3,892 research outputs found

    Cybersecurity for Manufacturers: Securing the Digitized and Connected Factory

    Full text link
    As manufacturing becomes increasingly digitized and data-driven, manufacturers will find themselves at serious risk. Although there has yet to be a major successful cyberattack on a U.S. manufacturing operation, threats continue to rise. The complexities of multi-organizational dependencies and data-management in modern supply chains mean that vulnerabilities are multiplying. There is widespread agreement among manufacturers, government agencies, cybersecurity firms, and leading academic computer science departments that U.S. industrial firms are doing too little to address these looming challenges. Unfortunately, manufacturers in general do not see themselves to be at particular risk. This lack of recognition of the threat may represent the greatest risk of cybersecurity failure for manufacturers. Public and private stakeholders must act before a significant attack on U.S. manufacturers provides a wake-up call. Cybersecurity for the manufacturing supply chain is a particularly serious need. Manufacturing supply chains are connected, integrated, and interdependent; security of the entire supply chain depends on security at the local factory level. Increasing digitization in manufacturing— especially with the rise of Digital Manufacturing, Smart Manufacturing, the Smart Factory, and Industry 4.0, combined with broader market trends such as the Internet of Things (IoT)— exponentially increases connectedness. At the same time, the diversity of manufacturers—from large, sophisticated corporations to small job shops—creates weakest-link vulnerabilities that can be addressed most effectively by public-private partnerships. Experts consulted in the development of this report called for more holistic thinking in industrial cybersecurity: improvements to technologies, management practices, workforce training, and learning processes that span units and supply chains. Solving the emerging security challenges will require commitment to continuous improvement, as well as investments in research and development (R&D) and threat-awareness initiatives. This holistic thinking should be applied across interoperating units and supply chains.National Science Foundation, Grant No. 1552534https://deepblue.lib.umich.edu/bitstream/2027.42/145442/1/MForesight_CybersecurityReport_Web.pd

    CERN openlab Whitepaper on Future IT Challenges in Scientific Research

    Get PDF
    This whitepaper describes the major IT challenges in scientific research at CERN and several other European and international research laboratories and projects. Each challenge is exemplified through a set of concrete use cases drawn from the requirements of large-scale scientific programs. The paper is based on contributions from many researchers and IT experts of the participating laboratories and also input from the existing CERN openlab industrial sponsors. The views expressed in this document are those of the individual contributors and do not necessarily reflect the view of their organisations and/or affiliates

    Using embedded hardware monitor cores in critical computer systems

    Get PDF
    The integration of FPGA devices in many different architectures and services makes monitoring and real time detection of errors an important concern in FPGA system design. A monitor is a tool, or a set of tools, that facilitate analytic measurements in observing a given system. The goal of these observations is usually the performance analysis and optimisation, or the surveillance of the system. However, System-on-Chip (SoC) based designs leave few points to attach external tools such as logic analysers. Thus, an embedded error detection core that allows observation of critical system nodes (such as processor cores and buses) should enforce the operation of the FPGA-based system, in order to prevent system failures. The core should not interfere with system performance and must ensure timely detection of errors. This thesis is an investigation onto how a robust hardware-monitoring module can be efficiently integrated in a target PCI board (with FPGA-based application processing features) which is part of a critical computing system. [Continues.

    Distributed information extraction from large-scale wireless sensor networks

    Get PDF

    Service Abstractions for Scalable Deep Learning Inference at the Edge

    Get PDF
    Deep learning driven intelligent edge has already become a reality, where millions of mobile, wearable, and IoT devices analyze real-time data and transform those into actionable insights on-device. Typical approaches for optimizing deep learning inference mostly focus on accelerating the execution of individual inference tasks, without considering the contextual correlation unique to edge environments and the statistical nature of learning-based computation. Specifically, they treat inference workloads as individual black boxes and apply canonical system optimization techniques, developed over the last few decades, to handle them as yet another type of computation-intensive applications. As a result, deep learning inference on edge devices still face the ever increasing challenges of customization to edge device heterogeneity, fuzzy computation redundancy between inference tasks, and end-to-end deployment at scale. In this thesis, we propose the first framework that automates and scales the end-to-end process of deploying efficient deep learning inference from the cloud to heterogeneous edge devices. The framework consists of a series of service abstractions that handle DNN model tailoring, model indexing and query, and computation reuse for runtime inference respectively. Together, these services bridge the gap between deep learning training and inference, eliminate computation redundancy during inference execution, and further lower the barrier for deep learning algorithm and system co-optimization. To build efficient and scalable services, we take a unique algorithmic approach of harnessing the semantic correlation between the learning-based computation. Rather than viewing individual tasks as isolated black boxes, we optimize them collectively in a white box approach, proposing primitives to formulate the semantics of the deep learning workloads, algorithms to assess their hidden correlation (in terms of the input data, the neural network models, and the deployment trials) and merge common processing steps to minimize redundancy

    Enabling Program Analysis Through Deterministic Replay and Optimistic Hybrid Analysis

    Full text link
    As software continues to evolve, software systems increase in complexity. With software systems composed of many distinct but interacting components, today’s system programmers, users, and administrators find themselves requiring automated ways to find, understand, and handle system mis-behavior. Recent information breaches such as the Equifax breach of 2017, and the Heartbleed vulnerability of 2014 show the need to understand and debug prior states of computer systems. In this thesis I focus on enabling practical entire-system retroactive analysis, allowing programmers, users, and system administrators to diagnose and understand the impact of these devastating mishaps. I focus primarly on two techniques. First, I discuss a novel deterministic record and replay system which enables fast, practical recollection of entire systems of computer state. Second, I discuss optimistic hybrid analysis, a novel optimization method capable of dramatically accelerating retroactive program analysis. Record and replay systems greatly aid in solving a variety of problems, such as fault tolerance, forensic analysis, and information providence. These solutions, however, assume ubiquitous recording of any application which may have a problem. Current record and replay systems are forced to trade-off between disk space and replay speed. This trade-off has historically made it impractical to both record and replay large histories of system level computation. I present Arnold, a novel record and replay system which efficiently records years of computation on a commodity hard-drive, and can efficiently replay any recorded information. Arnold combines caching with a unique process-group granularity of recording to produce both small, and quickly recalled recordings. My experiments show that under a desktop workload, Arnold could store 4 years of computation on a commodity 4TB hard drive. Dynamic analysis is used to retroactively identify and address many forms of system mis-behaviors including: programming errors, data-races, private information leakage, and memory errors. Unfortunately, the runtime overhead of dynamic analysis has precluded its adoption in many instances. I present a new dynamic analysis methodology called optimistic hybrid analysis (OHA). OHA uses knowledge of the past to predict program behaviors in the future. These predictions, or likely invariants are speculatively assumed true by a static analysis. This creates a static analysis which can be far more accurate than its traditional counterpart. Once this predicated static analysis is created, it is speculatively used to optimize a final dynamic analysis, creating a far more efficient dynamic analysis than otherwise possible. I demonstrate the effectiveness of OHA by creating an optimistic hybrid backward slicer, OptSlice, and optimistic data-race detector OptFT. OptSlice and OptFT are just as accurate as their traditional hybrid counterparts, but run on average 8.3x and 1.6x faster respectively. In this thesis I demonstrate that Arnold’s ability to record and replay entire computer systems, combined with optimistic hybrid analysis’s ability to quickly analyze prior computation, enable a practical and useful entire system retroactive analysis that has been previously unrealized.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144052/1/ddevec_1.pd
    • …
    corecore