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Abstract

The integration of FPGA devices in many different architectures and services
makes monitoring and real time detection of errors an important concern in FPGA
system design. A monitor is a tool, or a set of tools, that facilitate analytic
measurements in observing a given system. The goal of these observations is
usually the performance analysis and optimisation, or the surveillance of the system.
However, System-on-Chip (SoC) based designs leave few points to attach external
tools such as logic analyzers. Thus, an embedded error detection core that allows
observation of critical system nodes (such as processor cores and buses) should
enforce the operation of the FPGA-based system, in order to prevent system
failures. The core should not interfere with system performance and must ensure
timely detection of errors.

This thesis is an investigation onto how a robust hardware-monitoring module
can be efficiently integrated in a target PCI board (with FPGA-based application-
processing features) which is part of a critical computing system. An error detection
and recovery core was implemented that requires no manual intervention for
illustrating the benefits of this approach. The Error Detection Monitor Unit
(EDMU) can be considered as a monitor and control wrapper for PCI-compatible
cores that monitors the application transactions between the PCI-based FPGA board
and the host in a timely manner, The nearly concurrent functionality of EDMU
allows the core to operate as a “firewall”, preventing the communication between
the FPGA-configured application and the host computer, upon detection of errors. A
predefined policy framework groups the application and PCI protocol errors
according to a severity scale; thus suspicious or undesirable transactions are treated
considering their severity rating. Therefore, the PC-based critical system uses
EDMU in order to guarantee quality in the offered services, such as maintainability,
availability and error tolerance.

The high portability and reusability of EDMU makes it ideal for remote network
configuration PC systems and failure-resistant critical computing platforms similar
to Active Networks. There are several other target application examples for using
the error-detection features of our module, including PCI protocol checking,

hardware testing and debugging of predefined conditions.
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Using embedded hardware monitor cores in critical computer systems 1

CHAPTER 1

Introduction

1.1 The research topic

Today’s computer-based products are complex and require extensive effort for their
design and test. The complexity in such systems is increased because they comprise
many components, advanced software and hardware functionality. This trend is clearly
seen in the consumer electronics market, and in state-of-the-art industrial systems. The
development of these products tends to be challenging as well as increasingly time-
consuming, expensive, and error-prone. Therefore, the developers need to cut down the
development time and improve quality, which in turn, demands better tools and
development methodologies.

One important aspect in the development process of computer systems is
observability, i.e. the ability to observe the system’s behaviour at various abstraction
levels in the design. The observations are required for many reasons, for instance, when
looking for design errors, during debugging, during optimisation of algorithms, for
extraction of design data, and a lot more. Observability is however not an issue
restricted to development purposes only, it may also be necessary after the deployment
of products (e.g., for error recovery, for surveillance issues, for collection of statistical
measurements). The quality of observability could be characterised as high if the
system allows for detailed and accurate analysis of all of its components, and low if the
system is obstructive and hard to analyse confidently. The motivation for investigating
this area is to provide better observability for complex computer systems based on
state-of-the-art programmable logic architectures.

In more detail the aim of this research study is to offer a failure resistant PC
platform with in-built hardware monitor and control features, for high performance
processing of applications. The Field Programmable Gate Array (FPGA) devices satisfy

the ever growing demand for flexible and dedicated processing power. Therefore,
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various software-based applications are transformed into programmable hardware
applications in order to be integrated in systems that use the FPGA technology.
Moreover nowadays, the trend is to create a whole system within a FPGA device by
“hardwiring” hardware cores (e.g. microprocessors, memory, transceivers etc) inside
the programmable logic area of a FPGA. The new era belongs to this new form of
FPGAs that can realise a programmable System-on-Chip (SoC).

The state-of-the-art FPGA devices are becoming increasingly popular; systems that
demand re-programmability and high performance parallel processing adopt the
solution of FPGAs. The more the popularity of the FPGAs increases, the more they
play a key role in important systems since they are used as critical components within
them (e.g. co-processors). Therefore, it is obvious that such systems need an integrated
monitoring support in order to trace the activity of the applications and guarantee their
stable operation. Run-time observability in embedded system architectures is also a
requirement for testing, debugging, and for validating design assumptions made about
the behaviour of the system and its environment. The classical approach to run-time
observability is to apply monitoring, i.e. the process of detecting, collecting, and
interpreting run-time information regarding the system’s execution behaviour. A
significant conclusion of the work presented in this thesis is the fact that on-chip
policy-based monitoring support will be required in future development of similar
systems, especially those based on SoC architectures. The timely/concurrent detection
of errors that are produced from applications configured in FPGA devices will be a
major issue in the near future.

One of the main deliverables of the research process is to investigate the impact that
application errors can have in critical systems that are built around FPGA devices,
using as a case study a PCl-based reconfigurable FPGA platform. Some indicative
examples of such systems could be:
¢ Real time systems,
¢ Safety critical systems,

» Security sensitive systems,

o Systems that require maintainability, availability and operability features.
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The target was to define the requirements of a similar system in terms of performance,
security and fault tolerance; also, in which way the applications errors can critically
influence vital functions and services of the system. Public network and communication
systems are built with the inherent requirement to operate even under harsh conditions
(i.e. system malfunctions, security attacks, lack of processing resources, reaching the
limit of users that can be served etc). The functions and the services that they deliver
are -in most of the cases- important and must be maintained at all cost, or at least up to

an acceptable level (i.e. fault tolerance).

1.2 The research and development challenges

A synopsis of the research challenges that this work had to cope with are given in
the list that follows:

1. Define a flexible and high performance application-processing platform; justify the
selection of the individual hardware and software components with reference to the
target topology.

2. Select and study the properties of a real world critical system, based on a computer
architecture (i.e. PC).

3. Define the security framework of the system according to the specific properties
and requirements of the critical system that is under investigation.

4. Design, implement and test a hardware, momtor and control core that does not
introduce intrusiveness to the system application-processing. The core should be
permanently configured in order to satisfy the pragmatic needs of a real world
critical computer system.

5. Prevent the propagation of errors in the system offering by this way high
availability, operability and dependability. Thus, the application-layer errors have to

be detected in a timely manner.

1.2.1_Application processing with reconfigurable programmable arrays

Reconfigurable computing systems comprising microprocessor, memory and
reconfigurable logic represent a promising technology, which is well suited for bit-

intensive applications such as digital signal processing, error correcting codes, control
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applications, bit manipulation, compression/decompression and encryption/decryption.
The flexibility, capacity and performance of Field Programmable Gate Arrays (FPGAs)
have opened up completely new avenues in high performance computation forming the
basis of reconfigurable computing. FPGAs can be considered as the obvious candidate
for achieving the performance requirements of the bit-intensive applications that are
going to be used as part of reconfigurable computing applications. Moreover, the re-
configurability of FPGAs makes them ideal for remote field upgrades of systems. A
new bitstream containing a new version of a circuit can be downloaded through a
remote connection. Several different approaches address the remote reconfiguration of
FPGAs; commercial schemes and academic research projects have proposed different
architecture solutions for a remote configuration execution environment. More
information on this topic 1s given in chapter three.

The execution environment of reconfigurable computing applications can be
defined as the abstraction layer or the physical component where the applications are
implemented or executed. It can be one or more of the following abstraction domains:

1. The microprocessor
2. The kemel space of an operating system
3. A reconfigurable array (FPGA, CPLD etc)
4. A topology comprising of Application Specific Integrated Circuits (ASICs), or
other types of ICs
5. A hybrid solution of the above components (System-on-Chip)
/
1.2.2_Active Networks — a dependable, reconfigurable-computing system

The detection of errors that are initiated from FPGA-based applications in PC
systems is a platform-independent concept; hence it is not necessary to integrate it in
any of the critical systems that were described in the previous paragraph in order to
prove —the obvious- necessity for using it. However, it is important to use an example
platform for studying and identifying the requirements, the limits, the technical details,
the development issues and the theoretical background of the system under
investigation. Active Networks [2] are security problematic systems with real time and

fault tolerance constraints that require significant processing resources; their operation
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is critical and must be maintained because the services that they deliver are important
for the network infrastructure and the users. Considering the available infrastructure,
the experience and the know-how at Loughborough University, Active Networks was
the obvious candidate for collecting the required structure-definitive specifications for
the error detection system. For this reason, a detailed study of the properties and the
specifications of an Active Network was delivered. It can be claimed that the
performance and security-critical issues of Active Networks with programmable logic
support, defined the fundamental design goals and the response of the system.
Architecture level solutions have already been offered to confront the side effects of
Active Applications when the Execution Environment is realised either in the Active
Host’s microprocessor or in the kernel space of the operating system, However, in the
scenario under investigation, the execution environment is an FPGA-based
reconfigurable platform. Figure 1.1 is a representation of a PC-based Active Router
with programmable logic support; the PC carries a PCI board with one FPGA device

dedicated for applications that need a bit intensive processing environment.

Figure 1.1: An Active Network with a reconfigurable processing engine.

Following the Active Network design approach, a configuration bitstream that
targets such a platform could be carried in a series of Active Packets. These packets are

identified as active when the Active Router processes them. The Active Router then
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decides whether to download the new configuration bitstream to the FPGA device or

not, depending on the current activity on the FPGA board.

1.2.3 Security implications and counteract framework
The dependable system described in the previous section has FPGA processing and

reconfigurable features that are examined as a case study in order to detect
vulnerabilities and system defects. Applications that configure the FPGA device of the
PCI board, pose threats analogous to software program threats (i.e. resource
consumption, application layer faults, design bugs). The new configuration can
potentially extend and modify the network infrastructure. The routing and the
forwarding of the packets are vital processes of such system and must not be interfered
with, by any means since their maintenance is important for the viability of the
network. Moreover, the operability of routers in general is cntical to the proper and
correct running of many other important systems and services. Therefore, a designer of
reconfigurable systems of this type should consider new possible threats on top of the
already existent network security issues [3], [4], [5], [6], [7], [8], and [9].

The secunity threat model has to be identified, considering all the platform-specific
characteristics and the requirements that were set for a realistic implementation of the
FPGA-based reconfigurable system. The potential threats and the “enemies” for the
candidate architecture have to be identified. This important design consideration could
allow the monitoring component to be integrated in a FPGA-based programmable
archifecture.

Designers of dependable computing systems should deal with several issues related
with reliability, availability, testability, maintainability and system robustness. In public
network systems, a part of which could be Active, security issues are raised and thus
measures must be taken to overcome the effects of potential failures. Considering the
above, the design of the FPGA-based reconfigurable platform realises a set of
measures, which are divided into four levels of action:

I.  Policy-based monitoring,
II. Timely detection of system threats,

III. Error tolerance,
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IV, Interrupting the erroneous application and applying reconfiguration.

The analysis of these levels of action is given in Chapter 4.

1.2.4_Design and implementation of a hardware monitor component
This thesis focuses on design and implementation issues for building an efficient

hardware monitor component, which is passively configured in an embedded FPGA-
based PC platform. One of the fundamental concerns of the monitoring system is the
concurrent detection of errors (e.g. protocol and application) in order to prevent their
propagation to other system areas and their interference with system performance and
dependability. The errors were grouped in two categonies; PCI protocol errors and
application errors related with misuse of local resources, “bugs” and execution of
malicious code.

The application, which is configured m the FPGA of the PCI board, could
potentially act as a master PCI agent across the PCI bus; this means that it could access
various system services and sensitive areas in almost a concurrent way, It is clear that
this case is highly undesirable because it can result in system malfunctions, degradation
of services and system-processes, application hijacking, breaching of securnty policies
and data-integrity policies. In the worst case scenario ‘“hard”-restart of the PC that
carries the PCI-FPGA board might be needed (e.g. when an illegal memory write is
attempted, PCI bus contention etc). Re-booting a PC with high availability and
operability requirements, breaches the specifications and design requirements of most
reconfigurable FPGA-based computers, used within dependable systems.

For this reason it is required a carefully designed monitor component capable of
identifying and intercepting illegal or unauthorised activity in a concurrent way. The
sequential nature of software monitors make them unsuitable for concurrent monitoring
of FPGA-based applications. However, even by using hardware monitors, the technical
and research challenge of concurrent (or nearly concurrent) application monitoring of
the PCI-based FPGA board, still remains to be met. The monitoring component has to
examine the application transactions as well as the interaction of the FPGA application
with the host. Although the main operational and design issues are related with the

activity of the FPGA application, the monitor component should also check the host’s
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transactions (e.g. when the FPGA is a target PCI agent); a bidirectional monitoring
policy is applied by this way. A series of signals has to be monitored each clock cycle
acquiring by this way several qualitative and quantitative data. Various problems
related with contention (e.g. PCI-FPGA board local bus) or reuse of system-signals
make the concurrent monitoring a difficult task to deliver. Details for these issues will
be given in chapter six. Additionally, the fact that the FPGA-based processing system
has to be monitored online increases the degree of complexity, as far as the research
challenge is concerned. This means that the FPGA-based reconfigurable PC cannot
afford to stay offline due to misuse of local resources from the configured application,
since it will be part of a dependable system. Poor quality in the services and processes

delivered by such systems is also an unwanted event.

1.3 Target architectures and contribution
The platform could be used in several different application examples and

architectures. It can be adapted to fit the specific needs of various application-

topologies, when applying simple modifications in the specifications:

= Configuration bitstreams can be stored at a known network location and then
upgrade the PCl-based reconfigurable FPGA platform, once it is shipped and
installed for instance in the PC of a final customer. The goal of the error detection
core is to ensure that the operation of the PC will remain stable.

s Design Corrections — In the event that a flaw appears in a commercial IP after it is
shipped and configured to the PCI-based FPGA board of a final customer, the error
detection core provides operability without the need for recalls and field service.

»  Performance Upgrades - a company or a service provider intends to upgrade the
FPGA-based end station performance without putting at risk the availability and
operability of the system after the upgrade.

* End users, system administrators or service providers are able to reconfigure
remotely the FPGA devices of host-based Active Routers within an Active
Network, offering new application services or reprogramming the whole network,
changing for instance the IP routing tables (Active Node). The context of this
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topology implies the need of a monitoring mechanism that secures the constant

operation of the Active Router.

" The platform can be used for testing, evaluation and cross-technology integrations
since it offers a reliable and failure resistant framework for upgrades of FPGA-
based reconfigurable systems (PCI boards).

» In stand-alone mode the platform can also be used for online testing and as a PCI
bus protocol checker.

*  On-line verification of the PCI protocol for dependable applications which are
configured in FPGA-based PC systems.

The research contribution of this thesis is related with a unique hardware monitor
and control component (i.e. Error Detection Monitor Unit — EDMU), which is
embedded in a FPGA-based reconfigurable PCI board. EDMU delivers concurrent
monitoring of application transactions and acts as a “firewall” when predefined policy
rules are violated, satisfying by this way the reliability and operability requirements of

dependable FPGA-based computer systems.

1.4 Summary

The introductory chapter briefly covered the reasons that inspired this research and
also included a short description of terms like monitoring, reconfigurable computing
and programmable networks. The implementation limitations and the specific topology
requirements were also discussed in this chapter, together with the specifications and
the projected target topologies. The second chapter gives an outline of the terminology
context related to the research domain. This general theoretical background intends to
assist people who are outsiders to the field in order to identify and understand
fundamental concepts. At the same time, the information quoted in Chapter 2 aims to
transform this thesis to a self-contented research document, The next chapter includes a
classification of the relevant literature in different areas: i) Monitoring and error
detection, i) Reconfigurable computing and programmable networking and iii) Remote
FPGA reconfiguration.

Chapter four describes the policy framework which decisively shaped the research

and development efforts of this work. The security issues and the security framework
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that initiates countermeasures for confronting the effect of errors are also analysed.
Chapter five introduces the policy framework for the error detection core with specific
reference to the particular group of errors that were identified in chapter four. This
chapter also includes information about the system architecture as well as design and
implementation issues with specific code examples and design details. Chapter six
presents the simulation and real time results of the embedded monitor hardware core.
Finally, a discussion of the contributions and the potential future enhancements of this
research are given in the last Chapter.

The background information of the first two chapters is reasonably extended
because the intention throughout the research and development process was to present
this work in a self-contained way. In most of the cases the potential target platforms are
either networked or they follow strict real time constraints and thus this formulates a
practical problem: On the one hand, it is quite difficult for the hardware designers (i.e.
FPGA-ASIC design) to comprehend issues related with the requirements and operation
of a critical system (i.e. the dependability problems in programmable networks, field
upgrade of network reconfigurable systems, security and safety issues etc). On the other
hand it is quite difficult for the people who work on software-based critical real time

systems to understand hardware concepts related to FPGA design.
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CHAPTER 2
Critical real time systems

and FPGAs

The purpose of this chapter is to give an overview of the theoretical background aspects
that are related to the research goals of this work. Therefore, the reader can familiarise
himself/herself with terms that are very useful for the thorough understanding of the
design and development concepts that are presented in the following chapters of this

dissertation.

2.1 Field Programmable Gate Arrays
The consumer electronic market is offering nowadays a wide range of different
Integrated Circuits (ICs), in order to satisfy the cifferent requirements for applications

and services (figure 2.1 includes some relevant information).

Integrated Circuits
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Figure 2.1: The world of Integrated Circuits.
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A Field Programmable Gate Array (FPGA) can be configured in the field to
implement a desired logic function. Many different architectures exist, but Figure 2.2
shows the basic structure of a typical FPGA: a matrix of configurable logic blocks

(CLBs) and interconnection resources surrounded by I/O blocks.
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Figure 2.2: A general representation of a SRAM-based FPGA device.

The CLBs (figure 2.3) are often complex but are likely to contain one or more

function generators followed by flip-flops:
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Figure 2.3: The CLB contains two slices. Each slice contains two 4-input look-up
tables (LUT), carry & control logic and two registers. There are two 3-state buffers
associated with each CLB, that can be accessed by all the outputs of a CLB [10].

Made using either look-up tables (LUTs) or multiplexers, function generators are

capable of producing any k-input Boolean function where k is usually four. LUTSs are 1-
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bit wide memories and essentially store the truth table of the Boolean function they
generate. They often can be used for general storage when not acting as a function
generator, The output of a function generator can serve as part of combinational logic
or can be directed to a flip-flop to create a latched signal. The CLBs provide functional
elements for combinatorial and synchronous logic, including basic storage elements.

Interconnection resources are composed of horizontal and vertical wires that can
form connections with each other through programmable switches. There are also
programmable switches that connect wires to CLBs. I/O blocks can be programmed to
allow their associated pin to operate as either an input or an output. Current FPGAs
often include additional components such as clock managers, RAM, and dedicated
circuitry for common arithmetic operations,

A user can specify a logic function and then use a specific software to map the logic
function to a network of CLBs, which are then placed and routed. The end result is a
particular configuration for the FPGA that implements the logic function.

While industrial work with reconfigurable hardware has primarily utilized the
technology for verification of and sometimes a replacement for ASICs, researchers
have explored the use of FPGAs as a means of improving computational performance
in scientific and multimedia applications. The appeal of this technology for researchers
is that an FPGA can be configured on-the-fly with customized computational circuits
that provide hardware acceleration for end applications. Unlike single-purpose ASICs,
FPGAs can be reconfigured and re-used for a number of diverse computational tasks.
The hardware in such systems can be reconfigured multiple times at run-time in order
to adapt to different computing requirements for different applications. Reconfigurable
systems offer higher computational density and higher throughput for many
applications compared with conventional fixed hardware systems. Reconfigurable
computing is an active area of research.

Emerging commercial FPGA architectures are supplementing traditional
programmable logic with multiple hardware units for increased design flexibility and
computational power. The most attractive feature in these new architectures is the
inclusion of high-speed transceivers. The Xilinx Virtex I Pro architecture [11] contains
multiple 3.125 Gbps transceivers for use with networks such as 10-Gbps Ethernet and
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OC-192c. A second feature of emerging FPGA architectures is the inclusion of
powerful embedded processor cores. Altera’s Stratix includes the NIOS *“soft”
embedded microprocessor [12], while Excalibur FPGA devices include a dedicated 32-
bit 200 MHz ARM core. Likewise Xilinx includes in the Virtex II pro architectures
multiple PowerPC cores. Finally, modern FPGA architectures contain dedicated
hardware such as internal SRAM memory and high-speed multiplier array cores to
accelerate FPGA computational performance.

The trend to implement entire systems on an FPGA is creating a market for
intellectual property ‘cores’. These are designs created by third parties, which are sold
to FPGA users to incorporate into larger systems. Examples of cores include bus
mterfaces such as PCI bus, signal processing functions such as Reed Solomon
Decoders and communications interface functions such as Serialiser / Deserialiser
(SERDES). Leading FPGA manufacturers offer access to a catalogue of cores and
customers expect to be able to create a large part of the functionality of their system

using cores.

2.1.1 Single Context FPGAs
A single context FPGA is programmed using a serial stream of configuration

information. Because only sequential access is supported, any change to a configuration
on this type of FPGA requires a complete reprogramming of the entire chip. Although
this does simplify the reconfiguration hardware, it does incur a high overhead when
only a small part of the configuration memory needs to be changed. This type of FPGA
is therefore more suited for applications that can benefit from reconfigurable computing
without run-time reconfiguration. Most current commercial FPGAs are of this style. In
order to implement run-time reconfiguration using a single context FPGA, the
configurations must be grouped into contexts, and each full context is swapped in and
out of the FPGA as needed. Because each of these swap operations involve
reconfiguring the entire FPGA, a good partitioning of the configurations between
contexts is essential in order to minimize the total reconfiguration delay. If all the
configurations used within a certain time period are present i the same context, no

reconfiguration will be necessary. However, if a number of successive configurations




Using embedded hardware monitor cores in critical computer systems 15

are each partitioned into different contexts, several reconfigurations will be needed,

slowing the operation of the run-time reconfigurable system.

2.1.2 Partially Reconfigurable FPGAs

In some cases, configurations do not occupy the full reconfigurable hardware, or
only a part of a configuration requires modification. In both of these situations a partial
reconfiguration of the array is required, rather than the full reconfiguration supported
by a single context device. In a partially reconfigurable FPGA, the underlying
programming bit layer operates like a RAM device. Using addresses to specify the
target location of the configuration data allows for selective reconfiguration of the
array. Frequently, the undisturbed portions of the array may continue execution,
allowing the overlap of computation with reconfiguration. This has the benefit of
potentially hiding some of the reconfiguration latency. When configurations do not
require the entire arca available within the array, a number of different configurations
may be loaded into unused areas of the hardware at different times. Since only part of
the array is changed at a given point in time, the entire array does not require
reprogramming for each incoming configuration. Additionally, some applications
require the updating of only a portion of a mapped circuit, while the rest should remain
intact. For example, in a filtering operation in signal processing, a set of constant values
that change slowly over time may be re-initialized to a new value. But the overall
computation in the circuit remains static. Using this selective reconfiguration can
greatly reduce the amount of configuration data that must be transferred to the FPGA.
Unfortunately, since address information must be supplied with configuration data, the
total amount of information transferred to the reconfigurable hardware may be greater
than what is required with a single context design. A full reconfiguration of the entire
array is therefore slower than with the single context version. However, a partially
reconfigurable design is intended for applications in which the size of the
configurations is small enough that more than one can fit on the available hardware
simultaneously. Plus, the fast configurations methods presented in a previous section

can help reduce the configuration data traffic requirements.
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2.1.3 Reconfigurable Computing

One common use of a FPGA is for prototyping the design of an ASIC. In this
scenario, the FPGA is present only on the prototype hardware and is replaced by the
corresponding ASIC in the final production system. However, many system designers
are choosing to leave the FPGAs as part of the production hardware. Such systems
retain the execution speed of dedicated hardware but also have a great deal of
functional flexibility. The logic within the FPGA can be changed if or when it is
necessary, which has many advantages. For example, hardware bug fixes and upgrades
can be administered as easily as their software counterparts. In order to support a new
version of a network protocol, the internal logic of the FPGA can be redesigned sending
later the enhancement to the affected customers by email. Once they have downloaded
the new logic design to the system and restarted it, they will be able to use the new
version of the protocol. This is configurable computing; reconfigurable computing goes
one step further.

Reconfigurable computing involves manipulation of the logic within the FPGA at
run-time. In other words, the design of the hardware may change in response to the
demands placed upon the system while it is running. Here, the FPGA acts as an
execution engine for a variety of different hardware functions — some executing in
parallel, others in serial — much as a CPU acts as an execution engine for a variety of
software threads. FPGA could be considered as a reconfigurable processing unit. One
theoretical application is a smart cellular phone that supports multiple communication
and data protocols, though just one a time. When the phone passes from a geographic
region that is served by one protocol into a region that is served by another, the
hardware is automatically reconfigured. Reconfigurable computing has the following
advantages:

» Performance: Configurable computing can be highly optimised for a specific data
set or specific applications.

v Cost Effectiveness: Configurable computing can be used to reduce system costs
through hardware reuse. Any new features or can be easily updated to the system
and due to the field programmability, any problems with the design can be

corrected without any changes to the on board resources.
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s System prototyping: Large systems (either ASICs or boards) can be built on single
or multiple FPGAs that makes system testing and debugging more easier than
testing the real system and even cheaper.

