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.Ilbst:ract 

The integration of FPGA devices in many different architectures and services 

makes monitoring and real time detection of errors an important concern in FPGA 

system design. A monitor is a tool, or a set of tools, that facilitate analytic 

measurements in observing a given system. The goal of these observations is 

usually the performance analysis and optimisation, or the surveillance of the system. 

However, System-on-Chip (SoC) based designs leave few points to attach external 

tools such as logic analyzers. Thus, an embedded error detection core that allows 

observation of critical system nodes (such as processor cores and buses) should 

enforce the operation of the FPGA-based system, in order to prevent system 

failures. The core should not interfere with system performance and must ensure 

timely detection of errors. 

This thesis is an investigation onto how a robust hardware-monitoring module 

can be efficiently integrated in a target pcr b<;>ard (with FPGA-based application­

processing features) which is part of a critical computing system. An error detection 

and recovery core was implemented that requires no manual intervention for 

illustrating the benefits of this approach. The Error Detection Monitor Unit 

(EDMU) can be considered as a monitor and control wrapper for PCr-compatible 

cores that monitors the application transactions between the PCr-based FPGA board 

and the host in a timely marmer. The nearly concurrent functionality of EDMU 

allows the core to operate as a "fuewall", preventing the communication between 

the FPGA-configured application and the host computer, upon detection of errors. A 

predefined policy framework groups the application and pcr protocol errors 

according to a severity scale; thus suspicious or undesirable transactions are treated 

considering their severity rating. Therefore, the PC-based critical system uses 

EDMU in order to guarantee quality in the offered services, such as maintainability, 

aVaIlability and error tolerance. 

The high portability and reusability ofEDMU makes it ideal for remote network 

configuration PC systems and failure-resistant critical computing platforms similar 

to Active Networks. There are several other target application examples for using 

the error-detection features of our module, including pcr protocol checking, 

hardware testing and debugging ofpredefmed conditions. 

it 
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CHAPTER 1 

Intl:'oduction 

1.1 The research topic 

Today's computer-based products are complex and require extensive effort for their 

design and test. The complexity in such systems is increased because they comprise 

many components, advanced software and hardware functionality. This trend is clearly 

seen in the consumer electronics market, and in state-of-the-art industrial systems. The 

development of these products tends to be challenging as well as increasingly time­

consuming, expensive, and error-prone. Therefore, the developers need to cut down the 

development time and improve quality, which in turn, demands better tools and 

development methodologies. 

One important aspect in the development process of computer systems is 

observabilIty, i.e. the ability to observe the system's behaviour at various abstraction 

levels in the design. The observations are required for many reasons, for instance, when 

looking for design errors, during debugging, during optimisation of algorithms, for 

extraction of design data, and a lot more. Observability is however not an issue 

restricted to development purposes only, it may also be necessary after the deployment 

of products (e.g., for error recovery, for surveillance issues, for collection of statistical 

measurements). The quality of observability could be characterised as high if the 

system allows for detailed and accurate analysis of all of its components, and Iow if the 

system is obstructive and hard to analyse confidently. The motivation for investigating 

this area is to provide better observability for complex computer systems based on 

state-of-the-art programmable logic architectures. 

In more detail the aim of this research study is to offer a failure resistant PC 

platform with in-built hardware monitor and control features, for high performance 

processing of applications. The Field Programmable Gate Array (FPGA) devices satisfy 

the ever growing demand for flexible and dedicated processing power. Therefore, 
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various software-based applications are transfonned into programmable hardware 

applications in order to be integrated in systems that use the FPGA technology. 

Moreover nowadays, the trend is to create a whole system within a FPGA device by 

"hardwiring" hardware cores (e.g. microprocessors, memory, transceivers etc) inside 

the programmable logic area of a FPGA. The new era belongs to this new fonn of 

FPGAs that can realise a programmable System-on-Chip (SoC). 

The state-of-the-art FPGA devices are becoming increasingly popular; systems that 

demand re-programmability and high perfonnance parallel processing adopt the 

solution of FPGAs. The more the popularity of the FPGAs increases, the more they 

play a key role in important systems since they are used as critical components within 

them (e.g. co-processors). Therefore, it is obvious that such systems need an integrated 

monitoring support in order to trace the activity of the applications and guarantee their 

stable operation. Run-time observability in embedded system architectures is also a 

requirement for testing, debugging, and for validating design assumptions made about 

the behaviour of the system and its environment. The classical approach to run-time 

observability is to apply monitoring, i.e. the process of detecting, collecting, and 

interpreting run-time infonnation regarding the system's execution behaviour. A 

significant conclusion of the work presented in this thesis is the fact that on-chip 

policy-based monitoring support will be required in future development of similar 

systems, especially those based on SoC architectures. The timely/concurrent detection 

of errors that are produced from applications configured in FPGA devices will be a 

major issue in the near future. 

One of the main deliverables of the research process is to investigate the impact that 

application errors can have in critical systems that are built around FPGA devices, 

using as a case study a PCI-based reconfigurable FPGA platfonn. Some indicative 

examples of such systems could be: 

• Real time systems, 

• Safety critical systems, 

• Security sensitive systems, 

• Systems that require maintainability, availability and operability features. 
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The target was to define the requirements of a similar system in terms of performance, 

security and fault tolerance; also, in which way the applications errors can critically 

influence vital functions and services of the system. Public network and communication 

systems are built with the inherent requirement to operate even under harsh conditions 

(i.e. system malfunctions, security attacks, lack of processing resources, reaching the 

limit of users that can be served etc). The functions and the services that they deliver 

are -in most of the cases- important and must be maintained at all cost, or at least up to 

an acceptable level (i.e. fault tolerance). 

1.2 The research and development challenges 

A synopsis of the research challenges that this work had to cope, with are given in 

the list that follows: 

1. Define a flexible and high performance application-processing platform; justify the 

selection of the individual hardware and software components with reference to the 

target topology. 

2. Select and study the properties of a real world critical system, based on a computer 

architecture (i.e. PC). 

3. Define the security framework of the system according to the specific properties 

and requirements of the critical system that is under investigation. 

4. Design, implement and test a hardware, momtor and control core that does not 

introduce intrusiveness to the system application-processing. The core should be 

permanently confignred in order to satisfy the pragmatic needs of a real world 

critIcal computer system. 

5. Prevent the propagation of errors in the system offering by this way high 

availability, operability and dependability. Thus, the application-layer errors have to 

be detected in a timely manner. 

1.2.1 Application processing with reconfigurable programmable arrays 

Reconfigurable computing systems comprising microprocessor, memory and 

reconfigurable logic represent a promising technology, which is well suited for bit­

intensive applications such as digital signal processing, error correcting codes, control 
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applications, bit manipulation, compressionldecompression and encryptionldecryption. 

The flexIbility, capacity and performance of Field Programmable Gate Arrays (FPGAs) 

have opened up completely new avenues in high performance computation forming the 

basis of reconfigurable computing. FPGAs can be considered as the obvious candidate 

for achieving the performance requirements of the bit-intensive applications that are 

going to be used as part of reconfigurable computing applications. Moreover, the re­

configurability of FPGAs makes them ideal for remote field upgrades of systems. A 

new bitstream containing a new version of a circuit can be downloaded through a 

remote connection. Several different approaches address the remote reconfiguration of 

FPGAs; commercial schemes and academic research projects have proposed different 

architecture solutions for a remote configuration execution environment. More 

information on this topic IS given in chapter three. 

The execution environment of reconfigurable computing applications can be 

defined as the abstraction layer or the physical component where the applications are 

implemented or executed. It can be one or more of the following abstraction domains: 

1. The microprocessor 

2. The kernel space ofan operating system 

3. A reconfigurable array (FPGA, CPLD etc) 

4. A topology comprising of Application Specific Integrated Circuits (ASICs), or 

other types ofICs 

5. A hybrid solution of the above components (System-on-Chip) 

1.2.2 Active Networks - a dependable. reconfigurable-computing system 

The detection of errors that are initiated from FPGA-based applications in PC 

systems is a platform-independent concept; hence it is not necessary to integrate it in 

any of the critical systems that were described in the previous paragraph in order to 

prove -the obvious- necessity for using it. However, it is important to use an example 

platform for studying and identifying the requirements, the limits, the technical details, 

the development issues and the theoretical background of the system under 

investigation. Active Networks (2] are secunty problematic systems with real time and 

fault tolerance constraints that require significant processing resources; their operation 
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is critical and must be maintained because the services that they deliver are important 

for the network infrastructure and the users. Considering the available infrastructure, 

the experience and the know-how at Loughborough University, Active Networks was 

the obvious candidate for collecting the required structure-definitive specifications for 

the error detection system. For this reason, a detailed study of the properties and the 

specifications of an Active Network was delivered. It can be claimed that the 

performance and secunty-critical issues of Active Networks with programmable logic 

support, defined the fundamental design goals and the response of the system. 

Architecture level solutions have already been offered to confront the side effects of 

Active Applications when the Execution Environment is realised either in the Active 

Host's microprocessor or in the kernel space of the operating system. However, in the 

scenario under investigation, the execution environment is an FPGA-based 

reconfigurable platform. Figure 1.1 is a representation of a PC-based Active Router 

with programmable logic support; the PC carries a pcr board with one FPGA device 

dedicated for applications that need a bit intensive processing environment. 

Code 

___ e • 

• 
: Active 

Processing 
• Engine .... -_ ........•• 

FIgure 1.1: An Active Network with a reconflgurable processing engine. 

Following the Active Network design approach, a configuration bitstream that 

targets such a platform could be carried in a series of Active Packets. These packets are 

identified as active when the Active Router processes them. The Active Router then 
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decides whether to download the new configuration bitstream to the FPGA device or 

not, depending on the current activity on the FPGA board. 

1.2.3 Security implications and counteract framework 

The dependable system described in the previous section has FPGA processing and 

reconfigurable features that are examined as a case study in order to detect 

vulnerabilities and system defects. Applications that configure the FPGA device of the 

PC! board, pose threats analogous to software program threats (i.e. resource 

consumption, applIcation layer faults, design bugs). The new configuration can 

potentially extend and modify the network infrastructure. The routing and the 

forwarding of the packets are vital processes of such system and must not be interfered 

with, by any means since their maintenance is important for the viability of the 

network. Moreover, the operabilIty of routers in general is cntical to the proper and 

correct running of many other important systems and services. Therefore, a designer of 

reconfigurable systems of this type should consider new possible threats on top of the 

already existent network security issues (3). [4). [5). (6). [7). [8). and [9). 

The secunty threat model has to be identified, considering all the platform-specific 

characteristics and the requirements that were set for a realistic implementation of the 

FPGA-based reconfigurable system. The potential threats and the "enemies" for the 

candidate architecture have to be identified. This important design consideration could 

allow the monitoring component to be integrated in a FPGA-based programmable 

architecture. 

