437 research outputs found

    Performance evaluation of transcoding algorithms for H.264

    Get PDF

    Compressed-domain transcoding of H.264/AVC and SVC video streams

    Get PDF

    Low Power Architectures for MPEG-4 AVC/H.264 Video Compression

    Get PDF

    On the design of multimedia architectures : proceedings of a one-day workshop, Eindhoven, December 18, 2003

    Get PDF

    On the design of multimedia architectures : proceedings of a one-day workshop, Eindhoven, December 18, 2003

    Get PDF

    Dyadic spatial resolution reduction transcoding for H.264/AVC

    Get PDF
    In this paper, we examine spatial resolution downscaling transcoding for H.264/AVC video coding. A number of advanced coding tools limit the applicability of techniques, which were developed for previous video coding standards. We present a spatial resolution reduction transcoding architecture for H.264/AVC, which extends open-loop transcoding with a low-complexity compensation technique in the reduced-resolution domain. The proposed architecture tackles the problems in H.264/AVC and avoids visual artifacts in the transcoded sequence, while keeping complexity significantly lower than more traditional cascaded decoder-encoder architectures. The refinement step of the proposed architecture can be used to further improve rate-distortion performance, at the cost of additional complexity. In this way, a dynamic-complexity transcoder is rendered possible. We present a thorough investigation of the problems related to motion and residual data mapping, leading to a transcoding solution resulting in fully compliant reduced-size H.264/AVC bitstreams

    Efficient Video Transport over Lossy Networks

    Full text link
    Nowadays, packet video is an important application of the Internet. Unfortunately the capacity of the Internet is still very heterogeneous because it connects high bandwidth ATM networks as well as low bandwidth ISDN dial in lines. The MPEG-2 and MPEG-4 video compression standards provide efficient video encoding for high and low bandwidth media streams. In particular they include two paradigms which make those standards suitable for the transmission of video via heterogeneous networks. Both support layered video streams and MPEG-4 additionally allows the independent coding of video objects. In this paper we discuss those two paradigms, give an overview of the MPEG video compression standards and describe transport protocols for Real Time Media transport over lossy networks. Furthermore, we propose a real-time segmentation approach for extracting video objects in teleteaching scenarios
    corecore