= Custom I/O: FPGAs provides a flexible set of programmable /O signals. That
gives the designer the opportunity to reuse existing hardware and to add new
changes to it easily. New FPGAs supports Different types of IOs levels and
standards. One important use of this feature is matching different families.

v System density: Configurable computing “specially Run-time configurable logic”
increases the system density and can deliver functionality of the device many times
more than its size by dynamically reconfiguring the system and increase resource
utilization through loading and unloading different system modules.

* Fault-Tolerance: System reliability can be increased through redundancy by
duplication or building some testing circuits. Dynamic reconfiguration technique

can destroy old circuits and build new ones after detecting any error.

2.2 Integration of programmable logic devices in critical systems

The spread of programmable reconfigurable devices in various different technology

applications domains, targeting cither consumer electronics or electronics used from
service providers, scientific organisations and state bodies have made their use highly
important. The constant increase in the integration of reprogrammable chips in systems
has enforced the inter-dependence relation for the services and the applications that
these systems deliver. There is an intensive research in a world wide scale that tries to
address the challenges that FPGA (or similar reprogrammable devices) pose because of
their high penetration to critical systems. There are several conceptual requirements for
such systems related with terms like reliability, availability, dependabulity, testability,
maintainability and operability, These terms could be referred as critical system
requirements. The different critical computing systems have different levels of
requirements for the above mentioned features. Critical computing systems are found in
air transport systems, in the rail industry, in space engineering, in medical equipment,
in information systems (i.e. servers, routers, switches), in power and nuclear energy

systems, in military systems etc.
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All computer systems are subject to failures due to different types of reasons. An

indicative example is the fact that typically more than half of the errors in a system are

due to ambiguous or incomplete requirement specifications [13], [14], [15]. A major

issue also for the industry is the revenue loss per hour of system downtime in various

business segments, Table 2.1 shows that an hour of downtime per year is extremely

expensive, regardless of the industry segment. Clearly reliability is a huge asset but at

the same time it is a concern that needs to be addressed. Another indicator that

translates system downtime is given in Table 2.2. Current systems are being designed

for minimal downtime of 5 minutes or less per year. Critical computing systems are

considered vital to be maintained and must satisfy some or all of the previously

mentioned critical system requirements.

Industry Sector Loss Revenue per Hour
Energy $2.8 mllion
Telecommunications $2.0 million
Manufacturing $1.6 million
Fimancial Institutions $1.4 million
Information technology $1.3 million
Insurance $1.2 million
Retail $1.1 mullion
Pharmaceuticals $1.0 million

Banking $996,000

Table 2.1: Revenue loss per hour, by business segment [16].

System Availability (%) Yearly Downtime
95 438 hours
99.0 88 hours
99.5 44 hours
99.9 8.8 hours
99.95 4 hours
99.99 53 minutes
99.9995 5.3 minutes
99.9999 32 seconds
99.99999 3.2 seconds

Table 2.2 Percentage Availability and Downtime [16].

To avoid confusion between “reliability” as a precisely defined statistical measure

[17] and “reliability” as a qualitative attnbute of systems and computations, use of
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“dependability” was proposed to convey the second meaning [18], resulting in the name
“dependable computing”. Thus, dependable computing deals with impairments to
dependability (defects, faults, errors, malfunctions, degradations, failures, and crashes),
means for coping with them (fault avoidance, fault/error tolerance, design validation,
failure confinement, monitoring etc.), and measures of success in designing dependable
computer systems (reliability, availability, performabulity, safety, security etc.).

A computer system can have three different types of assessment depending on the
interest of the external viewer. The maintainer’s extemal view consists of a set of
interacting subsystems that must be monitored for detecting possible malfunctions in
order to reconfigure the system or, altematively, to guard against hazardous
consequences (such as total system loss or crash). The operator’s external view consists
of a black box capable of providing certain services and is more abstract than the
maintainer’s system-level view. Finally, the end user’s external view is shaped by the
system’s reaction to particular situations or requests.

A deliberate or unintended error (e.g. hardware bug, misuse of local services efc)
results in information errors within a system. Consequently, the system may
malfunction resulting in service degradation, which finally can result in system failure.
A five-level view of the impairments to dependability could be deducted according to
this approach (figure 2.4).
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Figure 2.4: The sequence steps that result in system failure.

Ensuring the reliability of critical computing and electronic systems has always

been a challenge. As the complexity of systems increases the inclusion of reliability
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measures becomes progressively more complex and often a necessity for VLSI circuits

where a single error could potentially render an entire system useless.

2.3 Embedded Real-time critical systems

An embedded system 1s typically a product which includes a computing system.
The product is szid to "embed" the computing system inside. Embedded systems do not
necessarily look like computers, however it is typical that embedded systems interact
with their environment. For instance, a mobile phone is regarded an embedded system:
it reacts on incoming calls, user input, cell roaming, etc.

A real-time system is a system that interacts with its environment in a time
constrained manner, The real-time system must produce results within specified time
limits. A computation result (or actuation) must be delivered neither too late, nor too
early. The criticality of violated timing constraints, or missed execution deadlines,
classifies real-time systems into hard or soft real-time systems [19]. Timing failures in a
hard real-time system are considered hazardous and very critical and should never be
allowed. Examples on hard real time requirements can be found in automotive and
avionic systems, medical equipment, military systems, energy and nuclear plant control
systems. On the contrary, the requirements in soft real-time systems are not so critical
and may tolerate timing constraint violations, either by discarding the produced results
or by allowing a degraded quality. Soft real-time requirements can be found in
telecommunication systems, audio and video applications, streaming media, airline
reservation systems, etc.

A typical real-time system consists of a controlling subsystem (the computer), and
the controlled subsystem (the physical environment). The interactions between the two
subsystems can be described by three main operations:

* Sampling

* Processing

* Responding

The computer subsystem samples data from the physical environment. Sampled data is
then immediately processed by the computer subsystem, and a proper response is sent

to the physical environment. All three operations must be performed within the required
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timing constraints, For example, it is imperative that an air bag control system in an
automobile responds within set timing constraints in the event of a crash. The response
must neither be too late (being non-effective), or too early (risking hazardous
manoeuvring of the car).

This section includes further evidence for the importance of critical systems by
examining the timing-related restrictions as an indicative property of reliability,
dependability and availability. Because of the central role of time constraints in critical
real-time systems, these systems are classified according to the type of time constraints.
The first class of critical real-time systems is the soft real-time systems, This class
covers those systems where a miss of a deadline results in degraded performance,
and/or the increasing of costs. The second class is the firm real-time systems. In these
systems, the miss of a deadline leads to the result becoming worthless. An example of
such a system is a weather forecast system, where the result becomes void no later than
when the forecasting horizon has passed. The hard real-time systems build the third and
last category. A miss of a deadline here is followed by more or less catastrophic
consequences. The consequence is usually loss of life or, at the very least a serious
amount of money. This usually regards X-by-wire systems in vehicles and planes, or
simple things like the destruction of a machine and the following halt of a complete
production line. Line 3 in Figure 2.5 shows the enormous jump in costs while line 1 and
2 show a more controllable loss of cost. A deadline violation is considered fatal and

cannot be tolerated especially in dependable systems.
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Figure 2.5: Cost function of real time tasks [20].
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2.4 Faults, errors and failures

A very important design requirement in dependable systems is to define the
sequence that creates system failures. A typical sequence of this kind is shown in figure
2.6.

Fault — Error — Failure — Fault...—

Figure 2.6: Cause consequence diagram of fault, error and farlure.

Definition: A failure is the non-performance or inability of the system or component to
perform its intended function for a specified time under specified conditions [21]. That
is, an input, X, to the component, O, yields an output, O(X), non-compliant with the
specification.

Definition: An error is a design imperfection, or a deviation from a desired or intended
state [21]. A program can be viewed as a state machine, whereas an error (bug) is an
unwanted state. An error can be also thought as a corrupted data state, caused by the
execution of an error (bug) but also due to e.g., physical electromagnetic radiation.
Definition: A fault is the adjudged (hypothesized) cause for an error [22]. Generally a

failure is a fault, but not vice versa, since a fault does not necessarily lead to a failure.

2.4.1 Systematic and physical failures
Failures are usually divided into two categories:

I. Systematic failures which are caused by specification or design flaws, i.e.,
behaviours that do not comply with the goals of the intended, designed and
constructed system. Examples of contributing causes are erroneous, ambiguous, or
incomplete specifications, as well as incorrect assumptions about the target
environment. Other examples are failures caused by design and implementation
faults. Wear, degradation, corrosion, etc. do not cause these types of failures, all
errors are built in from the beginning, and no new errors will be added after
deployment.

A systematic failure occurs if and only if:

1) the location of an error is executed in the program,
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2) the execution of the error leads to an erroneous state, and

3) the erroneous state is propagated to the output.

This means, that if an error is not executed it will not cause a failure. If the effect of
the execution of the error (infection) is indistinguishable from a correct system state
it will not cause a failure. If the system’s state is infected but not propagated to the
output there will be no failure.

II. Physical failures which are the result of a violation upon the original design.
Environmental disturbances, wear or degradation over time may cause such
failures. Examples, are electromagnetic interference, alpha and beta radiation, etc.
A physical failure occurs if and only if*

1) the system state is corrupted or infected, and

2) the erroneous state is propagated to the output.

Fault-tolerance mechanisms usually try to prevent (1) by applying robust designs,
and (2) by applying redundancy, etc.

2.4.2 Failure modes

Depending on the architecture of the system, different degrees and classes, of
failure behaviour could be assumed. Components can fail in different ways and the
manner in which they fail can be categorized into failure modes. The failure modes are
defined through the effects, as perceived by the component user. Several categories will
be presented i.e. failure modes, (1 to 6) ranging from failure behaviour that sequential
programs, or single tasks in solitude, can experience, to failure behaviour that is only
significant in multitasking, distnbuted systems and real-time systems, where more than
one task is competing for the same resources (e.g. processing power, memory,
computer network, etc).
Failure modes:
1, Sequential failure behaviour:

e Control failures, e.g., selecting the wrong branch in an if-then-else statement.

e Value failures, e.g , assigning an incorrect value to a correct (intended) variable.

e Addressing failures, e.g., assigning a correct (intended) value to an incorrect

variable.
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¢ Temmination failures, e.g., a loop statement failing to complete because the

termination condition is never satisfied.

e Input failures, e.g., receiving an (undetected) erroneous value from a sensor,

2, Ordering failures, e.g., violations of precedence relations or mutual exclusion
relations.

3. Synchronization failures, i.e., ordering failures but also deadlocks.

4. Interleaving failures, e.g., unwanted side effects caused by non-re-entrant code, and
shared data, in pre-emptively scheduled systems.

5. Timing failures. This failure mode yields a correct result (value), although the
procurement of the result is time-wise incorrect. For example, deadline violations,
too early start of task, incorrect period time, too much jitter, too many interrupts
(too short inter-arrival time between consecutive interrupt occurrences), etc.

6. Byzantine and arbitrary failures. This failure mode is characterized by a non
assumption, meaning that there is no restriction what so ever with respect to which
effects the component user may perceive. Therefore, the failure mode has been
called malicious or fail-uncontrolled. This fallure mode includes two-faced
behaviour, i e, a component can output *“X 1s true” to one component user, and “X is
false” to another component user.

The above listed failure modes build up a hierarchy where Byzantine failures are
based on the weakest assumption [23] (a non-assumption) on the behaviour of the
components and the infrastructure, and sequential fatlures are based on the strongest
assumptions. Hence, Byzantine failures are the most severe and sequential failures the
least severe failure mode. The Byzantine failure mode covers all failures classified as

timing failures, which in turn covers synchronization failures, and so on ( Figure 2.7).

Byzantine

Intereaving

Qrdering

Sequental
falures

Figure 2 7: The relation between the failure modes.
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The component user can also characterize the failure modes according to the
viewpoints domain. A distinction can be made between primary failures, secondary
failures and command failures [21]:

Primary failures: A primary failure is caused by an error i the software of the
component so that its output does not meet the specification. This class includes
sequential and Byzantine failure modes, excluding sequential input failures,

Secondary failures: A secondary failure occurs when the input to 2 component does
not comply with the specification. This can happen when the component is used in an
environment for which it is not designed, or when the output of a preceding task does
not comply with the specifications of a succeeding task’s input. This class includes
interleaving failures, sequential input failure modes, as well as changed failure mode
assumptions.

Command failures: Command failures occur when a component delivers the correct
result but at the wrong time or in the wrong order. This class covers timing failures,

synchronization failures, ordering failures, as well as sequential termination failures.

2.5 Security issues

The philosophy of opening the network to be programmable raises many
administrative issues, In particular, safety and security are points of increasing concern.
Programmable networks allow system admunistrators and router vendors to deploy
well-tested router software that provides the required service functionality. Such a
model might later migrate to a fully open programming platform as proposed by the
active networking community.

The word security suggests protection against malicious attack by outsiders.
Security also involves controlling the effects of errors and equipment failures. Anything
that can protect against a deliberate, intelligent, calculated attack will probably prevent
random misfortune as well. Before going into specifics (Chapter 4), it will be very

helpful to understand the some basic concepts that are essential to any security system.




Using embedded hardware monitor cores In critical computer systems 26

2.5.1 The security challenges

Know your “enemy”

Architecting platforms based on reconfigurable programmable logic devices
demands a careful consideration of who might want to circumvent the security
measures and identify also the motivations that are hidden behind such actions.
Determine what the attackers or intruders might want to do and the damage that they
could cause to the network as well as to the network components and services. Security
measures can never make it impossible for a user to perform unauthorized tasks with a
computer system. They can only make it harder. The goal is to make sure the network

security controls are beyond the attacker's ability or motivation.

Security cost

Security measures almost always reduce convenience, especially for sophisticated
users. Security can delay work and create expensive administrative and educational
overheads. It can use significant computing resources and require dedicated
hardware. Designing security measures involves understanding of the costs and weigh
of the costs against the potential benefits. In order to achieve that, there must be a
thorough understanding of the costs and the measures themselves and the costs and
likelihoods of security breaches. Incurring security costs out of proportton of the actual

dangers, results in a disservice.

Identify the assumptions

Every security system has underlying assumptions. For example, one might assume
that the network is not tapped, or that attackers know less than you do, that they are
using standard software. A good practice is to examine and justify all the assumptions.
Any hidden assumption is a potential security hole. Another important consideration is
to understand the areas that need to be protected. Security systems should be designed
so that only a limited number of secrets need to be kept. Many security procedures fail

because their designers do not consider how users will react to them. If the security
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measures interfere with essential use of the system, those measures will be resisted and

perhaps circumvented.

Security weaknesses

Every security system has vulnerabilities. A programmable logic system designer
should be aware of the platform’s weak points and also know how these could be
exploited. The areas that present the largest danger should be secured in a more robust
way in order to prevent access to them. Understanding the weak points is the first step
toward turning them into secure areas. Therefore, appropriate barriers should be created
inside the system so that if intruders access one part of the system, they do not
automatically have access to the rest of the system. The security of a system is only as
good as the weakest security level of any single host in the system. Understanding how
a system normally functions, knowing what is expected and what is unexpected, and
being famihiar with how devices are usually used, helps to detect security problems.

Unusual events can help to identify intruders before they can damage the system.

Security is pervasive

Almost any change that is being made in a system may have security effects. This
is especially true when new services are created. Administrators, programmers, and
users should consider the security implications of every change they make.
Understanding the security implications of a change is something that takes practice. It
requires lateral thinking and a willingness to explore every way in which a service

could potentially be manipulated.

2.5.2 Embedded systems design and security issues
In the past, embedded systems tended to perform one or a few fixed functions. The

trend is for embedded systems to perform multiple functions and also to provide the
ability to configure new hardware and software in order to implement new or updated
applications in the field, rather than only in the more controlled environment of the
factory. While this certainly increases the flexibility and useful lifetime of an embedded

system, it poses new challenges; embedded systems often provide critical functions that
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could be sabotaged by malicious entities. An embedded system should ideally provide
required security functions, implement them efficiently and also defend against attacks
by malicious parties. It is also important to note that there are many entities involved in
a typical embedded system manufacturing, supply, and usage chain. Security
requirements vary depending on the different perspectives that are considered (i.e.
users, service providers, administrators, companies, government services).

Embedded systems, which will be ubiquitously used to capture, store, manipulate,
and access data of a sensitive nature, pose several unique and interesting security
challenges. Security is often misconstrued by embedded system designers as the
addition of features, such as specific cryptographic algorithms and security protocols, to
the system. In reality, it is an entirely new metric that designers should consider
throughout the design process, along with other metrics such as cost, performance, and
power. Several security processing architectures targeting embedded systems,
{(presented in Chapter three) implement basic security functions like confidentiality,
integrity and authentication, but do not provide protection from software or physical
attacks by malicious entities, Furthermore, architectural features that accelerate
cryptography and security protocols do not protect against Denial-of-Service (DoS)
attacks. A secure embedded system should alse incorporate appropriate attack-resistant

features. Figure 2.8 is a graphic synopsis of the issues stated in the previous sections:

Reliability, Availability, Dependability, Operability
uirements

req
Realtine system
requirements
Security
reqguirements

Demand for timely detec tion of errors
and policy-based control of applications

Figure 2.8: Critical systems and the inherent design requirements.
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The requirements quoted in each rectangle shape can be either separate design demands
of a critical system or it can include a combination of the nested rectangles (i.e.

reliability may or may not require security).

2.6 _Testing debugging and monitoring
This section includes useful background information for the usefulness of testing,
debugging and monitoring in real time systems. Special interest exists for the

monitoring function of critical real-time computer systems.

2.6.1 Testing and debugging

Debugging is defined as “the process of locating, analysing, and correcting
suspected faults™ [24). A fault is defined to be the direct cause of some error. Since the
occurrence of errors can have different reasons, they are usually not predictable, and
therefore they must be located them using debuggers. A debugger is a tool which helps
the designer to examine suspected errors in a program, and eventually also remedy the
errors. Cyclical debugging is commonly used to describe debugging as an iterative
process, in which the debugger is repeatedly used to find and correct errors, until no
more errors can be found.

Testing and debugging are similar activities with respect to finding errors.
However, testing is more of an automated process of exposing different input to the
system under test, and evaluating its results (output). The objective is to find input data,
or patterns of data, that cause erroneous results [25]. The faults that are found during
the testing process are then put under observation in a debugger.

In real-time systems, errors may also occur in the time-domain. Real-time systems
are therefore harder to debug than non-real-time systems. The ability to track down
timing-related errors was largely an unexplored area until the early 1980°s. Today,
various debugging systems and methods have been developed in order to address

timing-related issues [26], [27].
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2.6.2 Monitoring
Monitoring is the process of gathering information about a system [28], [29]. This

information cannot normally be obtained by studying the program code only. The
collected information may be used for program testing, debugging, task scheduling
analysis, resource dimensioning, performance analysis, fine-tuning and optimisation of
algorithms. Monitoring is also important in state-of-the-art critical computing systems
in order to control the results of errors and prevent system failures. The applicability of
monitoring is wide, and so is the spectrum of available monitoring techniques. This
section includes a generic presentation of a monitor and describes different monitoring
systems, the type of information collected by monitors, and the problem-related issues
with monitoring.

In essence, a monitor works in two steps: detection {or triggering) and recording.
The first operation refers to the process of detecting the object of interest. This is
usually performed by a trigger object that is inserted in the system; the object indicates
an event of interest for recording when it is executed or activated. Recording, is the
process of collecting events and saving them in buffer memory, or transfer them to
external computer systems for the purpose of further analysis or debugging. An event is
a record of information which usually constitutes the object of interest together with
some additional meta data regarding that object (e.g. the time when the object was
recorded, the object’s source address, task/process ID, etc.). The types of momtored
objects depend on the level of abstraction which the user is interested in. The trigger
object can be inserted in the target hardware platform as an instruction, a function, or a
module that is formed by several signal assertions. It may also be a physical sensor, or
probe, connected with physical wires in the hardware, such as CPU address, data, and
control busses.

An important issue regarding the monitoring process is the amount of execution
interference that may be introduced in the observed system due to the involved
operations of a monitor. This execution interference, or perturbation, is unwanted
because it may alter the true behaviour of the observed system, in particular such

systems that are inherently timing-sensitive such as real-time and distributed systems,
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2.6.3 Types of monitoring systems
Monitoring systems for system-level analysis are typically classified into three

types: 1) software monitoring systems, 2) hardware monitoring systems, and 3) hybrid
monitoring systems. A short description of each type of monitoring system follows.
Software Monitoring Systems

In this category of monitoring systems, only software is used to instrument, record,
and collect information about software execution. Software monitoring systems offer
the cheapest and most flexible solution where a common technigue is to insert
instrumentation code at interesting points in the target software. When the
instrumentation code is executed the monitoring process is triggered and information of
interest is captured into trace buffers in target system memory. The drawback of
instrumentation is the utilisation of target resources such as memory space and
processor execution time.
Hardware Monitoring Systems

In this category of monitoring systems, only hardware (custom or general) is used
to perform detection, recording and collection of information regarding the system. The
primary objective of hardware monitoring is to avoid, or at least minimize, interference
with the execution of the target system. A hardware monitoring system is typically
separated from the target system, and thus, it does not use any of the target system’s
resources. The target system is monitored using passive hardware (or probes) connected
to the system busses and signals. Hardware monitoring is especially useful for
monitoring real-time and distributed systems since changes in the program execution
time are avoided.

In general, the operation of monitoring hardware can be described by the three steps

(see Figure 2.9): event detection, event matching, and event collection.

3. Collect

1. Detect 2. Match

Figure 2.9: Hardware momtoring steps.
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In the first step the hardware monitor listens continuously to the signals. In the
second step, the signal samples are compared with identified patterns that define the
system events, When a sample matches an event-pattern, the process triggers the final
step, collection, where the sampled data is collected and saved. The saved samples may
be stored locally in the monitoring hardware, or be transferred to a host computer
system where usually more storage capacity can be obtained.

This type of hardware monitor avoids target interference and has the advantage of
precision and accuracy. Since the sole duty of a hardware monitor is to perform
monitoring activities (usually at equal or higher system speed than the target’s) the risks
of loosing samples are minimized. A disadvantage of hardware monitors is their
dependency on the target’s architecture, The hardware interfaces, and the interpretation
of the monitored data must be tailored for each target architecture. Thus, monitoring
solutions using hardware are more expensive than software alternatives. Moreover, 2
hardware monitor may not be available for a particular target, or takes time to
customize, which may increase the costs further in terms of delayed development time.
Another problem with hardware is the integration and miniaturisation of components
and signals in today’s chips which renders difficulties in reaching information of
interest, e.g. cache-memory, internal registers and busses, and other on-chip logic. To
route all internal signals out from a chip may be impossible because of limited pin
counts.

In general, hardware monitoring is used to monitor either hardware devices or
software modules. Monitoring hardware devices can be useful in performance analysis
and finding bottlenecks in e.g. caches (accesses/misses), memory latency, CPU
execution time, I/O requests and responses, interrupt latency, etc. Software is generally
monitored for debugging purposes or to examine bottlenecks, load-balancing (degree of
parallelism in concurrent and multiprocessor systems), and deadlocks. The current
trend of making application specific hardware using FPGAs and VHDL (an early
example of this type is given in [30]) gives an opportunity to conveniently integrate

non-intrusive monitoring mechamsms in the hardware for single node systems.
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Hybrid Monitoring Systems

Hybrid monitoring uses a combination of sofiware and hardware monitoring and is
typically used to reduce the impact of software instrumentation alone. A hardware
monitor device is usually attached to the system in some way, €.g. to a processor’s
address/data bus, or on a network, and is made accessible for instrumentation code that
is inserted in the software. The instrumentation is typically realised as code that extracts
the information of interest, e.g. variable data, function parameters, etc., which 1s then
sent to the monitor hardware. For instance, if the monitor hardware has memory-
mapped registers in the system, the instrumentation would perform data store
operations on the monitor’s memory-addresses. The hardware then proceeds with event
processing, filtering, time-stamping, etc., and then communicates the collected events
to an external computer system. This latter part typically resembles the operation of a
pure hardware monitor. The insertion of instrumentation code also resembles the
technique used in a software monitoring system; i.e. it can either be done manually by
the programmer, automated by a monitoring control application or by compiler
directives.