Designers of dependable computing systems should deal with several issues related 

with reliability, availability, testability, maintainabdity and system robustness. In public 

network systems, a part of which could be Active, security issues are raised and thus 

measures must be taken to overcome the effects of potential failures. Considering the 

above, the design of the FPGA-based reconfigurable platform realises a set of 

measures, which are divided into four levels of action: 

I. PolIcy-based monitoring, 

11. Timely detection of system threats, 

Ill. Error tolerance, 
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IV. Interrupting the erroneous application and applying reconfiguration. 

The analysis of these levels of action is given in Chapter 4. 

1.2.4 Design and implementation of a hardware monitor component 

7 

This thesis focuses on design and implementation issues for building an efficient 

hardware monitor component, which is passively configured in an embedded FPGA­

based PC platform. One of the fundamental concerns of the monitoring system is the 

concurrent detection of errors (e.g. protocol and application) in order to prevent their 

propagation to other system areas and their interference with system performance and 

dependability. The errors were grouped in two categones; PCI protocol errors and 

application errors related with misuse of local resources, "bugs" and execution of 

malicious code. 

The application, which is configured ID the FPGA of the PCI board, could 

potentially act as a master PCI agent across the PCI bus; this means that it could access 

various system services and sensitive areas in almost a concurrent way. It is clear that 

this case is highly undesirable because it can result in system malfunctions, degradatIon 

of services and system-processes, application hijacking, breaching of secunty policies 

and data-integrity policies. In the worst case scenario "hard" -restart of the PC that 

carries the PCI-FPGA board might be needed (e.g. when an iIIegal memory write is 

attempted, PCI bus contention etc). Re-booting a PC with high availability and 

operability requirements, breaches the specifications and design requirements of most 

reconfigurable FPGA-based computers, used within dependable systems. 

For this reason it is required a carefully designed monitor component capable of 

identifYing and intercepting iIIegal or unauthorised activity in a concurrent way. The 

sequential nature of software monitors make them unsuitable for concurrent monitoring 

of FPGA-based applications. However, even by using hardware monitors, the technical 

and research challenge of concurrent (or nearly concurrent) application monitoring of 

the PCI-based FPGA board, still remains to be met. The monitoring component has to 

examine the application transactions as well as the interaction of the FPGA application 

with the host. Although the main operational and design issues are related with the 

activity of the FPGA application, the monitor component should also check the host's 
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transactions (e.g. when the FPGA is a target PCI agent); a bidirectional monitoring 

policy is applied by this way. A series of signals has to be monitored each clock cycle 

acquiring by this way several qualitative and quantitative data. Various problems 

related with contention (e.g. PCI-FPGA board local bus) or reuse of system-signals 

make the concurrent monitoring a difficult task to deliver. Details for these issues will 

be given in chapter six. Additionally, the fact that the FPGA-based processing system 

has to be monitored online increases the degree of complexity, as far as the research 

challenge is concerned. This means that the FPGA-based reconfigurable PC cannot 

afford to stay omine due to misuse of local resources from the configured application, 

since it will be part of a dependable system. Poor quality in the services and processes 

delIvered by such systems is also an unwanted event. 

1.3 Target arcbitectures and contribution 

The platform could be used in several different application examples and 

architectures. It can be adapted to fit the specific needs of various application­

topologies, when applying simple modifications in the specifications: 

• Configuration bitstreams can be stored at a known network location and then 

upgrade the PCI-based reconfigurable FPGA platform, once it is shipped and 

installed for instance in the PC of a final customer. The goal of the error detection 

core is to ensure that the operation of the PC will remain stable. 

• Design Corrections - In the event that a flaw appears in a commercial IP after it is 

shipped and configured to the PCI-based FPGA board of a final customer, the error 

detection core provides operability without the need for recalls and field service. 

• Performance Upgrades - a company or a service provider intends to upgrade the 

FPGA-based end station performance without putting at risk the availability and 

operability of the system after the upgrade. 

• End users, system administrators or service providers are able to reconfigure 

remotely the FPGA devices of host-based Active Routers within an Active 

Network, offering new application services or reprogramming the whole network, 

changing for instance the IP routing tables (Active Node). The context of this 
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topology implies the need of a monitoring mechanism that secures the constant 

operation of the Active Router. 

• The platform can be used for testing, evaluation and cross-technology integrations 

since it offers a reliable and failure resistant framework for upgrades of FPGA­

based reconfigurable systems (Pcr boards). 

• In stand-alone mode the platform can also be used for online testing and as a pcr 

bus protocol checker. 

• On-line verification of the pcr protocol for dependable applications which are 

configured in FPGA-based PC systems. 

The research contribution of this thesis is related with a unique hardware monitor 

and control component (i.e. Error Detection Monitor Unit - EDMU), which is 

embedded in a FPGA-based reconfigurable PCI board. EDMU delivers concurrent 

monitoring of application transactions and acts as a "firewall" when predefined policy 

rules are violated, satisfying by this way the reliability and operability requirements of 

dependable FPGA-based computer systems. 

1.4 Summary 

The introductory chapter briefly covered the reasons that inspired this research and 

also included a short description of terms like monitoring, reconfigurable computing 

and programmable networks. The implementation lImItations and the specific topology 

requirements were also discussed in this chapter, together with the specifications and 

the projected target topologies. The second chapter gives an outline of the terminology 

context related to the research domain. This general theoretical background intends to 

assist people who are outsiders to the field in order to identify and understand 

fundamental concepts. At the same time, the information quoted in Chapter 2 aims to 

transform this thesis to a self-contented research document. The next chapter includes a 

classification of the relevant literature in different areas: i) Monitoring and error 

detection, ii) Reconfigurable computing and programmable networking and iii) Remote 

FPGA reconfiguration. 

Chapter four describes the policy framework which decisively shaped the research 

and development efforts of this work. The security issues and the security framework 
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that initiates countenneasures for confronting the effect of errors are also analysed. 

Chapter five introduces the policy framework for the error detection core with specific 

reference to the particular group of errors that were identified in chapter four. This 

chapter also includes infonnation about the system architecture as well as design and 

implementation issues with specific code examples and design details. Chapter six 

presents the simulation and real time results of the embedded monitor hardware core. 

Finally, a discussion of the contributions and the potential future enhancements of this 

research are given in the last Chapter. 

The background infonnation of the first two chapters is reasonably extended 

because the intention throughout the research and development process was to present 

this work in a self-contained way. In most of the cases the potential target platfonns are 

either networked or they follow strict real time constraints and thus this fonnulates a 

practical problem: On the one hand, it is quite difficult for the hardware designers (i.e. 

FPGA-ASIC deSIgn) to comprehend issues related with the requirements and operation 

of a critical system (i.e. the dependability problems in progranunable networks, field 

upgrade of network reconfigurable systems, security and safety issues etc). On the other 

hand it is quite difficult for the people who work on software-based critical real time 

systems to understand hardware concepts related to FPGA design. 
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CHAPTER 2 

C .. itical .. eal tizne systezns 

and FPGAs 

The purpose of this chapter is to give an overview of the theoretical background aspects 

that are related to the research goals of this work. Therefore, the reader can familiarise 

himseWherself with terms that are very useful for the thorough understanding of the 

design and development concepts that are presented in the following chapters of this 

dissertation. 

2.1 Field Programmable Gate Arrays 

The consumer electronic market is offering nowadays a wide range of different 

Integrated Circuits (ICs), in order to satisfy the dIfferent requirements for applications 

and services (figure 2.1 includes some relevant information). 

Integrated Circuits 

"'1 

i PLr:> 1 
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FIgure 2.1: The world of Integrated CIrcuits. 
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A Field Programmable Gate Array (FPGA) can be configured in the field to 

implement a desired logic function. Many different architectures exist, but Figure 2.2 

shows the basic structure of a typical FPGA: a matrix of configurable logic blocks 

(CLBs) and interconnection resources surrounded by 110 blocks. 

Configurable 
Logic 

Blocks 

1/0 

Programmable 
-.jtt---.: interconnect 

Figure 2.2: A general representation of a SRAM-based FPGA device. 

The CLBs (figure 2.3) are often complex but are likely to contain one or more 

function generators followed by flip-flops: 
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Figure 2.3: The CLB contains two slices. Each slice contains two 4-input look-up 

tables (LU1), carry & control logic and two registers. There are two 3-state buffers 

associated With each CLB, that can be accessed by all the outputs of a CLB {J OJ. 

Made using either look-up tables (LUTs) or multiplexers, function generators are 

capable of producing any k-mput Boolean function where k is usually four. LUTs are 1-
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bIt wide memories and essentially store the truth table of the Boolean function they 

generate. They often can be used for general storage when not acting as a function 

generator. The output of a function generator can serve as part of combinational logic 

or can be directed to a flip-flop to create a latched signal. The CLBs provide functional 

elements for combinatorial and synchronous logic, including basic storage elements. 

Interconnection resources are composed of horizontal and vertical wires that can 

form connections with each other through programmable switches. There are also 

programmable switches that connect wires to CLBs. 110 blocks can be progranuned to 

allow their associated pin to operate as either an input or an output. Current FPGAs 

often include additional components such as clock managers, RAM, and dedicated 

circuitry for common arithmetIc operations. 

A user can specify a logic function and then use a specific software to map the logic 

function to a network of CLBs, which are then placed and routed. The end result is a 

particular configuration for the FPGA that implements the logic function. 

While industrial work with reconfigurable hardware has primarily utilized the 

technology for verification of and sometimes a replacement for ASICs, researchers 

have explored the use of FPGAs as a means of improving computational performance 

in scientific and multimedia applications. The appeal of this technology for researchers 

is that an FPGA can be configured on-the-fly with customized computational circuits 

that provide hardware acceleration for end applications. Unlike single-purpose ASICs, 

FPGAs can be reconfigured and re-used for a number of diverse computational tasks. 

The hardware in such systems can be reconfigured multiple times at run-time in order 

to adapt to different computing requirements for different applications. Reconfigurable 

systems offer higher computational density and higher throughput for many 

applications compared with conventional fixed hardware systems. Reconfigurable 

computing is an active area of research. 

Emerging commercial FPGA architectures are supplementing traditional 

programmable logic with multiple hardware units for increased design fleXIbility and 

computational power. The most attractive feature in these new architectures is the 

inclusion of high-speed transceivers. The Xtlinx Virtex 11 Pro architecture (11) contains 

multiple 3.125 Gbps transceivers for use with networks such as 10-Gbps Ethemet and 
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OC-192c. A second feature of emerging FPGA architectures is the inclusion of 

powerful embedded processor cores. Altera's Stratix includes the NIOS "soft" 

embedded microprocessor (12). while Excalibur FPGA devices include a dedicated 32-

bit 200 MHz ARM core. Likewise Xilinx includes in the Virtex IT pro architectures 

multiple PowerPC cores. Finally, modern FPGA architectures contain dedicated 

hardware such as internal SRAM memory and high-speed multiplier array cores to 

accelerate FPGA computational performance. 

