gene has, as usual, no regulation or effects sections.

89 gene NTcomplex (

90 diffusible = false;

91 decay = fast-decay;

92 1

This statement defines the receptor-ligand relationship implementing the competitive aspect

of the Elliott and Shadbolt learning algorithm. For the significance of local receptors, see

below.

93 local receptorDefinition(NT, NTreceptor, NTcomplex, le-12);

This gene implements the actual learning algorithm using the information computed by the

receptor-ligand relationship above. The gene is expressed in all RGC presynaptic terminals.

APPENDIX B. GENE SCRIPTS

94 terminal presynapse gene learn C

regulation (

if (surf aceConcentrationOf (retinalcell~arker) > 0)

express 0 ;

1
3

effects C

variable delta =

learning-rate * (

surf aceConcentrationOf (NTcomplex) - synapticweight 0

1;

set Synapticweight (synapticweight 0 + delta) ;

print ("weight = I' t (synapticweight 0 t delta)) ;

3

Local signal expression

A special form of the ligand-receptor simulation system has been implemented to allow the

trans-synaptic competition for protein to be implemented. As far as the gene language

is concerned, this functionality is accessed using the local tag on the definition of the

receptor-ligand relationship (see line 93 above), as well as the expressLocally0 action

used on line 62 above. The command expressLocally0 is only valid for the expression of

soluble proteins.

Consider a situation with a cell component A, which forms synapses with a set of N

other cell components Bi with 0 < i < N. For the synapse between A and B;, the two

synaptic termini are labeled ai and b;, where ai is part of the same cell as A, and b; is part

of the same cell as Bi. If A then expresses an amount of a soluble signal locally (i.e. using

expresslocally ()), that amount of signal can bind to receptors carried by the synaptic

termini bi only for 0 < i < N. It can not bind to receptors on ail nor on the cell components

Bi. Conversely, if Bi for some value of i expresses a soluble protein locally, it can only bind

APPENDIX B. GENE SCRIPTS

to receptors on the single synaptic terminus ai.

The advantage over this system over that outlined in section 2.4.4 is that it avoids cross-

talk among cells that are close together in space. Using normal extracellular expression of

the protein NT, the NT signals from two cells A and A' which both are located in the same

WorldNode can not be distinguished. Using local expression, the protein signals these cells

emit are only received by synapses which connect directly to these cells, thereby removing

the cross-talk effect.

Comparing to algorithm 1 listed on page 63, the local version makes the following changes:

Line 1:

Lines 2-3:

Line 7:

Line 9:

[LIo is the local concentration of the ligand at some cell component C.

[RIo and [CIo are the total surface concentrations of receptor and complex on all

synaptic terminals facing C, i.e., all synaptic terminals whose partners' parent

is equal to C.

The adjustments of ligand concentration is made to the local concentration at

the cell component C.

For-loop iterates over the synaptic terminals described for lines 2-3 above.

Lines 11-12: The adjustments of receptor and complex concentrations are made to presy-

naptic terminals synaptic terminals described for lines 2-3 above.

Appendix C

Automatic cell naming

All cells in NeuroGene are identified by a name. The name may be the empty string, and it

need not be unique. When cells are divided, new names for the two daughter cells may be

specified. If new names are not specified, the daughter cells are automatically given names

which are derived from the name of the parent cell. This makes it possible to trace the

ancestry of any cell in a simulation. The naming scheme is as follows. Given a cell C with

name "Foo", which will be divided to form two daughter cells C1 and C2. The cells will be

named according to the following rules:

Figure C.l : Example of naming of a set of related cells ("Foo" being the parent) according
to the rules outlined here.

If S ends with one of the characters in the range '2' - '7', then that character is replaced

by the value 2c to give the name of C1 and with the value 2c + 1 to give the name of C2,

where c = 2 if the character was '2', etc. Values in the range 10-15 are represented by the

APPENDIX C. AUTOMATIC CELL NAMING 267

characters 'A' - 'F'. For example, if S = "Foo6", then C1 will be named "FooC" (where 'C'

represents 12) and C2will be named "FOOD" (where 'D' represents 13).

If S ends in some character not in the range '2' - '7', then the character '2' is appended

to S to give the name of Cl, and the character '3' is appended to S to given the name of C2.

Figure C.l shows the names given to daughter cells through four generations of a cell

named "Foo". The cell names become one character longer for every three generations, as is

shown in the case of the offspring of the cell "Foo8".

This naming scheme can be used to trace back the ancestry of a given cell. E.g. a cell with

the name "FooE86" has parents (going back eight generations) "FooE83", "FooE8", "FooE4",

"FooE'2", "FooE", "FOOT', "FooS" and "Foo".

C . 1 Regular expressions

Regular expression matching is implemented in NeuroGene using classes from j a v a - u t i l . -
regex (Sun Microsystems, 2004, package java.util.regex). Regular expressions work as fol-

lows: For any string S and any well-formed regular expression E , it can be determined

whether S matches E. Regular expressions represent a powerful tool because for any set

of strings S1 - S,, there exists a regular expression which will match these strings and no

others.

A regular expression consists of characters and meta- chara cters. A regular expression

which consists only of characters, will match only itself, such as the regular expression

"Example", which matches only the string "Example". Regular expressions which con-

tain meta-characters may match more than one string, for example, the regular expression

" [Eel xample" matches both "Example" and "example".

The most commonly used meta-characters are listed below:

(any character) A dot matches any character, so that the regular expression "Ex.mple"

matches the string "Example", as well as all strings where the "a" has been sub-

stituted with any other character, such as "ExAmple", "Exwmple", "Ex8mplen,

LiE~&mple", L I E ~ mple", etc.

1.. .I (range) Square brackets indicate a choice of possible matching characters, so that

"Ex[aclmple" matches the two strings "Example", "Excmple", and no others.

APPENDIX' C. AUTOhIATIC CELL NAMING 268

Ranges can also be specifies, so that "Ex [a-clmple" matches the three strings

"Example", "E~brnple"~ "Excmple" and not others. Finally, these can be combined

as in "Ex [a-cpx-zlmple", in which the choice is between the letters a, b, c, p,

X, y, and z.

? (zero or one) A normal character followed by a "?" in a regular expression means that the

character may be absent or present, so that the regular expression "Exa?mple"

will match the two strings "Example", "Exmple", and no others.

* (zero or more) A star is used in the same way as the "?", and means that zero or more

repeats of the ordinary character is matched, so "Exa*mple" will match all the

strings with zero or more "a"s in them, such as "Exmple", Example", Exaample",

etc.

+ (one or more) A plus matches one or more occurrences of the preceding ordinary character,

so that "Exa+mpleJ' will match the same strings as "Exa*mplel', except that

LLExa+mple" does not match "Exmple".

.* (any string) Meta-characters can be combined in many ways. The most common com-

bination is perhaps ".*", which matches any string. Since "." matches any

character, and "*" modifies the preceding character to match zero or more re-

peats, ". *" matches zero or more repeats of any character, which is to say that

it matches any string (and not just the strings of repeating characters such as

"aaaaa"). The regular expression "Exa. *m. *pleY ' matches all strings which start

with lLExa", have an "m" somewhere in the middle, and end with "ple", such as

"Example", "Exa@#$mple", "Exa28m(bla)plen, etc.

0 (grouping) Grouping is used to make a meta-character apply to more than one preceding

character, so that the expression "E(xa)+mple" matches the strings "Example",

"Exaxample", "Exaxaxample", etc.

\ (escape) Escapes are used to remove the "magic" from one of the meta-characters, e.g. to

make a * represent the character "*" rather than the "zero or more" qualifier. So

the regular expression "Ex*mple" with escaped "*" only matches the string

APPENDIX C. AUTOMATIC CELL NAMING 269

"Ex*mplen, while the expression "Ex*mple" without the escape matches the

strings L!Emple", "Exmple", "Exxmple", etc.

Using these meta-characters, we can construct a regular expression which matches all positive

or negative integers and floating point numbers

The initial part [+ , -1 ? will match a leading positive or negative sign, but the ? means that

numbers which don't have a sign are also matched. 10-91 + matches one or more occurrences

of any digit - this will match numbers before the period. The next part, which matches

the period and any digits in the fractional part, is enclosed in ()?, meaning that the part is

optional. This is so that integers will be matched. The period is escaped so that it represents

the character "." and not the meta-character "any character". Finally, there can be zero or

more digits after the period. This expression will match the string "1" (first part [+, -1 ? is

absent, one digit matches the second part, and the third part is absent. It will also match

"-562", "0.34", "+34.12", etc. Note that it will match "23.", since the fractional part matches

zero or more (*) digits, but it will not match ".513" because the part preceding the period

matches one or more (+) digits.

This outline only shows a small fraction of what can be done with regular expression.

For a full description of the capabilities of the Java regular expression library, see Sun

Microsystems (2004), class j ava. u t i l . regex. P a t t e r n .

Appendix D

Exogenous neural input filters

As part of NeuroGene we have developed a set of modules which generate simulated exoge-

nous neural activity. Exogenous in this context means originating in neural tissues which

are not part of the NeuroGene simulation. A modular approach has been chosen, where

different modules can be combined in various ways to produce a wide range of neural input.

Modules come in two types, sources and filters. Sources generates neural activity, while

filters alters the neural activity originating in sources or coming through other filters. By

combining filters, many varied forms of neural activity patterns can be generated. Any

number of other filters can receive activity from a given filter or source. Some filters are

created to incorporate neural activity originating from multiple other filters or sources. It is

therefore possible to create exogenous activity systems in which filters and sources form the

topology of a directed acyclic graph (DAG).

Implementationally, this system is based on a polling model, where simulated neurons

will retrieve their activation from the exogenous neural activity system. This means that

each time a neuron computes its activity level, it polls the exogenous activity source for

the current activity level coming into the cell during the current simulation time step. This

implementation is well suited to the discrete-time neural models used in NeuroGene.

Some sources and filters process neural activity based on the location in 3D space of the

cell which is receiving the activity. This allows for the design of exogenous input systems

which are spatially coherent, i.e., where adjacent neurons tend to receive similar neural

activity. This property is used in the generation of simulated visual images.

In the following, the different types of neural activity sources are described, followed

APPENDIX D. EXOGENOUS NEURAL INPUT FILTERS 271

by various categories of filters. .4t the end of the appendix is a detailed description of the

exogenous source used to generate simulated visual information in simulation of refinement

and ocular dominance column formation presented in chapter 5 .

D . l Neural activity sources

The following neural activity sources generate neural activity according to simple rules. The

simple activity patterns generated by these sources can be modified using filters to create

more interesting neural activity patterns.

ConstantValueSource The source is initialized with a real value v. This value v is returned

each time the source is queried about the activity at some location. While not

very useful by itself, when used in combinations with the additive and multiplica-

tive filters (see below), a wide range of useful configurations may be created.

RandomValueSource This source returns random values from some probability distribution.

Available distributions include uniform between two values ZowerBound and

upperBound, Gaussian with a given mean and standard deviation, and bino-

mial which returns some value high with probability p E [O,1] and some other

value low with the probability (1 - p). Note that this source will not return the

same value if queried repeatedly about the same location in the same time step.

To achieve this normally desired property, the random source must be wrapped

with a caching filter, see below.

TagFileActivitySource This source reads data from a file in comma-separated values format

(a file format easily generated using common spread sheet applications). Each

cell which is to receive neural input from this input file tagged with a string,

and the cell will receive data from the column in the spread sheet file with the

corresponding string as column header. The string tag need not be identical to

the cell name (see appendix C), and more than one cell may share the same tag,

which means that they will all receive identical neural input from the input file.

APPENDIX D. EXOGENOUS N E U R A L INPUT FILTERS

D .2 Transform location

As outlined above, many filters process neural activity according to the location of the neuron

which is going to receive that information. The following filters applies transformations of

different kinds to this location information.

TransformLocationFilter This filter changes the location of the query. The filter supports

the common linear transformations rotation, uniform scale, non-uniform along

each of the three principal spatial axes (which can also be used to implement

reflections), translation and shear. For example, a non-uniform scaling filter

which scales the x , y and z coordinates by the factors 1, -1 and 0 respectively

(representing a mirror operation through the XZ-plane and a collapse of the

Z coordinate into the XY plane) will, when queried about the neural activity

arriving at some location [x, y, z] query the underlying source about the location

[x, -y, 0] in stead.