The complexity of the capabilities of a monitor varies vastly from detection of a
simple combination of a number of input signals, the combination of input signals to
numerical values and tracking of the, for example, less, greater, between limits type, to
the congregation of rather complex signal patterns over time. In older systems the
hardware momitors were basically plug boards, or a combination of probes and bus
analyzers. The idea of using embedded programmable logic devices like FPGAs for
monitoring and controlling critical real time systems is introduced in this research
work. Hardware monitors are often built on the basis of personal computers. This frees
the developer of a hardware monitor from having to design the basic system which
usually consists, besides other less important things, of a user interface, storage
facilities and memory space (i.e. series of registers).

Figure 2.10 is a representative way to show the impact of the different monitoring
schemes during the time that the execution of the application is suspended. The
hardware monitor does not introduce such an impact, whereas hybrid momtors generate

a rather small suspension time on the application sofiware and software monitors suffer
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considerably from this effect. It should be noted that the actual suspension time is
strongly correlated to the amount of data gathered in the software part of the monitor.
The arguments so far manifest the need of a concurrent hardware monitor embedded in
the target architecture for meeting the reliability, dependability and maintainability

requirements of a real time system.

Hardware Monitor Software Monitor Hybrid Monitor
Application Monitor Application Monitor Application Monitor
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Figure 2.10: Temporal impact of monitor types [31].

With today’s highly integrated hardware, encapsulating complete systems on a chip
(SoC), the traditional hardware monitors (i.e. hardware probes) are facing severe
difficulties. Processor cores, /O components, cache memories, and even standard
memory, are all integrated on the same reprogrammable chip (i.e. FPGA). Given also
that chip packages can be obstructive (as in Ball-Grid Array packages) and have limited
pins, it has become almost impossible for external hardware to probe internal signals.
For real-time systems built on these premises there is a need to access execution
information residing on-chip, as well as to avoid interference with the system’s
execution behaviour.

Observability into SoC designs is today mostly supported for RTL verification. As
SoC designs tend to increase in size and complexity, the verification process need also
to take place at the system-level. Support for system-level verification already exists for
the software part of a SoC, where a common technique is the use of software monitors.
These monitors are typically found in RTOS (Real-Time Operating System)
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development tool environments, and provide the developer with process-level
information such as task-scheduling events start/stop, block/resume, taskswitch, etc.),
inter-process communication events (e.g. send and receive messages), synchronisation
and resource utilization (CPUs, semaphores, I/0), external interrupts, etc. On the other
hand, the available commercial or academic on-chip monitoring solutions commonly
operate with a user interface and a software API, giving the opportunity to the
developer to debug the design and achieve a satisfactory degree of robustness.
However, the observability of systems is not limited to debugging, testing and
validation purposes.

The outcome of the research regarding embedded monitoring support of dependable
systems is evident of the fact that the available time for reacting to potential threats (i.c.
hardware application bugs, misuse of vital system resources and protocol violations)
exercised within such systems is considerably limited. Software monitoring and control
solution are therefore excluded in this context because of the significant delay that they
introduce in their response (see also figure 2.10). The system/application monitoring
function, the error detection and the applied control have to operate in a timely, if not
concurrent, manner. This attributes can be satisfied with an embedded, passive
hardware monitor that is built with the help of an HDL language and it is

inserted/integrated on a permanent basis in the target critical system topology.

2.7 Active Networks

Active Networks [32] are a relatively new concept, where a network is not just a

passive carrier of bits but a more general computation medel. Active Network may be
simplistically viewed as a set of “Active Nodes™ that perform customized operations on
the data flowing through them. Traditional data networks provide a transport
mechanism to transfer bits from one end system to another, with a minimal amount of
computation (e.g., header processing and signalling). In contrast to that, a
programmable network consists of programmable routers that have general-purpose
processing units in their data path, These processing units can be programmed to
perform various protocol operations as well as complex payload processing. Unlike

traditional routers, deployment of new protocols can be achieved by reprogramming the
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system rather than exchanging expensive hardware. This programmability of the data
plane extends the traditional store-and-forward paradigm of routers to store process-
and-forward. The processing step is where interesting new services and protocols can
be integrated into the network.

Active networks not only allow the network nodes to perform computations on the
data but also allow their users to inject customized programs into the nodes of the
network, that may modify, store or redirect the user data flowing through the network.
These programmable networks open many new doors for possible applications that
were unimaginable with traditional data networks. For example, there may be a video
multicast session where at every node the video compression scheme is modified, based
on the computation done by that node and depending on the network bandwidth
available. The research community has realized the potential of Active Networking and
a lot of work is underway at different research sites.

Various approaches on solving current networking problems use a part of the
Active Networking concept. Applications including packet filtering [33] in firewalls
(also routers) where the filters in the firewall decide which packet should go through
and which should be blocked. Other examples would be congestion [34], web proxies
[35], multicast routers [36] and video gateways [37] etc. that perform user driven
computations "within" the network. For example web proxies provide a user
transparent service to serve and cache web pages. Nomadic Routers determines the
means by which a host is connected to a network (e.g., a modem or a high speed
network connection) and adapt to the conditions. For example 1t might perform link
compression and perform more file caching when connected through a modem. Also, it
would enable for example encryption when user is remotely connected. The list goes on
and on. A lot of recent trends and developments in networking are a subset of the
Active Network Architecture.

2.7.1 Active Network usage
From the point of view of a network service provider, active networks have the

potential to reduce the time required to develop and deploy new network services. The

shared infrastructure of the network presently evolves at a much slower rate than other
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computing technology. One consequence of being able to change the behaviour of
network nodes on the fly is that service providers would be able to deploy new services
quickly, without going through a lengthy standardization process.

At a finer level of granularity, active networks might enable users or third parties to
create and tailor services to their particular applications and even to current network
conditions. Though it seems likely that most end users would not write programs for
the network it is easy to imagine individuals customizing services by choosing options
in code provided by third parties. Indeed, this prospect should appeal to network
providers as well, because 1t enables them to charge more for such value added
services.

Networks are expensive to deploy and administer. For researchers, a dynamically
programmable network offers a platform for experimenting with new network services

and features on a realistic scale without disrupting regular network service.

2.7.2 Basic concepts
An active network is a kind of store-and-forward network. A store-and-forward

network consists of a set of nodes interconnected by transmission links. The purpose of
the network is to support the sharing of these transmission facilities. The basic unit of
multiplexing of transmission facilities is the packet. Nodes receive packets from users
and other nodes, perform a computation based on their internal state and the control
information (header) carried in the packet, and as a result of that computation may
forward one or more packets foward other nodes or to users. The nature of the network
service is defined by the behaviour of the individual nodes of the network, and how
users can control that behaviour through coded information placed in their packets. In
today's Internet, for example, routers examine the destination address field of the
Internet Protocol header along with intemal routing tables to determine to which
neighbour they should forward the IP packet. The extent of user control over the
network's behaviour is limite\d to the range of values that can be placed in that field
(and a few others) in the IP header; other services can, however, be envisioned, One
example, which has been proposed for the Internet is a “premium” service in which

certain nodes classify packets based on information contained in all of their headers
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(TCP or UDP port numbers as well as source and destination IP addresses) and then
route and schedule them for transmission on the basis of that classification. In this case,
it has to be identified the term user (or end user) with the originators and recipients of
the packets actually carried by the network. Users are, in general, different from
node/network administrations, which control the configuration and interconnection of
network nodes. Often the relationship between user and network administration is that

of service provider and subscriber.

2.7.3 Active Networks and Programming Interfaces
One way to think about active networks is that they provide a programmable

network API. The IP header in the traditional network could be considered as the input
data to a virtual machine, whereas packets in the active network containing programs
could be considered as input data. In the context of this model, a variety of active
networking approaches can be characterized by the following attributes:

Language Expressive Power: The degree of programmability of the network API may
range from a simple list of fixed size parameters that select from predefined sets of
choices, to a Turing-complete language capable of describing any effective
computation. The advantage of a less powerful language is that it constrains the
posstble node behaviours and so simplifies correctness analysis. It 1s also more likely to
admit fast-path optimization, e.g. through special purpose hardware. Many active
networking projects, however, have opted for more powerful languages that use typing
and other mechanisms to help ensure correctness. Most of these languages feature some
form of restriction on their expressive power, order to guarantee that the effect of any
packet sent into the network is bounded. For example, a language may admit only
straight-line programs, without loops or branches.

Statefulness: Another important characteristic of the network API is the ability to
install state in the interior nodes of the network, and to refer to state installed by other
packets. Some active network APIs provide this capability, while others do not. Where
it is present, the API must include control mechanisms to protect users’ state from

unauthorized access.
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Granularity of Control: This mainly refers to the scope of node behaviour that can be
modified by a received packet. One possibility is that a single packet can modify the
node behaviour seen by all packets arriving at the node, a:nd this change persists until it
is overridden. At the other extreme, a single packet modifies the behaviour seen only by
that one packet. Between these extremes, modifications might apply to a flow, which
could be defined to be a set of packets sharing some common characteristic, such as
temporal locality and/or a particular source and destination address in the headers. In
general, the active network API must include security mechanisms that ensure that
packets affecting the node behaviour have localized effect and/or come from authorized

users.

2.7.4 Using existing network protocols and technologies
The fundamental idea of Active Networks is to utilise the current infrastructure of

IP-based networks (e.g. the Intemnet), without having the need to change a part of the
network, nor interrupt its operation nor evolve its current technology. Active Networks
do not require any changes in the standard communications protocols used in the IP-
based networks. Active Networks offer added services and programmability either to
the network nodes or to the Active end-stations of the currently available IP-based
networks. This is accomplished through a transparent operation on top of the current IP
networks infrastructure, utilising the current features of the communication protocols.
Considering the above concept, the reconfigurable hardware platform can be smoothly

integrated in a host-based router and serve the Active Applications.

2.7.5 Active Networks based on PC routers

The ability to not only forward packets through a network, but also process them on
a router, is the key to implementing new services and protocols without changing the
underlying hardware infrastructure. Such processing can range from simple routing and
queuing decisions to complex payload modifications. Performing such processing in
software rather than custom logic opens the possibility to adapt and deploy new
services by simple changes in the software. The crucial challenge in such a system is

not only to be able to provide the functionality to dynamically change the forwarding
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loop for selected data streams. It is equally important that the performance of the
system be comparable to custom logic solutions despite the fact that software.

General-purpose workstation processors that perform packet routing and forwarding
in software were common router configurations in the 1980’s. Typical link speeds of a
few kilobits per second did not exceed the processing power of such a system. As
performance demands for communication changed in the 1990’s towards link speeds of
several megabits per second, software-based routers were not able to keep up with this
trend. As a result, ASIC-based routers were developed to provide basic protocol
processing functionality at high speeds. The majority of current Internet routers are still
ASIC-based. Their limitations in supporting new protocols led to efforts to re-introduce
the flexibility and extensibility of software-based systems.

General-purpose processing as part of the data path and deployment of processing
code via the packet itself was initially proposed by Tennenhouse and Wetherall in 1996
[38]. From this idea, numerous research projects have spawned to develop
infrastructure that can process packets in the data path and dynamically deploy the
processing code. The majority of these projects were and are aimed at investigating and
implementing software-based “active routers”. Key questions are how to dynamically
install protocol-processing code in the data path, how to deploy code modules, and how
to safely and securely execute arbitrary code on a router.

High-end routers are designed around special-purpose hardware: they use a
switched interconnect (e.g., a crossbar) rather than a shared bus, and they implement
the performance-cntical forwarding function in hardware {e.g., an ASIC) rather than
software. As a consequence of this hardware-intensive design, high-end switches are
able to forward packets at a very high rate (on the order of 1-10Mpps) and scale to
fairly large sizes (on the order of 128 100Mbps ports), but they provide virtually no
programmability. In addition to the highly optimised forwarding path, high-end routers
also have a network processor—usually connected to the one of the switch’s /O
ports—that handles exceptional cases like IP options and routing updates. Low-end,
routers can be built using a standard workstation running a conventional operating
system. The host-based forwarding [39] is implemented with the use of the general-

purpose computers with two or more network interfaces to act as a router. Because they
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are implemented in software, such routers could be programmed to support nearly
every imaginable function, but they offer very limited performance; they can forward
10-100Kpps and support only a handful of 100Mbps ports. These routers offer certain
advantages over the use of a high end router, allowing open, public source code access
to the forwarding, queuing, and routing algorithms, and the use of more flexible,
commodity host interfaces and host CPUs.

2.7.6 Active Networks processing requirements
As already stated, the Active Networks are packet-switched networks in which the

packets can contain code fragments that are either executed on the intermediary nodes

of the network (in the switches, routers, flexible servers) or in the users end station. The

execution of programs can be requested and delivered either by the Active Network

users or the network operator:

= Routers within the network act on user data flowing through them.

» Users can configure the network by supplying their own programs that perform
computations.

This demands that the Active Host (e g. a router) has sufficient processing resources.
The Active Host has to be built having the capability to execute customisable code; the
extra processing and security requirements increase the complexity and raise concerns
that are far more difficult to be addressed compared with the common header
processing and signalling requirements of a standard PC-based router. The processing
of bit intensive applications, which are carried in the payload of the packets, underlines
the need for using a dedicated programmable logic device.

In real world application of active networks, an important aspect of usability is the
degree of flexibility offered by an active network node. The degree of flexibility on the
one hand depends on the manageability of a node but on the other hands it depends on
the execution environments since these provide the run-time environments where the
code can be installed and run. The installation and execution of code must be
achievable neither resulting in a compromised node nor in an interruption of service of

an active node. The execution environment of the Active Applications can be a
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combination of hardware components and software interfaces. It is a host platform for
applying computational processes and implementing algorithms.

FPGAs can be the optimal candidate either for implementing efficiently the routing
and forwarding of the Active Packets or for the processing of the Applications that are
carried in the payloads of the Active Packets. More details for the flexibility, the
performance and the suitability of the FPGAs for the purposes of this research are given

in the section 4.1,

Summary
This Chapter was a detailed description of background information and definitions

regarding aspects of programmable devices, real time systems, critical embedded
systems and Active Networks. The analysis was extended in order to prove the

connection and interdependence of this research work with the above mentioned topics.
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CHAPTER 3

Background in monitoring
and programmable
networks

This chapter is a synopsis of the related literature background, which is necessary -
together with chapter 2- for reading and understanding the discussion, analysis, system
architecture and results presented in the remaining chapters. It is assumed that the
reader has a general knowledge of digital systems, computer hardware and networking.
Several concepts are explained (hardware monitoring, reconfigurable computing,
programmable logic architectures, network reconfigurable programmable devices,
programmable networks) and at the same time a summary of the related work in similar

fields is provided.

3.1 Monitoring and error detection

As it has already been described in the previous chapter, there are traditionally three
methods for applying monitoring to systems: non-intrusive/passive hardware, intrusive
software instrumentation, and hybrid where the spﬂware instrumentation is minimized.
However, this research is mainly focusing on hardware monitors for the reasons that
have already been quoted in the previous chapter. A transparent non-intrusive approach
towards monitoring is the application of special hardware, e.g. hardware that allows bus
sniffing, or non-intrusive access to memory via dual-port memories, etc., but also
through the use of hardware CPU emulators.

3.1.1 Hardware monitoring domains
Hardware monitoring has been applied for performance measurements [40], [41],

[42], execution monitoring of multiprocessor systems [43], [44], and real-time systems

[45], [46], [47]. Since the monitoring hardware is interfaced to the target system’s
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hardware via the CPU socket (emulator) or via the data and address busses, it can
observe the target system without interfering with its execution, and thus not introduce
any probe-effects. Information processing provided by monitoring can be categorized
into three functional components according to [48]: an event trigger, an event handler
and an accumulation or sampling storage facility.

Computation observability received a lot of attention as well from the major silicon
vendors. Attention was given to embedded monitor cores for microprocessors. Philips’
real-time observability solution, SPY [49], allows the non-intrusive output of internal
signals on 12 chip pins. The internal signals are grouped in sets of 12 signals and are
hierarchically multiplexed on the 12 pins. The observed signals are a design-time
choice. ARM’s embedded trace macrocell (ETM) [50] offers real-time information
about core internal operations. It is capable of non-intrusively tracing instructions and
data accesses at core speed. The trace is made available off-chip by means of a trace
port of up to 16 bits. The NEXUS standard [51] proposes a debug interface for real-
time observability of standard defined features. It proposes a standard port while
leaving the implementation details to the users.

Discussion

The work accomplished in the above academic and commercial solutions is mainly
focused on performance and execution monitoring of microprocessor systems. Their
contribution concems testability, verification and debugging issues. Although 1t can be
claimed that the context of these monitoring mechanisms shares common grounds the
research goals of this thesis, none of them covers issues like concurrent error detection,

application control and stable reconfiguration.

3.1.2 Hardware monitoring using logic analyzers

Xilinx ChipScope Pro [52] inserts logic analyzer, bus analyzer, and Virtual IO low-
profile software cores into the design. These cores allow the user to view all the internal
signals and nodes within the FPGA In more detail, that after place and route the user is
able to access the cores and capture signal data on-chip, in real-time. Captured data is
sent off-chip for analysis, via either a high-speed parallel or USB programming cable.
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The ChipScope Pro tool consists of three components: the Core Inserter, the Core
Generator, and the ChipScope Pro Analyzer.

SignalTap II [53] from Altera is a system tool that captures and displays real-time
signals in a system-on-a-programmable-chip (SOPC) design. By using a SignalTap II
Embedded Logic Analyzer (ELA) in systems generated by SOPC Builder, designers
can observe the behaviour of hardware (such as peripheral registers, memory busses,
and other on-chip components) in response to software execution.

Another major player in this area is Agilent who offers a big variety of hardware
and hybrid monitoring solutions. The Agilent FPGA dynamic probe [54], used in
conjunction with an Agilent logic analyzer, provides access to intemnal signal of the
FPGA. It is possible to measure up to 128 internal signals for each external pin and
measure a different set of internal signals without design changes. FPGA timing stays
constant when you select new sets of internal signals for probing.

The TA-700 [55] PCI bus analyzer/exerciser from Catalyst is another logic analyser
that applies performance, workload and timing analysis of the PCI bus. The PCI850
System Analyser/Exerciser [56] bus-analysis diagnostic tool from Silicon Control and
the PI-PCI32E PCI Bus Analyzer [57] from Corelis are similar type of logic analysers
with small differentiations in their GUIs. The DiaLite Platform [58] (Temento Systems)
allows the designer to embed system assertions and conditions written along with the
system specifications before synthesis and check them in real time. While the system
design is running, the assertion checker venifies the properties in real-time. A property
failure will trigger a process and open the corresponding debug interface with all
properties verification details.

MAMon [59] is a system that integrates a small hardware component into a SoC
topology. It works like a probe, either by listening to logic- or system-level events in a
passive manner, or by being activated by software that writes to a specific register.
Detected events are time-stamped and sent via a link to a host-based tool environment
where the events are stored in a database. The tool environment includes a set of

facilities to view, search, and analyse the events in the database.
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Discussion

All these tools are specifically designed for verifying, testing and debugging system
behaviour as well as for detecting and fixing bugs throughout the design process, rather
than for run-time system monitoring. The work presented in this thesis is related to the
implementation of a hardware on-chip module, embedded in a PC architecture for
monitoring the transactions activity and detect potential erroneous conditions. The
module does not interfere with system performance and ensures timely detection of the
errors without requiring manual intervention. The goal is to prevent the propagation of
an error in the system and thus to prevent possible system failures, by using passive

(and occasionally active) control and reconfiguration of the execution environment.

3.2 Reconfigurable computing and programmable networking

As it is obvious from the discussion which was made in the previous chapter,
FPGAs can deliver various tasks as parts of embedded systems in telecommunication
platforms; they are able to adapt hardware in response to changes in processing
environment and to develop processing elements for network protocols that change
frequently. One very wide spread idea is to use FPGAs for implementing flexible and

performance competitive routers or switches for computer networks.

3.2.1 _The P4 architecture

The Programmable Protocol Processing Pipeline (P4) [60], [61] exploits the
dynamic re-configurability of RAM-based Field Programmable Gate Arrays (FPGAs)
to provide both hardware performance and dynamic functionality to network
components. Forward error correction (FEC) was used as an example of a protocol
processing function. The measurements showed that the P4 improved TCP performance
in a noisy environment. Another import aspect of the P4 research concerns the —first
ever- definition of the possible security threats of a networked FPGA-based system
[62]. The security analysis focuses on attacks at the electrical signals level and sets the
foundations for the discussion about the hardware equivalents of viruses (FPGA

viruses).
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Discussion

This early work in the P4 project is the initial step in the “new world” of the
networked reconfigurable computing. This project envisions the future potential
security threats for the FPGA-based critical systems, as far as the low-level signal
attacks are concerned. Hardware bugs, application-level errors and resources misuse are
not included in this study. The mechanism that will counteract against the signal-level
secunity threats includes only standard computer network security precautions. P4
project does not propose a permanent embedded monitoring solution to prevent system

failures.

3.2.2 The Field-programmable Port Extender (FPX)

Significant work in the area of reconfigurable computing applied to Active
Networks and other similar network topologies has been accomplished in the Applied
Research Laboratory at Washington University (St. Louis). Numerous publications
were produced using the FPX as the test platform. The Field-programmable Port
Extender (FPX) [63], [64] is a general-purpose, reprogrammable platform that performs
data processing in Field Programmable Gate Array (FPGAs) hardware. Data packets
can be actively processed by user-defined, reprogrammable modules as they pass
through the device [65), [66]. The hardware-based processing allows the FPX to
achieve multi-Gigabit per second throughput, even when performing deep processing of
the packet payload. Results have also been delivered [67], [68], [69] using the partial
reconfiguration features of Xilinx [70]. The FPX project has also offered recently a
number of publications concerning FPGA-based TCP-IP packet processing for security
purposes (TCP flow processing, header processing, payload scanning) [71], [72]. In
more detail the work involves standard network security countermeasures implemented
in FPGAs including encryption, data integrity checking and sequence number
venfication, integrity and authentication of control messages sent over the public
Internet etc[73], {74].

Discussion
The thriving Applied Research Lab has a considerable contribution in the

reconfigurable computing field with extensive applications in the programmable and
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active networks. Their work is built around the Field Programmable Port Extender
aiming to accelerate the network functions of a switch/router with the help of FPGA
devices. The results therefore concern this specific custom-built platform. The security
framework is limited to standard computer network security methods and algorithms
that are implemented in hardware. Thus, it enforces the intrusion prevention

mechanisms but without any reference to concurrent error detection techniques.

3.2.3 ANN - Active Network Node

ANN is a hardware-based reconfigurable router designed to support high
performance active applications [75]. The platform uses a general purpose
microprocessor and a Field Programmable Gate Array (FPGA) on every port of a
switch backplane (ATM gigabit switch). The microprocessor and FPGA architecture is
called the processing engine and it can be programmed on-the-fly. The microprocessor
task is to manage the packet functions, while the FPGA implements performance
critical functions in hardware. Functional details concemning the execution environment
(DAN) and the operating system kernel are given in [76] | 77]. The system is tested with
an active multicast video application.
Discussion

This project demonstrates practical evidence for the performance acceleration of an
FPGA-based reconfigurable platform. The system is used as part of an Active Network
and therefore it is a useful source of information that helps us understand the

performance and security requirements of such a critical computer network

3.2.4 AMnet

The goal of AMnet [78], [79] is to provide customized multicast services on
demand, thus to provide a framework for a flexible open communication platform.
AMnet is based on active and programmable networking technologies and uses active
nodes (AMnodes) within the network. These AMnodes execute on-demand loadable
service modules to enhance the functionality of intermediate systems without the need
of long global standardization processes. An error control policy is apphed for

preventing network overload conditions.
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Discussion
This project is another example of how FPGAs are used in a networked
reconfigurable system. The error handling features of this system provide QoS and

error control in a communication link of an Active Network.

.3.2.5 Further similar research

This paragraph is a synopsis of the remaining research conceming FPGA-based
configurable computing targeting various network topologies. PLATO configurable
architecture [80] has been designed and built in order to serve as a platform for
experimentation with active networks. This architecture provides 4 physical bi-
directional connections for ATM networks with large reconfigurable resources.
Detection of Denial-of-Service (DoS) attacks and real-time load balancing for
ecommerce servers were the most interesting applications tested in PLATO. Another
interesting reconfigurable architecture is presented in [81]. Active networks are used as
the host platform and performance evaluation quantify the overheads of the system
throughput. The researchers in [82] introduce a fully-automated fault recovery
system for networked systems which contain FPGAs. If a fault is detected that can not
be addressed locally, fault information is transferred to a reconfiguration server,
Following design recompilation to avoid the fault, a new FPGA configuration is
returned to the remote system and computation is reinitiated. Although this research has
many abstract similarities with the work undertaken in this thesis, the main target is to

locate specific permanent interconnect and logic faults in an FPGA devices.