The trend to implement entire systems on an FPGA is creating a market for 

intellectual property 'cores'. These are designs created by third parties, which are sold 

to FPGA users to incorporate into larger systems. Examples of cores include bus 

mterfaces such as PCI bus, signal processing functions such as Reed Solomon 

Decoders and communications interface functions such as Serialiser / Deserialiser 

(SERDES). Leading FPGA manufacturers offer access to a catalogue of cores and 

customers expect to be able to create a large part of the functionality of their system 

using cores. 

2.1.1 Single Context FPGAs 

A single context FPGA is programmed using a serial stream of configuration 

information. Because only sequential access is supported, any change to a configuration 

on this type of FPGA requires a complete reprogramming of the entire chip. Although 

this does simplify the reconfiguration hardware, it does incur a high overhead when 

only a small part of the configuration memory needs to be changed. This type of FPGA 

is therefore more suited for applications that can benefit from reconfigurable computing 

without run-time reconfiguration. Most current commercial FPGAs are of this style. In 

order to implement run-time reconfiguration using a single context FPGA, the 

configurations must be grouped into contexts, and each full context is swapped in and 

out of the FPGA as needed. Because each of these swap operations involve 

reconfiguring the entire FPGA, a good partitioning of the configurations between 

contexts is essential in order to minimize the total reconfiguration delay. If all the 

configurations used within a certain time period are present m the same context, no 

reconfiguration will be necessary. However, if a number of successive cqnfigurations 
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are each partitioned into different contexts, several reconfigurations will be needed, 

slowing the operation of the run-time reconfigurable system. 

2.1.2 Partially Reconfigurable FPGAs 

In some cases, configurations do not occupy the full reconfigurable hardware, or 

only a part of a configuration requires modification. In both of these situations a partial 

reconfiguration of the array is required, rather than the full reconfiguration supported 

by a single context device. In a partially reconfigurable FPGA, the underlying 

programming bit layer operates like a RAM device. Using addresses to specify the 

target location of the configuration data allows for selective reconfiguration of the 

array. Frequently, the undisturbed portions of the array may continue execution, 

allOWIng the overlap of computation with reconfiguration. This has the benefit of 

potentially hiding some of the reconfiguration latency. When configurations do not 

require the entire area available within the array, a number of different configurations 

may be loaded into unused areas of the hardware at different times. Since only part of 

the array is changed at a given point in time, the entire array does not require 

reprogranuning for each incoming configuration. Additionally, some applications 

require the updating of only a portion of a mapped circuit, while the rest should remain 

intact. For example, in a filtering operation in sigual processing, a set of constant values 

that change slowly over time may be re-initialized to a new value. But the overall 

computation in the circuit remains static. Using this selective reconfiguration can 

greatly reduce the amount of configuration data that must be transferred to the FPGA. 

Unfortunately, since address information must be supplied with configuration data, the 

total amount of information transferred to the reconfigurable hardware may be greater 

than what is required with a single context design. A full reconfiguration of the entire 

array is therefore slower than with the single context version. However, a partially 

reconfigurable design is intended for applications in which the size of the 

configurations is small enough that more than one can fit on the available hardware 

simultaneously. Plus, the fast configurations methods presented in a previous section 

can help reduce the configuratIon data traffic requirements. 
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2.1.3 Reconfigurable Computing 

One common use of a FPGA is for prototyping the design of an ASIC. In this 

scenario, the FPGA is present only on the prototype hardware and is replaced by the 

corresponding ASIC in the final production system. However, many system designers 

are choosing to leave the FPGAs as part of the production hardware. Such systems 

retain the execution speed of dedicated hardware but also have a great deal of 

functional flexibility. The logic within the FPGA can be changed if or when it is 

necessary, which has many advantages. For example, hardware bug fixes and upgrades 

can be administered as easily as their software counterparts. In order to support a new 

version of a network protocol, the intemallogic of the FPGA can be redesigned sending 

later the enhancement to the affected customers by email. Once they have downloaded 

the new logic design to the system and restarted it, they will be able to use the new 

version of the protocol. This is configurable computing; reconfigurable computing goes 

one step further. 

Reconfigurable computIng involves manipulation of the logic within the FPGA at 

run-time. In other words, the design of the hardware may change in response to the 

demands placed upon the system while it is running. Here, the FPGA acts as an 

execution engine for a variety of different hardware functions - some executing in 

parallel, others in serial - much as a CPU acts as an execution engine for a variety of 

software threads. FPGA could be considered as a reconfigurable processing unit. One 

theoretical application is a smart cellular phone that supports multiple communication 

and data protocols, though just one a time. When the phone passes from a geographic 

region that is served by one protocol into a region that is served by another, the 

hardware is automatically reconfigured. Reconfigurable computing has the following 

advantages: 

• Performance: Configurable computing can be highly optimised for a specific data 

set or specific applications. 

• Cost Effectiveness: Configurable computing can be used to reduce system costs 

through hardware reuse. Any new features or can be easily updated to the system 

and due to the field programmability, any problems with the design can be 

corrected without any changes to the on board resources. 
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• System prototyping: Large systems (either ASICs or boards) can be built on single 

or multiple FPGAs that makes system testing and debugging more easier than 

testing the real system and even cheaper. 

• Custom 110: FPGAs provides a flexible set of programmable I/O signals. That 

gives the designer the opportunity to reuse existing hardware and to add new 

changes to it easily. New FPGAs supports Different types of IOs levels and 

standards. One important use of this feature is matching different families. 

• System density: Confignrable computing "specially Run-time configurable logic" 

increases the system density and can deliver functionality of the device many times 

more than its size by dynamically reconfiguring the system and increase resource 

utilization through loading and unloading different system modules. 

• Fault-Tolerance: System reliability can be increased through redundancy by 

duplication or building some testing circuits. Dynamic reconfiguration technique 

can destroy old circuits and build new ones after detecting any error. 

2.2 Integration of programmable logic devices in critical systems 

The spread of programmable reconfigurable devices in various different technology 

applications domains, targeting either consumer electronics or electronics used from 

service providers, scientific organisations and state bodies have made their use highly 

important. The constant increase in the integration of reprogrammable chips in systems 

has enforced the inter-dependence relation for the services and the applications that 

these systems deliver. There is an intensive research in a world wide scale that tries to 

address the challenges that FPGA (or similar reprogrammable devices) pose because of 

their high penetration to critical systems. There are several conceptual requirements for 

such systems related with terms like reliability, availability, dependability, testability, 

maintainabihty and operability. These terms could be referred as critical system 

requirements. The different critical computing systems have different levels of 

requirements for the above mentioned features. Critical computing systems are found in 

air transport systems, in the rail industry, in space engineering, in medical equipment, 

in information systems (i.e. servers, routers, switches), in power and nuclear energy 

systems, in military systems etc. 
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All computer systems 
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Table 2.1: Rev enue loss per hour, by business segment {16J. 

System Avai labili Yearl Downtime 
9 5 438 hours 

99 .0 88 hours 
99 .5 44 hours 
99 .9 8.8 hours 

99. 95 4 hours 
99. 99 53 minutes 

99.9 995 5.3 minutes 
99.9 999 32 seconds 
99.9 9999 3.2 seconds 

Table2.2P ercentage Availability and Downtime {16J. 

To avoid confusion be tween "reliability" as a precisely defined statistical measure 

qualitative attnbute of systems and computations, use of [17[ and "reliability" as a 
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"dependability" was proposed to convey the second meaning (18), resulting in the name 

"dependable computing". Thus, dependable computing deals with impairments to 

dependability (defects, faults, errors, malfunctions, degradations, failures, and crashes), 

means for coping with them (fault avoidance, fault/error tolerance, design validation, 

failure confinement, monitoring etc.), and measures of success in designing dependable 

computer systems (reliability, avaIlability, performabIlity, safety, security etc.). 

A computer system can have three different types of assessment depending on the 

interest of the external viewer. The maintainer's external view consists of a set of 

interacting subsystems that must be monitored for detecting possIble malfunctions in 

order to reconfigure the system or, alternatively, to guard against hazardous 

consequences (such as total system loss or crash). The operator's external view consists 

of a black box capable of providing certain services and is more abstract than the 

maintainer's system-level view. Finally, the end user's external view is shaped by the 

system's reaction to particular situations or requests. 

A dehberate or unintended error (e.g. hardware bug, misuse of local services etc) 

results in information errors within a system. Consequently, the system may 

malfunction resulting in service degradation, which finally can result in system failure. 

A five-level view of the impairments to dependability could be deducted according to 

this approach (figure 2.4). 

Hardware "b~"lLogU: Errors, 
Deliberaie misuse of allocated re.murces, 

Protocol violations 

Information Error 

System Malfunction 

Service Degradation 

Result Failure 

Figure 2.4: The sequence steps that result in system failure. 

Ensuring the reliability of critical computing and electronic systems has always 

been a challenge. As the complexity of systems increases the inclusion of reliability 
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measures becomes progressively more complex and often a necessity for VLSI circuits 

where a single error could potentially render an entire system useless. 

2.3 Embedded Real-time critical systems 

An embedded system IS typically a product which includes a computing system. 

The product is said to "embed" the computing system inside. Embedded systems do not 

necessarily look like computers, however it is typical that embedded systems interact 

with their environment. For instance, a mobile phone is regarded an embedded system: 

it reacts on incoming calls, user input, cell roaming, etc. 

A real-time system is a system that interacts with its environment in a time 

constrained manner. The real-time system must produce results within specified time 

limits. A computation result (or actuation) must be delivered neither too late, nor too 

early. The criticality of violated timing constraints, or missed execution deadlines, 

classifies real-time systems into hard or soft real-time systems [19]. Timing failures in a 

hard real-time system are considered hazardous and very critical and should never be 

allowed. Examples on hard real time requirements can be found in automotive and 

avionic systems, medical equipment, military systems, energy and nuclear plant control 

systems. On the contrary, the requirements in soft real-time systems are not so critical 

and may tolerate timing constraint violations, either by discarding the produced results 

or by allowing a degraded quality. Soft real-time requirements can be found in 

telecommunication systems, audio and video applications, streaming media, airline 

reservation systems, etc. 

A typical real-time system consists of a controlling subsystem (the computer), and 

the controlled subsystem (the physical environment). The interactions between the two 

subsystems can be described by three main operations: 

-Sampling 

- Processing 

- Responding 

The computer subsystem samples data from the physical environment. Sampled data is 

then immediately processed by the computer subsystem, and a proper response is sent 

to the physical environment. All three operations must be performed within the required 
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timing constraints. For example, it is imperative that an air bag control system in an 

automobile responds within set timing constraints in the event of a crash. The response 

must neither be too late (being non-effective), or too early (risking hazardous 

manoeuvring of the car). 

This section includes further evidence for the importance of critical systems by 

examining the timing-related restrictions as an indicative property of reliabIlity, 

dependability and availability. Because of the central role of time constraints in critical 

real-time systems, these systems are classified according to the type of time constraints. 