WrapLocationFilter This filter ensures that all queries fall within a given area of 3D space,

typically the simulation space. Some filters (notably the Gaussian filter) may

lead to queries about neural activity at locations that fall outside the simulation

space. This filter may be used to wrap such queries so they fall inside the

simulation space. If the simulation space extends from xmin to xmax along the

x dimension, then a query to this filter with the x coordinate x, < xmin or

x, 2 xmax will be converted to the location

where n is a positive or negative integer such that xmin 5 xb < x,,,. The y and

z coordinates are converted in the same way. The filter may be initialized to use

arbitrary values for xmin, xmax, yminl etc., or may be set to automatically use

the extent of the simulation space.

UnPerturbLocationFilter This filter is initialized with the definition of an infinite grid of

points in 3D space, G = [xo + Ix l ,yo + Jy l ,zo + Kzl], I, J and K integers. When

the filter is queried about the activity at some general location L = [x, y, z] it

queries the underlying source about the location which is closest to L but which

APPENDIX D. EXOGENOUS NEURAL INPUT FILTERS 2 73

is also in G. This filter can be used to feed activity from locations that fall on a

regular grid to cells whose locations do not fall on a regular grid.

D .3 Transform activity

The following filters apply transformations to the actual neural activity values. Some in-

tegrate neural activity from multiple sources and/or filters, allowing activity from different

filters or sources to be combined.

AdditiveFilter This filter takes the activity from two other source filters, and returns the

sum of the two as resulting activity. The contributions from the two filters are

scaled by two independent scalar factors.

MultiplicativeFilter This filter takes the activity from two other source filters, and returns

the product of the two as resulting activity.

RandomFlipFilter This filter takes the activity v from an underlying source filter, and re-

turns the value (1 - v) with some probability p E [O , l] and the value v with

the probability (1 - p). Just like the random value source above, this filter will

not return the same value if queried repeatedly about the same location in the

same time step. Again a caching filter should be used to give consistency within

simulation each time step.

StrobeFilter This filter it written to simulate the effect of strobe lighting sometimes used in

animal rearing experiments. The effect of the strobe light is to rapidly shift the

visual experience between a light and dark domain. The filter retrieves neural

activity from two underlying source filters called light and dark . These filters

may be simple constant value sources with values 1 and 0, respectively, or they

may be assigned to arbitrary filter sources built from other filters listed here.

The filter returns the neural activity from the light source for Nlight time steps,

then it returns activity from the dark source for Ndark time steps, before going

back again to the light filter.

GaussianFilter This filter does a Gaussian filtering (in ID, 2D or 3D) over the activation

returned by some other filter source. When this filter is queried about the activity

APPENDIX D. EXOGENOUS N E U R A L INPUT FILTERS 2 74

at some location L = [x, y, z], it queries the underlying filter source at several

points close L, and scales these values by a ID, 2D or 3D Gaussian filter core of

centered at L. The filter core is normalized so that it sums to 1 after discretiza-

tion. In order to define the location of "several points close L", a grid is defines

just like the one defined in the case of UnPerturbLocationFilter above.

D.4 Transform timing

The following filters alters the timing of the generation of neural activity. They can be used

to introduce delays in the transmission of neural activity, or to combine current and previous

neural activity levels. Note that these filters (with the exception of the caching filter) will

not work properly if cells move, since the same cell will not have the same location in each

time step.

The most commonly used of these filters is the CachingFilter, which needs to be used

in conjunction with all stochastic filters and sources in order to ensure that for a given 3D

location in space, a constant value is returned within the same time step.

CachingFilter Each time this filter is queried about the activity at some location L, it queries

some underlying filter source. It retains the value in a lookup table and returns

it. On subsequent queries about the same location L, the value is retrieved from

the lookup table and returned, and the underlying source is not queried. At

the end of each simulation time step, the lookup table is cleared, so that values

for the subsequent time step will come from the underlying source filter. This

filter has two important uses: One is to improve performance with filters which

are computationally expensive. The second is to give consistency to stochastic

sources and filters.

TimeDelayFilter This filter causes delays the neural activity by one or more time steps. The

filter is initialized with some non-zero parameter N 2 1. In time step T, the

filter will return activity that was retrieved from the underlying filter source in

APPENDIX D. EXOGENOUS NEURAL INPUT FILTERS 279

time step T - N. At the same time, the underlying filter is queried for the value

for time step T, this value is stored in the filter, and will be returned in time

step T + N . For the first N time steps of the simulation this filter returns zero

for all activity queries.

TimeDilateFilter This filter stretches the time domain. The filter is initialized with some

parameter N > 1. When the filter is queried in some time step T for which the

modulus mod (T, N) = 0, then the filter will return activity retrieved from the

underlying filter source. It will also store this activity in a local lookup table.

In time steps for which mod (T, N) f 0, the filter returns the value from the

lookup table for the same location. This means that the underlying filter is only

queried every N time steps, and the same values are returned for each of the

subsequent (N - 1) time steps as well.

RecurrentFilter This filter is similar to the TimeDelayFilter, in that it takes a parameter

N > 1, and stores activity for the last N time steps. However, it stores the

output activity computed by the filter itself in an earlier time step, and uses that

to compute the activation level in later time steps. In time step T, the output

O(T) of this filter is computed from the input from the underlying filter source

in the same time step, I(T), and the output from the recurrent filter itself in an

earlier timestep, O(T - N) , to give

The factor w E [O,1] determines the relative weight of the recurrent data and

new data. Note that the value of N will in most cases be 1.

D.5 Neural activity sinks

Activity sinks records the current neural activity level of cells. Currently the system only

supports saving the activity to a file, but the system may be extended to support actuators,

letting the simulated organism interact and modify its environment.

TagFileActivitySink This activity sink saves neural activity to a file is CSV (comma sep-

arated values) format. It acts as a compliment to the TagFileActivitySource

APPENDIX D. EXOGENOUS NEURAL INPUT FILTERS

, .
I Un~erturb location filter I I Un~erturb location filter I

Gaussian filter Gaussian filter

I Caching filter I
Random flip filter 7

Wrap location filter
Scale location filter

Figure D.l: The complete exogenous filter assembly used to simulate the visual stimuli of
the ocular dominancejrefinement experiments.

described above, and the file formats are generally compatible. Incompatibili-

ties arise when the set of cells whose activity is saved to file changes during the

simulation.

D.6 Complete example

Figure D.l shows the entire filter assembly used to generate simulated visual stimuli with

well-defined inter-ocular correlation. The filter stack is queried from the cells at the top,

using the location in 3D space as the key to determine the value of the generated neural

activation.

The first filter is then the UnperturbLocationFilter. This filter ensures that even if the

cells do not fall on a regular grid of points in 3D space, the underlying filter will be queried

only about points on such a regular grid. This filter makes it possible to stagger the RGCs

by small random amounts.

The Gaussian filter has the effect of smoothing out the activity coming from other filters

below. In order to compute the activation at some point [x, y, z] the filter needs to query

the underlying filter at several points arranged in a regular grid which includes the point

[x, y, z]. Furthermore, when queried about activation at an adjacent point, e.g. [x, y, z+ Az],

APPENDIX D. EXOGENOUS NEURAL INPUT FILTERS 277

the queries to the underlying filter needs to be made to the same grid points as those for the

earlier query - if not, the values returned from the Gaussian filter for adjacent points will

be unrelated, which means the data is not being properly filtered. To achieve this goal, the

Gaussian filter uses the same grid as the UnperturbLocationFilter do determine the locations

around each query point [x, y, x] at which to query the underlying filter.

The recurrent filter creates temporal coherence in the data by returning the sum of

the activation received from the underlying filter in time steps i and that returned by the

recurrent filter itself in time step i - 1, i.e. N = 1. The recurrent weight w as described

above is 0.667.

In eye1 (on the right in figure D.l) a caching filter is used to retain the activation level

from the underlying filter for one time step. Caching filters must be used in conjunction

with all stochastic filters to ensure that all calls to the filter with the same location within

the same time step returns the same value.

The random flip filter introduces a well defined inter-ocular correlation of neural activity.

If the activity level this filter receives from the underlying filter is x, then the filter returns

1 - x with some probability p and returns the value x unchanged with the probability 1 - p.

p = 0 thus creates identical input to both eyes, p = 1 creates anti-correlated input to both

eyes, and p = 0.5 creates non-correlated input to both eyes. Note that because of the

Gaussian filtering, the probability of flip at this filter is not going to be the same as the

probability of corresponding RGCs having different firing state. However, an increase in p

will always result in a decrease in the inter-ocular correlation.

The wrap location filter adjusts for the fact that the Gaussian filters may generate queries

that fall outside the simulation space. The filter wraps such queries around so they fall within

the simulation space, see above. This has the effect of connecting the edges of the retina

similar to how connections where used in the endogenous neural activity experiment, see

figure 5.20.

The scale location filter is used to project all queries onto the XY plane. This means that

the two layers of retinal ganglion cells may be places at different z coordinates, while still

receiving related neural activity. For example, an RGC in one eye might have the coordinates

[x, y, z] and another RGC in the other eye might have the coordinates [x, y, x+ Ax]. As these

two cells retrieve their neural activation inputs from the filter assemblies, their locations will

both be converted to [x, y, 01, which means they will both get the same activity value from

APPENDIX D. EXOGENOUS NEURAL INPUT FILTERS 278

the underlying filter. However, these values will subsequently be subject to the different

filter stacks, giving rise to different but related values in the end.

The caching filter is again used to make sure that all queries about the same point in

space in the same time step returns the same value. Finally, the binary value source returns

a value of 1.0 with a probability of 0.5, and a value of 0.0 with probability of 0.5.

D.7 Conclusion

Using a modular approach, we have been able to create complex simulated exogenous neu-

ral activity patterns to a pre-existing specification. Most of the modules are simple, and

additional modules can be added to the system relatively easily.

Appendix E

JavaBean coding standard

JavaBeans are Java classes which are written according to a coding standard, as described

below. Classes written according to this standard may be manipulated in a standardized way

using Java's reflection mechanism (Sun Microsystems, 2004). A number of powerful tools

exist for instantiating, altering, inspecting and using JavaBean classes, including saving

instances to file and transmitting them over a network connection.

All JavaBean classes must have a default constructor, i.e. a constructor which does not

take any parameters. The classes may also have other constructors. This means that there

is a standard way of creating new instances of any bean class.

The properties of JavaBean classes are accessed through accessor functions, called getter

(for functions to access the current value of the property) and setters (for functions to change

the value of the property). The accessor functions are named according to the property they

access. As an example, for a property called age of type int, the getter and setter functions

should have the signatures (respectively)

public int getAge0

public void setAge(int newAge)

If the data type of some property boring is boolean, the getter may be called either isBoring()

or getBoring0. If both functions exist, then the former is used. In this way JavaBean tools

can discern the name and data type of all properties from the signature of the accessor

functions.

APPENDIX E. JAVABEAN CODING STANDARD 280

The NeuroGene system contains a module called a "property sheet" (org . neurogene . -
gui .propertysheet .Propertysheet), which takes an instance of any JavaBean class, and

displays the values of all the instance's properties. The property sheet allows the values of

all properties to be altered, and automatically updates the JavaBean instance accordingly.

This functionality is used in conjunction with secondary views (see section 3.3.3), but can

easily be extended to other areas. Writing these classes according to the JavaBean standard

also makes it possible to save view instances to file using already existing XLM-based tools,

see section 3.5.

There are a number of methods in the JavaBean standard used in conjunction with

the Observable pattern (see section 3.2.1) which allows a tool to monitor and even veto

changes in the properties of a JavaBean instances. It is possible to register and deregister

PropertyChangeListener instances with a JavaBean instance using functions which always

have the signatures

public void addPropertyChangeListener(PropertyChangeListener lstnr)

public void removePropertyChangeListener(PropertyChageListener lstnr)

All registered listeners are notified whenever a property of the bean is altered. It is also

possible to register a VetoableChangeListener with a JavaBean instance. It is also notified

of changes just like the PropertyChangeListener, however, the listener may veto the change

by throwing an exception.

Together these standardized facilities allows the design of powerful utilities for interacting

with Java classes that are written according to the JavaBean coding standard.

Appendix F

Solution to the diffusion equation

F. 1 General solution

Diffusion in a 1D space is described by the ordinary differential equation (Kreyszig, 1988,

where u(x, t) is the concentration of some compound as function of time and space, and D

is the coefficient of diffusion. This important equation is treated in most general textbook

on partial differential equations, it describes diffusion a s well as heat flow and electrostatic

potentials.

In three dimensions this becomes

Separation of variables using

gives

aT
(F.2)

where the function parameters have been dropped for brevity. Since these terms are functions

of different free variables, they must all be constant. We assume for the moment that these

APPENDIX F. SOLUTION T O THE DIFFUSION EQUATION

constants are all negative.

aT
--
Tat

- - oP2
It follows from (F.2) that

Solving the spatial derivatives, we get

which has the general solution

The alternative equation

(with positive constant p2) has the solution

which represents an exponential growth. This solution has no physical meaning and may be

excluded from the following analysis. The above assumption regarding the sign of the terms

in equation F.2 is therefore justified.