3.3 Remote FPGA (re)configuration
The ability and the implications of implementing a system for network-based FPGA

reconfiguration has been attempted in a number of projects. Early work in
programming reconfigurable hardware through the Internet is presented by Gomez et al
[83]. In {84], an FPGA in a remote system takes the place of a standard network
interface. The FPGA is capable of downloading new services and upgrades from the
network. In [85], a centralized job management system for reconfigurable computing

systems is described. These systems are reconfigured over a network using job
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scheduling. A series of standard job management systems and monitor of the resources
are analyzed. In [86], an FPGA-based system is directly connected to the Internet. Both
FPGA configuration and application data are transferred to the FPGA via the network.
In [87] the research effort focuses on the implementation of an Active Network with
programmable logic support in order to accelerate the applications. The framework
includes software modules scheduling and real-time resource monitoring, Also, the IP
stack has been modified in order to comply with the Active Networks concept. This
project received considerable support from the writer of this thesis and thus more

information concerning its specific details are given in Appendix I.

3.3.1 Xilinx - Internet Reconfigurable Logic (IRL}

The major programmable logic manufacturers have also introduced system
solutions for the remote reconfiguration of FPGAs. Internet Reconfigurable Logic
(IRL) [88] is a system design methodology that enables modification and upgrading of
hardware and software in a target system across a network without the need for a
service technician or user to directly perform the change. This methodology, when
applied to the design process, creates products that are IRL-enabled. IRL can enable
upgrades of multiple systems simultaneously, and the ability to go back to a previous
configuration if necessary. This interesting rollback' property of IRL provides
reconfiguration to a stable state. The system includes a fully customisable API called
PAVE [88] which is part of the VxWorks real-time operating system.

3.3.2 Altera - Remote system configuration
Altera has developed a similar concept for the Stratix FPGA family devices. Using

remote system configuration [89], a Stratix or Stratix GX device can receive new
configuration data from a remote source, update the flash memory content (through
enhanced configuration devices or any other storage device), and then reconfigure itself

with the new data. On power-up in remote configuration mode, the Stratix device loads

! Rollback 1s the ability to revert to a previous upgrade (possibly the Default). In a system that has space
for more than two configurations, (e g using a commodity flash chip), 1t could rollback to a known good
upgrade that was previously installed
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the user-specified factory configuration file, located in the default page address 000 in
the enhanced configuration device. After the device configures, the remote
configuration control register points to the page address of the application configuration
that should be loaded into the Stratix or Stratix GX device. If an error occurs during
user mode of an application configuration, the device reloads the default factory

configuration page.

3.3.3 Triscend ES - Secure remote updates
Trniscent (which was acquired from Xilinx) has implemented a secure remote update

system using configurable System-on-Chip devices. The Triscend E5 Configurable
System on Chip (CSoC) [90] device is able to host downloadable applications from the
internet; it contains both programmable hardware and an industry standard
microcontroller. The system is equipped with integrated cryptography techniques
providing by this way tools that help to prevent accidental or malicious installation of

incorrect updates via download.

3.3.4 Hardware Objects Technology Manager
The HOTMan platform [91] enhances the development, design and control of

bitstreams in an embedded system. HOTMan enables bitstream management and
remote hardware upgrading using C++ and JAVA programming languages on
Windows/DOS or Linux/Solaris Operating Systems. HOTMan treats the programmable
hardware as an object within the system, similar to software objects used in C++. As a
result, applications that are written using C++ tend to be object oriented, modular, and
upgradeable. The remote FPGA configurations are capable of total or partial
reconfiguration of single or multiple FPGAs via SelectMAP or JTAG ports. HOTMan
represents a method for flexible and reliable remote upgrades including features like,

secured and compressed bitstream files.

Discussion
‘The remote hardware configuration platforms introduced concepts that are related

to the security aspects, as described in Chapter 4. Useful specification concerning
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requirements and architectural implications were also considered (i.e. the roll-back
mechanism for safe reconfiguration of the FPGA device in the Xilinx IRL system). In
most of these projects there is reference to the security issues that are raised (i.e. mainly
reverse engineering, intrusion detection, misuse of the local and network resources etc).
However, there is a limited or inefficient implemented work that provides answers to
these problems (i.e. the security countermeasures are limited only to the secure
downloads of a bitstream in the FPGA device). Moreover, these systems/projects touch
only a relative small portion of the spectrum that concerns error detection, concurrency

issues, availability, operability etc.

3.4 Relation to the work of this thesis

The different research efforts presented in this chapter, focus on different aspects of

FPGA-based reconfigurable computing. Various projects use FPGAs in order to
accelerate the performance of systems and some particular aspects of security and on-
chip monitoring of real-time systems are covered. There is also significant research that
proposes methods and tools for confronting transient errors, errors that are produced
from radiation or other random factors in the low-level wire connections of the FPGA
[92], [93]. However, there is no previous work on the application-layer -monitor and
control- domain of critical FPGA-based systems (i.e. a robust monitoring and control
mechanism for achieving the requrements of security, fault tolerance and failure
prevention). Table 3.1 is a summary of the indicative research work that is related in
different contexts with the research and implementation targets presented in this thesis.
The research goal in this work is different and at the same time complementary to
the general context that was formed so far by the academic research and the
commercial solutions/platforms. The aim is to confront the errors that are caused by the
non-predicted behaviour of the configured application in FPGA devices. This can
include inherent programming bugs, misuse of the available resources, security
violations, illegal accesses etc. The implementation of the monitor and control
component targets dependable computer-based systems (i.e. PCs). The foundations of
an Active Network were used as a real-world system of this type, in order to obtain the

necessary architectural design requirements and limitations.
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Monitoring and error detection
Hardware momtorms domarns

1 Performance measurements Performence assessment through hardware mompring
s Performance Monttormg of Embedded Hw§y Systems ) ’
+ RP3 perfonnance momtorng hardware

» A Relahonal Approach to Mortonng Complex Systems

2 Execution momtorms m multi-processor systems On-chip monitoring of multprocessor systems and data avalysis in o
¢ Hardware momtoring of 2 multwprocessor systems | external plagform
¢ OnChp Momtormg of Smgle- and Mulnprocessor
Hardware Real-Time Operatms Systems

3 Real tume systems Hardware monttormg Is mterjaced via the CPUsocket orvia the data
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Embedded monitor cores for microprocessors
SPY- Phuhps Non-intrustee output of mternal signals on 12 chip pins.
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NEXUS Debug mterface for real-time observabihty of pre defned faatures
Hardware momtoring using logic analyzers
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Altera - SiznalTap I Systemverification — smbeddad VHDL cores
Agilent Logic Analyzers Several different fipes of logic analyzars
Catalyst- TAT00 PCIbus analyzer, Testing, Data Anafysis
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Reconfigurable computing and programmable networking
The P4 arciutectume An FPGA -based acceleration of application it a nstwork environment.
afroduction of FPGA securihy Issuss,,

The Field-programmable Port Extender {FPX) Genaral-purpose, reprogranmable platform that performs data

processing in FPGAs. Standard computer natwork securiy
cowntermaasures implemented n FPGAs.

ANN = Actrs ¢ Network Node Hardwarg-based reconfigurable router designad to support high
performance actne applications.

AMnet FPG4s uzed in a networked reconfigurable system. The ervor handimg
Jeatures provids QoS and ervor control.

PLATO FPGA -based platform for expenmertation with actn £ networks

Active §ANs Reconfigurable architecture used i Active networks Performance

evaluation quantifies the ovarhands of the system throughput.
Adaptrve Fault Recovery for Networked Reconfigmable | Fully-automated fauit recovery system for networkad systems which

Sy stems contan FPGAs.
Remote FPGA reconfizuration
Xilmx - Intemet Reconfigurable Lomc Lzgrading hardwars ond software across a matwork.
Altera - Remote System Configuration Urgrading hardware and software across a network.
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Programmmg Reconfisurable Hardware Through Intemet | Zarly work on remote FPGA configuration
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Hardware Support for Actm e Networkmg FP(A-based reconfiguradle Actha Router with resources monstor
Intemet Connected FPL Confleuration and detq tranglerred to tha FPGA via the natwork.

Table 3.1;: Overview of the related research.
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CHAPTER 4

Moftivation and Framework

This chapter describes the motivation for carrying out research in the emerging field
of concurrent on-chip monitoring and control of critical FPGA-based applications. It
includes a general discussion of how to design a computer system, taking into account a
variety of general security concerns. Also it provides a complete analysis of the
particular components (i.e. security framework, policy framework) that have to be
integrated in the system or in similar topologies, in order to provide maintainability.
The main goal of this research is the timely detection of errors, in order to prevent
system failures. For this reason, it was decided that the monitoring and the control of
the configured applications has to be realized through an embedded module; the latter
should be integrated passively in the execution environment (PCI-based FPGA board)
and should also be able to apply a per-cycle, policy-based monitforing., The selection of
the appropriate type of monitoring (i.e. software, hardware or hybrid), the need for

concurrent detection of errors and other implications are also discussed in this Chapter.

4.1 Processing power versus flexibility

A significant introductory goal of the implementation stage was not only to propose
a processing platform for delivering efficiently the research results, but to justify this
selection as well. Hence, it was fundamental for the research deliverables of this work
to define an architecture that will both satisfy the research goals and the need for
innovation and originality. The research scenario that was adopted is not limited in the
selection of a dependable computing system, but also in the use of a state-of-the-art
processing platform for the applications. Both performance and flexibility requirements
had to be satisfied. Therefore, many different solutions were analysed; FPGAs were

from the beginning the obvious candidate. The reasons for using an FPGA-based
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platform as the execution environment for the applications are stated in this chapter. It
is clear that this section is based on common issues concerning application processing
and computational complexity. The short review that follows underlines the
significance and the potential of the FPGAs in application processing systems.

A system for processing applications has efficient computational power if it could
be identified, among all typical and reasonable applications, the one that requires the
most computational power. If a system can accommodate data traffic of this application
at full link speed, one can safely assume that there is enough computational power to
host any other reasonable application. The link speed between peripheral cards and the
host microprocessor in a PC is restricted from the throughput of the PCI bus. The PCI
bus can have one of the following modes of operation:
= 32 bit/33 MHz, link speed = 132 Mbytes/sec
» 32 bit/ 66 MHz, link speed = 264 Mbytes/sec
= 64 bit/ 33 MHz, link speed = 264 Mbytes/sec
* 64 bit/ 66 MHz, link speed = 528 Mbytes/sec
» 64 bit/ 133 MHz, link speed = 1064 Mbytes/sec

Application Specific Integrated Circuits (ASICs) are specially built ICs optimised
for achieving maximum performance under certain conditions and for executing certain
computations, and thus they are very fast and efficient. However, once the circuit is
fabricated it cannot be altered. To alter a functionality of a given ASIC, redesign and
re-fabricate the chip is required. Although the unit cost of an ASIC is fairly cheap, the
fabrication process is very expensive and time consuming. Another drawback is the fact
that all the existing ASICs, which are to be upgraded, have to be replaced. Traditional
network nodes (e.g. routers, switches) are based on ASICs.

A more flexible solution is the use of software-programmed microprocessors.
Processors perform a computation when they execute a set of instructions. Changing
the instructions the system is altered without changing the hardware. However the cost
of the flexibility is lower performance, if not in the clock speed then in the work rate.
An inflexible feature of microprocessors is that their instruction set is defined at their

fabrication time,
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In order to adapt to new protocols, services, standards, and network applications,
many modern routers are equipped with general purpose processing capabilities to
handle (e g., route and process) data traffic in software rather than dedicated hardware.
The implementation of network processors is a quite challenging area. Network
processors distribute the computational processes over several processors (e.g. from
two to sixteen). The advances of VLSI technology resulted in network processors,
which have multiple processors, with cache and DRAM on a single chip, reducing by
this way considerably the memory access latency. The network processing of
applications is divided in two categories. The first include header processing
applications and the second payload processing applications. Payload-processing
applications access and possibly modify the contents of a packet during network node
processing. Therefore they have a considerable computational complexity as is shown
in figure 4.1. Computational complexiti; can be defined, as the number of instructions

per byte required for an application operating on a given packet length.
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Figure 4.1: Bandwidth and computational complexity of some applications [94].

For a bit intensive application like on-the-fly encryption, with a link bit rate of Rynx
= 132 MB/sec (the slowest PCI throughput), the computational complexity N can be
204 instruction/byte according to [95]. The header-processing overhead for the data

stream can be ignored since payload processing dominates the computational

complexity. Hence: M =N *Ryng= 204 757 #132%105 2285 _ 56 928 MIPS
byte sec
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It is clear that a standard RISC processor by itself is sufficient for header processing
at link speed, but will not provide adequate computational power for tasks that perform
payload processing. The use of vector processing techniques for streaming applications
(i.e., embedded vector processors) or multiple parallel superscalar or VLIW processors
on a chip are promising approaches to achieve link-speed payload processing.

However, FPGAs stand in the middle of hardware and software solutions and can
be considered the optimal candidate for a series of applications. While processors
divide computations across time, the programmable logic devices like the FPGAs
divide them across space (figure 4.2). Being far more flexible than hardware platforms
like ASICs, and having considerably better performance than software, FPGAs give an
answer to the technology gap.
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Figure 4.2: temporal versus spatial computation

“Hard-wiring” a variety of IPs that are closely coupled with a microprocessor and
programmable logic as well, the advantages of hardware and software platforms are
combined. The result is a System—on-Chip (SoC). Hence a technology fusion is
accomplished. It is obvious from both figures that the bit-intensive applications should
be implemented in a hardware-based solution.

As the VLSI technology progresses, the capacity and the performance of the FPGAs
increases, making them even more attractive for a variety of applications and

architectures. FPGAs performance increases in a patter that follows Moore’s Law?’.

2 Moore observed an exponential growth in the number of transistors per integrated circuit and predicted
that this trend would continue. Moore's Law, the doubling of transistors every couple of years, has been
maintained, and still holds true today.
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The FPGA constraints are related to the area utilization, the in-system programming
times and the /O requirements. The table that follows is a synopsis of area utilisation,

performance, and /O metrics, taken from several applications notes from Xilinx:

Application Family example device  Fmax (MElz) Slices OB
ADPCM, 1024 Channel Simplex | Virtex-11 Pro, XC2VP20-7 56 2753 69

[26] Virtex-1T, XC2V3000-6 51 2824 69

e-Discrete Costne Transform [97] Virtex, XCV200-6 66 1,772 23

Virtex-E, XCV200E-8 83 1,769 23

Virtex-II, XC2V1000-5 83 1,802 24

Spartan-1I, XC25200-6 76 1,772 23

Spartan-IIE, XC2S300E-7 63 2,220 23

JPEG Encoder [98] Spartan-3, XC354000-4 54 6192 151
Virtex-II Pro, XC2VP20-6 106 6146 151

Virtex-II, XC2V1500-6 95 6153 151

MPEG-2 HDTV I & P Encoder Virtex-1I, XC2V3000-5 111 6508 113

[99] Virtex-II, XC2V3000-5 111 5540 58

MPEGH4 Video Compression Spartan-3, XC351000-4 58 2997 235
Encoder [100] Virtex-II Pro, XC2VP7-7 85 2991 235
Virtex-II, XC2V1000-6 78 2979 235

MPEG-4 Video Compression Spartan-3, XC351000-4 62 1351 215
Decoder [101] Virtex-II Pro, XC2VP7-7 82 1352 215
Virtex-II, XC2V1000-6 75 1350 215

Trple DES Encryption [102] Spartan-3, XCV3S1000-4 101 790 301
Spartan-IIE, XCV2S300E- 117 790 30t

7 165 705 301

Virtex-II Pro, XC2VP7-7 182 705 301

Virtex-II, XC2V1000-6 125 790 301

Virtex-E, XCV300E-8

AES Fast Encryption [103] Spartan-3, XC3S81500-5 119 447 391
Spartan-ITE, XC2S400E-7 79 499 391

Virtex-II Pro, XC2VP20-7 217 447 391

Virtex-II, XC2V1000-6 170 447 391

Table 4.1: Implementation details for several FPGA-based application implemented.

Even the most bit intensive applications, such as media transcoding, can be
efficiently implemented in the available FPGA devices as it is proved from the results
of table 4.1. The parallel and concurrent nature of the FPGA processing ensures high
performance (figures 4.2, 4.3 and table 4.1). It can be claimed that hardware platforms
based on FPGAs enable packet processing at link speed. As a general conclusion (and
with reference to the previous figures), it can be claimed that it is more “profitable” to
implement bit intensive applications and algorithms in FPGA devices rather than in

ASICs or general purpose and special purpose microprocessors.
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Figure 4.3: Performance and flexibility issues related to development and unit cost.

To summarise, it is important to point out that there is a constant increase in the
demand of processing power in order to meet the challenges of the ever-growing
electronic market. Some indicative reasons are given below:
¢ The growth of the internet [104].

e The increasing use of electronic equipment and especially computers, mobile
phones and other electronic “gadgets”.

e The increasing number of users of high technology products.

¢ The continuous introduction of new complex application and technology services.

¢ The constant demand for applications, systems and services that deliver higher
performance.

The increasing number of users, applications and services that are open in the public

domain creates security risks and thus new processing-consuming security policies and

protocols have to be introduced.

4.2 Active Networks — a critical computing system

The theoretical background of Active Networks was covered in Chapter two. This
section is an analysis of the apparent security implications which are involved with the

definition and connotation of Active Networks.
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Active networking supplies the users with the ability to download and execute code
within a node. That is by its nature a security critical activity. In such an infrastructure
the security implications are far more complex than in current static environments. In
Active Networks the author of the active code, the user who deploys it, the owner of the
nodes’ hardware and the owner of the execution platform can be different entities
governed by different security policies. In such a heterogeneous environment security
becomes an extremely sensitive issue. The possibility of loading and executing active
code in Active Network Nodes imposes considerable threats on the expected operation
of the nodes and/or the network due to flaws in active code, malicious attacks by
unauthorized users, conflicted code execution etc. Thus, security in Active Networks
deals mainly with protecting the system (infra‘tstructure) from malicious (unauthorized)
and erroneous use, The objective for the security architecture in this work is to
guarantee rtobust/secure operation of the computing infrastructure despite the
unintentional or intentional misbehaving of the applications. Fulfilling these objectives
is fundamental for the usability, integrity and trustfulness of the system. Furthermore,
an unintentional error in the design of a new network service, its implementation
(active code), or its configuration can degrade performance of the critical system.
Finally, a malicious or unintentional misbehaving of an application can severely
degrade or even disable the network services perceived by other user(s) of the critical
system. It is clear therefore that the Active Nodes (i.e. Active Router) are more
susceptible than those in current passive networks. Several scenarios of misuses
concerning applications or services could be realised in Active Networks:

e Misuse of an active network node by an active application.

¢ Misuse of an active application by other active applications.

* Misuse of an active application by an active network node.

* Misuse of an active application and/or execution environment by the underlying
network infrastructure.

e Misuse of the Active Network as an entity

Finally a combination of the above categories is possible. These kinds of attacks
(the complex and collaborative ones) are very difficult to detect not to mention prevent

or be effectively tackled. Classical examples include the co-operation of various hosts
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against another Active Node or Active Application. Threats can also be analysed from
the perspective of a single Active Network Node, and from the network-wide
perspective. Of course, threats to a single node apply also to the whole Active Network
(domain). However, network-wide threats can be more subtle and harder to combat,
since they are based on the global, distributed nature of network protocols, and thus,
their respective active codes. The scope of the initial security framework is limited
mainly to the first and last category.

The standard design flow for providing security to Active Networks (actually to
Active Nodes like an Active Router) is given below.

When a packet containing executable code arrives at a node, the system must:
e Accept the authenticity of the credentials of the packet,
e Identify the sending network element,
e Identify the sending user,
* Authorize access to appropriate resources based on these identifications and

credentials,

¢ Allow execution based on the authorizations and security policy,
¢ Momtor and control access to system resources throughout the execution,
e Ifneeded, encrypt the packet to protect its code and data in transit.

A reference monitor may be used to restrict the information, system resources and
services that active applications are allowed to access and use. The reference monitor
consults a security policy to determine if access is to be granted. Since access-level
monitoring places restrictions directly on what an application can do, it is an effective
method. However, the decision of granting permission for using some resources is
based upon some credentials which are not able to guarantee that a packet is harmless.

The contribution of this thesis focuses in the monitor and control domain, which so
far has only been implemented in software space. For the reasons quoted in sections
2.2,2.3, 244, and 2.6.3 it is apparent that the monitoring and control in a system like
an Active Network must be delivered in a concurrent mode, especially when the
execution environment of the application is a FPGA device, This is secured by using a

dedicated, embedded hardware monitor.
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The general research requirements were already quoted in section 1.1. One of those
was to select and study the properties of a real world critical system, based on a
computer architecture. Active Networks are subject to “firm”™ time deadlines; they also
demand that the Active Applications practice a fair utilisation of the host resources,
they require high levels of integrity, availability and reliability and they have also
security as well as performance requirements (see section 2.7.5). Their basic
experimentation platform can be based on PC hosts. Therefore an Active Network or
better a PC-based Active Router satisfies the above research/design property.
Considering also the current nfrastructure, expertise and the know-how at
Loughborough University [87] as far as the Active Networks are concerned, this
particular system was an appropriate selection. The structure, properties and
requirements of an Active Router were studied in order to deduce useful design
demands that will enable the implementation a robust monitor and control module that

it can be reused as a generic component in various critical computing systems.

4.2.1 The security context

The target topology, which will be examined comprises of an Active Router (or
Active Node). This is a PC-based router that carries a PCI board with one FPGA device

dedicated for applications that need a bit intensive processing environment (figure 4.4).

. : Processing
Linux PC* iy » Engine

Figure 4.4: An Active Network with a reconfigurable processing engine.
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Following the Active Network design approach, the Active Packets [87] may have
one of the following operation modes:

1. In the first scenario the Active Packet has a pointer to a certain application (IP
core). The requested application is stored either in the Active Router or in a
different location (e.g. a Code Server [105]). The Active Router detects and
processes the Active Packet so as to serve the request. The requested application is
then configured in the hardware platform. The Active Router forwards the user’s
data to the PCI card, so as to be processed by the Active Application.

2. In the second approach, several Active Packets carry a configuration bitstream and
data in their payloads. The Active Router detects and processes the Active Packets
so as to serve the request. This processing stage includes authentication of the user,
and integrity checks. The application is then configured in the target FPGA board
and in the following stage the host transfers the user data,

The Active Packets are identfified as active when the Active Router processes their
header information (see also Appendix I). The Active Router then decides whether to
download the new configuration bitstream in the FPGA device or not, depending on the
current activity on the FPGA board. Apparently, as already stated in the previous
sections, the new configuration can potentially extend and modify the network
infrastructure. The routing and the forwarding of the packets are vital processes of an
Active Router and must not be mterfered with, by any means since their maintenance is
important for the viability of the network. Moreover, the operability of the routers is
critical to the proper and correct running of many other important systems and services.
Therefore, an Active Network system designer should consider new possible threats on
top of the already existent network security issues.

The security threat model has to be identified, considering all the platform-specific
characteristics and requirements. The analysis of the security context that applies to the
platform used for this research is based on how the basic packet functions of an IP
network could affect the services, integrity and performance of the system (or simply,
the dependability of the system). Therefore, a set of potential threats (and their possible

impact to the host computer) was identified.
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4.2.1.1 Packet replication
Replication of packets occurs in many different instances inside the context of a

computer network in order to deliver specific services (i.e. multicasting). If an
application that is configured in the FPGA device of the platform replicates packets in
an uncontrolled manner or with malicious intentions, then as a consequence a side-
effect could result in contention of the PCI bus; thus leading to degradation of the
services that the Active Router offers. Although this function is not necessarily
considered to be malicious, it can even result in Denial of Service (DoS)®. Hardware

versions of “hoaxes™ and “viruses” could deliberately replicate packets.