The first class of critical real-time systems is the soft real-time systems. This class 

covers those systems where a miss of a deadline results in degraded performance, 

and/or the increasing of costs. The second class is the firm real-time systems. In these 

systems, the miss of a deadline leads to the result becoming worthless. An example of 

such a system is a weather forecast system, where the result becomes void no later than 

when the forecasting horizon has passed. The hard real-time systems build the third and 

last category. A miss of a deadline here is followed by more or less catastrophic 

consequences. The consequence is usually loss of hfe or, at the very least a serious 

amount of money. This usually regards X-by-wire systems in vehicles and planes, or 

simple things like the destruction of a machine and the following halt of a complete 

production line. Line 3 in Figure 2.5 shows the enormous jump in costs while line 1 and 

2 show a more controllable loss of cost. A deadline VIOlation is considered fatal and 

cannot be tolerated especially in dependable systems. 

Cost 

Hard Real-Time 
Constraints 

3 

Deadline 

2 

Response Time 

Figure 2.5: CostfonctlOn of real time tasks [20J. 
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2.4 Faults. errors and failures 

A very important design requirement in dependable systems is to define the 

sequence that creates system failures. A typical sequence of this kind is shown in figure 

2.6. 

Fault ~ Error ~ Failure ~ Fault ... ~ 
FIgure 2.6: Cause consequence diagram of fault, error and failure. 

Definition: A failure is the non-performance or inability of the system or component to 

perform its intended function for a specified time under specified conditions [21]. That 

is, an input, X, to the component, 0, yields an output, O(X), non-compliant with the 

specification. 

Definition: An error is a design imperfection, or a deviation from a desired or intended 

state [21]. A program can be viewed as a state machine, whereas an error (bug) is an 

unwanted state. An error can be also thought as a corrupted data state, caused by the 

execution of an error (bug) but also due to e.g., physical electromagnetic radiation. 

Definition' A fault is the adjUdged (hypothesized) cause for an error [22]. Generally a 

faIlure is a fault, but not vice versa, since a fault does not necessarily lead to a failure. 

2.4.1 Systematic and physical failures 

Failures are usually divided into two categories: 

I. Systematic failures which are caused by specification or design flaws, i.e., 

behaviours that do not comply with the goals of the intended, designed and 

constructed system. Examples of contributing causes are erroneous, ambiguous, or 

incomplete specifications, as well as incorrect assumptions about the target 

environment. Other examples are failures caused by desIgn and implementation 

faults. Wear, degradation, corrosion, etc. do not cause these types of failures, all 

errors are built in from the beginning, and no new errors will be added after 

deployment. 

A systematic failure occurs if and only if: 

1) the location of an error is executed in the program, 
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2) the execution of the error leads to an erroneous state, and 

3) the erroneous state is propagated to the output. 

This means, that if an error is not executed it will not cause a failure. If the effect of 

the execution of the error (infection) is indistinguishable from a correct system state 

it will not cause a failure. If the system's state is infected but not propagated to the 

output there will be no failure. 

H. Physical fazlures which are the result of a violation upon the original design. 

Environmental disturbances, wear or degradation over time may cause such 

failures. Examples, are electromagnetic interference, alpha and beta radiation, etc. 

A physical failure occurs if and only if: 

I) the system state is corrupted or infected, and 

2) the erroneous state is propagated to the output. 

Fault-tolerance mechanisms usually try to prevent (I) by applying robust designs, 

and (2) by applying redundancy, etc. 

2.4.2 Failure modes 

Depending on the architecture of the system, different degrees and classes, of 

failure behaviour could be assumed. Components can fail in different ways and the 

manner in which they fail can be categorized into failure modes. The failure modes are 

defined through the effects, as perceived by the component user. Several categories will 

be presented i.e. failure modes, (I to 6) ranging from failure behaviour that sequential 

programs, or single tasks in solitude, can experience, to failure behaviour that is only 

siguificant in multitasking, distnbuted systems and real-time systems, where more than 

one task is competing for the same resources (e.g. processing power, memory, 

computer network, etc). 

Failure modes: 

1. Sequential failure behaviour: 

• Control failures, e.g., selecting the wrong branch in an if-then-else statement. 

• Value failures, e.g , assigning an incorrect value to a correct (intended) variable. 

• Addressing failures, e.g., assigning a correct (intended) value to an incorrect 

variable. 
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• Tennination failures, e.g., a loop statement failing to complete because the 

tennination condition is never satisfied. 

• Input failures, e.g., receiving an (undetected) erroneous value from a sensor. 

2. Ordering failures, e.g., violations of precedence relations or mutual exclusion 

relations. 

3. Synchronization faIlures, i.e., ordering failures but also deadlocks. 

4. Interleaving failures, e.g., unwanted side effects caused by non-re-entrant code, and 

shared data, in pre-emptively scheduled systems. 

5. Timing faIlures. This failure mode yields a correct result (value), although the 

procurement of the result is time-wise incorrect. For example, deadline violations, 

too early start of task, incorrect period time, too much jitter, too many interrupts 

(too short inter-arrival time between consecutive interrupt occurrences), etc. 

6. Byzantine and arbitrary failures. This failure mode is characterized by a non 

assumption, meaning that there is no restriction what so ever with respect to which 

effects the component user may perceive. Therefore, the failure mode has been 

called malicious or fail-uncontrolled. This failure mode includes two-faced 

behaviour, i e. a component can output "X IS true" to one component user, and "X is 

false" to another component user. 

The above listed failure modes build up a hierarchy where Byzantine failures are 

based on the weakest assumption [23[ (a non-assumption) on the behaviour of the 

components and the infrastructure, and sequential failures are based on the strongest 

assumptions. Hence, Byzantine failures are the most severe and sequential failures the 

least severe failure mode. The Byzantine failure mode covers all failures classified as 

timing failures, which in turn covers synchronization failures, and so on ( Figure 2.7). 

Btzantlne 

Figure 2 7: The relation between the failure modes. 
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The component user can also characterize the failure modes according to the 

viewpoints domain. A distinction can be made between primary failures, secondary 

failures and command failures [211: 

Primary failures: A primary failure is caused by an error m the software of the 

component so that its output does not meet the specification. This class includes 

sequential and Byzantine failure modes, excluding sequential input failures. 

Secondary failures: A secondary failure occurs when the input to a component does 

not comply with the specification. This can happen when the component is used in an 

environment for which it is not designed, or when the output of a preceding task does 

not comply with the specifications of a succeedmg task's input. This class includes 

interleaving failures, sequential input failure modes, as wen as changed failure mode 

assumptions. 

Command failures: Command failures occur when a component delivers the correct 

result but at the wrong time or in the wrong order. This class covers timing failures, 

synchronization failures, ordering failures, as wen as sequential termination failures. 

2.5 Security issues 

The philosophy of opening the network to be programmable raises many 

administrative issues. In particular, safety and security are points of increasing concern. 

Programmable networks al10w system admmistrators and router vendors to deploy 

wel1-tested router software that provides the required service functionality. Such a 

model might later migrate to a ful1y open programming platform as proposed by the 

active networking community. 

The word security suggests protection against malicious attack by outsiders. 

Security also involves controIIing the effects of errors and equipment failures. Anything 

that can protect against a deliberate, inteIIigent, calculated attack wiII probably prevent 

random misfortune as well. Before going into specifics (Chapter 4), it will be very 

helpful to understand the some basic concepts that are essential to any security system. 



Using embedded hardware monitor cores In critical computer systems 26 

2.5.1 The security challenges 

Know your "enemy" 

Architecting platforms based on reconfigurable programmable logic devices 

demands a careful consideration of who might want to circumvent the security 

measures and identify also the motivations that are hidden behind such aCTIons. 

Determine what the attackers or intruders might want to do and the damage that they 

could cause to the network as weIl as to the network components and services. Security 

measures can never make it impossible for a user to perform unauthorized tasks with a 

computer system. They can only make it harder. The goal is to make sure the network 

security controls are beyond the attacker's ability or motivation. 

Security cost 

Security measures almost always reduce convenience, especiaIly for sophisticated 

users. Security can delay work and create expensive administrative and educational 

overheads. It can use significant computing resources and require dedicated 

hardware. Designing security measures involves understanding of the costs and weigh 

of the costs against the potential benefits. In order to achieve that, there must be a 

thorough understanding of the costs and the measures themselves and the costs and 

likelihoods of security breaches. Incurring security costs out of proportIOn of the actual 

dangers, results in a disservice. 

Identify the assumptions 

Every security system has underlying assumptions. For example, one might assume 

that the network is not tapped, or that attackers know less than you do, that they are 

using standard software. A good practice is to examine and justIfy all the assumptions. 

Any hidden assumption is a potential security hole. Another important consideration is 

to understand the areas that need to be protected. Security systems should be designed 

so that only a limited number of secrets need to be kept. Many security procedures fad 

because their designers do not consider how users wiIl react to them. If the security 
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measures interfere with essentIal use of the system, those measures will be resisted and 

perhaps circumvented. 

Security weaknesses 

Every security system has vulnerabilities. A programmable logic system designer 

should be aware of the platform's weak points and also know how these could be 

explOIted. The areas that present the largest danger should be secured in a more robust 

way in order to prevent access to them. Understanding the weak points is the first step 

toward turning them into secure areas. Therefore, appropriate barriers should be created 

inside the system so that if intruders access one part of the system, they do not 

automatically have access to the rest of the system. The security of a system is only as 

good as the weakest security level of any single host in the system. Understanding how 

a system normally functions, knowing what is expected and what is unexpected, and 

being familiar with how devices are usually used, helps to detect security problems. 

Unusual events can help to identify intruders before they can damage the system. 

Security is pervasive 

Almost any change that is being made in a system may have security effects. This 

is especially true when new services are created. Administrators, programmers, and 

users should consider the security implications of every change they make. 

Understanding the security implications of a change is something that takes practice. It 

requires lateral thinking and a willingness to explore every way in which a service 

could potentially be manipulated. 

2.5.2 Embedded systems design and security issues 

In the past, embedded systems tended to perform one or a few fixed functions. The 

trend is for embedded systems to perform multiple functions and also to provide the 

ability to confignre new hardware and software in order to implement new or updated 

applications in the field, rather than only in the more controlled environment of the 

factory. While this certainly increases the flexibility and useful lifetime of an embedded 

system, it poses new challenges; embedded systems often provide critical functions that 
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could be sabotaged by malicious entities. An embedded system should ideally provide 

required security functions, implement them efficiently and also defend against attacks 

by malicious parties. It is also important to note that there are many entities involved in 

a typical embedded system manufacturing, supply, and usage chain. Security 

requirements vary depending on the different perspectives that are considered (i.e. 

users, service providers, administrators, companies, government services). 