F.2 Open simulation space

Assume a rectilinear 3D space of dimensions L,, Ly, Lz along the x, y and z directions.

Given the boundary condition that u is zero at the boundaries of this space, i.e. u(0, y, x, t) =

u(Lz, y, z , t) = u(x, 0, Z, t) = . . . =O. This corresponds to a situation in which the diffusing

compound is free to leave the simulation space, and the concentration of the compound

outside the simulation space is zero.

APPENDIX F. SOLUTION T O T H E DIFFUSION EQUATION

F.2.1 The spatial components

Using the boundary conditions that X (0) = 0 and X (L,) = 0, we get that

X (0) = A, cos(0) + B, sin(0) = A = 0

and

X (L,) = B, sin(p,L,) = 0

which has the non-trivial solution for B # 0

where n is a positive whole number. This gives the solution

Xn(x) = Bxn sin (y) -

Solving for Y (y) and Z (z) in the same way we get

F.2.2 The temporal component

This solution for the spatial components of u allows us to solve for the temporal component.

which has the solution

Tn (t) = Btn ~ X P (-DP;~) (F. 5)

Combining the constant terms Bn from the four different solutions into a single constant,

we get the following solution in three spatial dimensions and time:

n r x
un(x, 9, Z. t) = Bn sin (L,) sin () sin () eXP (-DP;~)

APPENDIX F. SOLUTION T O THE DIFFUSION EQUATION 284

Expressions of this form are all solutions to the diffusion equation. The general solution is

F.2.3 Computing the coefficients

The coefficients Bn are determined from the initial condition at t = 0, at which point the

concentration is defined by some function f (x, y, x) over the spatial variables only:

To simplify, the solution to finding the coefficients Bn will be shown for the case with two

spatial dimensions only:

Multiplying on either side with sin (7) sin (y) we get

w
m r x m r x nrY m=Y = B, sin (y) sin (=) sin (%) sin (L,)

n=l

Using the identity
1

sinU sin V = - (cos(U - V) - cos(U + V))
2 (F.8)

twice, we get

m r x mrY n + m) r x
f (x, y) sin (=) sin (,) = a 5 B~ (c- (,,

n=l

n + m) r y
x (cos ((n -;'"y) - cos (' L,))

Integrating both sides

APPENDIX F. SOLUTION T O T H E DIFFUSION EQUATION

Since cos(x) is an even function, i.e. cos(-x) = cos(z), the integrand above is also even.

For all even functions f (x) it holds that

From this we get

mnx

Since
nnx 1: cos ((G dx = 0

for all n # 0, all terms of the sum vanish except for those where m = n:

This gives the following solution to Bn in the 2D case

4 nnx
Bn = -

LXL,

which can be easily extended to the 3D case

8 nnx nnY nnx
B -

- L,L~L, lLx 1" lLz ~ (x , y , x) sin (I) sin (T) sin (_) d x d y dx (~ 1 1)

APPENDIX F. SOLUTION T O T H E DIFFUSION EQUATION

F.3 Closed simulation space

Assuming the same rectilinear space as before, but now the spatial partial derivatives of u

are zero at the boundaries. This corresponds to diffusion within a closed space. Since there

is no diffusion across the edges of this space, there will be no concentration gradient at the

edges either. This gives the following boundary conditions, one for each of the eight faces of

the simulation space

F.3.1 Solution in 1D

Initially I will show the solution to this problem with one spatial dimension only, where the

separation of variables gives

The same general spatial solution as before holds in this case

X (x) = A cos(p,x) + B sin(p,x)

Since the boundary conditions are given in terms of q, the solution is differentiated

u,(O) = 0 and p, # 0 gives B = 0. The non-trivial solution of u,(L,) = 0 with A # 0 gives

p, = as before. This gives

for integer n > 0.

APPENDIX F. SOLUTION T O T H E DIFFUSION EQUATION

F.3.2 The temporal component

The temporal component has the same solution as before

Combining the spatial and temporal components

= Anx cos () Ant (-o (z) ' t)

= A s (e x (D (%)'t)

This gives the general solution

F.3.3 Computing the coefficients

The coefficients are computed from the initial condition

which gives

Multiplying on either side with cos (7) gives

03 mrx mrx nrx mrx

n=l

APPENDIX F. SOL UTION T O T H E DIFFUSION EQUATION

Using the identity

1
cos U cos v = - (cos (U + V) + cos (U - V))

2

we get

mnx mnx

Integrating on both sides gives

LLx mnx
 XI cos () dx = LLx AO cos (I,) dx

Since cosine is an even function, the limits on the integrals can be replaced:

/OLx
Lx mnx

f (x) cos () dx = / Ao cos (z) dx
-Lx

The first integral vanishes except for when m = 0, in which case the second integral also

vanishes. This offers a solution to Ao:

In the second integral, all terms of the sum vanish except for when m = n , in which case

the first integral also vanishes, giving a solution to A,,:

In summary, the coefficients can thus be determined from the following expressions

Anx = ? iLz f (x) cos () dx Lx

APPENDI-X F. SOLUTION TO THE DIFFUSION EQUATION

F.3.4 Solution in 2D

The solution for two spatial dimension will now be given. It will be possible to extend this

solution to three spatial dimensions as well. From the separation of u(x, y , t) into three

components X(x) , Y (y) (which has the same form as X (x)) and T(t) we get the general

solution in 2D

Tn(t) = Ant exp (- I l n2 r2 ($ + $) t)

Here the constants have been combined so that An = AnxAnyAnt. The general solution is

the infinite sum as before

00

n r 3 = c A. cos () cos (,) exp (-I ln2r2 (& + $) t)
n=O

00

n=Y
= A0 + c An cos () cos (%) exp (-Dn2r2 (& + $) t)

n=l

The initial condition gives the values of the coefficients

Multiplying with cos () cos () on both sides

m r x
= Ao cos (L,) m r x cos (r) mrY

CO
rnrx + cos () "0s (L,)

n= 1

mrY x cos (y) cos (Ly)

APPENDIX F. SOLUTION T O T H E DIFFUSION EQUATION

Integrating on both sides gives

- - lLz 1"' A. cos () cos (7) dy dx

rnrx + iLz 1"' 2 An cos () cos (t;) cos (7) cos (7) dy dx
n=l

Using the identity F.13 again

rnrx

= iLx iLy A. cos () cos () dy dx

Replacing the limits gives

rnrx

For m = 0 the second integral disappears for all values of n (since n is an integer greater

than zero), giving the solution for Ao:

APPENDIX F. SOLUTION T O THE DIFFUSION EQUATION 29 1

The second integral vanishes for all values of m different from n , giving the solution for A,:

nrx lLz lLu f (x , y) cos (=) cos () d y dx = 1 J L X l:)i Andy dx
16 -Lz

The coefficients can be computed from the following expressions

nnx
A, =

These expressions can easily be extended to 3D as well

8 nnx nnz
An =

LxLyLz

F.4 Conclusion

We have given the solutions to the diffusion equation in three spatial dimensions and time

for two kinds of boundary conditions. These represent a simulation space which is either

open or closed to the diffusion of protein out of the space. These solutions may be used to

estimate the accuracy of the simulated diffusion as computed numerically by NeuroGene.

Appendix G

Models of topographic projections

In this appendix I summarize earlier work on modeling topographic projections. This work

goes back to the important arrow model proposed by Hope et al. (1976), and culminates in

a recent model proposed by Yates et al. (2004) as well as the work presented in this thesis.

In the following I will first summarize the models and their properties (section G.l). In

section G.2 the degree to which the various models can adapt to changes in the properties

of the developing system is estimated. In section G.3 a summary is given of the experiments

which each model is able to replicate. Finally, in sections G.4 and G.5 the models by Overton

and Arbib (1982) and Yates et al. (2004) are described in detail.

G.1 Summary of earlier models

The "arrow model" by Hope et al. (1976) makes some very simple assumptions that in our

view have stood the test of time to the extent that our model has many elements in common

with this early effort. It is assumed that each RGC axon innervating the tectum takes

directional (as opposed to absolute location) cues from the tectal gradients. Axons also

make comparisons with neighbouring RGC axons, and go through repeated pairwise swaps

to implement a 2D version of the "bubble-sort" sorting algorithm to form the topographic

projection.

Whitelaw and Cowan (1981) take a very different approach based on a modified form

of Hebbian learning, where matching chemical gradients enhances the growth of synaptic

weights. This model assumes parallel chemical gradients (i.e. high concentration axons map

APPENDIX G. MODELS OF TOPOGRAPHIC PROJECTIONS

- -

Model Algorithm

Hope
Whitelaw
Gierer
Overton
Fraser
Weber
Yates
NeuroGene

Non-random walk - bubble-sort
Hebbian learning modulated by chemical markers
Not clear, relies on modeling intracellular signaling within growth cones
Non-random walk determined by inter-axon forces
Simulated annealing
Eulers method
Axon branching
Simulated growth cones (a form of non-random walk)

Table G.l: Algorithms used by the various models

to high concentration tectum). This assumption is problematic in view of more recent data

showing the importance of counter-gradients in the formation of topographic maps.

Overton and Arbib (1982) propose an extension of the arrow model. The main motivation

is to incorporate a more biologically plausible model of axon growth, by which each RGC

axon projects a number of individually migrating branches to the tectum. They also allow for

each RGC branch interacting with more than one other branch simultaneously, although the

element of pairwise comparisons is retained from the original. I t is questionable whether their

more specific mode of axon growth has in fact been borne out be more recent research, or

whether this model represents a step backward from the conceptually much simpler original.

Gierer (1983) bases his model on the intracellular signaling events that may be occurring

within growth cones when these transduce tectal concentration gradients. Like several of the

later models, his assumes that the tectal concentration gradient relates absolute (location)

information to the invading RGC axons, rather than relative (directional) information. This

assumption is also problematic in view of recent data, in particular that of Brown et al.

(2000). However, Gierer's approach to understanding topographic map formation through

an understanding growth cone function is one that we have also adopted.

The multiple-component model of Fraser and Perkel (1990) incorporates a large number

of possible retino-tectal interactions. Using their own labels for these interactions, they are:

C A general attraction and adhesion of RGC axons to the tectum. This is similar

to the role of the protein retinoTectalGradient in the NeuroGene simulation, see

APPENDIX G. MODELS OF TOPOGRAPHIC PROJECTIONS

section 5.2.1.

R A general competition among RGC axons for tectal space.

N A neural activity-dependent interaction by which the competition among RGC

axons originating in adjacent sites in the retina is reduced. The neural activ-

ity is thus not modeled explicitly, but the correlated retinal activity is taken

into account. This allows for the investigation of the effects of removing neural

activity.

DV and A P (for Dorso- Ventral and Anterior-Posterior) Specific attraction and adhesion of

RGC axons to the area of the tectum to which it projects in an ideal projection.

This contribution imposes the topographic ordering on the projection. Note that

it is again assumed that the tectum provides absolute location information to the

RGC axons.

They found that the map formed best when the strengths of these interactions were in the

order C > R > DV, A P > N. The maps were constructed by minimizing the sum of these

different contributions for all RGC axons. The minimization was carried out using simulated

annealing, which is probably not representative of the actual biological mechanism of map

formation.

It appears that an important goal in designing the model by Weber et al. (1997) was to

be able to replicate the polarity-reversal experiment (Meyer, 1979). The general approach is

similar to that of Fraser and Perkel (1990): The model contains contributions representing

axon-tectum interactions, representing interactions between protein concentration gradients

(A,,), as well as axon-axon interactions representing both chemically mediated (Fzt) and

Hebbian (FEL) processes. However, the formulation of the model as a whole seems some-

what arbitrary, including the approach of using Eulers method to evaluate the model (see

table G.l).

The recent model by Yates et al. (2004) is based on experimental data indicating that

the formation of axonal side-branches within the tectum is an important step toward a fully

formed topographic map (Yates et al., 2001). This is a fact that is not included in the

NeuroGene model represented here. The mechanism used to form the topographic map is

very close to what is believed to occur in nature. However, the model is weakened by the fact

APPENDIX' G. MODELS OF TOPOGRAPHIC PROJECTIONS 295

that is includes a large number of parameters, many of which do not have straightforward

biological interpretations. Given the importance of this model, it is outlined in more detail

in section G.5 below.

Table G.2 shows a comparison of the features of the models outlined above, including

the NeuroGene model of topographic map formation. Willshaw and Malsburg (1976) is not

included in this overview, since this model simulates activity-dependent map-formation only.