4.2.1.2 Packet corruption
There are various situations that can result in the production of corrupted packets

(i.e. packet loss, communication channel noise, congestion, low QoS etc). The impact
of packet corruption on the reconfigurable platform could be multiple PCI retries,
aborts, disconnects and terminations. In a similar way to packet replication, these
events are not necessarily treated as malicious. However, deliberately corrupted packets
may lead the system in a computational loop. In the worst case scenario a configuration
bitstream that targets the FPGA platform, could be intercepted and modified when it is
sent through a public computer network, Packet corruption may result in retransmission
of packets and therefore in delays for system functions and in an extreme scenario it

can cause the hang-up of the system.

4.2.1.3 Packet damage
This type of failure can either be the result or the cause of a system misuse., Packet

damage can be realised when an active packet destroys or changes the resources or
services of a node by reconfiguring, modifying, or erasing them from the memory.

Hence it can be connected with illegal accesses to restricted memory areas. A node may

? Denial of Service' An active packet may overload a resource or service due to constantly consuming
network connections or using a great portion of the CPU cycles available or by causing bus contention,
The node canmot function properly under these circumstances and another acttve packet cannot be
executed or forwarded
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also erase an active packet before the completion of its job in the node. Finally, active

packets that share the same computational environment may attack each other.

4.2.1.4 Packet theft

An active packet may access and steal private information from a node. On the
other hand, active packets can be manipulated and violated when they arrive in an
Active Node. Even if it is encrypted, it is not totally safe because it usually has to be
decrypted in order to execute. Packet theft may also result in application hijacking.
Hardware versions of “worms” as well as hardware version of spyware programs may
attempt illegal memory reads and memory writes. Reverse engineering may also be the

goal of packet theft,

4.2.1.5 Packet transformation

The packet transformation can be part of the processing sequence of many different
Active Applications (encryption, compression, coding etc). The impact of packet
transformation in the PCl-based reconfigurable platform is limited to PCI retries,
aborts, disconnects and terminations if the core that is configured in the FPGA device
fails to deliver a service successfully. All the previous PCI transactions events do not
necessarily constitute errors but they should be treated with suspicion because if they

exceed some limits they can degrade the performance and affect various services of the
PC.

4.2.1.6 Packet fission and fusion

Packet fission can result in PCI bus contention and DoS, since a fissional node has
the potential of forwarding more packets than it receives (e g. data decompression).
Packet fusion is in a way an opposite packet function. It involves the merging of
different data into a union. It is possible that the application that is configured in the
PCI-based FPGA board, exercises fusion functions in data; this may result in several
undesirable PCI events such as persisting disconnects, retries and in the extreme it can

cause performance degradation of the whole node as an entity.
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4.2.2 Hardware “bugs” and malicious attacks
A system failure can also be realised by the logic failures of a digital design (or

hardware bugs), which generate invalid computational cycles. A hardware bug may
have analogous effects with a software bug; it may lie dormant within a rarely used
block for a long time until a particular sequence of events satisfies the condition
required for its activation. Hardware bugs can monopolise the PCI bus, try to read an
empty memory, try to write to a full memory etc. Moreover illegal cycles can violate
certain rules of a protocol specification and lead the system to “hang up”.

Malicious attacks can also take place. For example an application, which is
configured in the PCl-based FPGA platform, deliberately activates a mechanism that
adds noise to the output signals of the core. This could cause PCI protocol errors and
generate random delays. Malicious attacks can also take place with hardware versions
of viruses, hoaxes, Trojan horses and spyware programs (as already mentioned in the
different Active Packet event properties). If the latter malicious attacks are
implemented in the heart of the reconfigurable system (i.e. PCI FPGA board) they can
even have catastrophic results for the node and possibly for other computer entities that
are dependent on the critical services that the host delivers. Considering also the fact
that these malicious applications are implemented in FPGAs that have inherent
parallelism in their operation, it is easy to understand that is even more difficult to

confront and eliminate the consequences of their activity.

4.2.2.1 A generic hardware attack scenario
An application configured in a PCI FPGA device can have full access to the system

and can communicate with any part of the address space. This means, among other
things, that an attacker can read or write to the BIOS memory on the motherboard or in
peripheral hardware, In earlier times, BIOS memory was stored in ROM or in EPROM
chips which could not be updated from software. These older systems require the chips
to be replaced or manually erased and rewritten. Since this is not very cost effective,
new systems employ EEPROM chips, otherwise known as Flash ROM. Flash ROM can
be re-written from software. Modem embedded systems often include Flash ROM. A

given computer can have several megabytes of Flash ROM on various controller cards
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and the motherboard. These Flash ROM chips are almost never fully utilized and leave
lots of room to store backdoor information and viruses. To an attacker, the compelling
reason for using these memory spaces is that they are hard to audit and almost never
visible to software running on a system. To access such hardware memory” requires
driver level access. Furthermore, this memory is immune to re-booting and system re-
installation. If someone suspects a viral infection, restoring the system from tape or
backup will not help. EEPROM memory is fairly common on many computer systems.
Ethernet cards, video cards, and multimedia peripherals may all contain EEPROM
memory. The hardware memory may contain flash firmware or may just be used for

data storage.

4.3 Counteract framework

The threats mentioned in section 4.2.1 do not constitute the complete and absolute
security threat model for the platform. However, they can be thought as a solid
introduction and a pathway that helps us to build a robust defence system in an
incremental way. Table 4.2 is a summary of all the identified Active Application
functions that can lead the reconfigurable PCI-based FPGA platform to a failure mode,
as well as the effects and the causes of these failures. Although the causes of these
failures or security “holes” in different critical computing systems may differ from each
other, the effects of these failures are sharing common grounds between several similar
computer architectures (i.e. the example systems quoted in section 1.2.5).

For each of the functions in column 1 of table 4.2, a corresponding effect (or
effects) were identified and listed in column 2, A failure effect is what the user of the
critical FPGA PC platform will experience or perceive once the failure
occurs. Examples of effects include: inoperability or performance degradation of the
system or process, illegal memory accesses, contention, etc. Aside from its effect(s), the
potential cause(s) of every listed failure mode must also be enumerated (column 3). A

potential cause should be something that can actually trigger the failure to occur.

Examples of failure causes include weak or inefficient design, hardware bugs, hardware
version of “viruses”, “warms”, “hoaxes” and spyware programs, incompatible software

or hardware functions etc. A severity rating was assigned reflecting the importance




Using embedded hardware monitor cores in critical computer systems

68

effect of each error. Each critical system has its own severity rating system, depending

on the nature of its operation and the degree of dependability that it would like to apply.

The error were grouped in a scale of 1-5, with ‘1’ corresponding to 'no error effect' and

‘5’ corresponding to maximum error-severity, such as the breakdown of a public or

private critical computing system (i.e. cost and loss of availability impact). The last

column presents the event detection effectiveness which the monitoring system intends

to apply, with reference to the time that is needed in order to prevent the propagation of

the error and hence a potential failure.

Application Failure effect Potential failure | Severity Detection
function cause rating / 1-5 | effectiveness
Packet » PCI bus Bad design, Event driven
replication contention network demand, 4 data monitor,
= Services hardware version gradual
degradation of “hoax”, detection
® Denial of Service “virus”
Packet = PCI retries, aborts, Packet loss, Concurrent
corruption disconnects, noise, 4 detection,
terminations congestion, low event driven
® System delays QoS, malicious timer
= System hang-up interception
Packet ® reconfiguring, Malicious attack, Concurrent
damage modifying, or hardware “bug”, 5 detection
erasing resources | hardware “virus”
from the memory
Packet ® Loss of private Hardware Concurrent
theft information versions of 5 detection
» Unauthorised “worms” and
memory accesses spyware
» Application programs,
hijacking Teverse
engineering
Packet s PCI retries, aborts, Bad design, Concurrent
transformation | disconnects and improper use of 3-4 detection,
terminations the resources, gradual
» Loops and System | hardware “virus” detection
hang-up
Packet w PCI bus Hardware “bug”, Gradual
fission/fusion | contention hardware version 3-4 detection
®» Denial of Service of “hoax”

Table 4.2: A synopsis of the Active Application functions and their effects.




Using embedded hardware monitor cores in critical computer systems 69

Considering the Active Application effects as these are stated in section 4.2.1 and
the sequence of events that results in a system failure (figure 2.8), all the Active
Application functions quoted in table 4.2 are treated as potential errors; hence they are
defined as the sources of instability, low security and low reliability. In critical
computer systems (i.e. public network systems, private corporation networks etc), a part
of which could be the Active Networks, dependability and security issues are raised and
thus measures must be taken to overcome the effects of potential failures. The field
programmable reconfigurable platform that was used applies a set of measures, which
are divided into four levels of action:
= Policy-based monitoring,
= Timely detection of system threats,
= Error tolerance,

= Erroneous application removal and stable reconfiguration.

4.3.1 Policy-based monitoring
Dependable computer systems demand a policy-based (embedded) monitoring

component because the standard failure avoidance techniques cannot ensure the high
dependability requirements of such systems. Failure avoidance techniques aim to
prevent errors from entering the system during the design stage. A way to apply this is
to use applications that have already been verified and tested. Failure avoidance is also
provided if the configuration bitstreams are encrypted with a standard encryption
algorithm. Custom built cores (i.e. like the ones that Active Networks are supposed to
host) may realize any circuit that can even physically destroy the target FPGA or other
embedded components. Therefore, commercial application cores or open source cores
are considered to be a much safer option compared to the applications implemented by
unknown users. However, all the applications are subject to failures and hence none is
considered to be bug-free. This last statement is proved to be true in our everyday
experience, when verified and tested software or hardware components are
malfunctioning,

For this reason, a set of policy rules has to be designed and implemented in order to

deal with the effects of errors. The policy based monitoring of a critical computing
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system should be implemented in hardware for the reasons quoted earlier in this chapter
two. The observability of the target hardware topology is achieved erther by tapping a
subset of crucial signals or by tapping all the signals if this is required. These signals
can be used to form macros and complementary signal groups which are necessary in
order to build the individual policy blocks. Each one of these blocks is feeding the
overall policy framework. Next, the signal states are checked for validity according to
the implemented policies. Comparator logic has to be developed for satisfying this

design requirement.

4.3.2 Timely detection of system threats

The detection of potential threats or errors in critical computing systems should be
realised while a service is being delivered. In this way, the effects of the failures are
minimized or eliminated within the operational system. In such systems the pattern of
monitoring, matching and collecting is impractical and inefficient because these steps
involve a considerable and very crucial delay for the detection of the potential errors. In
most of the cases these critical systems require a more solid, efficient and concurrent
approach for providing protection against application bugs, protocol errors and misuse
of resources. Therefore, the collecting of data is replaced with a concurrent application
control mechanism while monitoring and matching are kept intact. The time that an
error is detected is a critical factor especially if the severity rating of this particular
error is high. An error with severity rating 5 should not propagate to other system
components because in this case the stability, integrity, security and hence the
dependability of the whole system is endangered. Therefore, concurrent methods of
error detection with parallel processing of signal states have to be applied. The most
common techniques for error detection are:
® Replication checks: In this case, multiple replicas of a component perform the same

service simultaneously. The outputs of the replicas are compared, and any

discrepancy is an indication of an error in one or more components.
* Timing checks: Typically a timer is started and set to expire at a point at which a

given service 1s expected to be complete. If the service terminates successfully
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before the timer expires, the timer is cancelled. However, if the timer times out,
then a timing error has occurred.

=  Run-time constraints checking: This involves detecting that certain constraints, such
as boundary values of variables not being exceeded, are checked at run time.

» Diagnostic checks: These are typically background checks that determine whether a
component is functioning correctly. In many cases, the diagnostic consists of
driving a component with a known input for which the correct output is also known.
A concurrent monitor detection component can be designed borrowing features of

the above mentioned error detection techniques. Indeed, as it will be described in the

next chapter, the monitoring mechanism is integrating different controls and methods
for error detection (i.e. applying concurrent or timely detection of errors,) preventing

the propagation of errors to other functions or services of the system. This requires a

very good understanding of the flow of information in the system/component that is

under monitor.

4.3.3 Error tolerance

Error tolerance is based on the fact that many digital systems exhibit acceptable
behaviour even though they contain defects and occasionally output errors. A circuit is
error-tolerant with respect to an application, if it contains defects that cause internal and
may cause external errors, and the system that incorporates this circuit produces
acceptable results [106].

In short, a class of errors may only have either local effects or minimal impact to
the system operability. Thus this type of errors at the system outputs and their presence
in the system can be easily tolerated. The policy exercised in this thesis follows the
rule: when the severity rating of the failure is lower than five (see table 4.2), then error
tolerance policy is applied in a realistic basis. Nonetheless, the presence of such errors
should be detected to evaluate invisible degradation and to make reconfiguration
decisions in a timely manner. Many digital systems -critical as well as low-end- carry
out computations where the results do not always have to be “exactly” correct at all

times. Examples of such systems include signal and image processing, voice and image
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communication, and robust control systems. In such systems errors either cause no

degradation or only cause acceptable degradation in the system outputs.

4.3.4 Erroneous Application removal
The monitoring mechanisms attempt to isolate a potential system error before this

enters a service. Some of the errors may endanger the stability of the system. Therefore,
when a configured application produces errors with high seventy rating, it is considered
as a potential threat for the operability of the Active Router. As a first defensive step
the monitoring system should attempt to stop the illegal/unauthorised/erroneous output
of the configured application locally upon the detection of a predefined error. If the
erroneous condition is persisting then the monitoring and control mechanism should
safely reconfigure the FPGA device with a stable application. This should take place
considering a minimal risk scenario for avoiding contention conditions either in the
system bus (i.e. the PCI bus) or in a local bus interface. Therefore, it is highly desirable
to employ dedicated system ports or interfaces, instead of utilising system resources
(i.e. host handshake, memory transfers), which could lead in a deterioration of the

erroneous conditions’.

Summary
This chapter presented the development research framework which is the “substrate”

of the work presented in this thesis. The functionality of dependable computing system,
such as Active Networks and Active nodes, was studied and a forensic analysis was
delivered. Thus, the forming of policies and rules was based on architectural

requirements and specification of programmable networks.

% The use of a wrong application-removal and reconfiguration method of the erroneous application that 1s
configured i a PCI-based FPGA board, could accelerate the potential system failure. This could happen
if for example a packet replication error generated by the configured application results in PCI bus
contention conditions; using a dedicated PCI interface to remove the erroneous applicatron and re-
configure the FPGA device with a stable one could make the system to “hang up”.
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CHAPTERS

System Arxchitecture & Design

This chapter is a detailed description of how the four-level set of countermeasures
were actually implemented in hardware. An initial definition of the requirements of the
hardware platform is given, justifying the decisions for the selection of the individual
components. The programming and design structure of the policy based monitoring
together with the predefined rules is given next. A detailed presentation of the internal

components and modules is also analysed in this chapter.

5.1 Design issues

This section reports the reasons for the selection of the hardware platform,
including an explanation of the requirements and the system limitations, according to
the available resources. It is also a discussion on the decisions that were made, in order
. to deliver the research results and meet the challenges for building a high-performance
platform with FPGA support that satisfies high level of dependability.

5.1.1 The hardware platform
The selection of the appropriate software and hardware for achieving the goals of

this research was a complicated issue, since many different considerations and
dependencies had to be taken into account. The selection of the execution environment
was the first main concern; FPGA devices were selected as the processing environment
of the apphcations in order to satisfy the performance requirements of the system. For
this reason, section 2,2 was deliberately extended in order to give a sufficient answer to
one of the research targets that was set in section 1.1 (i.e. define a flexible and high
performance application-processing platform). The classification of FPGA-based

custom computing systems includes the following two categories:
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* FPGAs systems which communicate with general-purpose computers through
standard serial or parallel communication interfaces

»  FPGA systems which are using 2 high speed multiplexed data/address/control bus
in order to communicate with the host.

Though the implementation of the system can work with both, the second category
was the specific FPGA system targeted by this research. This type of reprogrammable
FPGA systems are designed to support a variety of computing applications through
providing designers FPGA resources, memories, and sometimes other hardware such as
crossbars, specialized interfaces (video, audio, etc.), and even general-purpose
processors. This type of FPGA-based custom computing systems are hosted by general-
purpose computers which provide them with programming data and, usually, data to
process through a peripheral bus such as PCI or SCSIL. In addition, they frequently
provide designers and users with development environments for designing applications
and controlling the FPGA-based custom computing systems. Early examples of FPGA-
based custom computing systems include: Splash [107], Splash 2 [108], DecPerLe-1
[109]), Teramac [110], Pamette [111], the Wildforce and Wildstar family of boards
[112], and the SLAAC family of boards [113]. Nowadays the market is flooded with
several different types of FPGA-based custom computing systems that can satisfy
almost any design need.

A PCI board was chosen in order to deliver the required field programmable
features. An autonomous FPGA development board (i.e. working without the help of a
host PC) [114] was rejected because of the major issues that were introduced:
communication link overhead, cross-compatibility with the existent available
infrastructure, as well as development problems and added developing cost. However,
the implemented monitor component can be used in this particular FPGA-based custom
computing system since it can be part of a PCI plug-in card (i.e. many ARM-based
Excalibur boards have PCI slots). This can be achieved either when a similar
development board uses an embedded Real Time Operating System (RTOS) or when
additional logic is implemented in order to add operating functionality. A proof of the
reusability and the portability of the platform is given by this way. It is clear, from what

is mentioned so far, that the decision to use a PCI board followed the decision to use a
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PC as the system host. Although the original idea for taking the above design decisions
was made having in mind to implement an FPGA-based network-reconfigurable
embedded system, it is clear that the hardwired monitor and control core, which was the

outcome of this research, can also be used 1n a variety of other PC-based systems.

5.1.2 The specific properties of the PCI board
Next, the remaining components that will comprise the FPGA-based PCI board had

to be defined according to additional factors and requirements that constrained the
implementation options. Thus, the selection of the individual hardware and software
components had to be justified with reference to the target topology. After careful
consideration of the design issues, the available resources and the technology reuse
considerations, a commercial PCI board was chosen. Therefore, the system was
selected in such a way in order not to depend on a custom-built prototype but in free-to-
access commercial boards. Moreover, as it will be explained later in this Chapter, the
design of the system was kept simple. This can help the easy adaptation and integration
of this work on currently available commercial products. It is also a practical way to
reuse the current technologies without the need to improvise or design solutions that fit
only to the exact specifications of this implementation.

A final important task was to define the specifications of the PCI board as far as the
needs for programmable logic are concemed. The PCI board has to carry two FPGA
devices in order to comply with the following requirements:

o The user applications must be able to use as large FPGA area as possible.
¢ The physical separation of the hardware modules (i.e. PCI core, monitor core, user
applications) is needed in order to apply more distinctively the security and error

detection policy as well as manage the system without complex overheads (i.e.

scheduling mechanism for partial reconfiguration).

e The application monitor core has to be hardwired in an FPGA and should not
interfere with the system processes.

¢ A PCI-based board with one FPGA that hosts both the PCI core and the user
application will result in rebooting the host computer each time the user application

needs to be reconfigured. This can be avoided either by using partial
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reconfiguration features of modern FPGAs or by using a multiple FPGA board. The

use of partial reconfiguration, apart from the many other overheads that introduces,

it would have made the research and development work dependent on this particular
technology, which is promoted only in specific Xilinx FPGA devices.

¢ Both the local side signals of the PCI core and the registered versions of the PCI
bus signals should be accessible. The PCI core has to be a soft-core in order to
enable us to integrate the monitor core, without interfering with its operation.
Obviously this is not possible if the PCI core is implemented as an ASIC. The soft
PCI core has also the advantage of being more flexible having a reasonable degree
of customisation.

Also, the PCI board is required to have a flash type of memory in order to store
locally an application that can play actively the role-back mechanism; in case of an
error detection the application can be used in order to reconfigure the system and
resume a stable condition for the critical computing system. Reconfiguration has also to
be achieved via the JTAG port, which anyway is considered to be a standard
communication interface in almost all the FPGA-based boards. The choice of the entity
to be monitored was made bearing in mind the following issues:

i) When the application that is configured in the target FPGA device produces an
error, which may lead to a system failure, there must be enough time available
(clock cycles) for counteracting,

ii) The monitoring of the transactions should utilize a well-known communication
standard, protocol or topology.

iri) The security model of the Active router requires a per-cycle basis monitoring
(software based solutions are insufficient in this context).

iv) The monitoring realisation must be as simple as possible and should not interfere
with the operation of other functional components (i.e. other configured IPs) or
applications.

FPGA-based hardwired logic can be developed to monitor the functionality of the
system components in real time.

There are many different available commercial boards [115], [116], [117] in various

configuration topologies that can satisfy all the design needs described so far.
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Considering all the requirements and restrictions that critical systems have, the FPGA

board environment could be realized with the potential board layout shown in figure

5.1.
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Figure 5.1: The required reconfigurable target components.

An embedded component, permanently configured in one of the two FPGAs of the

PCI board (i.e. service FPGA), acts as the system Error Detection Monitor Unit

(EDMU). As already mentioned, the specification of the components (i.e. number of

FPGAs, communication interface, flash memory) was identified after taking into

account many practical aspects conceming the effective implementation of the
reconfigurable platform. The board has one FPGA that hosts the PCI core and the
EDMU, and a second FPGA that hosts the user applications. The idea of implementing

the error detector monitor unit in the user application FPGA is not practical, because in

this case every IP core (application) must integrate the error detection monitor unit as

part of its design. Furthermore, the single-FPGA implementation of such a system will
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imply the hard restart’ of the hosting PC every time a new application configures the
FPGA device; this, obviously, is the result of reconfiguring the PCI core of the board
together with the new application,® Therefore, this design scenario does not meet the
scopes and the goals of this project. It would be a different way to apply the same
scheme but it introduces an undesirable design and structure overhead.

The implementation of a novel core, embedded in a PClI-based FPGA platform is
the basic outcome of this research. The Error Detection Monitor Unit (EDMU) satisfies
features like policy-based monitoring, timely detection of system threats, error
tolerance when a low severity error occurs and finally stable reconfiguration. The
EDMU operates in a “passive” way without interfering with the host functions. The
implemented module works as a “firewall” preventing the communication of the

configured apphcation with the host, only when an error occurs.

5.2 The policy-based monitoring framework

The monitoring policies were implemented in VHDL (VHSIC Hardware
Description Language) as a conjunction of propositional formulas or properties,
auxiliary state variable assignments, and other complementary assignments. The
Pproperties are used to specify correctness of states and not an explicit behaviour, There
is no conversion of this to a state machine; this is precisely the code for the momtor.
The policy formation is based on many small rules and intentionally avoids large state
machines (i.e. state machine with actions specified for each state), because designing
such state machines is a complex and error-prone task. The adopted design approach
instead, relies on many small and generic state machines that track one thread of
information; the bulk of the policies is done using compact rules.

An example is a 2-state, set-and reset machine which becomes set when a certain
event happens and stays set until it is no longer needed. It is used to record certain
information such as whether the transaction is a read or a write. Another example is a

counter which counts the number of cycles from a certain event, or counts the number

5 A stnct requirement of the system 1s to be available and operate uncorrupted, offerg by this way
maintamability and operability; hence it 1s lnghly undesirable to restart the PC system.

§ This complication could only be avoided using the partal reconfiguration feature of Xilinx FPGAs
[95].
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of occurrences of a special event. Only these two types of state machines (i.e. see figure
5.2) were needed in order to implement the monitor for the two identified error

categories.

Figure 5.2: The two state machine types used for the monitor logic.

Therefore, the structure of the monitor was intentionally kept simple in order to be
maintainable, low error-prone, and simpler to extend, since a basic research goal was to
provide a monitoring element that can be reusable and could be extended in an
incremental way. This means that the hardware monitor was built with the inherent
ability to be easily ported to similar critical computing architectures, having at the same
time the ability to add more policies that fit to the particular needs of the system.
Moreover, the architecture is flexible enough to allow changes in counter based
events/policies. This gives the advantage to apply a stricter version of the policy if the
design needs of the target critical system require such a thing. For example, creating
counter-based events that set shorter deadlines from the ones that a communication
protocol specifies (i.e. the rule that an initiator in a PCI transaction must not keep
IRDY# deasserted for more than seven PCI clocks during any data phase, can become
more firm according to the specific needs of the critical computing system).

The monitor logic is supported by a number of auxiliary signals. These are formed
using the basic set of the PCI core signals combined in Boolean expressions. The
auxiliary signals form the backbone design of the monitor. Although several of these

signals can be taken directly from the ports of the PCI core (i.e. command register), it is
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preferable for the needs of the system to build them from the basic PCI core signals.
Table 5.1 is an overview of these signals. A generic version of the PCI signals is given
figure 5.3 [118]; the particular version of the PCI core signals that were used for the
actual implementation of the monitor logic are given in the diagram in Appendix II.
One basic functionality of the monitor logic is to hold in registers the state of the
signals that occurred one clock prior of their current state’ (including PCI core signals,
auxiliary structure signals and state machines output signals). This is crucial for the
whole operation of the policy generation component. Se\;eral other states of the internal
monitor logic were formed by the above mentioned signal groups using simple
multiplexers and encoders. The state machines are triggered from a combination of all

the types of signals mentioned so far that form Boolean expressions.
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Figure 5.3: A general view of the PCI core signals [118].