Embedded systems, which will be ubiquitously used to capture, store, manipulate, 

and access data of a sensitive nature, pose several unique and interesting security 

challenges. Security is often misconstrued by embedded system designers as the 

addition of features, such as specific cryptographic algorithms and security protocols, to 

the system. In reality, it is an entirely new metric that designers should consider 

throughout the design process, along with other metrics such as cost, performance, and 

power. Several security processing architectures targeting embedded systems, 

(presented in Chapter three) implement basic security functions like confidentiality, 

integrity and authentication, but do not provide protection from software or physical 

attacks by malicious entities. Furthermore, architectural features that accelerate 

cryptography and security protocols do not protect against Denial-of-Service (DoS) 

attacks. A secure embedded system should also incorporate appropriate attack-resistant 

features. Figure 2.8 is a graphic synopsis of the issues stated in the previous sections: 

A....uablllty. Dependability. Operability 
requfrements 

Real-tune system 
requlremenis 

SecurIty 
requirements 

Demandf'br thnely detecdonorerrors 
andpollcy-based cOJ.\1rol ofappUcatJons 

Figure 2.8: Cntical systems and the mherent design requirements. 
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The requirements quoted in each rectangle shape can be either separate design demands 

of a critical system or it can include a combination of the nested rectangles (i.e. 

reliability mayor may not require security). 

2.6 Testing debugging and monitoring 

ThIs section includes useful background information for the usefulness of testing, 

debugging and monitoring in real time systems. Special interest exists for the 

monitoring function of critical real-time computer systems. 

2.6.1 Testing and debugging 

Debugging is defined as "the process of locating, analysing, and correcting 

suspected faults" [24]. A fault is defined to be the direct cause of some error. Since the 

occurrence of errors can have different reasons, they are usually not predictable, and 

therefore they must be located them using debuggers. A debugger is a tool which helps 

the designer to examine suspected errors in a program, and eventually also remedy the 

errors. Cyclical debugging is commonly used to describe debugging as an iterative 

process, in which the debugger is repeatedly used to find and correct errors, untIl no 

more errors can be found. 

Testing and debugging are similar activities with respect to finding errors. 

However, testing is more of an automated process of exposing different input to the 

system under test, and evaluating its results (output). The objective is to find input data, 

or patterns of data, that cause erroneous results [25]. The faults that are found during 

the testing process are then put under observation in a debugger. 

In real-time systems, errors may also occur in the time-domain. Real-time systems 

are therefore harder to debug than non-real-time systems. The ability to track down 

timing-related errors was largely an unexplored area until the early 1980's. Today, 

various debugging systems and methods have been developed in order to address 

timing-related issues [26], [27]. 
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2.6.2 Monitoring 

Monitonng is the process of gathering information about a system [28), [29). This 

information cannot normally be obtained by studying the program code only. The 

collected information may be used for program testing, debugging, task scheduling 

analysis, resource dimensioning, performance analysis, fine-tuning and optimisation of 

algorithms. Monitoring is also important in state-of-the-art critical computing systems 

in order to control the results of errors and prevent system failures. The applicability of 

monitoring is wide, and so is the spectrum of available monitoring techniques. This 

section includes a generic presentation of a monitor and describes different monitoring 

systems, the type of information collected by monitors, and the problem-related issues 

with monitoring. 

In essence, a monitor works in two steps: detection (or triggering) and recording. 

The first operation refers to the process of detecting the object of interest. This is 

usually performed by a trigger object that is inserted in the system; the object indicates 

an event of interest for recording when it is executed or activated. Recording, is the 

process of collecting events and saving them in buffer memory, or transfer them to 

external computer systems for the purpose of further analysis or debugging. An event is 

a record of information which usually constitutes the object of interest together with 

some additional meta data regarding that object (e.g. the time when the object was 

recorded, the object's source address, task/process ID, etc.). The types of momtored 

objects depend on the level of abstraction which the user is interested in. The trigger 

object can be inserted in the target hardware platform as an instruction, a function, or a 

module that is formed by several signal assertions. It may also be a physical sensor, or 

probe, connected with physical wires in the hardware, such as CPU address, data, and 

control busses. 

An important issue regarding the monitoring process is the amount of execution 

interference that may be introduced in the observed system due to the involved 

operations of a monitor. This execution interference, or perturbation, is unwanted 

because it may alter the true behaviour of the observed system, in particular such 

systems that are inherently timing-sensitive such as real-time and distributed systems. 
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2.6.3 Types of monitoring systems 

Monitoring systems for system-level analysis are typicaIly classified into three 

types: 1) software monitoring systems, 2) hardware morutoring systems, and 3) hybrid 

monitoring systems. A short description of each type of monitoring system follows. 

Software Monitoring Systems 

In this category of monitoring systems, only software is used to instrument, record, 

and collect information about software execution. Software monitoring systems offer 

the cheapest and most flexible solution where a common technique is to insert 

instrumentation code at interesting points in the target software. When the 

instrumentation code is executed the monitoring process is triggered and information of 

interest is captured into trace buffers in target system memory. The drawback of 

instrumentation is the utilisation of target resources such as memory space and 

processor execution time. 

Hardware Monitoring Systems 

In this category of monitoring systems, only hardware (custom or general) is used 

to perform detection, recording and collection of information regarding the system. The 

primary objective of hardware monitoring is to avoid, or at least minimize, mterference 

with the executIon of the target system. A hardware monitoring system is typically 

separated from the target system, and thus, it does not use any of the target system's 

resources. The target system is monitored using passive hardware (or probes) connected 

to the system busses and signals. Hardware monitoring is especiaIly useful for 

monitoring real-time and distributed systems since changes in the program execution 

time are avoided. 

In general, the operation of monitoring hardware can be described by the three steps 

(see Figure 2.9): event detection, event matching, and event collection. 

( 1. Detect ]I---{. 2. Match ] ... - __ {. 3. Collect ) 

FIgure 2.9: Hardware monztoring steps. 
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In the first step the hardware monitor listens continuously to the signals. In the 

second step, the signal samples are compared with identified patterns that define the 

system events. When a sample matches an event-pattern, the process triggers the final 

step, collection, where the sampled data is collected and saved. The saved samples may 

be stored locally in the monitoring hardware, or be transferred to a host computer 

system where usually more storage capacity can be obtained. 

This type of hardware monitor avoids target interference and has the advantage of 

precision and accuracy. Since the sole duty of a hardware monitor is to perform 

monitoring activities (usually at equal or higher system speed than the target's) the risks 

of loosing samples are minimized. A disadvantage of hardware monitors is their 

dependency on the target's architecture. The hardware interfaces, and the interpretation 

of the monitored data must be tailored for each target architecture. Thus, monitoring 

solutions using hardware are more expensive than software alternatives. Moreover, a 

hardware monitor may not be available for a particular target, or takes time to 

customize, which may increase the costs further in terms of delayed development time. 

Another problem with hardware is the integration and miniaturisation of components 

and signals in today's chips which renders difficulties in reaching information of 

interest, e.g. cache-memory, internal registers and busses, and other on-chip logic. To 

route all internal signals out from a chip may be impossible because of limited pin 

counts. 

In general, hardware monitoring is used to monitor either hardware devices or 

software modules. Monitoring hardware devices can be useful in performance analysis 

and finding bottlenecks in e.g. caches (accesses/misses), memory latency, CPU 

execution time, 110 requests and responses, interrupt latency, etc. Software is generally 

monitored for debugging purposes or to examine bottlenecks, load-balancing (degree of 

paraIlelism in concurrent and multiprocessor systems), and deadlocks. The current 

trend of making application specific hardware using FPGAs and VHDL (an early 

example of this type is given in (3~)) gives an opportunity to conveniently integrate 

non-intrusive monitoring mechanIsms in the hardware for single node systems. 
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Hybrid Monitoring Systems 

Hybrid monitoring uses a combination of software and hardware monitoring and is 

typically used to reduce the impact of software instrumentation alone. A hardware 

momtor device is usuaIly attached to the system in some way, e.g. to a processor's 

address/data bus, or on a network, and is made accessIble for instrumentation code that 

is inserted in the software. The instrumentation is typically realised as code that extracts 

the information of interest, e.g. variable data, function parameters, etc., which IS then 

sent to the monitor hardware. For instance, if the monitor hardware has memory­

mapped registers in the system, the instrumentation would perform data store 

operations on the monitor's memory-addresses. The hardware then proceeds with event 

processing, filtering, time-stamping, etc., and then communicates the collected events 

to an external computer system. This latter part typically resembles the operation of a 

pure hardware monitor. The insertion of instrumentation code also resembles the 

technique used in a software monitoring system; i.e. it can either be done manually by 

the programmer, automated by a monitoring control application or by compiler 

directives. 

The complexity of the capabilities of a monitor varies vastly from detection of a 

simple combination of a number of input signals, the combination of input signals to 

numerical values and tracking of the, for example, less, greater, between limits type, to 

the congregation of rather complex signal patterns over time. In older systems the 

hardware momtors were basically plug boards, or a combination of probes and bus 

analyzers. The idea of using embedded programmable logic devices like FPGAs for 

monitoring and controlling critical real time systems is introduced in this research 

work. Hardware monitors are often built on the basis of personal computers. This frees 

the developer of a hardware monitor from having to design the basic system which 

usually consists, besides other less important things, of a user interface, storage 

facilities and memory space (i.e. series of registers). 

Figure 2.10 is a representative way to show the impact of the different monitoring 

schemes during the time that the execution of the application is suspended. The 

hardware monitor does not introduce such an impact, whereas hybrid momtors generate 

a rather small suspension time on the application software and software monitors suffer 
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considerably from this effect. It should be noted that the actual suspension time is 

strongly correlated to the amount of data gathered in the software part of the monitor. 

The arguments so far manifest the need of a concurrent hardware monitor embedded in 

the target architecture for meeting the reliability, dependability and maintainablhty 

requirements of a real time system. 

Hardware Monitor Software Monitor Hybrid Monitor 

Application Monitor Application Monitor Application Monitor 
(Code) (Code) 

Event --- --- --- -t--..... -------- .L.---r-ITD;;~;"- --~A~tr1_-::':-::':-::-~---

At 
Storage 

t 

Figure 2.10: Temporal impact of monitor types {31J. 

With today's highly integrated hardware, encapsulating complete systems on a chip 

(SoC), the traditional hardware monitors (i.e. hardware probes) are facing severe 

difficulties. Processor cores, 110 components, cache memories, and even standard 

memory, are all integrated on the same reprogrammable chip (i.e. FPGA). Given also 

that chip packages can be obstructive (as in Ball-Grid Array packages) and have limited 

pins, it has become almost impossible for external hardware to probe internal signals. 

For real-time systems built on these premises there is a need to access execution 

information residing on-chip, as well as to avoid interference with the system's 

execution behaviour. 

Observability into SoC designs is today mostly supported for RTL verification. As 

SoC designs tend to increase in size and complexity, the verification process need also 

to take place at the system-level. Support for system-level verification already exists for 

the software part of a SoC, where a common technique is the use of software monitors. 