G.2 Flexibility of models

Biological systems are characterized by their relative insensitivity to variations in protein

concentrations, size and location of organs? etc., as witnessed by e.g. experiments in which

surgically or biochemically modifications to developing organism does not perturb the for-

mation of topographic maps, see section 5.2. Computational models of map formation which

do not show a similar insensitivity to variations in parameters may be of questionable bio-

logical relevance. The models considered here can be compared by how well they adapt to

variations in the retinal and tectal concentration gradient shapes, and how they adapt to

changes in their own parameters.

The model by Hope et al. (1976) can probably deal with changes in tectal and retinal

gradient shapes - however, this was not reported. Whitelaw and Cowan (1981) demonstrate

that their model is consistent with a number of different gradient shapes. Presumably any

smooth and monotonously increasing or decreasing gradient shape would work. However,

the model relies on parallel retinal and tectal gradients, as opposed to the counter-gradients

which have been shown to play an important role in the formation of topographic maps.

The model is able to replicate the mismatch experiment (see table G.3), which indicates a

significant flexibility with respect to gradient shapes.

The model by Gierer (1983) is not dependent on particular gradient shapes, but it does

rely on a particular inter-relationship between the retinal and tectal gradient shapes. The

model supports a wide range of different gradient shapes, but a particular mathematical

relationship between the retinal and tectal gradients must be maintained. The multiple-

component model (Fraser and Perkel, 1990) does not explicitly represent retinal or tectal

gradient shapes. In stead, each RGC axon binds with slight preference to its termination

zone in the tectum, with linearly decreasing binding strength with increasing distance from

APPENDIX G. MODELS O F TOPOGRAPHIC PROJECTIONS

model map dimensionality 2D 1D 1D 1D 2D 2D 1D 2D
axon-axon pairwise comparisons J 8 J 8 8 8 J
simple axon-axon repulsion 8 8 8 J 8 8 8
specific axon-axon attractiona 8 J b J J 8 8
number of gradients in retinaC - 1 - 1 / 2 - d 2 2 1

absolute tectd locationse 8 J J J 8 8
number of gradients in tectumC - 1 - 1 / 2 - d 2 2 1
concentration counter-gadientsf - 8 - - - - J J
independent gradient9 J J J J J J
RGCs axons alter tectal gradients 8 8 8 Jh 8 8 J i 8

- - - -

growth cones explicitly modelled 8 8 8 J 8 8 8 J
incorporates neural activity J J J J
emergentarborsizeupperbound 8 8 8 8 8 8 J 8
number of parameters3 0 6 6 0 8 1 3 8 lk
biological paramter interpretations1 - 8 8 - Jm 8n 8 Jm
general level of biological detail med low low high low low high high

"Is there an attractive interaction between axons which originate in nearby retinal locations?

b~mplemented through correlated neural activity of neighbouring retinal cells.

'In 2D models, this is the number of gradients in each dimension.

*concentration gradient shapes are not explicitly represented or specified.

' J indicates that RGC axons have access to their absolute location in the tectum.

fJ means counter-gradients; 8 means parallel gradients; - means model is not committed to either.

gCan gradient shapes in the retina and the tectum be altered independently of one another without
disrupting map formation?

h ~ e c t a l cells are induced through some unspecified process to change their protein concentrations.

'The Eph and ephrin carried by RGC axons contributes to the tectal concentratons of the same molecules.

jIncluded are parameters which are not related to gradient shapes. This measure is somewhat subjective.

'includes relative strength of tectal adhesion us. specific retino-tectal interactions only. Parameters of
the ODC simulation are excluded.

'DO the parameters of the model have clear biological interpretations. This measure is somewhat subjec-
tive.

"Relates primarily to the relative strengths of various interactions.

"While some parameters relate to relative strengths of interactions, several also describe the range of
these interactions.

Table G.2: Summary of properties of the map formation of various models.

APPE-IDIX G. MODELS O F TOPOGRAPHIC PROJECTIONS 297

the termination zone. Unlike the previous models, that by Fraser and Perkel contains several

parameters which determine the relative strengths of the various components of the model.

According to the paper, some of these parameters can be varied quite widely, however this

was not fully explored.

Weber et al. (1997) showed that their model works for a number of different gradient

shapes. They state that '!. . . the exact shape of the fibre-tectum interaction function does

not really matter, as long as cues for the correct polarity are present and as long as the

interaction is not too specific" (Weber et al., 1997, p. 1613). They also state that the values

of all parameters of the model can be varied at least by a factor of two without disrupting

the map formation. However, the model is highly constrained by the requirement that it

model the polarity-reversal experiment. This experiment seems to imply that the specific,

attractive fibre-fibre interaction is so strong that it can override the fibre-tectum interaction

to give rise to a topographic domain which is inverted with respect to the tectum, stabilized

by fibre-fibre interactions only. This experiment is not modeled by any of the other models

listed.

The recent model by Yates et al. (2004) defines a large set of parameter values, corre-

sponding to a high-dimensional parameter space. They show that their model gives good

results at two locations within this parameter space. They offer no information on whether

other parameter values were attempted used, and with what results, or whether the given

parameter values are within large domains of parameter space which consistently give rise to

valid models. Also, when it comes to the concentration gradient shapes, the model requires

that the retinal and tectal gradients be reciprocal. This indicates that the model would not

be able to model the mismatch experiment, see table G.3.

The model for topographic map formation presented in this thesis, like the arrow-model

(Hope et al., 1976), makes no assumptions about the shapes of the concentration gradients

either in the tectum or the retina, except that they be monotonically increasing or decreasing

to form a wild-type map. Our model also does not include very many parameters. One

important requirement of our model is that the attraction of RGC axons to the tectum is

stronger than the interactions that cause map topography to form. This is very similar to

the role of the C interaction in the model of Fraser and Perkel (1990).

APPENDIX G. MODELS OF TOPOGRAPHIC PROJECTIONS

Figure G.l: Three experiments that are replicated by other models, but which have not
been attempted by us. The all consist of cutting out a small square or rectangular piece of
the tectum, and re-implanting it in a different orientation (left, centre), or cutting out two
such pieces and exchanging their locations while maintaining their orientation (right). In all
cases, experiments in vdvo have shown that the RGC axons follow the gradients with altered
orientations, giving rise to topographic projections that are distorted in predictable ways.
Left: the 90" degree rotation experiment. Centre: The 180" rotation experiment. Right:
The translocation experiment.

G. 3 Experiments modeled

Table G.3 shows the experiments that are replicated by the various models listed above.

Most of these experiments are described in section 5.2. However, some of the experiments in

table G.3 have not been matched by NeuroGene, namely the rotation and translocation ex-

periments. The rotation experiments involve cutting out a small, square piece of the tectum,

and reinserting it after a 90" or 180" rotation (see figure G.l left and centre, respectively).

The translocation experiment involves cutting out two small pieces, and exchanging them

without any rotation (figure G.l right).

G.4 The model of Overton and Arbib

The model of Overton and Arbib (1982) is of particular interest, since it represents an

extension of the arrow model of Hope et al. (1976), to which our model is also related. In

this model, each RGC axon projects a number of branches to the tectum, each of which

can move independently. For each branch, only the location of the branch end-point is

APPENDIX G. MODELS OF TOPOGRAPHIC PROJECTIONS

wild type J
rotation 90•‹/1800 J
expansion J
compression J
compound eye
one-and-a-half eye
mismatch
translocation 8
ignores small grafts
polarity reversal

J J J J J
Ja Ja Jb 8
JC 8d Je J
JC 8d J J

J
J

J J
8 Jb 8
J J

J f

ephrinA knockout
EphA knockin

ODCs
ODC mono-ocular deprivation
ODC width correlation

nasal projection J

all use same parameter values J J J 8 J J Ji J

"Only 180' rotation attempted.

b~xperiment works when a 1D topographic map is modeled, but breaks down in the 2D case.

'Requires that the altered distribution of RGC axons induces changes in the tectal gradients.

of projection is distorted.

'but see figure 5f.

f ~ h e experiment is "brittle", and requires a very strong specific axon-axon attractive force.

"mouse" only, "chick" not reported, see footnote a.

h~is to r ted , see page 1615.

'Two set of parameter values are used, one representing chick and one representing mouse. It is not clear
what fraction of the parameter space as a whole give rise to valid models.

Table G.3: Table of experiments successfully replicated by the various models. J indicates
that the experiment was successful, 8 indicates that it failed. A blank indicates that the
experiment was not reported.

APPENDIX G. MODELS O F TOPOGRAPHIC PROJECTIONS 300

represented in the model. The motion of a particular branch b is given by the weighted sum

-+ -+
= a 1 2 + a2Eb + a s & (G.1)

-+
where u l , a2 and a3 are weighting constants. The term Ab, the "average influence", represents

the force acting on the branch b due to the forces acting on all other branches belonging to

the same RGC axon, and is given by the expression

where the set Fb of all branches belonging to the same retinal cell as b, m is the number of

branches in Fb, and a4 and a5 are weighting constants.

Each RGC branch b interacts with all other branches of all other RGCs which fall within

a certain radius - call the set of such branches Bb. For each branch k E Bb, let $(b, k) be

the unit vector parallel to the vector from the retinal location of b to that of k, projected

onto the tectal plane. It is through this term that the comparison of branches with respect

to their retinal points of origin occurs. This gives rise to the following term describing the

interaction between retinal branches:

+
Ib = C wd(b7k)wg(b,k)$(b,k)

kEBb

Finally, the terms Wd and Wg are defined as follows

1 - d(b, k) /2r if d(b, k) < 2r
WdP, k) =

otherwise

Here Wd represents the decrease of the strength of the inter-axon interaction with the dis-

tance d(b, k) between the locations of branches b and k in the tectum. Wg is used to take

amount of the effect of scarring at graft boundaries after tectal grafts reduces the strength

of the axon-axon interaction. 0 < ag < 1 and n (which is an exponent, not a superscript) is

the number of such graft edges intersected by a straight line connecting the tectal locations

of b and k.

APPENDIX G. MODELS OF TOPOGRAPHIC PROJECTIONS 301

+
Finally, the term Eb takes account of the effect of ,graft edges as well as the edges of the

tectum.

(G.6)
QEQ

where Q is the set of tectal and graft edges, and the index q therefore refers to such edges,

not RGC axons branches. The term Wd is a linear decay terms similar to the one in equation

G.4 above (except that 2r is replaced with r throughout), and Wg is also the same as defined

in expression G.5.

Compared to the original arrow model, this extended form introduces a large number of

parameters (al through as) for which biological interpretations are not obvious.

G.5 The model of Yates et al.

Yates and coworkers (2004) define the term totalrepellent ~ ; (y) for RGC axon n projection

to location y in the tectum:

m y) =

Mn(y) =

A
I n (Y) =

P(Y) =

where the terms are defined as

% The retinal Eph receptor concentration for the axon at location n.

L (~) The tectal ephrin ligand concentration at the tectal location y.

R? The retinal ephrin ligand concentration for the axon at location n.

~ ' (y) The tectal Eph receptor concentration at the tectal location y.

s (y) The total arbor size of the axon n at the tectal location y.

8, 4, w Scaling factors.

APPENDIX G. MODELS O F TOPOGRAPHIC PROJECTIONS

This gives the following interpretation of the four terms making up expression G.8.

The activation of RGC ephrin of axon n from the tectal Eph receptor at location

Y.

The activation of RGC ephrin of axon n from the Eph receptor carried by all

other RGC axons at location y, scaled by w.

The activation of RGC Eph receptor of axon n from the tectal ephrin at location

?/.

The activation of RGC Eph receptor of axon n from the ephrin receptor carried

by all other RGC axons at location y, scaled by w.

The term Mn(y) increases with increasing repellent interactions between the RGC axon n

and the environment at tectal location y, as mediated by the receptor function of both EphA

and ephrinA. The term total repellent I:(y) makes the repellent interaction non-linear: As

Mn(y) becomes small, approaches 1/(1 + exp(8/4)) 5 1, as Mn(y) becomes large,

approaches 1. Based on this framework, the probability of branch formation is defined

as

where q is another scaling factor. Branches retract with the probability (1 - pn(y))2. All

other branches remain unchanged. The primary axon retracts with the probability

where p is yet another scaling parameter. They then introduce a branch density parameter

Dn(y):

APPENDIX G. MODELS OF TOPOGRAPHIC PROJECTIONS 303

Where t is the simulation iteration count, a, is a Gaussian filter core with standard deviation

of 10, centred at y. The term A determines the influence of the branch density s:(~) on the

value of Dn(y) . The terms a, ,8 and y are scaling parameters, and t is the simulation time

step counter. The influence of on Dn(y) increases as the simulation progresses, with

the limits of A = a/(l + exp(y/,8)) 5 a when t = 0 and A = a as t -+ m. This gives rise to

a modified branching probability:

I t is a weakness of this model that it has a large number of parameters which for the

most part have no direct biological interpretation. However, the model does appear to

show resilience to variations in several of these parameters, as demonstrated in the quite

dissimilar chick and mouse simulations. It is not clear from the paper whether these two

points in parameter space are unique in their performance of the model, or whether large

areas of the parameter space gives good results for the model.