7 The name of these signals 15 formed by adding a “p” 1n front of the original signal name.
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Burst transfer not (not framen and not irdyn)

Address phase not(p framen and not framen)

Bus idle state not(framen and irdyn)

Data phase not(not irdyn and (not trdyn or not stopn))

Final data phase not((not irdyn and (not trdyn or not stopn)) and framen)

Data transfer not(not trdyn and not irdyn)

Target abort event not((devseln and not stopn) and trdyn)

Retry state not((trdyn and not stopn) and inifial data phase)

Disconnect with data not((not trdyn and not stopn) and not devseln)

Disconnect without data | not{((trdyn and not stopn) and not devseln) and not
initial data phase)

Back-to-back transaction | not({(p framen and not framen) and not p final dphase done)

Master abort event not(not m_abort cond Or not m_abort)

Master abort condition” | not((((not p_framen and framen) and not p_irdyn) and not (not
p_stopn or not p_trdyn)) or (((not p_irdyn and irdyn) aand
p_framen) and not (not p_stopn or not p_trdyn)))

Table 5.1: Auxiliary signals and their respective Boolean expression.

The monitoring policies were also formed using Boolean algebra expressions

combining all the signals that were described so far. The policies define the correct

status of the signals in a given clock instance (examples of these expressions will be

given in the next section). In other words, the monitored signals are supplying with

their values the Boolean expressions of the policies and they are compared for

correctness in a given time-instance as it is shown in figure 5.4 (i.e. the comparator is

not included in this diagram because its operation comes after the generation of the

policies). Synchronous logic is used for this purpose. To sum up, a policy is formed by

using a Boolean expression containing a combination of the following input signals:

= Registered versions of PCI core signals,

= Auxiliary signals (as they are presented in table 5.1),

"  Previous state signals,

= The state machines output signals.

% All the signals have negative logic.
% This is needed because of the delay in state machmes. Namely, m_abort can only become true a cycle
after the occurrence of m_abort but this variable turns true in the same cycle as when a master abort

happens.




Using embedded hardware monitor cores in critical computer systems 82

Registered versions
of PCI core signals
Expression
Boolean * . . Policy
Expression _je Awaliary signals ’ Generation
¥ ¥
Sm;g;;sme 1 Previous state signals
\ o Thestate machines
output signals

Figure 5.4: Generating policies.

A more detailed explanation of the diagram of figure 5.4 follows. The PCI core
signals (e.g. registered versions of local PCI core and PCI interface signals) are the
source for the creation of the auxiliary signals through Boolean expressions. Both
categories of signals give input to the previous state signals module. Various PCI core
signals, auxiliary signals and previous state signals are forming the state machine
triggers through Boolean expressions. Finally, the outputs of the state machine together
with the other signal categories (e.g. PCI core signals, auxiliary signals, previous state
signals) are forming the monitoring policies through Boolean expressions. An
alternative representation of figure 5.4 that depicts in a different way the same
information, including the specific signals that are the inputs of the policy generation
component is given in figure 5.5. This figure has details for the PCI core which were
initially monitored and reused in order to form the signal categories and internal
structure of monitoring core.

A monitor is an observer in a group of interacting modules, or agents which
communicate via a set of protocol rules. In this context, the Error Detection Monitor
Unit is 2 “hardwired” core that detects violations in the communication of a configured
IP core with the host, over the PCI bus. The 62 identified errors were grouped in two
sub-classes. This policy grouping was made according to the current number of
identified errors that can potential result in a system failure, as these were stated in the

previous chapter (section 4.3).
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Figure 5.5: Another representation of the policy generation.

5.2.1 PCI Protocol Errors

The PCI (Peripheral Component Interconnect) bus protocol was used as the basis
for forming rules written initially in behavioural VHDL. The PCI Local Bus
Specification (revision 2.2) [118] includes the protocol, electrical, mechanical, and
configuration specification, but the monitor covers mainly the protocol definitions.
There are several versions of the PCI specifications which could be used for achieving
the research goals of this work. Table 5.2 provides a comparison and justifies the
selection that was not made with the present criteria (i.c. the selection of the
specification to be studied was an early decision of this research). PCI Specification 2.2
was adopted based on the current market demand. The decision is made based on the
majority PC motherboard and PCI device manufacturers. However, the selection of the
board was made taking into consideration the research target of extendibility.
Therefore, the board was selected to be PCI-X compatible.
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A [)
PCI2.1 * Mature technology * Qutdated, bugs
PCI2.2 ¢ Widely use, * Will be outdated when
* Mature technology PCI-X get accepted widely
PCI-X ¢ New technology, * Cost,
* Fast, ¢ Market availability and
* backward compatible with PCI 2.X offer'®

Table 5.2: PCI specification comparison.

The PCI bus protocol is being used inside millions of personal computers for
communicating video, graphics, and networking data to the processor. A number of
these computers are part of a critical system. The protocol is used to interconnect
peripheral add-in boards such as audio cards and graphic cards, and controller
components such as LAN and SCSI controllers, with the processor/memory system.
There are several different configurations for the bus architecture as was first stated in
Chapter 4: 32-bit or 64-bit address/data path at 33MHz, or 32-bit or 64-bit address/data
path at 66Mhz.

Contradictions are a common problem with multiple-property specifications (i.e.
PCI protocol specifications), as two or more properties may unexpectedly place
conflicting requirements on signals under certain conditions. The EDMU applies PCI
Protocol tracking and also checks for illegal signal changes in order to verify PCI
specification compliance. For every clock cycle, the monitor defines protocol
correctness instead of defining behaviour. The crucial observation is that a single
propositional formula can describe a range of acceptable behaviour. The example
property, “an acknowledge must happen sometime between three to eight clocks”, can
easily be specified in propositional logic with a simple counter and a set-reset variable.
In case of PCI protocol errors, the PCI core will respond according to its internal state-
machine logic. However, the outcome of this response cannot be considered a “healthy”
condition, since the side effects of the PCI protocol errors can threaten the operability,
the throughput and thus the dependability of the critical computing system.

The PCI protocol error checking logic acts as a bus analyser that is used to verify

compliance of user-designed PCI interfaces. The PCI bus protocol properties were

1 The majonty of the PCI designs are built for 33 MHz/32 it targets, thus additional development is
needed in order to be adapt them in the PCI-X specification,
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transformed into monitoring rules, according to the PCI bus specification. The
representative PCI protocol policies are followed by the respective description in
VHDL.

» Master must raise irdy within 8 cycles of the assertion of frame.

process ( ¢lk, rst)
begin
1f rstn = '1*' then
correct_mntr(6) <«<='1';
elsif clk'event and clk = '1l' then
If (((correct_mntr(6) and ((not masteris) and
p_irdyn)))="'1') and (p_m_initial = "00111")

then

correct_mntr(6} <= '0';
else

correct_mntr{(6) <= '1';
end 1£;
end if;

end process;
" Master must raise irdy within 8 cycles of the last data completion.

process (clk, rst)
begin
1f rstn = '1l' then
correct_mntr({7} <='1';
elsif clk'event and clk = '1' then
if {({({correct_mntr{7) and ({(not masteris ) and
p_irdyn)))='1')and {p_m subseqg= "00111%)

then

correct_mntr({7) <= '0';
else

correct_mntr(7) <= '1';
end if;
end 1f;

end process;
* Once irdy# is asserted, frame# can never change its state from de-asserted to asserted

until the data phase completes. One data phase transaction is also considered.

process { clk, rst)
begin
if rstn = '1l' then
correct_mntr(5) <='1';
elsif clk'event and clk = 'l' then
if {({correct_mntr(5) and (((not masteris and not p_irdyn) and
not (not p_stopn or not p_trdyn)) and {((not p_devseln or not

p_devseln_history) or p_initial_data_phase))}} and not ((not
irdyn_e and not irdyn_o) or not m_abort))='1') or (p_framen 7 >=
"00100")

then
correct_mntr(5) <= '0';

else

correct_mntr{5) <= '1';
end 1f;end if;
end process;
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* Once irdy# is asserted, frame# can never change from deasserted to asserted until the
data phase completes.

process ( c¢lk, rstn)
begin
if rstn = '1' then
correct_mntr(%8} <='1';
elsif clk'event and clk = 'l' then
if ({(correct_mntr(9) and (((not masteris and not p_irdyn)

and p_ framen) and p_dphase_done)}) = '1')
then
correct_mntr{9} <= '0Q';
else
correct_mntr(9) <= '1';
end 1f;
end if;

end process;
*» jrdy must be deasserted the clock following the completion of the last data phase.

process ( clk, rstn)
begin
if rstn = '1' then
correct_mntr{l5) <='1';
elsif clk'event and clk = '1l' then
if ({({correct_mntr(l%) and (not masteris and not

p_final_dphase_done)))= '1")
then

correct_mntr(lS5) <= *'Q';
else

correct_mntr(15) <= '1';
end if;
end if;

end process;
= There must be an idle after a transaction terminated by a retry or disconnect

process ( clk, rstn)
begin
if rstn = '1' then
correct_mntr({l7) <='1';
elsif clk'event and clk = '1l' then
1f {{{correct_mntr{l7) and ({({not masteris and not
p_devseln) and not pp_stopn) and not
p_final_dphase_done)})) = '1*)

then

correct_mntr{l7) <= '0';
else

correct_mntr(l7) <= '1';
end 1f;
end if;

end process;
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5.2.2 Common application errors
The EDMU goes beyond a typical validation of the PCI bus protocol at run time.

Issues like bus ownership, latency, amounts of data that are transferred from and to the
host are also considered in the policy framework. The goal is to control the above
transaction events as well to prevent DoS, intended/unintended misuse of the resources
and other undesirable events.

The monitor logic allows the analysis of general events like the count of actual data
transfers, the matching of specified addresses, measuring and reporting bus utilization,
latencies and retries, on-the-fly. In this category of errors the focus is not on PCI
protocol-related errors but on PCI transactions and events that are considered either
undesired or premature signs of anomalies that affect the dependability of the system.
The auxiliary signals (i.e. table 5.1), the PCI core signals and the previous state signals
are used in conjunction with the simple state machines in order to acquire useful

information or metrics concerning the basic behavioural functions of the reconfigurable

platform. An overview of these is given in table 5.3.

Monitoring events Description
Target latency Number of waits due to TRDY before first data phase
Master latency Number of waits due to IRDY not asserted
Target Efficiency Number of TRDY# asserted over DEVSEL¥ asserted
Master Efficiency Number of IRDY# asserted over DEVSEL# asserted
Bus Utilization Number of cycles DEVSEL# asserted over time
Idle Number of IDLE cycles
Wait states Number waits
Reads and Writes = [/O Read/Write Commands

»  Memory Read/Writes
» Configuration Read/Write
»  Multiple Memory Read

Retry Number of Target Retry
Abort s Target Aborts

= Master aborts
Disconnects s Number of target disconnect with data

»  Number of target disconnect without data
Latency The time from REQ# asserted until data transferred
DEVSEL Speed Reports Target Decode speed

Table 5.3: Monitoring events.
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The monitoring events quoted in this table are the inputs in most of the policies that
try to address potentially erroneous conditions of the configured FPGA applications of
the system. Several of them are dependent exclusively to the auxiliary signals and
simple timing state machines.

A general grouping of the conditions that were defined as erroneous or error-prone
is given next. It is clear that the following application events are caused from
transactions that cannot be considered “officially” or formally as errors. However, the
firm requirements of a dependable computing system (i.e. as were described in Chapter
4), create the need to monitor, record and control such events because their impact
affects the stability of the reconfigurable system. For example the PCI interface can
signal an abort (i.e. target abort); this event often occurs due to incorrect programming
or serious system errors. It can also signify that the initiator has incorrectly attempted to
burst data beyond the address space of the target. The user application (or in thiscase
EDMU) must respond appropriately. A list of potential error-events initiated by
configured applications is quoted next (with reference to the hardware topology shown
in figure 5.1).

* Continuous request for bus ownership. A back-up latency timer (apart from the one
that is implemented as a PCI configuration register) was implemented in order to
deal with the above-mentioned issue. The value of this timer defines in a more
custom way, the mimmum amount of time (in PCI clock periods) that the bus master
is permitted to retain ownership of the bus each time that it acquires bus ownership
and initiates a transaction (see also the third block of VHDL code that is given next).

= Access of host’s memory areas, which are out of the predefined range, is not
allowed. This violation could either cause an error to other computational processes
that are running in the host (¢.g. memory writes) or can be related to packet theft
(e.g. memory reads) and application hijacking (see also the second block of VHDL
code that is given next in this section).

» Data corruption resulting in delays (figure 5.6), multiple requests for retry,
disconnect or abort. These events are freated as potential errors. The activity is

traced because in the extreme it could result in loops and system “hang-up”.
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Figure 5.6: A delayed transaction example’ [119].

» System must inevitably return to the idle state; if there are any deadlock states which
forbid this from happening, checking for this characteristic should find such a
problem. In other words, the system must always force the interface to reset to idle
eventually. This characteristic has to hold because only when the bus is idle, can a
new agent start a transaction. If the bus is never idle because one agent is constantly
driving it, this agent has effectively taken over the bus never allowing other agents to
use it. To avoid such a situation, the system must force an agent to eventually
relinquish the use of the bus as a master and let the bus state be idle. The FPGA
application can remain in a non-idle state and not relinquish the bus in various cases.
Essentially such cases occur when a frame is de-asserted while irdy# is asserted by
the configured application (i.e. the FPGA application while being in idle state, it can

assert irdy# and remain in this non-idle-bus state forever'?).

H Theoretically, 1f a target is always very slow, a delayed transactton would never take place.

12 Also, during the data phase of a single data phase transaction, frame is deasserted and 1rdy# is asserted.
If a target doesn’t respond with a trdy# or a stop, the master can remain 1n this non-idle-bus state forever.
Another case could be duning the last data phase of a transaction; frame 1s deasserted and irdy# 1s
asserted If a target does not respond wath a final trdy# or a stop, the agent can remain m this non-1dle-
bus state forever.
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* Generating illegal read or write cycles. One example of this application error occurs
when multiple writes to the same location are performed as a single wnite on the
other side of the bridge: Collapsing is defined as reducing multiple writes posted to
the same location to only one write that delivers the final data to the location.
Although collapsing is not allowed for any type of write transactions, a bridge may
allow collapsing within a specific range when a device driver indicates that this will
not cause operational problems. This event is monitored and controlled within the
system.

» When the user application requests the bus for an initiator operation, it may not be
granted the bus for quite some time. In the meantime, another agent may itiate a
target access to the user application. Denying the other agent access by forcing a
target retry will be disastrous in a system with priority-based arbitration. The
initiating agent may keep retrying the transaction because it has higher priority, and
the user application will never access the bus. This results in deadlock. (However, in
a round-robin system, forcing a target retry is a good way for the user application to
perform its pending transaction first. It can then respond to the target access when it
is later retried by the other agent)

* Bus contention is realised when the PCI bus reaches its throughput limit, This
problem is not considered to be exactly an error. However, it can result in Denial of
Service, or in crashing the operating environment of the PC. In such cases hard re-
booting of the PC is needed. This state is highly undesirable for the system. Thus, a
mechanism that monitors the transactions was implemented to prevent such
incidents. This comprises monitoring events (i.e. table 5.3) combined with dedicated
timing state machines.

= Slow targets result in delayed transactions. A target that cannot transfer the first data
item within 16 clocks from the assertion of frame#, must issue a retry. Thus, the
transaction is rejected and the master must retry the transaction on a periodic basis
until the target is able to transfer the first data item within 16 clocks. Theoretically, if
the target is always slow, the transaction will never take place. Obviously, this is not

allowed because it can end up to a loop.
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An indicative number of policies and concerning erroneous events is given next. The
policies were written in synthesizable VHDL.
» If frame# does de-assert and irdy was not asserted on the same clock and a data

phase has not just completed, a master abort condition must hold.

process ( clk, rst}
begin
if rst = '1' then
correct_mntr(4) <='1l';
elsif clk'event and clk = '1l' then
if {({(correct_mntr(4) and (((({not masteris and not (not
p_stopn or not p trdyn)) and nct p_framen) and not
p_irdyn) and ({(not p_devseln or not p_devseln history) or
p_initial_data_phase)))))='1") or (p_framen_7 >= "00100")

then

correct_mntr{4) <= 'Q’';
else

correct_mntr{4d) <= '1';
end if;
end if;

end process;
» The user application is not allowed to access host memory areas that are out of the

predefined memory range.

process ( clk, rst)
begin
if rst = '1' then
correct_mntr(l} <='1';
elsif clk'event and clk = '1' then
if (correct_mntr(l) and (masteris and in_addr_phase))= '1'
and (ad »>= "XXXXXXXX" or "YYYYYYYY" <= ad)

then

correct_mntr(l) <= 'Q';
else

correct_mntr(l) <= '1';
end if;
end if;

end process;

» Tt has to be either a read or write command.

process { clk, rstn)
begin
if rstn = '1' then
correct_mntr (24} <='1';
elsif clk'event and clk = '1' then
if (((correct_mntr(24) and (p_framen)) or (not
read_command or not write command))='1')
then
correct_mntr(24) <= 'Q';
else
correct_mntr(24) <= '1';
end if;end if;
end process;




Using embedded hardware monitor cores in critical computer systems 92

® If gnt# is deasserted before the natural completion of the transaction and there is a

timeout, continued use of the bus is not allowed.

process ( clk, rstn)
begin

1f rstn = '1l' then
correct_mntr(10) <='1'; correct_mntr{ll) <='1';
correct_mntr{l2) <='1';

elsirf clk'event and clk = '1l' then
if ({((correct_mntr{l0) and {{{{(not masteris and not
p_timeout) and p gntn} and not p_dphase_done) and not
p_framen) and net p_irdyn))) = '1')

then
correct_mntr (10} <= '0';

else
correct_mntr{l10) <= '1';

end if;
if (((correct_mntr{ll) and ({{{(not masteris and not
p_timeout} and p_gntn) and not p_framen) and p_irdyn}}) =
lll)

then
correct_mntr(ll) <= '0°';

else
correct_mntr{ll) <= '1°';

end if;
if ({(correct_mntr(l2) and ({{({{(not masteris and not
p_timecut) and p_gntn) and not p_framen) and not p_irdyn)

and p_devseln_history))) = '1'))
then
correct_mntr(1l2) <= '0°';
else
correct_mntr{l2) <= '1';
end 1f;
end if;

end process;

5.3 The Error Detection Monitor Unit

The policy generation was a significant part of the research and development time
spent in this work. The reconfigurable platform was enforced with a policy framework
that defines erroneous conditions, which were written in synthesizable VHDL code.
However, another fundamental goal was to detect the errors in a timely (if not
concurrent) manner, as well as to provide error tolerance and prevent the propagation of
high-severity rated errors in the system. This additional functionality is essential for the
reconfigurable platform, if it is going to be used as part of a critical computing system,
as the one described in Chapter 4. This section includes information for the remaining

important components that form the Error Detection Monitor Unit (EDMU).
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The actual implementation of the policy generation, (as this was presented earlier in
section 5.2) uses a particular version of a Xilinx PCI core [120]. However, the design of
EDMU can be easily extended in order to include the PCI-X core features, by applying
minor modifications and additions in its structure. The number of the formed policies is
just a representative sample; the design structure of the EDMU was kept simple in
order to be able to add more policies in an incremental way.

A basic finding during the implementation and testing of EDMU is that several
signals of the PCI core are not accessible (i.e. any attempt to monitor them obviously
causes contention). However, it is still possible to access the functionality of the PCI
core signals by using their registered versions, while many signals were still not
accessible. The solution was to indirectly produce these signals after studying the
internal behaviour of the PCI core. A representative block with VHDL code for this

type of signals is given next:

--reqn 1s defined
process (rst, request, requestéd)
begin
if rst = '1' then
regqn_ds <= '1';
elsif (request or request64) = '1' then
regqn_ds <= '0';
elsif (request= '0' and requesté6d= ‘'0') then
regn_ds <= '1';
end if;
end process;
reqn <= reqn_ds;
--gntn 1s defined
process ({(clk, rst, M_ADDR N}
begin
if rst = *1*' then
gntn_ds <= *1';
elgif M_ADDR N = '0' then
gntn_ds <='0"';
elsif clk'event and ¢lk = 'l' then
if irdyn = '0*' then
gntn_ds <= 'l1l';
end if;
end if;
end process;
gntn <= gntn_ds;

The architecture of the momtor component does not depend on the way that the two
(or more) FPGAs of the board are interfaced. This means that the EDMU is

independent of the type of local bus that is used to interconnect the two (or more)
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FPGAs. That is because every PCI board manufacturer that uses “soft” PCI cores,
provides a wrapper that maps the signals of the local bus with the signals of the PCI
core local side. Therefore the monitoring activity is triggered first by the local side

signals and next by the registered version of the PCI interface signals.

PCI core FPGA 2 f

Local Bus User PCI E PCIE

i H . . h -
Application application] core PCI s H
FPGA local side | Local interface E BUSE
wrapper | Side . .

EDMU E E

Figure 5.7: The EDMU is passively integrated with the PCI core.

The design of the EDMU as a plug-in component of soft PCI cores was
implemented considering all the sensible requirements and constraints of the PCI bus
functionality. The hardware monitor can be thought as a hardware firewall that operates
passively and does not interfere with the vital services that a PCI core delivers (figure
5.7). The selection of the PCI board components was decided according to this
property. The applications are running in a dedicated FPGA device and thus the
monitor module does not introduce any realistic intrusiveness to the resources that are
allocated to the application FPGA. The EDMU is integrated with the PCI core in a
second FPGA of the board, occupying a particular area of it, and therefore it does not
interfere with the area of the application FPGA.

Figure 5.8 represents a more detailed view of the EDMU with all its sub-
components and modules. As it is seen, both the PCI interface signals (i.e. registered
version of the signals) and various local side PCI signals are monitored. Next, the
monitored signals are supplying the inputs of the state machines (i.e. timing and set-
reset state machines) as well as the inputs of the auxiliary signals block. The outputs of
these three discreet blocks are activating the (static, predefined) policies as they were
described in the two previous sections. The following stage includes the data values

collection and the consequent policy checker. The output of this block supplies the
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input to a component that is responsible to trigger an alert whenever an error is

detected. The classification of the error importance takes place on the following block

based on predetermined assumptions (see also section 4.3). The comparator and error

classifier blocks are the inputs of an encoder that forms a vector which in the next block

is memory-mapped with an area of a PCI register (i.c. BARO). This register together

with the control component (interrupt generation and application abort) are the outputs
of the EDMU that can be sampled by the host (i.e. PCltree [121] or any other dedicated

API). The control component takes immediate action, issuing an interrupt as well as

initiating an abort sequence of the error (with high importance rating).

PCl core FPGA
e Local Bus
Application User | PCI
EPGA application| core PCI
local side | Local |interface
wrapper | Side
Interrupt | Application Memory mapped Signal L
generation abort PCI register Monitoring
Control component 1
Event-based
? Output \Cector == timing state |4
encoding .
machines
classifier
Data collection / Event-based
Policy checker = Set-reset a2
(comparator) state machines
Error detection ]
slert
Policy formation/ |, Gener?.tmn of
L_ Policy repository | awillary «
EDMU = sigul
h

Figure 5.8: An “X-ray” of the EDMU.
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An alternative way to describe the main functionality of EDMU is shown in the
simple ASM chart of figure 5.9. The first three boxes are also the basis for the
formation of each monitoring policy. The first state box is a Boolean expression of the
monitored signals (i.e. PCI core signals); the decision box that follows (i e. the policy
checking) compares the output of the first state box with the predefined policy rules.
Finally, the conditional output box (i.e. error detection alert) flags the potential system
error. The values of each monitored signal are checked for state correctness every clock

cycle by using this design approach.

Reset

Rule Boolean exp
(AB)+C

[Error detection] Interrupt .
L alert - | " generation :
L Severity | o Output
" rating ~__register . .
No
Yes
[ . Abort ] .| - PCl control .
initialisation ' * - signals’

Figure 5.9: An indicative ASM chart of the EDMU functionality.