These monitors are typically found in RTOS (Real-Time Operating System) 
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development tool envIronments, and provide the developer with process-level 

infonnation such as task-scheduling events start/stop, block/resume, taskswitch, etc.), 

inter-process communication events (e.g. send and receive messages), synchronisation 

and resource utilization (CPUs, semaphores, I/O), external interrupts, etc. On the other 

hand, the available commercial or academic on-chip monitoring solutions commonly 

operate with a user interface and a software API, giving the opportunity to the 

developer to debug the design and achieve a satisfactory degree of robustness. 

However, the observability of systems is not limited to debugging, testing and 

validation purposes. 

The outcome of the research regardmg embedded monitoring support of dependable 

systems is evident of the fact that the available time for reacting to potential threats (i.e. 

hardware application bugs, misuse of vital system resources and protocol violations) 

exercised within such systems is considerably limited. Software monitoring and control 

solution are therefore excluded in this context because of the significant delay that they 

introduce in their response (see also figure 2.10). The system/application monitoring 

function, the error detection and the applied control have to operate in a timely, if not 

concurrent, manner. This attributes can be satisfied with an embedded, passive 

hardware monitor that is built with the help of an HDL language and it is 

inserted/integrated on a permanent basis in the target critical system topology. 

2.7 Active Networks 

Active Networks [32) are a relatively new concept, where a network is not just a 

passive carrier of bits but a more general computation model. Active Network may be 

simplistically viewed as a set of "Active Nodes" that perfonn customized operations on 

the data flowing through them. Traditional data networks provide a transport 

mechanism to transfer bits from one end system to another, with a minimal amount of 

computation (e.g., header processing and signalling). In contrast to that, a 

programmable network consists of programmable routers that have general-purpose 

processing units in their data path. These processing units can be programmed to 

perfonn various protocol operations as well as complex payload processing. Unlike 

traditional routers, deployment of new protocols can be achieved by reprogramming the 

/ 
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system rather than exchanging expensive hardware. This programmability of the data 

plane extends the traditional store-and-forward paradigm of routers to store process­

and-forward. The processing step is where interesting new services and protocols can 

be integrated into the network. 

Active networks not only allow the network nodes to perform computations on the 

data but also allow their users to inject customized programs into the nodes of the 

network, that may modify, store or redirect the user data flowing through the network. 

These programmable networks open many new doors for possible applications that 

were unimaginable with trachtional data networks. For example, there may be a video 

multicast session where at every node the video compression scheme is modified, based 

on the computation done by that node and depending on the network bandwidth 

available. The research community has realized the potential of Active Networking and 

a lot of work is underway at different research sites. 

Various approaches on solving current networking problems use a part of the 

Active Networking concept. Applications including packet filtering [33) in firewalls 

(also routers) where the filters in the firewall decide which packet should go through 

and which should be blocked. Other examples would be congestion [34), web proxies 

[35), multi cast routers [36) and video gateways [37) etc. that perform user driven 

computations "within" the network. For example web proxies provide a user 

transparent service to serve and cache web pages. Nomadic Routers determines the 

means by which a host is connected to a network (e.g., a modem or a high speed 

network connection) and adapt to the conditions. For example It might perform link 

compression and perform more file caching when connected through a modem. Also, it 

would enable for example encryption when user is remotely connected. The list goes on 

and on. A lot of recent trends and developments in networking are a subset of the 

Active Network Architecture. 

2.7.1 Active Network usage 

From the point of view of a network service provider, actIve networks have the 

potential to reduce the time required to develop and deploy new network services. The 

shared infrastructure of the network presently evolves at a much slower rate than other 
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computing technology. One consequence of being able to change the behaviour of 

network nodes on the fly is that service providers would be able to deploy new services 

quickly, without going through a lengthy standardization process. 

At a finer level of granularity, active networks might enable users or third parties to 

create and tailor services to their particular applications and even to current network 

conditions. Though it seems likely that most end users would not write programs for 

the network it is easy to imagine individuals customizing services by choosing options 

in code provided by third parties. Indeed, this prospect should appeal to network 

providers as well, because It enables them to charge more for such value added 

services. 

Networks are expensive to deploy and administer. For researchers, a dynamically 

programmable network offers a platform for experimenting with new network services 

and features on a realistic scale without disrupting regular network service. 

2.7.2 Basic concepts 

An active network is a kind of store-and-forward network. A store-and-forward 

network consists of a set of nodes interconnected by transmission links. The purpose of 

the network is to support the sharing of these transmission facilities. The basic unit of 

multiplexing of transmission facilities is the packet. Nodes receIVe packets from users 

and other nodes, perform a computation based on their internal state and the control 

information (header) carried in the packet, and as a result of that computation may 

forward one or more packets toward other nodes or to users. The nature of the network 

service is defined by the behaviour of the individual nodes of the network, and how 

users can control that behaviour through coded information placed in their packets. In 

today's Internet, for example, routers examine the destination address field of the 

Internet Protocol header along with internal routing tables to determine to which 

neighbour they should forward the IP packet. The extent of user control over the 

network's behaviour is limite~ to the range of values that can be placed in that field 

(and a few others) in the IP header; other services can, however, be envisioned. One 

example, which has been proposed for the Internet is a ''premium'' service in which 

certain nodes classify packets based on information contained in all of their headers 
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(Tep or UDP port numbers as well as source and destination IP addresses) and then 

route and schedule them for transmission on the basis of that classification. In this case, 

it has to be identified the term user (or end user) with the originators and recipients of 

the packets actually carried by the network. Users are, in general, different from 

node/network administrations, which control the configuration and interconnection of 

network nodes. Often the relationship between user and network administration is that 

of service provider and subscriber. 

2.7.3 Active Networks and Programming Interfaces 

One way to think about active networks is that they proVIde a programmable 

network API. The IP header in the traditional network could be considered as the input 

data to a virtual machine, whereas packets in the active network containing programs 

could be considered as input data. In the context of this model, a variety of active 

networking approaches can be characterized by the following attributes: 

Language Expressive Power: The degree of programmability of the network API may 

range from a simple list of fixed size parameters that select from predefined sets of 

choices, to a Turing-complete language capable of describing any effective 

computation. The advantage of a less powerful language is that it constrains the 

pOSSible node behaviours and so simplifies correctness analysis. It IS also more likely to 

admit fast-path optimization, e.g. through special purpose hardware. Many active 

networking projects, however, have opted for more powerful languages that use typing 

and other mechanisms to help ensure correctness. Most of these languages feature some 

form of restriction on their expressive power, order to guarantee that the effect of any 

packet sent into the network is bounded. For example, a language may admit only 

straight-line programs, without loops or branches. 

Statefulness: Another important characteristic of the network API is the ability to 

install state in the interior nodes of the network, and to refer to state installed by other 

packets. Some active network APls provide this capability, while others do not. Where 

it is present, the API must include control mechanisms to protect users' state from 

unauthorized access. 
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Granularity of Control: This mainly refers to the scope of node behaviour that can be 

modified by a received packet. One possibility is that a single packet can modify the 
, 

node behaviour seen by all packets arriving at the node, and this change persists until it 

is overridden. At the other extreme, a single packet modifies the behaviour seen only by 

that one packet. Between these extremes, modifications might apply to a flow, which 

could be defined to be a set of packets sharing some common characteristic, such as 

temporal locality and/or a particular source and destination address in the headers. In 

general, the active network API must include security mechanisms that ensure that 

packets affecting the node behaviour have localized effect and/or come from authorized 

users. 

2.7.4 Using existing network protocols and technologies 

The fundamental idea of Active Networks is to utilise the current infrastructure of 

lP-based networks (e.g. the Internet), without having the need to change a part of the 

network, nor interrupt its operation nor evolve its current technology. Active Networks 

do not require any changes in the standard communications protocols used in the IP­

based networks. Active Networks offer added services and programmability either to 

the network nodes or to the Active end-stations of the currently available lP-based 

networks. This is accomplished through a transparent operation on top of the current IP 

networks infrastructure, utilising the current features of the communication protocols. 

Considering the above concept, the reconfigurable hardware platfonn can be smoothly 

integrated in a host-based router and serve the Active Applications. 

2.7.5 Active Networks based on PC routers 

The ability to not only forward packets through a network, but also process them on 

a router, is the key to implementing new services and protocols without changing the 

underlying hardware infrastructure. Such processing can range from simple routing and 

queuing decisions to complex payload modifications. Perfonning such processing in 

software rather than custom logic opens the possibility to adapt and deploy new 

services by simple changes in the software. The crucial challenge in such a system is 

not only to be able to provide the functionality to dynamically change the forwarding 
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loop for selected data streams. It is equally important that the performance of the 

system be comparable to custom logic solutions despite the fact that software. 

General-purpose workstation processors that perform packet routing and forwarding 

in software were common router configurations in the 1980's. Typical link speeds of a 

few kilobits per second did not exceed the processing power of such a system. As 

performance demands for communication changed in the 1990's towards link speeds of 

several megabits per second, software-based routers were not able to keep up with this 

trend. As a result, ASIC-based routers were developed to provide basic protocol 

processing functionality at high speeds. The majority of current Internet routers are still 

ASIC-based. Their limitations in supporting new protocols led to efforts to re-introduce 

the flexibility and extensIbility of software-based systems. 

General-purpose processing as part of the data path and deployment of processing 

code via the packet itself was initially proposed by Tennenhouse and Wetherall in 1996 

(38). From this idea, numerous research projects have spawned to develop 

infrastructure that can process packets in the data path and dynamically deploy the 

processing code. The majority of these projects were and are aimed at investigating and 

implementing software-based "active routers". Key questions are how to dynamically 

install protocol-processing code in the data path, how to deploy code modules, and how 

to safely and securely execute arbitrary code on a router. 

High-end routers are designed around special-purpose hardware: they use a 

SWItched interconnect (e.g., a crossbar) rather than a shared bus, and they implement 

the performance-cntical forwarding function in hardware (e.g., an ASIC) rather than 

software. As a consequence of this hardware-intensive design, high-end switches are 

able to forward packets at a very high rate (on the order of l-lOMpps) and scale to 

fairly large sizes (on the order of 128 100Mbps ports), but they provide virtually no 

programmability. In addition to the highly optimised forwarding path, high-end routers 

also have a network processor-usually connected to the one of the switch's I/O 

ports-that handles exceptional cases lIke IP options and routing updates. Low-end, 

routers can be built using a standard workstation running a conventional operating 

system. The host-based forwarding (39) is implemented with the use of the general­

purpose computers with two or more network interfaces to act as a router. Because they 
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are implemented in software, such routers could be programmed to support nearly 

every imaginable function, but they offer very limited performance; they can forward 

10-100Kpps and support only a handful of 100Mbps ports. These routers offer certain 

advantages over the use of a high end router, allowing open, public source code access 

to the forwarding, queuing, and routing algorithms, and the use of more flexible, 

commodity host interfaces and host CPUs. 