G . 6 Conclusion

Duplicating a wide range of reported experimental observations on the retinotectal pro-

jection, and well founded in the known biological facts about this projection, our growth

cone based model of topographic map formation represents significant progress toward a full

understanding of the biological mechanisms forming this projection.

Appendix H

A neurotrophic model of synaptic

learning

Elliott and Shadbolt (1998a,b, 1999, 2002) have developed a model of synaptic learning based

on chemical signaling. This learning rule is formulated in terms of the biological mechanism

by which hebbian learning might be implemented. In this model, learning takes place in

the presynaptic cell. The postsynaptic cell emits a chemical signal (here called neurotrophic

factor or NT) when it fires, thereby informing synaptic termini of presynaptic cells of this

fact. The affinity to NT of the presynaptic cells depend on their activity. Maximal uptake

of NT therefore happens in active presynaptic cells as postsynaptic cells fire. The simulated

genes which implement the genetic and biochemical processes outlined below are listed in

appendix B.2.3.

H.l The learning rule

The learning rule is expressed in equation (2.16) from Elliott and Shadbolt (1999):

s;i is the synaptic weight between afferent cell i and target cell x at time step n. a3 is the

neural activity level of afferent cell i at time step n, in the range from zero to one. To and

TI are related to the release rate of NT by target cells, a is related to the uptake of NT by

APPENDIX H. A NEUROTROPHIC MODEL OF SYNAPTIC LEARNING 305

afferent cells, these terms are more fully explained below. Axy is the diffusion of NT between

target cells x and y. pP has two alternative formulations

Py =
Case 1 (cell death)

Xa?/ Ex sii Case 2 (no cell death)

where X is an arbitrary constant and a? is the time average activity level of afferent cell i at

time step n. The terms cell death and no cell death derives from the fact that under the first

case, the total synaptic weight from any afferent cells may drop to zero, representing the

death of that afferent cell. Under the second case, total synaptic weight will always remain

greater than zero, since cells with small total synaptic weight are given an advantage in the

competition with other cells with higher total synaptic weight. In the NeuroGene simulation

for refinement and occular dominance, the second form will be used. The implementation of

the time average a? is outlined below.

The equations above are derived in great detail in Elliott and Shadbolt (1998a). I will

not repeat this derivation here. Instead, the expressions will be rationalized in terms of the

biological process they represent. For the purposes of this rationalization, the equation H.l

is rearranged so as to clearly separate the presynaptic and postsynaptic components of the

learning process

- Sii = s,"~ (a + a?) py , A x , (, + TI

H. 1.1 Postsynpatic mechanism

Consider first the second half of the large term in the above expression. It describes the NT

production and diffusion:

xi s ; ~ is the total weight of all the synapses connecting to the target cell y

C j ~ ; ~ a 7 is the total activity coming into the target cell y from all afferent cells j .

C j sEjajn/ C j sEj is then the ratio of the current activity level to the maximal possible

activity level of target cell y, since a: has an upper bound of one for d l j .

To +TI (z j ~ ; ~ a l / z j si i) is the rate of production of NT from target cell y. Since a," is

in the range [0, 11, so is the fraction xi siia:/ xi sii, meaning the rate is in the range

APPENDIX H. A NEUROTROPHIC MODEL OF SYNAPTIC LEARNING 306

[To, To +TI]. To gives the activity-independent component, and Tithe component that

depends on the amount of activity coming into the cell. The gene NT in the gene

script follows this expression pattern, see lines 48-65 in the listing of the gene script

in appendix B.2.3. We use values 0 and 0.02 for To for TI respectively.

Ax, (TO + TI (Ci sC,a:/ Cj s ~ ~)) is the amount of NT produced at cell y that reaches cell

x. Axy represents the diffusion of NT from cell y to cell x. AZy is normalized so

that Cy Axy = 1 for all values of x. Summed over all cells y, this gives the total

amount of NT present in the vicinity of cell x. In the NeuroGene simulation, the local

receptor-ligand relationship (line 93) and the local expression of NT (line 62) means

that diffusion does not occur, so that Axy = 1 for x = y and Axy = 0 for all x # y.

For the significance of local expression, see appendix B.3.

H. 1.2 Presynaptic mechanism

Now consider the first half of the large term in (H.3), it describes the competition for NT

uptake among afferent cells:

(a + a?) describes the affinity of afferent cell i to the NT protein. This affinity has an

activity-independent part a and also depends on the current activity level of the cell,

a?, which is in the range [0, 11 as before.

sEi (a + a?) p? describes the ability of afferent cell i to take up NT from the vicinity of target

cell x. This ability depends on the strength (or weight) sEi of the synaptic contact

between afferent i and target cell x, and on p?. In the NeuroGene simulation, this

ability is determined by the surface concentration of the NT receptor protein. The

expression of the NT receptor gene fulfills this requirement (using the no-cell-death

form of p? as defined in equation H.2), see lines 66-88 in appendix B.3. We have used

a = 1 and a: = 1 (or 0) when the retinal ganglion cell is firing (or not firing). These

give the constants 2 and 1 in the gene on lines 79 and 84. Finally we use the paramter

value X = lo6 to ensure that the absolute level of receptor is much greater than that

of the ligand.

Ci s?& (a + a:) p;l is the sum of the NT uptake abilities near target cell x of all the afferent

cells. The higher this value, the more competition there is near cell x for the available

APPENDIX H. A NEUROTROPHIC MODEL OF SYNAPTIC LEARNING

amount of NT.

s . a + a . py is then the NT uptake ability of afferent cell i as fraction s z i (a + a r) ~ r / ~ ~ z J (7)
of the total NT uptake ability of all the afferent cells that project to target cell x. It

describes the fraction of the total amount of NT that is taken up by the synaptic

terminal of afferent cell i in competition with all the other afferent cells that project

to the target cell x. This competitive relationship is modeled using the NeuroGene

receptor-ligand functionality using a binding constant indicating strong binding of the

ligand to the receptor. See line 93 of the genome in appendix B.2.3.

H.2 Ligand-receptor binding

The receptor-ligand binding is governed by a chemical equilibrium between the free receptor

(R), the free ligand (L) and the receptor-ligand complex (C). The equilibrium is described

by a dissociation constant Kd:

where the square brackets signify "the concentration of'. If the initial, non-equilibrium

concentrations of receptor, ligand and complex are designated by [R],, [L], and [C],, then

the equilibrium concentrations are

the rationale being that each time a ligand molecule binds to a receptor molecule, one

molecule each of L and R is lost, and one molecule of C is gained. A, which may be positive

or negative, is computed by substituting (H.5)-(H.7) into equation H.4. Of the two solutions

to the resulting quadratic equation, the one is selected which give non-negative values for

[R] and [L], see section 2.4.4.

The underlying assumption about the receptor-ligand binding expressed in equation H.3

is that very close to all the available ligand binds to the receptor, i.e. [L] 21 0. For this

condition to be satisfied, it is required that:

APPENDIX H. A NEUROTROPHIC MODEL O F SYNAPTIC LEARNING

The receptor must have high affinity for the ligand (Kd << 1).

The receptor concentrations is much greater than the ligand concentration ([R] >> [L]),

since each molecule of the receptor can only bind one molecule1 of the ligand.

This requirement is met by ensuring that the expression rate of the receptor is much greater

than that of the ligand, and the dissociation constant is small, representing strong binding of

the ligand to the receptor. In equation H.3 the absolute magnitude of the receptor expression

rate (a + a?) cancels out. This means that the receptor expression rate can be freely scaled

to meet the condition [R] >> [L]. For the expression of receptor, see lines 79 and 84 with

X = lo6 (line 37)2. For that of the ligand, see lines 58-62 with To = 0 and Tl = 0.02 (lines

35 and 36). The binding constant is equal to 1 0 - l ~ ~ as defined on line 93.

H.3 From concentrations to learning

Our goal is now to restate the learning rule (H.3) in terms of concentrations of proteins,

using (H.4) and the relationships outlined in sections H.1 .l-H.1.2. Since virtually all the

available ligand binds to receptors (i.e. [L] e 0) we get from (H.7) that x = - [LIo If we

consider an initial situation in which no receptor-ligand complex exists ([CIo = 0), we have

from (H.5) that [C] = -x, which gives

The amount [CIix of ligand bound to afferent cell i close to target cell x is

Here the subscript x has been introduced to signify the concentrations in the vicinity of the

target cell x. Keep in mind that the afferent cell i may extend over a large area of dissimilar

chemical environments, and that it may form contacts with a number of different target cells

 he same holds true if the receptor can bind a constant number of ligand molecules. However, this would
require modifications to equation H.4.

'Note that the expression rates are scaled by the cell component surface area. The small surface area of
synaptic terminals (set to equal 1% of that of the soma, see section 2.2.3) means that the difference between
the expression rates of receptor and ligamd is not quite as large as it seems, since the receptor is expressed
by synaptic termini and the ligand by somas.

APPENDIX H. A NEUROTROPHIC MODEL OF SI'NAPTIC LEARNING 309

x. The concentration [elix therefore refers to the portion of cell i that is close to a particular

target cell x. If we consider that only the synapses of the afferent cells carry the receptor,
then [RIoix is the total amount of receptor (ligand-bound and free) carried by the synapse

of afferent cell i making contact with the target cell x. [RIox is the total amount of receptor

carried by all the synapses making contact with the target cell x and [GIix is the amount or

receptor-ligand complex on the synapse connecting cell i to cell x.

By substituting (H.8) into (H.9) we get

where [LIox is the total ligand concentration close to cell x (both free and bound to receptor).

This relationship gives the (unknown) equilibrium concentration of the complex in terms of

the (known) initial concentrations of ligand and receptor. From the above rationalization of

equation H.3 we have that the affinity of cell i as fraction of the affinity for all cells j close

to target cell x is given by (from section H.1.2)

[RIoix = sEi (a + a;) p;
[RIox

S E ~ (a + a?) p?

and that the amount of NT at the target cell x is given by (from section H.l.l)

From this we can rewrite equation H.3, using H.lO, as

The change in synaptic weight is thus proportional to the deviation of the ligand-receptor

complex concentration from the current synapse weight, with E as the learning rate. The

more NT that binds to receptors on the synapse between cells i and x, the stronger the

synapse becomes. But high level of binding of NT comes about when the postsynaptic cell

fires (producing NT) in synchrony with the firing of the presynaptic cell (producing NT

receptor). We see that equation H.3 in fact embodies a Hebbian learning rule. This part of

the learning rule is implemented in the gene learn, see lines 94-108.

APPENDIX H. A NEUROTROPHIC MODEL OF SYNAPTIC LEL4RNIR:G

H.4 Time-average activity level

As mentioned in section H.1.2, the expression rate of the receptor depends pp. In the no-

cell-death case we have that

(see equation H.2), i.e., the expression rate of the receptor depends on the recent time-

average activity level a; of the presynaptic cell, as well as the instantaneous activity level

a;. From equation H . l l we see that the constant X cancels out from the expression and need

not concern us here. ap is defined as an exponentially decaying average with time constant

T. With continuous time, this gives

With descrete time this becomes
n n - m a;+' = (1 - e x (I T) C a? exp (-?)

m=-m

- - a:" (1 - exp (-117)) + 6: exp (-117)

with 4 = exp (-117). It is shown in Elliott and Shadbolt (1998a) that 4 is in fact related

to the learning rate E through the following simple relation

Using this relation, the averaging scheme is restated as

The gene called "timeAverageActivity", which modeles a;+', has the following properties:

The decay rate of the protein expressed by the gene is k = - In (1 - e) . This means

that each time step, the concentration of the protein carried over from the previous

time step is scaled by an amount exp (- l c) = 1 - E.

When the cell is firing, i.e. a:+' = 1, the expression rate is E .

APPEIVDI-X H. A NEUROTROPHIC MODEL OF SYNAPTIC LEARNING

When the cell is not firing, i.e. a:+' = 0, the expression rate is zero.

Together these properties mean that the concentration of the protein expressed by the gene

at all times reflect the time-average activity level of the cell, suject to the averaging scheme

outlined above. The gene is defined in lines 38-47.