As it is already mentioned, the monitored signals (together with all the auxiliary

signals) are compared with the predefined policies in almost a concurrent mode of
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operation; the inherent parallelism of the FPGA devices allows us to check for state
correctness in every PCI clock. The outputs of the policy rules (i.e. correct_mntr(x)) are
grouped in a vector. This vector is encoded into a 32 bit word and stored in an internal
register (i.e out reg) providing by this way the “health” status of the critical
reconfigurable system for each clock cycle (see the block with the VHDL code that

follows).

process (clk, rst)
begin
if rst = '1' then out_reg <= "00000000000000000000000000000000";
elsif clk'event and clk = '1' then

if correct_mntr (0} = '0' then out_reg <=
*Q0000000000000000000000000000001";
elsif correct_mntr(l) = '0' then out_reg <=

"00000000000000000000000000000010";

elsif correct_mntr(6l) = '0' then out_reg <=
*00000000000000000000000000211110";
else
out_reg <= "11011110101011011011111011101111";
end 1f;

end if;

end process;

As it will be shown in the discussion of the results in the next chapter, when a PCI
transaction breaks a predefined rule, the value of the “out_reg” register is updated one
clock after the actual policy violation takes place. This register is memory-mapped to a
Base Address Register (i.e. BARO) of the PCI core. The host is able to read the value of
the output register by sampling BARG (i.e. reading the BARO memory space). An offset
value was chosen (i.e. 0x7C or "1111100" in binary form), according to the
specification of the PCI board that was used for implementing the EDMU in
hardware®. The block of VHDL code that follows describes the above mentioned
processes. A multiplexer is preventing contention when the “S_DATA_IN" signal is

used.

13 More details for the board are given in Chapter six, while several board specifications are quoted m
Appendix ITY
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process{rst, CLK)
begin
if rst = '1' then
bar0_rd <= '0';
elsif (clk'event and clk = '1') then
if BASE_HIT{0) = '1l' then
barQ_rd <= not S_WRDN;
elsif S_DATA = '0' then
bar0_rd <= '0';
end if;
end if;
end process;
barQ_rd_cs <= bar0_rd;
oe_mntr_reg <= bar0_rd_cs and S_DATA;
MY_S_DATA_IN <= ("11011110101011011011111011101111" & out_reg) when
{{oe_mntr_reg = '1l') and ADDR({6 downto 0) = "1111100*) ELSE S_DATA IN;

As soon as the Policy Checker (i.e. comparator) sets an alert for the presence of an
error (or errors) an interrupt is generated (figure 5.8). The EDMU acknowledges the
host asynchronously of an error that occurred, at the same clock cycle that the violation
is detected (i.e. see the VHDL code that follows'?).

INT N S <= INT N;

INTER_N <= INTER_N_S;

int_p_S <= '0' when INT_N_S ='1' else '1l';

int_trg <= '0' when correct_mntr =
*11111111111111112111221111121112231211122371231211112111111111111111111" else
1 1 ] :

INTER_N_S <= '0' when (int_trg or int_p_s) = 'l' else 'l‘';

Following the interrupt event, the host can take a qualitative view of the potential
errors by sampling BARO. This communication interface is a simple but at the same
time a very efficient and timely way to pass the monitoring information to the host.
There is a debate, regarding if this data has to be further processed by the host; such
functionality is common in hardware monitors that are designed and used solely for
system debugging and verification. However, the goal of the hardware monitor is to be
integrated and used as part of a dependable system without overloading their operation
with additional data processing.

14 A multiplexer was used in this case, in order to avord contention with the possible interrupts that can
be generated from the user application.
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It is clear that each error has a different impact in the operability, availability and
maintainability of the system. Therefore, the system errors were grouped into different
categories according to the severity of the threat; a scale from one to five indicates the
importance of the error. This means that the system can tolerate an error when it poses a
low level threat but will not tolerate an important one. Certain errors are identified at a
very early stage before their activity becomes threatening to the system. This is
achieved by monitoring some signals of the local side of the PCI core (i.c. the
address/data bus of the local side). For example as already described before in this
chapter, the error detection core prevents an erroneous application from making an
illegal memory transfer (i.e. writing to 2 memory space of the host that is allocated to a
different application). In this case the illegal memory access is detected, exactly one
clock cycle afterwards. The categorisation and classification of the errors according to
their severity level (i.e. represented with an array) and the possible impact to the
stability of the system gives this qualitative measure in the host. This sub-component of
the EDMU was implemented following the theoretical approach of the error
classification that was described in Chapter four (table 4.2).

process (clk, rst}
begin
if rstn = '1l' then
correct_mntr(x) <='1"';
severity <= *111-";
els:f clk'event and clk = 'l' then

if correct_mntr(x) = '0' then
severity <= “101~";
else
severity <= *1l11-";
end if;
end if;

end process;

Another critical task that the EDMU component delivers is to isolate the PCI-based
FPGA board upon the detection of an error. EDMU acts in similar way that firewalls
do, “locks” the reconfigurable PCI platform and forces the configured application to an
abort. At this stage the host decides if the erroneous application is going to be removed
from the FPGA device. The decision is taken according to the importance of the error,

The recovery of the system is achieved when the FPGA device is configured with a
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stable application, which has previously been exhaustively tested and verified. The
abort sequence is implemented using registered versions of the local side signals of the
PCI core.

Summary
This chapter is a description of all the implementation and development issues

related to the design of Error Detection Monitor Unit. The functionality and structure of
this core is analysed and VHDL code examples were given to illustrate the

development stages and system components.
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CHAPTER 6
RESULTS

This Chapter presents the behavioural simulation and the real time debugging results.
Several details concerning the simulation and real time test-benches are given together

with detailed description of the applications and the software that was used.

6.1 _Design validation

Verifying the functionality of the EDMU was the capstone of the overall testing,
debugging, and validation effort. It was important to ensure that the monitor policies of
the design (especially the ones that check PCI protocol validity) are not error-prone
themselves and that they are correctly implemented in accordance with the PCI bus
specification. A thorough study of the PCI protocol was needed for this reason, as
already stated before in chapter five, The validation of EDMU was accomplished using
very simple and exhaustively tested applications as well as dedicated hardware-
debugging tools (i.e. ChipScope Pro, freeware PCI core debugging tools). In more
detail, during this stage, it was verified that within the correctly reachable state space,
the antecedents of all the properties will each become true at some point during
execution. If there is a property where the antecedent is always false, the property is
never “fired” and is therefore vacuous. Since it is meaningless to have a property that is
never in force, it can be safely assumed that the property is not stated correctly and
requires modification.

The open source applications that were used for simulation and real-time testing of
the system provided a direct access to the source code as well as reliable simulation
test-benches. The source-code level modifications of these applications had as a goal to
produce erroneous conditions that will violate specific rules of the policy framework in

order to validate through this way the response and efficiency of EDMU. For this
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reason the application errors with high severity rating were exercised and applied to the
system for verifying its functionality, while this was operating in real-time conditions.
Proof of concept was provided in this way; nevertheless, there is undeniably plenty of
(design) space for extensions and improvements of this hardware monitor and control
core. However, the initial motivation and conception of the need for research has to be
followed by realistic design and implementation targets; research without realistic
development targets is not acceptable in today’s engineering community. This is
particularly important in the hardware design cycle where the implementation,
simulation and verification of a system or application is significantly more demanding
and time-consuming compared to the software design cycle. The development and

validation stage is equally important and demanding with the research stage.

6.2 Simulation results

A PCI compliant simulation testbench was used in order to test the behaviour of
EDMU and verify its functionality. Testing scenarios test the basic transactions
between two agents on a PCI bus; one agent being the PCI device under test (DUT) and
other being the behavioural model of a PCI Initiator. The behavioural model of EDMU
was built to intervene passively among these two agents. The tests aimed to verify if the
DUT and EDMU were PCI complaint or not. There are two types of testing that were
performed in order to verify that EDMU design is functional: system-level testing and
PCI bus protocol testing. System-level testing set up modules in order to transfer data
back and forth within the system (checking to see if the data was actually sent and
whether it arrived at the destination or not). However, the correct operating procedure
was not checked in system-level testing. PCI bus protocol testing was used to determine
if the modules of the system (together with EDMU) operated within the rules of the
protocol. PCI protocol tests were performed by EDMU after verifying its PCI
compliance,

System behavioural simulation was a time consuming period of the modelling stage
that required substantial effort. All the considerations and requirements were initially
introduced in the simulation stage; the debugging required a very good understanding

of PCI protocol issues as well as of reconfigurable hardware and programmable
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network concepts. The intention during the initial design stage was to use Altera
products for the final implementation of the system. However, technology issues that
Xilinx FPGAs offer for further future development of this research project (i.e. partial
reconfiguration of the FPGA device), made them a more suitable solution. Hence,
Xilinx products were chosen for the realisation of the platform, although the EDMU
was simulated for verification purposes with versions of Altera and Xilinx PCI cores
using their respective PCI simulation test-benches.

The EDMU was simulated with the Altera PCI megacore function [122] using the
Altera PCI testbench as it is represented in figure 6.1. A number of applications were
used in order to test the validity and efficiency of the rules. The Altera reference design
[123] is an indicative example of how to establish communication between an SDRAM
controller and the PCI MegaCore function; this was used as a guideline for constructing
the testbench. The principal application was X-MatchPRO [124] which is a hardware
implementation of a high-speed lossless data compressor/de-compressor. The available
access to the source code allowed us to make some necessary modifications in order to
use this application during the behavioural simulation stage. Therefore, it was a suitable

application for demonstrating the functionality of the system.
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Figure 6.1: The Altera PCI simulation testbench.
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The EDMU was also simulated with the Xilinx PCI functional simulation testbench
[125] (figure 6.2). The validity and efficiency of the rules was tested using certain
applications. For example, the PING64!® application was used to verify the design
flow; PING64 design accepts data as a target PCI device and then uses the data to
perform initiator transactions over the PCI bus. The simulation testbench contains HDL
behavioural stimulus files and a top-level file, PCIM_TOP. The stimulus files contain
behavioural models of an arbiter, two targets (one 32-bit target and another 64-bit
target), and a central resource. These behavioural modules interface to PCIM_TOP
through the PCI bus. The HDL wrapper, PCIM_TOP, combines three sub-modules.
The first sub-module is PCIM_LC, a wrapper for the LogiCORE. The second is the
PING64 application. The third is the CFG module, which configures the LogiCORE
interface. The PING64 sub-module is an HDL design that interfaces to the user-
application signals from the PCIM_LC module. EDMU is also integrated in this
simulation testbench monitoring the activity between the user application and the PCI
core. Figure 6.2 shows a block diagram of the complete system. Modelsim was used for

the modelling and behavioural simulation of the EDMU core.

PING_TE PCI Bus

Figure 6.2: The Xilinx simulation testbench.

' The PING64 module takes 1ts name from the TCP/IP utility named ping which allows network users to
venfy that a particular machine 1s on a network and “alive”. As such, PING64 15 designed to provide
“qust enough” functionality to venfy a design flow.
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The access decode logic was used to generate configuration space, memory space,

and /O space select signals. This was achieved by monitoring the CFG _HIT and
BASE_HIT signals which indicate that the current PCI transaction is directed at the

PCI core configuration space or to an address space mapped by one of the Base
Address Registers (BARs) in the PCI interface. In this design, BARO is configured as
an I/O space, BARI is configured as a 32-bit memory space, and BAR2 is configured

as a 64-bit memory space. EDMU is using BARO register in order to transfer the output

values of the monitor as it is shown in figure 6.3 (i.e. signals base_hit, bar0_rd).
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Figure 6.3: When the host sample BARQO (i.e. signal barQ_rd) the output data of

EDMU are transferred to the my_s_data_in vector signal.
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The simulation timing diagram of figure 6.3 lists a series of PCI interface signals
(e.g. 1stn, framen, irdyn, trdyn, devseln, stopn), local-side PCI core signals (e.g. addr,
adio, addr_vld, request, request64, m_addr_n, s_wrdn, s_data, s data_in, base_hit,
barQ}_rd, bar0_rd_cs, intr n) and just few EDMU signals (e.g. my s_data_in,
correct_rule, int_trg). EDMU detects a PCI protocol error'® which has the decimal
encoded number 38. The same instance that the error is detected (i.e. change mn value of
correct_rule) BARQ is sampled (the signal barQ_rd is asserted), and an interrupt is
generated (assertion of intr_n, int trg) The EDMU output data, which contain error
identification information, are transferred to the host using the S DATA_IN and
MY_S_DATA_IN signals through a multiplexer. This does not always happen the
same clock cycle that an error is detected but when the host generally attempts to read
the contents of BARO register (i.e. assertion of bar0_rd signal).

The application testbench was deliberately set to produce errors. Two different
methods were used to test the core in simulation mode. In the first case the application
was changed in order to produce simple but at the same time highly undesirable events
(i.e. PCI writes out of the predefined memory range). In the second case a simulation
library was integrated [126] within the testbench in order to insert a degree of
randomness in the system, generating random delays in the signals. This resulted in PCI
protocol errors, which were detected by the EDMU. These two types of errors represent
the two major categories that were mentioned in the previous chapter (i.¢. PCI protocol
errors and common application errors).

Another indicative capture of simulation results is given in figure 6.4. This is also a
PCI protocol related error (during the address phase for a non-b2b transaction, irdy# is
not to be driven immediately following an idle). The error severity rating for this policy
violation is low and therefore EDMU is applying an error tolerance practice. This
waveform capture of the system simulation provides additional evidence of a
significant property of EDMU: the per-cycle basis monitoring of the configured
application. When an error is detected (t=2948ns, figure 6.4), the “correct_rule” is
instantly changing value. At the same clock an interrupt (int_trig) is generated to signal

'8 Once target has asserted stop, 1t cannot change devsel, trdy, or stop until the data phase completes.
This1s rule is divided into 3 sub-rules that describe each mdividual case.
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the host. On the next clock the value is passed to the register (out_reg) that is memory
mapped to BARO. The host at the same clock can sample BARO and get a view of the
activity in the PCl-based FPGA platform as far as the policy framework is concerned
(this is not taking place at this instance). This figure shows therefore the way that vital

information conceming the output of the EDMU can be passed in an almost concurrent

way to the host.
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Figure 6.4: The detection of a PCI protocol error in simulation (error tolerance).

The response time of the control component of EDMU during simulation time had to
be tested as well. The ability of EDMU to stop the configured application when an error
is detected was an equally significant feature that had to be successfully implemented.
The obvious goals of the control component are to prevent the propagation of the error
in the system and also to prevent transactions (initiated by the configured application)

that can later produce an erroneous condition.
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Figure 6.5 is a simulation waveform-capture that represents the way that EDMU
responds to an error with high severity rating (for example illegal memory read). Once
the error is detected (t=533ns), an interrupt is generated in a similar way that was
described in the previous waveform-capture example. The value of the output vector is
also updated (the correct_rule vector signal) encoded and written to an internal register

(the signal out_reg as it is shown in this waveform capture).
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The host is able to sample the value of this register since it is memory-mapped in a
memory area of BARQ. However, in this case it cannot apply an error tolerance policy
because the detected error was pre-classified as a serious one. Consequently the control
component of EDMU forces the application to an “abort” (i.e. target abort). As a result
the user transaction cannot take place (trdy is not asserted) and the application issues a
target abort. This is achieved by taking advantage of control signals on the local side of
the PCI core (e.g. S_ABORT a “registered” signal of the local side of the PCI core).
The signal mapping of the top-level vhdl file was also changed accordingly. An
indicative description of a target abort sequence as this is described in the Xilinx PCI
LogiCore user guide is given on Appendix IV.

Considering the functionality of the system, it can be claimed that EDMU observes
the outputs of the design under veriﬁoatioq, flags behavioural errors and assigns blame
to the appropriate module during a system-level simulation. The EDMU was original
designed in order to be integrated in a real-time system for fast error detection, rather
than for verifying other PCI-based applications. However, this fact reveals another

important use of the hardware monitoring component.

6.3 Real time verification of the Error Detection Monitor Unit

Proof of concept for this work was established by constructing a real time testbench
using commercially available network and FPGA components. Xilinx products were
selected for the implementation of the system; various technology reasons related both
with the features!” of the Xilinx FPGAs and the Xilinx PCI core (i.e. the easier access
to the local side signals) made us chose them at that specific time. The current version
of EDMU was synthesized with Synplify Pro together with the Xilinx PCI64 core [127]
(version V3.0.137). The EDMU performance was tested at 66 MHz although in most

application examples the maximum frequency was 33 MHz.

17 The partial reconfiguration property of Xilinx FPGAs and the vanety of embedded “hard-wired” cores
{1 . gigabit transceivers, DSP modules) and specifically the 32bit/33MHz “hard-wired” microprocessor.
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Table 6.1: Implementatzon results Sfor the EDMU.

The selected FPGA family for the synthesis and implementation of EDMU was the
Virtex II (XC2V1000). Table 6.1 summarises the relevant synthesis information for the
Error Detection Monitor Core. The Xilinx ISE design tools were used for the place and
route process'®.

After the implementation, the Xilinx simulation testbench was used once again for a
back-annotated timing simulation. This simulation verified the functional and timing
correctness of the behavioural model of EDMU. However, the final and most
significant part of the EDMU development and verification is the testing of the system
in the actual FPGA PCI board using a real time testbench.

A Xilinx based PCI board [128] was chosen for the realisation of the platform. The
selection of the board follows the analysis that was made in section 5.1 and as is shown
in figure 6.6 this board satisfies most (if not all) of the design, implementation and
future extension requirements, Various other commercial PCI board-level solutions
were available at that time. However, 1t was the optimal choice constdering the design
requirements, the properties and the specifications of this board (e.g. double PCI FPGA
board with a “soft” PCI core, various I/O interfaces and extendibility design options
through the embedded microprocessor).

The board (ADM-XPL) supports Xilinx Virtex-II PRO devices, which have a "hard-
wired" embedded PowerPC processor. The board utilises a FPGA PCI bridge that
supports 64 bit PCI at up to 66MHz. With some enhancements it can also provide
compatibility with PCI-X protocol. A high speed multiplexed address and data bus
connects the bridge to the target FPGA. Memory resources provided on-board include

18 Total number of slices. 4875 out of 5120 (95%)
The average connection delay for this design 1s- 1.190ns
The maximum pn delay1s: 6 216 ns
The average connection delay on the 10 worst nets is: 4.979 ns
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DDR SDRAM, pipelined ZBT and flash, all of which are optimised for direct use by
the FPGA using IP and toolkits provided by Xilinx.
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Figure 6.6: The ADM-XPL board topology [129].

The ADM-XRC SDK that comes along with this board is a set of resources
including an application-programming interface. The API makes use of a device driver
that is normally not directly accessed by the user's application. The API library takes
care of open, close and device I/O control calls to the driver. A set of simple, open-
source applications is also [130] included within the above mentioned SDK. The
following application list helped to build a real-time testbench and verify EDMU in real
operating conditions.
= The “DMA™ application demonstrates demand mode DMA, using the DDMA'

sample FPGA design. The application works as follows: it loads the DDMA bitstream
into the FPGA, using a DMA transfer. Then it creates two DMA buffers; one for the
‘send’ direction (host-to-FPGA), one for the receive direction (FPGA-to-host). In the
next step it creates a 'sender’ thread, which performs demand-mode DMA transfers
from the host to the FPGA, using the host-to-FPGA DMA buffer. Finally, it creates a

' The DDMA FPGA design demonstrates demand-mode DMA with bursting. Data 1s read from an
apphication buffer 1n host memory and then simply wntten back to another application buffer unchanged.
In order to use demand-mode DMA, the host must specify the appropnate mode when performmg DMA
transfers. This 1s demonstrated by the DMA, sample application.

1
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‘receiver’ thread, which performs demand-mode DMA transfers from the FPGA to
the host, using the FPGA-to-host DMA buffer. The DDMA FPGA design simply
performs a loopback operation, placing data from the send thread in a FIFO, to be
read out by the receiver thread. The receiver thread checks the data received for
correctness.

* The “Master” FPGA design demonstrates direct master access by the FPGA to host
memory. The design implements several registers for generating Direct Master
transfers to and from host memory. The application allocates a user-space buffer. It
then obtains a scatter-gather map of the buffer. Finally, it initialises the user-space
buffer to contain known data and waits for the user to enter commands.

= The “Memtest” application uses the ZBT FPGA design to test the SSRAM of the
board. The ZBT FPGA design demonstrates how to implement a host interface to the
SSRAM in an FPGA design. The design divides the 4MB FPGA space into a lower
2MB region for register and an upper 2MB window for accessing the SSRAM. A
page register is provided so that all of the SSRAM on a card is available to the host.

» The “Simple” application, which demonstrates how to implement host-accessible
registers in an FPGA design. The registers can be accessed via API calls, or via a
memory-mapped region. The user enters hexadecimal values, which the application
writes to a register in the FPGA. The application reads the values back from the
FPGA and displays them. The FPGA mbble-reverses the values before returning
them.

= The “DLL” application demonstrates the clock doubling capability of Virtex DLLs
and Virtex-II DCMs. The user gives a frequency for the local bus clock on the
command line. The application sets the local bus clock frequency to the value
specified, which is doubled and used to clock a 32-bit counter. The application reads
the counter once per second, displaying the difference between the current and last
readings.

The above set of applications was part of the testing environment of the PCI board.

Having free access to the source code, their content was deliberately modified in order

to produce erroneous outputs. ChipScope Pro was used in order to apply advanced real-

time debugging and verification of the system, by inserting soft debug cores into the
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top-level design file, After place and route, these on-chip cores were used to capture

real-time signal data, This hardware debugging tool was proved to be very helpful for

validating the system functionality, operability and effectiveness.

Figure 6.7 is an indicative waveform capture of the monitoring process of EDMU.

ChipScope Pro Analyzer was used for this reason. After applying some small changes

in the design of the “master” application (that required re-compiling and re-

implementation of the application), a state that is classified as an error for EDMU was

deliberately produced (i.e. an illegal access during a write cycle, whenever irdy# is

asserted, and the bus is driven by the master).
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Figure 6.7: Providing error-tolerance in the system operation.

An indicative notice is that the signal “error_detect” remains asserted because

another error (PCI protocol this time) is detected after the detection of the first one (i.e.
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for b2b transactions since the master needs to be the same for the second fransaction).
However, the severity rating of both errors is pre-classified as low. Therefore, no action
is taken since an error-tolerance policy is applied for these specific errors. This
waveform represents signal values captured when the system is operating in real-time; a
careful comparison with the simulation results indicates that the EDMU is functioning
in a very similar way. An interrupt is generated (assertion of signal INTER_N_S) at the
same time when an error is detected (error_detect). The next clock cycle the data are
writeen to the outout register (out_reg) ChipScope Pro Analyzer also gave us the
opportunity to verify the correct functionality of the auxiliary signals of EDMU as well
as of the monitor-event signals (i.e. in_addr_phase, data_phase, in_write_tran etc).

A similar waveform that was captured from the ChipScope Analyzer is shown in
figure 6.8. The different combination of events that 1s signalled as an error, includes a

“disconnect with data” monitoring event.
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Figure 6.8: Another case of error tolerance.
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The reaction of EDMU is the same with the one described above, applying an error-
tolerance policy. One of the auxiliary signals, is asserted indicating a “disconnect with
data” PCI event. Disconnects with or without data is a common event during PCI
transactions, but it has to be monitored in order to prevent undesirable consequences as
these were described in Chapter 4.

The value of the output interface register (namely out_reg) that is memory mapped
at a certain memory area of BARO (i.e. 0x7C) can be sampled by the host. A freeware
program was selected (from the various available), in order to apply this memory read.
PCItree [121] is a graphical Windows tool that allows access of all the hardware
devices of the PCI bus. Information about the devices and its vendors is obtained from
a separate database, PCltree allows read and wnite access to the configuration registers
of each device and even to each device's memory given by the BAR. This tool was used
as an additional debugging and verification aid for testing the custom PCI core. The
BARO memory read gives us a qualitative view of the errors that are detected by the
EDMU (figure 6.9). The memory read at location 07xC gave the hexadecimal value
(x00000002) that appears also in figure 6.7. However, this BAR0O memory read takes
place in a later stage; this hexadecimal value represents the same error, happening at a
different time.
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Figure 6.9 The PCltree application “reads” the BAR0Q memory space.
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Figure 6.10 is another indicative capture of a waveform from ChipScope Analyzer,
when a corrupted version of the “memtest” application is configured in the
reconfigurable board. The application is trying to access a restricted memory area of the
host (i.e. actually, it is the area that was predefined as restricted). This is considered to
be an error with high severity rating. The reaction therefore is almost immediate (i.e.
according to the details presented so far, the reaction comes one clock cycle after the
actual occurrence of the error). Such errors need to be treated drastically, by limiting or
ideally, completely stopping their effects. For this reason, EDMU forces the configured

application to issue a target abort.
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Figure 6.10: A data capture from the ChipScope Analyzer.