2.7.6 Active Networks processing requirements 

As already stated, the Active Networks are packet-switched networks in which the 

packets can contain code fragments that are either executed on the intermediary nodes 

of the network (in the switches, routers, flexible servers) or in the users end station. The 

execution of programs can be requested and delivered either by the Active Network 

users or the network operator: 

• Routers within the network act on user data flowing through them. 

• Users can configure the network by supplying their own programs that perform 

computations. 

This demands that the Active Host (e g. a router) has sufficient processing resources. 

The Active Host has to be built having the capability to execute customisable code; the 

extra processmg and security requirements increase the complexity and raise concerns 

that are far more difficult to be addressed compared with the common header 

processing and signalling requirements of a standard PC-based router. The processing 

of bit intensive applications, which are carried in the payload of the packets, underlines 

the need for using a dedicated programmable logic device. 

In real world application of active networks, an important aspect of usability is the 

degree of fleXIbility offered by an active network node. The degree of flexibility on the 

one hand depends on the manageability of a node but on the other hands it depends on 

the execution environments since these provide the run-time environments where the 

code can be installed and run. The installation and execution of code must be 

achievable neither resulting in a compromised node nor in an interruption of service of 

an active node. The execution environment of the Active Applications can be a 
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combination of hardware components and software interfaces. It is a host platfonn for 

applying computational processes and implementing algorithms. 

FPGAs can be the optimal candidate either for implementing efficiently the routing 

and forwarding of the Active Packets or for the processIng of the Applications that are 

carried in the payloads of the Active Packets. More details for the flexibility, the 

perfonnance and the suitability of the FPGAs for the purposes of this research are given 

in the section 4.1. 

Summary 

This Chapter was a detailed description of background infonnation and definitions 

regarding aspects of programmable devices, real time systems, critical embedded 

systems and Active Networks. The analysis was extended in order to prove the 

connection and interdependence of this research work with the above mentioned topics. 
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CHAPTER 3 

Background in lI'lonitoring 
and prograll'lll'lable 

networks 

This chapter is a synopsis of the related literature background, which is necessary -

together with chapter 2- for reading and understanding the discussion, analysis, system 

architecture and results presented in the remaining chapters. It is assumed that the 

reader has a general knowledge of digital systems, computer hardware and networking. 

Several concepts are explained (hardware monitoring, reconfigurable computing, 

programmable logic architectures, network reconfigurable programmable devices, 

programmable networks) and at the same time a summary of the related work in similar 

fields is provided. 

3.1 Monitoring and error detection 

As it has already been described in the previous chapter, there are traditionally three 

methods for applying monitoring to systems: non-intrusive/passive hardware, intrusive 

software instrumentation, and hybrid where the software instrumentation is minimized. 

However, this research is mainly focusing on hardware monitors for the reasons that 

have already been quoted in the previous chapter. A transparent non-intrusive approach 

towards monitoring is the application of special hardware, e.g. hardware that allows bus 

sniffing, or non-intrusive access to memory via dual-port memories, etc., but also 

through the use of hardware CPU emulators. 

3.1.1 Hardware monitoring domains 

Hardware monitoring has been applied for performance measurements [40J, [41J, 

[42J, execution monitoring of multiprocessor systems [43J. [44J, and real-time systems 

[45J. [46J. [47J. Since the monitoring hardware is interfaced to the target system's 
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hardware via the CPU socket (emulator) or via the data and address busses, it can 

observe the target system without interfering with its execution, and thus not introduce 

any probe-effects. Information processing provided by monitoring can be categorized 

into three functional components according to (48): an event trigger, an event handler 

and an accumulation or sampling storage facility. 

Computation observability received a lot of attention as weJI from the major silicon 

vendors. Attention was given to embedded monitor cores for microprocessors. Philips' 

real-time observability solution, SPY [491, aJIows the non-intrusive output of internal 

signals on 12 chip pins. The internal sIgnals are grouped in sets of 12 signals and are 

hierarchicaJIy multiplexed on the 12 pins. The observed signals are a design-time 

choice. ARM's embedded trace macrocell (ETM) [501 offers real-time information 

about core internal operations. It is capable of non-intrusively tracing instructions and 

data accesses at core speed. The trace is made available off-chip by means of a trace 

port of up to 16 bits. The NEXUS standard [511 proposes a debug interface for real­

time observability of standard defined features. It proposes a standard port while 

leaving the implementation details to the users. 

Discussion 

The work accomplished in the above academic and commercial solutions is mainly 

focused on performance and execution monitoring of microprocessor systems. Their 

contribution concerns testability, verification and debugging issues. Although It can be 

claimed that the context of these monitoring mechanisms shares common grounds the 

research goals of this thesis, none of them covers issues like concurrent error detection, 

application control and stable reconfignration. 

3.1.2 Hardware monitoring using logic analvzers 

Xilinx ChipScope Pro [521 inserts logic analyzer, bus analyzer, and Virtual 110 low­

profile software cores into the design. These cores allow the user to view all the internal 

signals and nodes within the FPGA In more detail, that after place and route the user is 

able to access the cores and capture signal data on-chip, in real-time. Captured data is 

sent off-chip for analysis, via either a high-speed parallel or USB programming cable. 
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The ChipScope Pro tool consists of three components: the Core Inserter, the Core 

Generator, and the ChipS cope Pro Analyzer. 

SignalTap 11 [53) from Altera is a system tool that captures and displays real-time 

signals in a system-on-a-programmable-chip (SOPC) design. By using a SignalTap 11 

Embedded Logic Analyzer (ELA) in systems generated by SOPC Builder, designers 

can observe the behaviour of hardware (such as peripheral registers, memory busses, 

and other on-chip components) in response to software execution. 

Another major player in this area is Agilent who offers a big variety of hardware 

and hybrid monitoring solutions. The Agilent FPGA dynamic probe [54), used in 

conjunction with an Agilent logic analyzer, provides access to internal signal of the 

FPGA. It is possible to measure up to 128 internal SIgnals for each external pin and 

measure a dIfferent set of internal signals without design changes. FPGA timing stays 

constant when you select new sets of internal signals for probing. 

The TA-700 [55) PCI bus analyzer/exerciser from Catalyst is another logic analyser 

that applies performance, workload and timing analysis of the PCI bus. The PCI850 

System AnalyserlExerciser [56) bus-analysis diagnostic tool from Silicon Control and 

the PI-PCI32E PCI Bus Analyzer [57) from Corelis are similar type oflogic analysers 

with small differentiations in their GUIs. The DiaLite Platform [58) (Temento Systems) 

allows the designer to embed system assertions and conditions written along with the 

system specifications before synthesis and check them in real tIme. While the system 

design is running, the assertion checker venfies the properties in real-time. A property 

faIlure will trigger a process and open the corresponding debug interface with all 

properties verification details. 

MAMon [59) is a system that integrates a small hardware component into a SoC 

topology. It works like a probe, either by listening to logic- or system-level events in a 

passive manner, or by being activated by software that writes to a specific register. 

Detected events are time-stamped and sent via a link to a host-based tool environment 

where the events are stored in a database. The tool environment includes a set of 

facilities to view, search, and analyse the events in the database. 
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Discussion 

All these tools are specifically designed for verifying, testing and debugging system 

behaviour as well as for detecting and fixing bugs throughout the design process, rather 

than for run-time system monitoring. The work presented in this thesis is related to the 

implementation of a hardware on-chip module, embedded in a PC architecture for 

monitoring the transactions activity and detect potential erroneous conditions. The 

module does not interfere with system performance and ensures timely detection of the 

errors without requIring manual intervention. The goal is to prevent the propagation of 

an error in the system and thus to prevent possible system failures, by using passive 

(and occasionally active) control and reconfiguration of the execution environment. 

3.2 Reconfigurable computing and programmable networkine 

As it is obvious from the discussion which was made in the previous chapter, 

FPGAs can deliver various tasks as parts of embedded systems in telecommunication 

platforms; they are able to adapt hardware in response to changes in processing 

environment and to develop processmg elements for network protocols that change 

frequently. One very wide spread idea is to use FPGAs for implementing fleXIble and 

performance competitive routers or switches for computer networks. 

3.2.1 The P4 architecture 

The Programmable Protocol Processing Pipeline (P4) (60). [61) exploits the 

dynamic re-configurability of RAM-based FIeld Programmable Gate Arrays (FPGAs) 

to provide both hardware performance and dynamic functionality to network 

components. Forward error correction (FEC) was used as an example of a protocol 

processing function. The measurements showed that the P4 improVed TCP performance 

in a noisy environment. Another import aspect of the P4 research concerns the -first 

ever- definition of the possible security threats of a networked FPGA-based system 

[62]. The security analysis focuses on attacks at the electrical signals level and sets the 

foundations for the discussion about the hardware equivalents of viruses (FPGA 

viruses). 
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Discussion 

This early work in the P4 project is the initial step in the "new world" of the 

networked reconfigurable computing. This project envisions the future potential 

security threats for the FPGA-based critical systems, as far as the low-level signal 

attacks are concerned. Hardware bugs, application-level errors and resources misuse are 

not included in this study. The mechanism that will counteract against the signal-level 

secunty threats includes only standard computer network security precautions. P4 

project does not propose a permanent embedded monitoring solution to prevent system 

failures. 

3.2.2 The Field-programmable Port Extender (FPX) 

Significant work in the area of reconfigurable computing applied to Active 

Networks and other similar network topologies has been accomplished in the Applied 

Research Laboratory at Washington University (St. Louis). Numerous publications 

were produced using the FPX as the test platform. The Field-programmable Port 

Extender (FPX) [63]. [64] is a general-purpose, reprogrammable platform that performs 

data processing in Field Programmable Gate Array (FPGAs) hardware. Data packets 

can be actIvely processed by user-defined, reprogrammable modules as they pass 

through the device [65], [66]. The hardware-based processing allows the FPX to 

achieve multi-Gigabit per second throughput, even when performing deep processing of 

the packet payload. Results have also been delivered [67], [68]. [69] using the partial 

reconfiguration features of Xilinx [70]. The FPX project has also offered recently a 

number of publications concerning FPGA-based TCP-IP packet processing for security 

purposes (TCP flow processing, header processing, payload scanning) [71]. [72]. In 

more detail the work involves standard network security countermeasures implemented 

in FPGAs including encryption, data integrity checking and sequence number 

venfication, integrity and authentication of control messages sent over the public 

Internet etc[73]. [74]. 

Discussion 

The thriving Applied Research Lab has a considerable contribution in the 

reconfigurable computing field with extensive applications in the programmable and 
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active networks. Their work is built around the Field Programmable Port Extender 

aiming to accelerate the network functions of a switch/router with the help of FPGA 

devices. The results therefore concern this specific custom-buIlt platform. The security 

framework is limited to standard computer network security methods and algorithms 

that are implemented in hardware. Thus, it enforces the intrusion prevention 

mechanisms but without any reference to concurrent error detection techniques. 