Index of language primitives

allAxons (and similar), 53

allchildren, 33

arborIncomingWeight , 88

arboroutgoingweight, 88

arborsize, 53

awayFromCellDensity, 54

awayFromSigna1, 58

blue, 52

branch, 51

buildPostsynapse, 80

buildPreSynapse, 80

cellDensity, 54

cellIncomingWeight , 88

cellIsFiring, 87

cellName, 53

cellOutgoingWeight , 88

cellsize, 53

cellXCoordinate (and similar), 54

colour, 52

consumeExternally, 61

consumeInternally, 61

die, 51

distanceToSoma, 53

dividecell, 51

endocytose, 61

exocytose, 61

export Internally, 6 1

export Surface, 61

expressExternally, 71

expressInternally, 71

externalConcentrationOf, 58

geneExpressionRate, 71

green, 52

growAxon, 51

growDendrite, 51

growthcone, 73

growthconeCellDensity, 8 1

growthconeConcentrationOf, 81

importlnternally, 61

importsurface, 61

insideAxon (and similar), 53

interndconcentrationOf, 58

leakageRate, 87

length, 53

INDEX OF LANGUAGE PRI-MITIVES

membranePotentid, 87

migrate, 51. 80

neighborconcentrationof, 81

neighborRange, 81

numberOfAxons (and similar), 53

parent, 53

partner, 53

peripheralArborIncomingWeight , 88

peripheralArborOutgoingWeight , 88

print, 52

red, 52

refractoryDelay, 87

runOneGeneOnly, 71

setFiringDuration, 87

setFiringProbability, 87

set LeakageRate, 87

set RefractoryDelay, 87

set SynapticWeight, 87

setThreshold, 87

setTimer, 71

surfaceConcentrationOf, 58

synapticWeight, 87

threshold, 87

timervalue, 71

towardsCellDensity, 54

towardssignal, 58

Bibliography

Agarwal, Pankaj. 1995. The cell programming language. Artificial Life 2(1):37-77

Astor, J . C., and C. Adami. 2000. A developmental model for the evolution of artificial

neural networks. Artificial Life 6(3):189-218.

Atkins, Peter W., and Julio de Paula. 2002. Physical chemistry. 7th ed. New York: W. H.

Freeman.

Bachy, Isabelle, Philippe Vernier, and Sylvie Retaux. 2001. The LIM-homeodomain gene

family in the developing Xenopus brain: Conservation and divergences with the

mouse related to the evolution of the forebrain. J. Neurosci. 21:7620-7629.

Baier, H., and F. Bonhoeffer. 1992. Axon guidance by gradients of a target-derived compo-

nent. Science 255:472-475.

Barrow, Jeffrey R., H. Scott Stadler, and Mario R. Capecchi. 2000. Roles of Hoxal and

Hoxa2 in patterning the early hindbrain of the mouse. Development 127:933-944.

Bi, Guo-qiang, and Mu-ming Poo. 1999. Distributed synaptic modification in neural networks

induced by patterned stimulation. Nature 401:792-796.

Bielsky, Isadora F., and Larry J . Young. 2004. Ocytocin, vasopressin, and social recognition

in mammals. Peptides 25:1565-1574.

Bishop, Kathie M., John L. R. Rubenstein, and Dennis D. M. O'Leary. 2002. Distinct actions

of Emxl, Emx2, and Pax6 in regulating the specification of areas in the developing

neocortex. J. Neurosci. 22(17):7627-7638.

BIBLIOGRAPHY 315

Bonhoeffer, Tobias. 1996. Neurotrophins and activity-dependent development of the neocor-

tex. Curr. Opin. Neurobiol. 6:119-126.

Bower, James M., and David Beeman. 1995. The book of Genesis - exploring realistic neural

models with the GENESIS. Springer-Verlag.

Brickley, Stephen G., Elizabeth A. Dawes, Michael J . Keating, and Simon Grand. 1998.

Synchronizing retinal activity in both eyes disrupts binocular map development in

the optic tectum. J. Neurosci. 18(4):1491-1504.

Brook, William. 1998. Genetic control of segmenta-

tion in drosophila: The maternal legacy. Available:

http://www.ucalgary.ca/UofC/eduweb/virtualembryo/D~m~sepent~I.html

Accessed: [June 29-20041.

Brose, N. 1999. Synaptic cell adhesion proteins and synaptogenesis in the mammalian central

nervous system. Naturwissenschaften 86 (1 1):516-524.

Browder, Leon W., Carol A. Ericson, and William R. Jeffery. 1991. Developmental biology.

3rd ed. Saunders College Publishing.

Brown, Arthur, Paul A. Yates, Patric Burrola, Dan Ortuno, Vaidya Ashish, Thomas M.

Jesselt, Samuel L. Pfaff, Dennis D. M. O'Leary, and Greg Lemke. 2000. Topographic

mapping from the retina to the midbrain is controlled by relative but not absolute

levels of EphA receptor signaling. Cell 102:77-88.

Buck, Kenneth B., and James Q. Zheng. 2002. Growth cone turning induced by direct local

modification of microtubule dynamics. J. Neurosci. 22(21):9358-9367.

Buettner, H. M., R. N. Pittman, and J . K. Ivins. 1994. A model of neurite extension across

regions of nonpermissive substrate: simulations based on experimental measurements

of growth cone motility and filopodial dynamics. Dev. biol. 163:407-422.

Butts, Daniel A., and Daniel S. Rokhsar. 2001. The information content of spontaneous

retinal waves. J. Neurosci. 21 (3):961-973.

Cangelosi, Angelo, Domenico Parisi, and Stefano Nolfi. 1994. Cell division and migration in

a 'genotype' for neural networks. Network: Comp. in Neur. Syst. 5:497-515.

BIBLIOGRAPHY 316

Carmichael, S. Thomas, and Marie-Franqoise Chesselet. 2002. Synchronous neuronal activity

is a signal for axonal sprouting after cortical lesions in the adult. J. Nevrosci. 22(14):

6062-6070.

Chen, Chinfei, and wade G. Regerh. 2000. Developmental remodeling of the retinogeniculate

synapse. Neuron 28:955-966.

Cline, Hollis T . 2001. Dendritic arbor development and synaptogenesis. Cvrr. Opin. Neu-

robiol. 11:118-126.

Connor, Robert J . , Patricia Menzel, and Elena B. Pasquale. 1998. Expression and tyrosine

phosphorylation of eph receptors suggest multiple mechanisms in patterning of the

visual system. Dev. Biol. 193(1):21-35.

Cook, Jeremy E. 1979. Interactions between optic fibres controlling the locations of their

terminals in the goldfish optic tectum. J. Embryol. Exp. Morph. 52:89-103.

Crair, Michael C. 1999. Neuronal activity during development: permissive or instructive?

Curr. Opin. Neurobiol. 9:88-93.

Cruise, Robert. 2001. Numerical solution of the diffusion equation. Avail-

able: http: / /www . iu. edu/'rac/hpc/mpi-tutorial/lO-0. html [Accessed: June 11-

20041.

von Dassov, George, Eli Meir, Edwin M. Munro, and Garrett M. Odell. 2000. The segment

polarity network is a robust developmental module. Nature 406:188-192.

Davidson, Eric H. 2001. Genomic regulatory systems - development and evolution. Aca-

demic Press.

Davidson, Eric H., Jonathan P. Rast, Paola Oliveri, Andrew Ransick, Cristina Calestani,

Chiou-Hwa Yuh, Takuya Minokawa, Gabriele Amore, Veronica Hinman, Cesar

Arenas-Mena, Ochan Otim, C. Titus Brown, Carolina B. Livi, Pei Yun Lee, Roger

Revilla, Alistair G. Rust, Zheng jun Pan, Maria J . Schilstra, Peter J . C. Clarke,

Maria I. Arnone, Lee Rowen, R. Andrew Cameron, David R. McClay, Leroy Hood,

and Harnid Bolouri. 2002. A genomic regulatory network for development. Science

295:1669-1678.

BIBLIOGRAPHY 317

Davy, Alice, Nicholas W. Gale, Elizabeth W. Murray, Richard A. Klinghoffer, Philippe

Soriano, Claude Feuerstein, and Stephen M. Robbins. 1999. Compartmentalized

signaling by GPI-anchored ephrin-A5 requires the Q n tyrosine kinase to regulate

cellular adhesion. Genes devel. 13:3125-35.

Debski, Elizabeth A., and Hollis T. Cline. 2002. Activity-dependent mapping in the retino-

tectal projection. Curr. Opin. Neurobiol. 12:93-99.

DeVaul, Richard W ., and Bruce H. McCormick. 1996. Neuron developmental modeling and

structural representation: An introduction to the N++ language, and open stochastic

L-system. Tech. Rep., Scientific Visualization Lab., Dept. Comp. Sci., Texas A&M

University.

Diamond, Mathew E., Rasmus S. Petersen, Justin A. Harris, and Stefano Panzeri. 2003.

Investigations into the organization of information in sensory cortex. J . Physiol.

Paris 97(46):529-536.

Diaz, Elva, Yee Hwa Yang, Todd Ferreira, Kenneth C. Loh, Yasushi Okazaki, Yoshihide

Hayashizaki, Marc Tessier-Lavigne, Terence P. Speed, and John Ngai. 2003. Analysis

of gene expression in the developing mouse retina. Proc. Nut. Acad. Sci. U.S.A.

100(9):5491-5496.

DuCharme, Bob. 1999. XML: The annotated specification. Prentice Hall PTR.

Dutilh, Bas E., and P. Hogeweg. 1999. Gene networks from microarray data. Available:

http: //www-binf . bio .uu .nl/edutilh/research/gene-networks/ [Accessed: Au-

gust 5-20041.

Eggenberger, Peter. 1997a. Creation of neural networks based on developmental and evolu-

tionary princliples. In Proceedings of the international conference on artificial neural

networks (ICANN'97).

. 1997b. Evolving morphologies of simulated 3d organisms based on differential gene

expression. In Proceedings of the 4th european conference on artificial life (ECALSY),

ed. Phil Husbands and Inman Harvey. MIT Press.

BIBLIOGRAPHY 318

Elliott, Terry, and Nigel R. Shadbolt. 1998a. Competition for neurotrophic factors: Mathe-

matical analysis. N e w . Comput. 10:1939-1981.

-- . 1998b. Competition for neurotrophic factors: Ocular dominance columns. J. Neu-

rosci. 18(15):5850-5858.

-. 1999. A neurotrophic model of the development of the retinogeniculocortical pathway

induced by spontaneous retinal waves. J. Neurosci. 19(18):7951-7970.

. 2002. Multiplicatice synaptic normalization and a nonlinear Hebb rule underlie a

neurotrophic model of competitive synaptic plasticity. Neur. Comput. 14:1311-1322.

Elowitz, Michael B., and Stanislas Leibler. 2000. A synthetic oscillatory network of tran-

scriptional regulators. Nature 403:335-338.

Eph nomenclature committee. 1997. Unified nomenclature for Eph family receptors and

their ligands. Cell 90:403-404.

Feldheim, David A., Young-In Kim, Andrew D. Bergemann, Jonas Risen, Mariano Berbacid,

and John G. Flanagan. 2000. Genetic analysis of ephrin-A2 and ephrin-A5 shows

their requirement in multiple aspects of retinocollicular mapping. Neuron 25(3):

563-574.

Feller, Maria B., Daniel A. Butts, Holly L. Aaron, Daniel S. Rokhsar, and Carla J. Shatz.

1997. Dynamic processes shape spatiotemporal properties of retinal waves. Neuron

19:293-306.

Fiala, John C., Marcia Feinberg, Viktor Popov, and Kristen H. Harris. 1998. Synaptogenesis

via dendritic filopodia in developing hippocampal area CAI. J. Neurosci. 18(21):

8900-8911.

Finlay, B. L., S. E. Schneps, and G. E. Schneider. 1979. Orderly compression of the retino-

tectal projection following partial tectal ablation in the newborn hamster. Nature

280:153-155.

Flanagan, John G., and Pierre Vanderhaegen. 1998. The ephrins and Eph receptors in neural

development. Annu. Rev. Neurosci. 21:309-345.

BIBLIOGRAPHY 319

Fleischer, Kurt, and Alan H. Barr. 1993. Simulation testbed for multicellular development:

The multiple mechanisms of morphogenesis. In Artzficial lije iii. Addison-Wesley.

Fraser, Scott E., and Donald H. Perkel. 1990. Competitive and positional cues in the pat-

terning of nerve connections. J. Neuro biol. 21 (1) :51-72.

Fu, Yu-Xi, Kaj Djupsund, Hongfeng Gao, Benjamin Hayden, Kai Shen, and Yang Dan. 2002.

Temporal specificity in the cortical plasticity of visual space representation. Science

296:1999-2003.