The control of several signals (i.e. the s_abort signal of the local PCI core side) with
the appropriate signal mapping in the top-level file of the implemented system has as a
result that trdy# remains de-asserted, because the EDMU is configured to prevent such

an event. As a consequence, the application that is configured in the application FPGA
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fails to transfer data in a given time, leading the PCI transaction to disconnect without
data and issue at the same time a “retry”. An additional indication of this is shown by
an auxiliary EDMU signal (i.e. data_tranfer remains de-asserted). This has, as an
eventual result the detection of multiple errors (after the detection of the first one),
which are related to the “abort” event. Nevertheless, these errors have lower severity
ratings. An output vector (error_detect) updates an internal register (out_reg), which is
memory mapped to BARO. An interrupt is generated (inter_n_s) when the errors occur,
in order to signal the host. The interrupt line remains asserted during the detection of
the consequent errors. It can be claimed that the particular error described above is not
malicious, since its impact is not related with a fatal failure of the system. However, it
could be connected with application hijacking or other illegal activities related to
security issues as was described in Chapter 4.

An example where the control component of EDMU applies both error tolerance
and abort policy is shown in Figure 6.11. Violations of policies with different severity

ratings are detected.
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Figure 6.11: Multiple errors with different severity rating are detected by EDMU,
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The most serious one comes last and as a result the execution of the application is
interrupted because the application is forced to issue a target abort. As a result the
application issues a “disconnect with data”. Following the detection of an important
error and the consequent target abort that is initiated by EDMU, the application FPGA
is reconfigured with a stable application.

Figure 6.12 is a representative screenshot that shows how the execution of the
“memtest” application is affected by the way that EDMU is acting in order to stop a

detected 1llegal process.
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Figure 6.12: The execution of “memtest’ is interrupted due to error detection.

The reconfiguration of the application FPGA is accomplished either by using the
ADM-XRC SDK application interface (i.e. building a C++ interface that includes SDK
functions in order to program the devices through the PCI bus) or through the JTAG
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port using a parallel cable connecting the parallel port of the host directly to the JTAG

connector of the board together with the Xilinx iMPACT? (figure 6.13).
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Figure 6.13: The JTAG chain shows the 3 programmable devices of the ADM-XPL

board: the application FPGA, the PCI core/EDMU FPGA and the EEPROM.

The easiest and most straightforward solution is to use a script that initiates the
JTAG chain. Once the chain has been fully described, it can be saved for later use in a
file with .cdf extension. The choice of reprogramming the FPGA devices through this
way is preferable (in similar dependable systems) compared to programming them
through the PCI bus; the reason behind this selection is the fact that the (erroneous)
configured application in the user FPGA is likely to produce errors (PCI protocol or
application errors) that will prevent or harden this effort when application replacement
is attempted. Although this could only happen under extreme erroneous conditions, it is
still preferable to apply the reconfiguration of the FPGA devices through the JTAG port
(bypassing the PCI bus), in order to satisfy the dependable computing features of the

% |MPACT enables you to configure PLD designs through four modes of configuration; Boundary-Scan,

Slave Senal, SelectMAP, and Desktop Configuration.
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system (the JTAG pins are used for reconfiguring devices of a board or for
communicating with embedded cores through hardware Analyzer software like
ChipScope Pro). Bus contention conditions could also deteriorate while trying to use
the PCI bus for downloading the new configuration bitstream. The reconfiguration
through the JTAG port using the Xilinx Impact software is slower compared to the
reconfiguration through the PCI bus; however it is reliable enough to serve the scope
and the functionality of the EDMU.

The effectiveness of the core was tested and verified using this real time testbench.
A stable version was passively integrated with the Xilinx PCI core, offering a robust
error monitoring reconfigurable platform. The simulation and real-time results prove
that the outcome of this research satisfies the required and desirable system properties

(as described in Chapter four) of a PCI-based reconfigurable hardware platform.

6.4 EDMU and Active Networks
Modern System-on-Chip and embedded FPGA-based systems are exhaustively

tested and are built specifically for serving testability targets. Part of the evaluation of
the system could also be its formal verification®!. Although formal verification is useful
for static verification of system functionality or the validity of a protocol, there is a
variety of critical systems that require online monitoring, control and debugging. The
external interfaces that were once used extensively for development of System-on-Chip
(SoC) based designs have moved on-chip, leaving few points to attach external tools
such as logic analyzers. One approach to overcoming development challenges is on-
chip monitor support circuits that allow observation of critical system nodes, such as
processor cores and buses. Important tools include on-chip trace and triggers. Many
interactions within a SoC do not involve a processor core, making data tracing
essential. One aspect of the delivered research as far as EDMU is concerned is the
formation of a generic PCI-based approach that is compatible with many different

system units, and supports design reuse.

2! In the context of hardware and software systems, formal ventfication is the act of proving or disproving
the correctness of a system with respect to a certain formal specification or property, using formal
methods, Formal methods refer to mathematically based techniques for the specification, development
and venfication of software and hardware systems.
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Therefore, EDMU can be integrated in many critical computing environments due
to the operation features and the advantages that offers. Various networking PC
structures which make use of PCI boards for processing and/or forwarding of packets
can take benefit of the EDMU. Online PC systems such as Active Routers/Nodes which
are part of programmable and/or Active Networks need to:

e operate constantly,

¢ operate uninterrupted (i.e. avoid “hard” re-starts),

* operate under the presence of errors and

e demand fast error detection and error isolation/recovery.

The experimental Active network that was implemented at Loughborough
University [87] (as it is also presented in Appendix I), can integrate the EDMU in order
to monitor and control erroneous and malicious applications. The active node is a
fundamental unit of the Active Network which is also part of a standard IP network.
Thus, it is configured to work as a router for the standard IP packets, applying at the
same time active processing to these IP packets (Active Packets) that either carry
executable code in their payload or request an application that is pre-stored (locally in
the active router or in a dedicated application server). The Active Applications are
downloaded and configured in a FPGA device. The EDMU can add observability in
this system by monitoring these applications in real time or in a nearly concurrent way.
The system can also continue to operate in the presence of detected errors, as long as
the errors do not interfere with vital functions of the system. The EDMU can initiate an
application abort sequence, during which the application is not able to communicate
with the host microprocessor (the data transactions fail as it is shown in figure 6.12),
Next, the erroneous application that is configured in the application FPGA could be
replaced with a new configuration (i.e. bitstream). This could be achieved either
through the Linux interface presented in [87] (through the PCI bus), or through the
JTAG chain as it was presented in the previous section (see also the indicative figure
5.1). The use of JTAG port for reconfiguring the FPGA erroneous application is slower
but more reliable and hence more preferable for guaranteeing system stability (i.e. the

reconfiguration process overpasses the PCI bus functionality).
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The EDMU can be considered as a very useful component of critical PC-based
systems; Active Networks can become more robust ensuring the delivery of services in
users and therefore provide maintainability and availability to the whole network

operation.

Summary
This chaptered covered the simulation and real-time debugging results. The

functionality of EDMU was verified and tested successfully and a stable version is
running on a FPGA-based PCI board providing timely detection of PCI protocol and
application errors. The monitor core is applying different policies to the erroneous
application which are configured in one of the FPGAs of the PCI board. As a result, it
could be claimed that the operation of EDMU resembles that of a “firewall”,
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CHAPTER 1
CONCLUSION

7.1 Synopsis of achievements

This work has followed the rationale that the convergence of the computing and
communications fields applies to reconfigurable computing and reconfigurable
networking. The increasing design-complexity of FPGA-based reconfigurable
platforms (i.e. System-on-Chip) makes observability and controllability a significant
factor for their proper and correct running, especially when such systems are integrated
as part of critical computing application or services. System vahidation methods such as
offline testing, debugging and formal verification have to be complemented by online
monitor and control functions which are performed by embedded system components.
The research motivation that supports this work claims that the critical computing
systems, based on PC architectures, should include in their infrastructure a permanently
configured hardware monitor component. This should not introduce any additional
costs (i.e. area utilisation) as far as the execution environment of the application is
concerned. Hence, it has to be integrated passively, consuming as few local resources
as possible. The reasons for choosing a hardware monitor and control module for
critical PC-based systems instead of a software or hybrid one, were stated in chapter
two (sections 2.2, 2.3, 2.4, 2.5, 2.6). The inherent process-parallelism of the FPGAs
satisfied the requirement for immediate response to errors, in order to prevent their
propagation (or their trespassing) to security sensitive domains and thus prevent system
failures in this way. The concurrent system observability through embedded hardware
components is an emerging research area that meets the needs of complex critical PC
systems

Although Active Networks were used as the source-model for building the monitor
and control core (essentially a PC-based Active Router with FPGA-based hardware
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acceleration of the Active Applications), the policy framework can be considered non-
deterministic and platform independent. It is true that the hardware monitor logic was
built according to the specifications, performance requirements, potential failure
operation-modes and the security threats of an Active Router. However, there are many
other conceptual domains that EDMU can be applied; similar architectural
requirements are found in critical systems that are comprised not only by PCs but SBCs
as well. The Error Detection Monitor Unit can be thought of as a monitor and control
wrapper for the PCI core that achieves observability of the application transactions with
the host. Several PCI-based environments can take advantage of the characteristics of
EDMU and integrate it in their structure or even expand its current functionality and
operation. EDMU also secures quality in the offered services of the PC-based critical
system, since it provides maintainability, availablity and dependability features. The
constant and simultaneous monitoring (i.e. implemented in hardware) traces the activity
between the configured application and the host. Suspicious or undesirable transactions
are treated according to the policy framework and the host can maintain its operation;
this was one of the main targets of the research and development effort. The following
lines include a short description of the characteristics of the EDMU and the
achievements that it claims:

® Reliability: A PCl-based reconfigurable platform that can be integrated in several
critical computing systems (i.e. remote upgrade of FPGAs, Active Networks) and is
able to add reliability and operability features.

® Reusability: A reusable plug-in module suitable for “soft” PCI cores that adds
observability and control features to PCl-based applications.

* Policy framework: A failure-resistant policy framework that includes an incremental
list of rules, applied to the configured applications of a PCI-based FPGA board.

» [nterference: A hardware module configured permanently in the programmable logic
platform that operates transparently without interfering with the host PC’s
computational processes.

s Detection response: Detection of predefined erroneous conditions that can result in a

potential system failure in a nearly concurrent mode of operation.
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v PCI protocol monmitoring: PCI bus transactions monitoring system, tightly coupled
with the PCI core, detecting errors initiated by applications which misuse the PCI
bus protocol.

v Categorisation: System threat identification and classification.

» Control: An embedded control component that acts as a “firewall” preventing the
communication between the configured application and the host computer, if a
policy-violation is detected.

* Error tolerance: The communication between the FPGA board and the host is
selectively controlled, following an error-tolerant policy.

* Reconfiguration: Recovery of the system to a stable state is possible after the
detection of an error.

Concluding, it is useful to mention that the EDMU can be used in various ways; it
can be integrated and specially configured to serve different design or system-operation
targets. The analysis made so far, revealed different applications approaches for using
EDMU. The most apparent ones are mentioned in the following lines:

1. Offline FPGA-based, PCI applications debugging, testing and validation. The

EDMU can also be thought as a design-for-testability embedded component,

2. System-level integration” and online operation of the hardware monitor core in

critical computing systems.

3. A useful “soft” PCI core plug-in module that can be adapted to fit specific design

and/or operational needs.

The research and development results delivered through this work claim a useful
contribution to the field of concurrent hardware monitoring applied to dependable PC-
based systems with FPGA application support. The outcome of this research in its
current stable version can be the starting point for answering more research questions.
The growth of the FPGA market and the respective applications, along with the key
role of SoCs in future critical systems make observability an important factor. The table
7.1 includes the most significant properties of EDMU as far as their efficiency and

impact to the system are concerned.

22 The design and operation requirements of the candidate systems have to be simular to those of a PC-
based Active Router or any other networked reconfigurable FPGA PC architecture
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EDMU properties

Property effect

Comment

Perturbation

Minimal

EDMUJ is passively integrated with the PCI core
and thus 1t does not interfere with the application
that is configured in a separate FPGA. The
overhead of the area utilisation does not
surcharge the application execution domain,

Performance

High

The selection of FPGAs for application-
processing and application monitoring, secures
high performance of the hardware monitor due to
the inherent process parallelism of the FPGAs.

Error detection/
policy violation

Fast

Most of the erroneous events are detected almost
concurrently, one clock cycle after their
occurrence. Several other policies are based on
counter-based measurements and their effect
follows error-tolerance procedures.

Preventing error
propagation

High

If the detected error has a predefined high
severity rating, EDMU acts as a firewall by
blocking the communication of a configured
application with the host, one clock cycle after
the detection of an error.

Area utilisation

EDMU was deliberately designed to occupy low
FPGA area in order to satisfy the firm area
utilisation requirements of dependable systems.

Portability/
reusability/
compatibility

High

The hardware monitor can be easily integrated
with other “soft” PCI cores (i.e. by designing a
wrapper file). EDMU is also operating system
independent. Any configuration environment
that uses the PCI protocol, and thus a “soft” PCI
core, can integrate EDMU as an embedded
monitor component (i.e. PCs, SBCs).

Extendibility

High

The predefined policies can be modified in order
to follow a stricter framework. The simple
structure of the hardware monitor component
allows the integration of additional policies. The
design of EDMU can be easily extended in order
to include the PCI-X core features

Reduction of cost

High

The combination of the reconfigurable nature of
the FPGAs with the monitor and control features
of the EDMU minimises the need for spares,
replacements and field testing; at the same time
the system reliability is increased. Thus, the
critical computing systems that integrate this PCI
board configuration can achieve a cost-reduction.

Table 7.1: A synopsis of the most important properties of the EDMU.
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7.2 Future Work

It is clear that any research work of this type can undergo considerable
improvements and adaptations in order to achieve expansion of the functionality, better
performance and greater portability and reusability. Many other related research fields
can also take advantage of the current results. Taking into account these facts the
hardware monitor was built in an incremental and simple way. The outcome is a
hardware component with extendibility options and properties.

One obvious extension to this work could be a comparison with software based bus-
monitor modules and error detectors. This comparison can underline the usefulness and
the need of an embedded core for monitoring and controlling the transactions between
the host and the PCI board.

The EDMU can be enforced with more policies that will reflect the needs of other
systems, or more complex needs of the currently proposed target architectures. The
structure of the EDMU allows the easy system-level introduction of new rules. These
rules will refer mainly to application initiated errors and not to PCI protocol errors
since this study claims that the PCI protocol is verified in real time. The current
simulation and real-time testbenches offer easy integration and testing of the potential
new policies.

Another significant expansion to this research work could be the real time
performance analysis of the configured FPGA-based application. This can involve
statistical analysis of several data samples that are collected at a specified rate or
behavioural analysis of the application. The implementation of such an added
mechanism in hardware, will require substantial amount of resources (i.e. embedded
memory, LUTs). The current design does not occupy significant resources of the FPGA
as was shown in table 6.1. Hence, the inclusion of on-chip performance analysis
features on the existing EDMU structure will be an additional design, integration and
cost issue, since it requires the use of state-of-the-art large FPGA devices.
Alternatively, the data can be passed to the host and the whole process can be
implemented in software. In this case the overhead in area utilisation is smaller (i.e.
FIFQO, interface with the host) but the host is overloaded with this processing

consuming function.
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A very useful and interesting extension to this research work could be the integration
and cooperation of an embedded “soft” or “hardwired” microprocessor for delivering a
hybrid monitoring scheme. There are many different ways that the microprocessor can
be used in conjunction with the EDMU. For example the performance analysis can take
place in the local embedded microprocessor and not in the host. Another indicative case
could be the formation of the policies in software; writing, compiling and executing the
policies in a software environment offered by the embedded microprocessor. The
EDMU can be much more flexible in this sense; however, the monitoring component
loses at the same time the performance advantage that it has in its current version,
where all the computations are implemented in hardware. The integration of a
microprocessor for enforcing and extending the monitoring functions of the EDMU

will provide a hybrid monitoring system in this sense.
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APPENDIX T

Active packets have to be distinguished from passive packets. It is also important to
have a system that is compatible with the existing IP networks infrastructure. Hence, in
order to satisfy both of the aforementioned conditions, an active header encapsulating
an IP packet was defined. Related work in Active Packet protocols is presented in [1]

and [2]. The active header carries information as 1t is shown in Table 1.

The Active Header
Name Size (bits)
type 8
seq _no 8
options 16
id 32
last node 32

Table I. The Active Header

Passive IP packets are encapsulated in UUDP packets (figure 1). ACT is the active
header.

| 1p JupP|ACT| 1P |UDPorTCP| Payload |
'

PR S 7Y Y 7Y S——
Figure I: The Active Header.

The active packets are distinguished from the passive packets using the destination
UDP port 44075 (active port) of the first transport header. The second transport header
(UDP or TCP) is application-specific. The type field specifies the type of the active
packet. The current active types that have been defined are:

o type 0: UDP active packets (not encapsulated packets),

e type 1: TCP active packets (wrapped TCP packets),

o type 2: UDP active packets (wrapped UDP packets),

s type 3: UDP active packets (administrative packets, not wrapped).

The sequence number {seq no) is used to help the introduction of reliability
schemes where measurement or reliability is required. The options field can be used to

specify options for coding modules. The id field specifies the unique code module
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number. This refers to the code module of a particular packet which should be handled.

The last active node (last_node) field specifies the last active node that the packet

passed through.

The Active Packets may have one of the following operation modes:

1. In the first scenario the Active Packet has a pointer to a certain application (IP
core). The requested application is stored either locally in the Active Router or in a
different location (e.g. a Code Server [3]). The Active Router detects and processes
the Active Packet so as to serve the request. The requested application is then
configured in the hardware platform. The Active Router forwards the user’s data to
the PCI card, so as to be processed by the Active Application.

2. In the second approach, several Active Packets carry a configuration bitstream and
data in their payloads. The Active Router detects and processes the Active Packets
so as to serve the request. This processing stage includes authentication of the user,
and integrity checks. The application is then configured in the target FPGA board
and in the following stage the host transfers the user data.

An experiment has already taken place in the Active Network of Loughborough
University. The experiment described in the following lines is based on the topology
shown in figure 3. The Xilinx PCI board, which is used in the current experiment [4],
simplifies the process of reconfiguring the FPGA multiple times due to the build-in
functions of the Linux software API. Rapid implementation of reconfigurable
computing applications is made feasible in a time effective way using this PCI board.

Three applications were used for configuring the Active Router (AR) on-the-fly.
These applications are:

1. A software-based application that computes the first complement of the data that is
contained in the active packets’ payload. It is a simple application (just for
demonstration purposes) written in C. It has been assigned the module id=1,

2. A hardware-based application that nibble-reverses the data of the active packet’s
payload. This is done in the FPGA and the nibble-reversed values are passed back
to the appropriate active module. This application has been assigned the module
id=2.
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3. A hardware-based DES (Data Encryption Standard) encryption/decryption

algorithm. The ECB (Electronic Codebook) mode is used. The DES IP core was
provided by the Free-IP Project [5]. This application has been assigned the module
id=3.

The active module that runs in the host splits the packets’ payload into 32-bit words

and passes them to the FPGA board via the PCI bus. The active module acts as a master

and the FPGA as a slave. Each time, the active module performs five “PCI writes™ and
two “PCI reads”. A 32-bit PCI bus is used. The block diagram of the DES algorithm is

shown in the figure 2 below. The “PCI reads and writes” are:

1st PCI-write: a 32-bit word (from the packet’s payload) is passed to the FPGA,

2nd PCI-write: a second 32-bit word is passed to the FPGA (these are the 64-bit
length input data, “data in” in figure 2),

3rd PCl-write: the key for the encryption or decryption is 64 bit long so it is split
into two 32-bit words. The 3rd PCI-write passes the last 32 bits of the key,

4th PCI-write: the first 32 bits of the key are passed to the FPGA,

Sth PClI-write: a 32-bit word is passed to the FPGA; this word has the value 0 or 1.
If it is 0, the FPGA will decrypt the input data and if it is 1 it will encrypt them
(“encrypt” in figure 2).

Figure 2: The DES encryption/ decryption IP core.
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After all these data are passed to the FPGA (they are stored in registers), two PCI-
reads are needed to take the encrypted or decrypted data back (32-bit data in each PCI-
read). This procedure is repeated until all the data of the packet’s payload have been
encrypted (or decrypted). The module id=3 has been assigned to the DES
encryption/decryption application.

The Active Router is part of the experimental network shown in figure 9, The
Active Router consists of two separate hosts: The Router-Active Forwarding Engine
and the Active Element. The Router-Active Forwarding Engine consists of two
modules:

» A kemel-space loadable module that forwards the incoming active packets to the

AE.
¢ A user-space process that monitors the AE to check if it is “alive” (by sending

ICMP requests). If it is not “alive” it removes the kernel-space module and hence

no more packets are forwarded to the Active Element. It reloads it as soon as the

Active Element is available again,
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Figure 3: An Active Network with a reconfigurable processing engine.
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An application that is running on host A generates UDP packets having as
destination host B. These packets are wrapped in host A into active packets of type 2 by
an Active Daemon. The module unique identification is 2.

At default, the active application with module id=1 is running in the Active Router
(AR). This is an active application that changes the data of the packets’ payload to their
first complement. When an active packet of type 2 (and module id=2) is transmitted
from host A to host B, it will be routed by the AR. Prior to routing, the AR verifies that
the active packet has module id=2 and checks which module is currently configured in
the reconfigurable platform. In the tested case the configured application has module
id=1. At that point the AR has to make a decision: either to stop application 1 and run
application 2 or to continue running the current application and just route unmodified
the active packet to its destination. The AR has to check the available resources in the
target platform. If there are enough, it stops application 1 and loads application 2,
configuring the FPGA board with the appropriate bitstream. The AR downloads the
bitstream from the code server and invokes the active module no 2. This active module
configures the FPGA on the fly with the appropriate bitstream and passes all
consequent active packets (with module id=2) to and from the FPGA. The application
that ‘runs’ in the FPGA nibble-reverses the payload data of the packets.

Next, Host A sends an active packet with module id=3. The application with
module id=3 is an FPGA-based DES (Data Encryption Standard) encryption algorithm.
The AR follows the same procedure as above (resources check, authorised packet etc)
and then it stops the application that runs in the FPGA (no 2) and loads application no 3
(DES encryption). Hence, the AR is able to switch from one application to another
(1,2,3) and configure the FPGA device on-the-fly.
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Offset Name Function
0x00 LSOB Local space 0 base address register
0x04 LSOR Local space () range register
0x08 LSOCFG Locel space () configuration register
0x0C Reserved
0x10 £518 Local space 1 base address reqister
0x14 LS1R Local space 1 range reqister
0x18 LS1CFG Local space 1 configuration register
0x1C Reserved
0x20 LTO Local bus timeout register
0x24 Reserved
0x28 LCTL Local hus control register
0x2C to Reserved
0x4C
0x50 PICTL PCI interrupt control register
Ox54 PISTAT PCI interrupt status register
0x58 1o Reserved
0xiC
0x80 DOPAL DMA channel O PCI memory address register
x84 Reserved
0x88 DOLA DMA channel 0 local address reqister
0x8C DOSIZ DMA channel 0 transfer size and direction register
0x90 DONDL DMA channel 0 next descnptor address reqister
0x94 Reserved
0x98 DOCFG DOMA channet 0 configuration reqgister
0x9C DOCTL DMA channel 0 control register
OxAD D1PAL DMA channel 1 PCI memory address register
OxA4 Reserved
OxA8 D1LA DMA channel 1 local address reqister
0xAC D1S1Z2 DMA channel 1 transfer size and direction reqister
0xB0 D1NDL DMA channel 1 next descnptor address register
OxB4 Reserved
0xB38 DICFG DMA channel 1 configuration register
0xBC D1CTL DMA channel 1 control register
0xCO0 fo Reserved
OxFC

Generic bridge registers.
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APPENDIX IV
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This timing waveform demonstrates the behaviour of the PCI interface when a target

signals an abort (target abort). This event often occurs due to incorrect programming

or serious system errors. It can also signify that the initiator has incorrectly attempted

to burst data beyond the address space of the target. The user application must respond

appropriately.
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This timing waveform demonstrates the behaviour of the PCI interface when no target

responds (master abort). This event 1s expected during some configuration transactions

and special cycle broadcast cycles. However, during normal operation, this would

occur due to incorrect programming or serious system errors, It is critical that the user

application respond appropriately.