Fukuchi-Shimogori, Tomomi, and Elizabeth A. Grove. 2001. Neocortex patterning by the

secreted signaling molecule fgf8. Science 294:1071-1074.

Furrer, Marie-Pierre, Susan Kim, Brian Wolf, and -4kira Chiba. 2003. Robo and fraz-

zled/DCC mediate dendritic guidance at the CNS midline. Nature Neurosci. 6(3):

223-230.

Gaze, R. M., M. Jacobson, and G . Szekely. 1963. The retino-tectal projection in Xenopus

with compund eyes. J. Physiol. 165:484-499.

Gehring, W. J . 1998. Master control genes in development and evolution: the homeobox

story. The Terry lectures, Yale University Press.

Genecards. 2004. GeneCard for gene PAX6 GCllM031775. Available:

h t t p : / / b i o i n f o r m a t i c s . w e i z m a n n . a c . i l / c ~ d d i s p ? P A X 6 [Accessed:

Aug 16-20041.

Gierer, A. 1983. Model for the retino-tectal projection. Proc. R. Soc. Lond. B 218(1210):

77-93.

Gnuegge, Lara, Susanne Schmid, and Stephan C. F. Neuhauss. 2001. Analysis of the activity-

depeprived zerbrafish mutant macho reveals an essential requirement of neuronal

activity for the development of a fine-grained visuotopic map. J. Neurosci. 21(10):

3542-3548.

Gomez, Timothy M., and Nicholas C. Spitzer. 2000. Regulation of growth cone behaviour

by calcium: new dynamics to earlier perspectives. J. Neurobiol. 44:174-183.

BIBLIOGRAPHY 320

Goodhill, Geoffrey J . 1998. Mathematical guidance for axons. Trends. Neurosci. 21:226-231.

-- . 2003. -4 theoretical model of axon guidance by the Robo code. Neur. Comput. 15:

549-564.

Goodhill, Geoffrey J. , and Siegrid Lowel. 1996. Theory meets experiment: correlated neural

activity helps determine ocular dominance column periodicity. Trends Neurosci. 18:

437-439.

Goodhill, Geoffrey J., and Linda J . Richards. 1999. Retinotectal maps: molecules, models

and misplaced data. Trends i n Neurosci. 22(12):529-534.

Goodhill, Geoffrey J., and Jeffrey S. Urbach. 1999. Theoretical analysis of gradient detection

by growth cones. J. Neurobiol. 41:230-241.

Gordon-Weeks, Phillip R. 2000. Neuronal growth cones. Cambridge University Press.

Grand, Mark. 1998. Patterns in Java: a catalog of reusable design patterns illustrated with

UML. Wiley computer publishing.

Hadley, Robert F. 1999. Connectionism and novel combinations of skills: Implications for

cognitive architecture. Minds and Machines 9(2):197-221.

. 2003. A defence of functional modularity. Connection Sci. 15 (2-3):95-116.

Halder, G., P. Callaerts, S. Flister, U. Walldorf, U. Kloter, and W. J . Gehring. 1998. Eye-

less initiates the expression of both, sine oculis and eyes absent during Drosophila

compound eye development. Development 125:2181-2191.

Halder, G., P. Callaerts, and W. J . Gehring. 1995. Induction of ectopic eyes by target

expression of the eyeless gene in Drosophila. Science 267:1788-1792.

Halloran, Mary C., and Katherine Kalil. 1994. Dynamic behaviors of growth cones extending

in the corpus callosum of living cortical brain slices observed with video microscopy.

J. Neurosci. 14(4):2161-2177.

Harding, Stephen E., and Babur Z. Chowdhry. 2001. Protein-ligand interactions, vol. 243 of

The Practical Approach Series. Oxfort University Press.

BIBLIOGRAPHY 321

Hatada, Yohko, Fang Wu, Rachel Silverman, Samuel Schacher, and Daniel J. Goldberg.

1999. En passant synaptic varicosities form directly from growth cones by transient

cessation of growth cone advance but not of actin-based motility. J. Neurobiol. 41:

242--251.

Hebb, Donald 0 . 1949. The organization of behavior; a neuropsychological theory. Wiley.

Held, Lewis I., Jr. 2002. Imaginal discs: The genetic and cellular logic of pattern formation.

Cambridge University Press.

Hely, T. A., and D. J Willshaw. 1998. Short term interactions between microtubules and

actin filaments underlie long term behaviour in neuronal growth cones. Proc. R. Soc.,

Biol. Sci. 265(1407):1801-1807.

Hely, Tim A. 1998. Computational models of developing neural systems. Ph.D. thesis,

University of Edinburgh.

Hentschel, H. G. E., and A. van Ooyen. 1999. Models of axon guidance and bundling during

development. Proc. R. Soc. Lond. B. Biol. Sci. 266:2231-2238.

Hindges, Robert, Todd McLaughlin, Nicolas Genoud, Mark Henkenmeyer, and Dennis D. M.

O'Leary. 2002. EphB forward signaling controls directional branch extension and

arborization required for dorsal-ventral retinotopic mapping. Neuron 35(3):475-487.

Hines, Michael L., and N. Ted Carnevale. 2003. The NEURON simulation environment. In

The handbook of brain theory and neural networks, ed. Arbib M. A., 2nd ed., 769-773.

MIT Press.

Hope, R. A., B. J . Hammon, and Gaze R. M. 1976. The arrow model: retinotectal specificity

and map formation in the goldfish visual system. Proc. R. Soc. Lond. B. 194:447-466.

Horder, T. J . 1971. Retention, by fish optic nerve fibres regenerating to new terminal sites

in the tectum, of 'chemospecific' affinity for their original sites. J. Physiol. 216:

P53-P55.

Hornberger, Martin R., Dieter Diitting, Thomas Ciossek, Tomoko Yamada, Claudia Handw-

erker, Susanne Lang, F'ranco Weth, Julita Huf, Ralf Wegel, Cairine Logan, Hideaki

BIBLIOGRAPHY 322

Tanaka, and Uwe Drescher. 1999. Modulation of EphA receptor function by coex-

pressed ephrin.4 ligands on retinal ganglion cell axons. Neuron 22:731-742.

Hudson, Scott, Frank Flannery, and C. Scott Ananian. 2003. CUP parser generator for

Java. Available: h t t p : //www . cs . princeton. edu/-appel/modern/j ava/CUP/ [Ac-

cessed: June 10-20031.

Hummel, John E., and Irving Biederman. 1992. Dynamic binding in a neural network for

shape recognition. Psychological Review 99(3):480-517.

Hunt, R. K., and M. Jacobson. 1973. Development of neuronal locus specificity in Xenopus

retinal ganlion cells after surgical eye transection or after fusion of whole eyes. Dev.

Biol. 40:l-15.

Innocenti, G.M. 1995. Exuberant development of connections and its possible permissive

role in cortical evolution. Trends Neurosci. 18:397-402.

de Jong, Hidde. 2002. Modeling and simulation of genetic regulatory systems: A literature

review. J. Comput. Biol. 9(1):67-103.

Judd, Ellen M., Michael T. Laub, and Harley H. McAdams. 2000. Toggles and oscillators:

new genetic circuit designs. BioEssays 22(6):507-509.

Kalil, Katherine, Gyorgyi Szebenyi, and Eric W . Dent. 2000. Common mechanisms under-

lying growth cone guidance and axon branching. J. Neurobiol. 44(2):145-158.

Kandel, Eric R., James H. Schwartz, and Thomas M. Jessel. 2000. Principles of neural

science. McGraw-Hill.

Knoll, Bernd, and Uwe Drescher. 2002. Ephrin-As as receptors in topographic projections.

Rends Neurosci. 25(3):145-149.

Knoll, Bernd, Hannes Schmidt, William Andrews, Sarah Guthrie, Adrian Pini, Vasi Sun-

daresan, and Uwe Drescher. 2003. On the topographic targeting of basal vomeronasal

axons through Slit-mediated chemorepulsion. Development 130:5073-82.

BIBLIOGRAPHY 323

Knoll, Bernd, Konstantinos Zarbalis, Wolfgang Wurst, and Uwe Drescher. 2001. A role of

the EphA family in the topographic targeting of vomeronasal axons. Development

128:895-906.

Kolls, Bradley J. , and Ronald L. Meyer. 2002. Spontaneous retinal activity is tonic and

does not drive tectal activity during activity-dependent refinement in regeneration.

J. Neurosci. 22(7):2626-2636.

Kreyszig, Erwin. 1988. Advanced engineering mathematics. John Wiley & Sons.

Krubitzer, Leah, and Kelly J. Huffman. 2000. Arealization of the neocortex in mammals: Ge-

netic and epigenetic contributions to the phenotype. Brain, Behavious and Evolution

55:322-225.

Kummer, H. 1971. Primate societies. Arlington Heights.

Lai, Cecillia S. L., Simon E. Fisher, Jane A. Hurst, Faraneh Vargha-Khadem, and Anthony P.

Monaco. 2001. A forkhead-domain gene is mutated in a severe speech and language

disorder. Nature 413:519-523.

Levesque, Hector, Fiora Pirri, and Ray Reiter. 1998. Foundations for the situation calculus.

Linkooping electronic Articles in Computer and Information Science 3.

Li, Guo-Hua, Cheng-De Qin, and Mao-Hui Li. 1994. On the mechanisms of growth cone

locomotion: Modeling and computer simulation. J. theor. biol. 169:355-362.

Liberty, Jesse. 1998. Beginning object-oriented analysis and design. Wrox Press Ltd.

Lindenmayer, Aristide. 1968. Mathematical models for cellular interaction in development,

Parts I and 11. J. Theor. Biol. 18:280-315.

Liu, Zheng, Barry J. Richmond, Elisabeth A. Murray, Richard C. Saunders, Sara Steenrod,

Barbara K. Stubblefield, Deidra M. Montague, and Edward I. Ginns. 2004. DNA

targeting of rhinal cortex D2 receptor protein reversibly blocks learnig of cues that

predict reward. Proc. Natl. Acad. Sci. U. S. A. 101 (33):12336-12341.

Lodish, Harvey, Arnold Berk, S. Lawrence Zipursky, Paul Matsudaira, David Baltimore, and

James Darnell. 2000. Molecular cell biology. 4th ed. W . H. Freeman.

BIBLIOGRAPHY 324

Logo Foundation. 2004. Logo foundation web-site. Available:

h t t p : / / e l . media. m i t . edu/logo-f oundation/ [Accessed: August 10-20041.

Louden, Kenneth C. 1993. Programming languages: principles and practice. PWS Publishing

Company.

Lovel, Sigrid. 1994. Occular dominance column development: strabismus changes the spacing

of adjacent columns in cat visual cortex. J. Neurosci. 14(12):7451-7468.

Luger, George F., and William A. Stubblefield. 1998. Artificial intelligence - structures

and strategies for complex problem solving. 3rd ed. Addison Welsey Longman, Inc.

Maletic-Savatic, Mirjana, and Roberto Malinow. 1998a. Calcium-evoked dendritic exocyto-

sis in cultured hippocampal neurons. Part I: Trans-golgi network-derived organelles

undergo regulated exocytosis. J. Neurosci. 18(17):6803-6813.

. 1998b. Calcium-evoked dendritic exocytosis in cultured hippocampal neurons. Part

11: Mediation by calcium/calmodulin-dependent protein kinase 11. J. Neurosci.

18(17):6814-6821.

Mann, Fanny, Samiran Ray, William A. Harris, and Christine E. Holt. 2002. Topographic

mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling

through ephrin-B ligands. Neuron 35 (3) :461-473.

Marcus, Gary F. 2001. The algebraic mind. MIT press.

. 2004. The birth of the mind - how a tiny number of genes creates the complexities

of human thought. Basic Books.

Marin, Oscar, Maria Jose Blanco, and M. Angela Nieto. 2001. Differential expression of

Eph receptors and ephrins correlates with the formation of topographic projections

in primary and secondary visual circuits of the empryonic chick forebrain. Devel.

Biol. 234:289-303.

McLaughlin, Todd, Robert Hindges, and Dennis D. M. OILeary. 2003a. Regulation of axial

patterning of the retina and its topographic mapping in the brain. Curr. Opin.

Neurobiol. 1357-69.

BIBLIOGRAPHY 325

McLaughlin, Todd, Christine L. Toborg, Marla B. Feller, and Dennis D. M. O'Leary. 2003b.

Retinotopic map refinement requires spontaneous retinal waves during a brief critical

period of development. Neuron 40:1147-1160.

Meier, Nils. 2002. InstantJ. Available: http: //sourcef orge. net/projects/instant j/

[Accessed April 12-20041.

Meinhardt, Hans. 1999. Orientation of chemotactic cells and growth cones: models and

mechanisms. J. Cell. Sci. 112:2867-2874.

Meir, Eli, George von Dassow, Edwin M. Munro, and Garrett M. Odell. 2002. Robustness,

flexibility, and the role of lateral inhibition in the neurogenic network. Curr. Biol.

12:778-786.

von Melchner, L., S. L. Pallas, and M. Sur. 2000. Visual behaviour mediated by retinal

projections directed to the auditory pathway. Nature 404:871-876.

Meyer, R. 1979. Retinotectal projection in goldfish to an inappropriate region with a reversal

in polarity. Science 205:819-821.

Meyer-Franke, Anke, George A. Wilkinson, Alex Kruttgen, Minjie Hu, Elizabeth Munro,

Martin G. Hanson, Jr., Louis F. Reichardt, and Ben A. Barres. 1998. Depolarization

and CAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons.

Neuron 21(4):681-693.

Ming, Guo-li, Hong-jun Song, Benedikt Berninger, Christine E. Holt, Marc Tessier-Lavigne,

and Poo Mu-ming. 1997. CAMP-dependent growth cone guidance by netrin-1. Neuron

19(6):1225-1235.

Muller, Werner A. 1997. Developmental biology. Springer.

Mutton, Paul. 2004. Java EPS Graphics2D package. Available:

http : //www . j ibble . org/epsgraphi cs/ [Accessed: April 12-20041.

Neet, K. E., and R. B. Campenot. 2001. Receptor binding, internalization, and retrograde

transport of neurotrophic factors. Cell Mol. Lzfe Sci 58(8):1021-1035.

BIBLIOGRAPHY 326

O'Connor, Timothy P., Janet S. Duerr, and David Bentley. 1990. Pioneer growth cone

steering decisions mediated by single filopoial contact in situ. J. Neurosci. lO(12):

3935-3946.

Oda, Yoichi, Keisuke Kawasaki, Masahiro Morita, Henri Korn, and Haruko Matsui. 1998.

Inhibitory long-term potentiation underlies auditory conditioning of goldfish escape

behaviour. Nature 394:182-183.

van Ooyen, Arjen, and Richard R. Ribchester. 2003. Modeling neural development, chap.

Competition in the Development of Nerve Connections, 183-21 1. Developmental

Cognitive Neuroscience, The MIT Press.

van Ooyen, Arjen, and David J . Willshaw. 1999. Competition for neurotrophic factor in the

development of nerve connections. Proc. R . Soc. Lond. B . Biol. Sci. 266:883-892.

Overton, K., and M. Arbib. 1982. Competition and cooperation in neural nets, chap. Systems

matching and topographic maps: the branch-arrow model, 202-225. Berlin: Springer.

Palka, J., K. E. Whitlock, and M. A. Murray. 1992. Guidepost cells. Curr. Opin. Neurobiol.

2:48-54.

Palzkill, Timothy. 2002. Proteomics. Kluwer Academic Publishers.

Pinker, Steven. 2001. Talk of genetics and vice versa [commentary on Lai et. al., 20011.

Nature 413:465-466.

PNG development group. 2004. Portable network graphics. Available:

http : //www . libpng . org/pub/png/png . html [Accessed: April 12-20041.

Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T . Vetterling. 1986.

Numerical recipes: The art of scientific computing. Cambridge University Press.

Prusinkiewicz, Przemyslaw, Mark Hammel, and Radomir MEch. 1995. The artificlal life of

plants. SIGGRAPH Course Notes 7:l-1 - 1-38.

Rasmussen, Carl E., and David J. Willshaw. 1993. Competition in models for the develop-

ment of neuromuscular connections. Biol. Cybern. 68:409-419.

BIBLIOGRAPHY 327

Reiter, Raymond. 1991. The frame problem in the situation calculus: A simple solution

(sometimes) and a completeness result for goal regression. In Artificial intelligence

and mathematical theory of computation (Papers in honor of John McCarthy), ed.

Vladimir Lifschitz, 359-380. Academic press.

, 1996. Natural actions, concurrency and continuous time in the situation calculus.

In Principles of knowledge representation and reasoning: Proceedings of the fifth

international conference (KR'96), ed. L. C. Aiello, J . Doyle, and S. C. Shapiro, 2-13.

Morgan Kaufmann Publishers, San Fransisco, CA.

Rodriguez, A., J . Whitson, and R. Granger. 2004. Derivation and analysis of basic compu-

tational operations of thalamocortical circuits. J. Cogn. Neurosci. 16(5):856-877.

Rust, Alistair G., Rod Adams, and Hamid Bolouri. 1999. Towards computational neural sys-

tems through developmental evolution. International Workshop on Emergent Neural

Computation Based on Neuroscience .

, 2000. Evolutionary neural topiary: Growing and sculpting artificial neurons to

order. Proceedings of the 7th International Conference on Simulation and Synthesis

of Living Systems (ALife VII) .

Schmidt, J., C. Cicerone, and S. Easter. 1978. Expansion of the half retina projection to the

tectum in goldfish: an electrophysiological and anatomical study. J. Comp. Neurol.

177:257-278.

Scholpp, Steffen, Claudia Lohs, and Michael Brand. 2003. Engrailed and Fgf8 act synergis-

tically to maintain the boundary between diencephalon and mesencephalon. Devel-

opment 130:4881-4893.

Schulte, Dorotea, and Constance L. Cepko. 2000. Two homeobox genes define the domain

of EphA3 expression in the developing chick retina. Development 127:5033-5045.

Shatz, C. J. , S. Lindstrom, and T. N. Wiesel. 1977. The distribution of afferents representing

the right and left eyes in the cat's visual cortex. Brain Res. 131:103-116.

Shirazi, Jack. 2000. Java performance tuning. The Java Series, O1'Reilly & Associates, Inc.

BIBLIOGRAPHY 328

Smolen, P., D. A. Baxter, and J. H. Byrne. 2000a. Modeling transcriptional control in

gene networks: Methods, recent results, and future directions. Bull. Math. Biol. 62:

247-292.

Smolen, Paul., Doublas. A. Baxter, and John. H. Byrne. 2000b. Mathematical modeling of

gene networks. Neuron 26:567-580.

Song, Hong-jun, Guo-li Ming, and Mu-ming Poo. 1997. CAMP-induced switching in turning

direction of nerve growth cones. Nature 388(17):275-279.

Song, Sen, Kenneth D. Miller, and L. F. Abbott. 2000. Competitive Hebbian learning

through spike-timing dependent synaptic plasticity. Nature Neurosci. 3:919-926.

Sperry, Roger W. 1963. Chemoaffinity in the orderly growth of nerve fiber patterns and

connections. Proc. Natl. Acad. Sci. U.S.A. 50:703-710.

St. John, James A., Heidi J . Clarris, and Brian Key. 2002. Multiple axon guidance cues

establish the olfactory topographic map: How do these cues interact? Int. J. Dev.

Biol. 46:639-47.

Stanley, Kenneth O., and Risto Miikkulainen. 2003. A taxonomy of artificial embryogeny.

Art. Life 9:93-130.

Stern, Claudio D. 2001. Initial patterning of the central nervous system: How many orga-

nizers? Nature Rev. Neurosci. 2:92-98.

Sun Microsystems. 2003a. GZIPInputStream class documentation. Avail-

able: http://java.sun. com/j2se/l.4.2/docs/api/java/util/zip/-

GZIPInputStream. html [Accessed April 12-20041.

-- . 2003b. GZIPOutputStream class documentation. Avail-

able: http://java.sun.com/j2se/l.4.2/docs/api/java/util/zip/-

GZIPOutput Stream. html [Accessed April 12-20041.

. 2003c. JavaCC. Available: https: //j avacc .dev. j ava.net/ [Accessed April 12-

20041.

-- . 2004. Javatm 2 platform, standard edition, v 1.4.2. Available:

h t t p : //j ava. sun. com/j 2se/l. 4.2/docs/api/overview-summary. html [Accessed

April 12-20041.

Sur, M., S.L. Pallas, and A.W. Roe. 1990. Cross-modal plasticity in cortical development:

differentiation and specification of sensory neocortex. Trends Neurosci. 13:227-233.

Swindale, Nicholas V. 1996. The development of topography in the visual cortex: a review

of models. Network: Computation in Neural Systems 7:161-247.

Tai, Hsin-Chien, and Helen M. Buettner. 1998. Neurite outgrowth and growth cone mor-

phology on micropatterned surfaces. Biotechnol. Prog. 14(3):364-370.

Takacs, J., P. Saillour, M. Imbert, M. Bogner, and J . Hamori. 1992. Effect of dark rearing

on the volume of visual cortex (areas 17 and 18) and number of visual cortical cells

in young kittens. J. Neurosci. Res. 32:449-459.

Takahashi, Hiroo, Takafumi Shintani, Hiraki Sakuta, and Masaharu Noda. 2003. CBFl

controls the retinotect a1 topographical map along the anteroposterior axis through

multiple mechanisms. Development 130(21):5203-5215.

Taylor, John David. 200 1. Beanpeeler. Available:

http: //uk. geocities. com/j ohndavid-taylor/projects/beanpeeler/ [Accessed

November 11-20041.

Thor, Stefan, Siv G. E. Anderson, Andrew Tomlinson, and John B. Thomas. 1999. A LIM-

homeodomain combinatorial code of motor neuron pathway selection. Nature 397:

76-80.

Turin, Allan. 1952. The chemical basis of morphogenesis. Phil. Trans. B. 237:37-72.

Verhage, Matthijs, Ascanio S. Maia, Jaap J. Plomp, Arjen B. Brussaard, Joost H. Heeroma,

Hendrika Vermeer, Ruud F. Toonen, Robert E. Hammer, Timo K. van den Berg,

Markis Missler, Hans J. Geuze, and Thomas C. Siidhof. 2000. Synaptic assembly of

the brain in the absence of neurotransmitter secretion. Science 287364-869.

BIBLIOGRA PHI' 330

Vicari, S., A. Albertoni, A. M. Chilosi, P. Cipriani, G. Cioni, and E. Bates. 2000. Plasticity

and reorganization during language development in children with early brain injury.

Cortex 36:31-46.

de Waal, F'rans B. M. 2001. The ape and the sushi master: cultural reflections of a prima-

tologist. Basic Books.

Weber, Cornelius, Helge Ritter, Jack Cowan, and Klaus Obermayer. 1997. Development and

regeneration of the retinotectal map in goldfish: a computational study. Phil. Trans.

R . Soc. Lond. B. 352(1361):1603-1623.

West, Anne E., Eric C. Griffith, and Michael E. Greenberg. 2002. Regulation of transcription

factors by neuronal activity. Nature Rev. Neurosci. 3(l2) :921-31.

Whitelaw, V. A., and J . D. Cowan. 1981. Specificity and plasticity of retinotectal connections:

A computational model. J. Neurosci. 1(12):1369-1387.

Willshaw, D. J . , and C. von der Malsburg. 1976. How patterned neural connections can be

set up by self-organization. Proc. R . Soc. Lond. B 194:431-445.

Wong, Rachel 0. L. 1999. Retinal waves and visual system development. Annu. Rev.

Neurosci. 22:29-47.

Yates, Paul iZ., Alex D. Holub, Todd McLaughlin, Terrence J . Sejnowski, and Dennis D. M.

O'Leary. 2004. Computational modeling of retinotopic map development to define

contributions of EphA-ephrinA gradients, axon-axon interactions, and patterned ac-

tivity. J. Neurobiol. 59:95-113.

Yates, Paul A., Adina L. Roskies, Todd McLaughlin, and Dennis D. M. O'Leary. 2001.

Topographic-specific axon branching controlled by ephrin-As is the critical event in

retinotectal map development. J. Neurosci. 21(21):8548-8563.

Yuan, Li-Lian, J . Paige Adams, Michael Swank, J . David Sweatt, and Daniel Johnston.

2002. Protein kinase modulation of dendritic K+ channels in hippocampus involves

a mitogen-activated protein kinase pathway. J. Neurosci. 22(12):4860-4868.

BIBLIOGRAPHY 331

Zhang, Li I., W. Tao, Huizhong, Christine E. Holt, William A. Harris, and Mu-ming Poo.

1998. A critical window for cooperation and competition among developing retino-

tectal synapses. Nature 39537-44.

Zheng, James Q. 2000. Turning of nerve growth cones induced by localized increases in

intracellular calcium ions. Nature 403:89-93.

Zheng, James Q., Ji-jun Wan, and Mu-ming Poo. 1996. Essential role of filopodia in

chemotropic turning of nerve growth cone induced by a glutamate gradient. J. Neu-

rosci. 16:1140-1149.