3.2.3 ANN - Active Network Node 

ANN is a hardware-based reconfigurable router designed to support high 

performance active applications (75). The platform uses a general purpose 

microprocessor and a Field Programmable Gate Array (FPGA) on every port of a 

switch backplane (ATM gigabit switch). The microprocessor and FPGA architecture is 

caIled the processing engine and it can be programmed on-the-fly. The microprocessor 

task is to manage the packet functions, while the FPGA implements performance 

critical functions in hardware. Functional details concerning the execunon environment 

(DAN) and the operating system kernel are given in (76) (77). The system is tested with 

an active multicast video application. 

Discussion 

This project demonstrates practical evidence for the performance acceleration of an 

FPGA-based reconfignrable platform. The system is used as part of an Active Network 

and therefore it is a useful source of information that helps us understand the 

performance and security requirements of such a critical computer network 

3.2.4 AMnet 

The goal of AMnet (78), (79) is to provide customized multi cast services on 

demand, thus to provide a framework for a flexible open communication platform. 

AMnet is based on active and programmable networking technologies and uses active 

nodes (AMnodes) within the network. These AMnodes execute on-demand loadable 

service modules to enhance the functionality of intermediate systems without the need 

of long global standardization processes. An error control policy is applIed for 

preventing network overload conditions. 
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Discussion 

This project is another example of how FPGAs are used in a networked 

reconfigurable system. The error handling features of this system provide QoS and 

error control in a communication link of an Active Network . 

. 3.2.5 Further similar research 

This paragraph is a synopsis of the remaining research concerning FPGA-based 

configurable computing targeting various network topologies. PLATO configurable 

architecture [80] has been desigued and built in order to serve as a platform for 

experimentation with active networks. This architecture provides 4 physical bi­

directional connections for ATM networks with large reconfigurable resources. 

Detection of Denial-of-Service (DoS) attacks and real-time load balancing for 

ecommerce servers were the most interesting applications tested in PLATO. Another 

interesting reconfigurable architecture is presented in [81]. Active networks are used as 

the host platform and performance evaluation quantify the overheads of the system 

throughput. The researchers in [82] introduce a fully-automated fault recovery 

system for networked systems which contain FPGAs. If a fault is detected that can not 

be addressed locally. fault information is transferred to a reconfiguration server. 

Following design recompilation to avoid the fault, a new FPGA configuration is 

returned to the remote system and computation is reinitiated. Although this research has 

many abstract similarities with the work undertaken in this thesis. the main target is to 

locate speCific permanent interconnect and logic faults in an FPGA devices. 

3.3 Remote FPGA (re)configuration 

The ability and the implications of implementing a system for network-based FPGA 

reconfiguration has been attempted in a number of projects. Early work in 

programming reconfigurable hardware through the Intemet is presented by G6mez et al 

[83]. In [84]. an FPGA in a remote system takes the place of a standard network 

interface. The FPGA is capable of downloading new services and upgrades from the 

network. In [85]. a centralized job management system for reconfigurable computing 

systems is described. These systems are reconfigured over a network using job 
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scheduling. A series of standard job management systems and monitor of the resources 

are analyzed. In (86), an FPGA-based system is directly connected to the Internet. Both 

FPGA configuration and application data are transferred to the FPGA via the network. 

In (87) the research effort focuses on the implementation of an Active Network with 

programmable logic support in order to accelerate the applications. The framework 

includes software modules scheduling and real-time resource monitoring. Also, the IP 

stack has been modified in order to comply with the Active Networks concept. This 

project received considerable support from the writer of this thesis and thus more 

information concerning its specific details are given in Appendix I. 

3.3.1 XiIinx - Internet Reconfigurable Logic URL) 

The major programmable logic manufacturers have also introduced system 

solutions for the remote reconfiguration of FPGAs. Internet Reconfigurable Logic 

(IRL) (88) is a system design methodology that enables modification and upgrading of 

hardware and software in a target system across a network without the need for a 

service technician or user to directly perform the change. This methodology, when 

applied to the design process, creates products that are IRL-enabled. IRL can enable 

upgrades of multiple systems simultaneously, and the ability to go back to a previous 

configuration if necessary. This interesting rollback! property of IRL provides 

reconfiguration to a stable state. The system includes a fully customisable API called 

PAVE (88) which is part of the VxWorks real-time operating system. 

3.3.2 Altera - Remote system configuration 

Altera has developed a similar concept for the Stratix FPGA family devices. Using 

remote system configuration (89), a Stratix or Stratix GX device can receive new 

configuration data from a remote source, update the flash memory content (through 

enhanced configuration devices or any other storage device), and then reconfigure itself 

with the new data. On power-up in remote configuration mode, the Stratix device loads 

! Rollback IS the ablhty to revert to a previous upgrade (pOSSIbly the Default). In a system that has space 
for more than two configuratIOns, (e g uSing a commodIty flash chip), It could rollback to a known good 
upgrade that was preVIously Installed 
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the user-specified factory configuration file, located in the default page address 000 in 

the enhanced configuration device. After the device configures, the remote 

configuration control register points to the page address of the application configuration 

that should be loaded into the Stratix or Stratix GX device. If an error occurs during 

user mode of an application configuration, the device reloads the default factory 

configuration page. 

3.3.3 Triscend E5 - Secure remote updates 

Tnscent (which was acquired from Xilinx) has implemented a secure remote update 

system using configurable System-on-Chip devices. The Triscend E5 Configurable 

System on Chip (CSoC) [90) device is able to host downloadable applications from the 

internet; it contains both programmable hardware and an industry standard 

microcontroller. The system is equipped with integrated cryptography techniques 

providmg by this way tools that help to prevent accidental or malicious installation of 

incorrect updates via download. 

3.3.4 Hardware Objects Technology Manager 

The HOTMan platfonn [91) enhances the development, design and control of 

bitstreams in an embedded system. HOTMan enables bitstream management and 

remote hardware upgrading using C++ and JAVA programming languages on 

WindowsIDOS or LinuxlSolaris Operating Systems. HOTMan treats the programmable 

hardware as an object within the system, similar to software objects used in C++. As a 

result, applications that are written using C++ tend to be object oriented, modular, and 

upgradeable. The remote FPGA configurations are capable of total or partial 

reconfiguration of single or multiple FPGAs via SelectMAP or IT AG ports. HOTMan 

represents a method for flexible and reliable remote upgrades including features like, 

secured and compressed bitstream files. 

Discussion 

The remote hardware configuration platfonns introduced concepts that are related 

to the security aspects, as described in Chapter 4. Useful specification concerning 
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requirements and architectural implications were also considered (Le. the roll-back 

mechanism for safe reconfiguration of the FPGA device in the Xilinx IRL system). In 

most of these projects there is reference to the security issues that are raised (Le. mainly 

reverse engineering, intrusion detection, misuse of the local and network resources etc). 

However, there is a limited or inefficient implemented work that provides answers to 

these problems (Le. the security countermeasures are limited only to the secure 

downloads of a bitstream in the FPGA device). Moreover, these systems/projects touch 

only a relative small portion of the spectrum that concerns error detection, concurrency 

issues, availability, operability etc. 

3.4 Relation to the work ofthis thesis 

The different research efforts presented in this chapter, focus on different aspects of 

FPGA-based reconfigurable computing. Various projects use FPGAs in order to 

accelerate the performance of systems and some particular aspects of security and on­

chip monitoring of real-time systems are covered. There is also significant research that 

proposes methods and tools for confronting transient errors, errors that are produced 

from radiation or other random factors in the Iow-level wire connections of the FPGA 

[92). [93). However, there is no previous work on the application-layer -monitor and 

control- domain of critical FPGA-based systems (Le. a robust monitoring and control 

mechanism for achieving the reqUIrements of security, fault tolerance and failure 

prevention). Table 3.1 is a summary of the indicative research work that is related in 

different contexts with the research and implementation targets presented in this thesis. 

The research goal in this work is different and at the same time complementary to 

the general context that was formed so far by the academic research and the 

commercial solutions/platforms. The aim is to confront the errors that are caused by the 

non-predicted behaviour of the configured application in FPGA devices. This can 

include inherent programming bugs, misuse of the available resources, security 

violations, illegal accesses etc. The implementation of the monitor and control 

component targets dependable computer-based systems (Le. pes). The foundations of 

an Active Network were used as a real-world system of this type, in order to obtain the 

necessary architectural design requirements and limitations. 
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Table 3.1: Overview of the related research. 
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CHAPTER 4 

Motivation and F:ralDewo:rk 

This chapter describes the motivation for carrying out research in the emerging field 

of concurrent on-chip monitoring and control of critical FPGA-based applications. It 

includes a general discussion of how to design a computer system, taking into account a 

variety of general security concerns. Also it provides a complete analysis of the 

particular components (i.e. security framework, policy framework) that have to be 

integrated in the system or in similar topologies, in order to provide maintainability. 

The main goal of this research is the timely detection of errors, in order to prevent 

system failures. For this reason, it was decided that the monitoring and the control of 

the configured applications has to be realized through an embedded module; the latter 

should be integrated passively in the execution environment (PeI-based FPGA board) 

and should also be able to apply a per-cycle, policy-based monitoring. The selection of 

the appropriate type of monitoring (i.e. software, hardware or hybrid), the need for 

concurrent detection of errors and other implications are also discussed in this Chapter. 

4.1 Processing power versus flexibility 

A significant introductory goal of the implementation stage was not only to propose 

a processing platform for delivering efficiently the research results, but to justify this 

selection as well. Hence, it was fundamental for the research deliverables of this work 

to define an architecture that WIll both satisfy the research goals and the need for 

innovation and originality. The research scenario that was adopted is not limited in the 

selection of a dependable computing system, but also in the use of a state-of-the-art 

processing platform for the applications. Both performance and flexibility requirements 

had to be satisfied. Therefore, many different solutions were analysed; FPGAs were 

from the beginning the obvious candidate. The reasons for using an FPGA-based 
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platfonn as the execution environment for the applications are stated in this chapter. It 

is clear that this section is based on common issues concerning application processing 

and computational complexity. The short review that follows underlines the 

significance and the potential of the FPGAs in application processing systems. 

A system for processing applications has efficient computational power if it could 

be identified, among all typical and reasonable applications, the one that requires the 

most computational power. If a system can accommodate data traffic of this application 

at full link speed, one can safely assume that there is enough computational power to 

host any other reasonable application. The link speed between peripheral cards and the 

host microprocessor in a PC is restricted from the throughput of the PCI bus. The PCI 

bus can have one of the following modes of operation: 

• 32 bit 133 MHz, link speed = 132 Mbytes/sec 

• 
• 
• 
• 

32 bit 166 MHz, link speed = 264 Mbytes/sec 

64 bit 133 MHz, link speed = 264 Mbytes/sec 

64 bit 166 MHz, link speed = 528 Mbytes/sec 

64 bit/133 MHz, link speed = 1064 Mbytes/sec 

Application Specific Integrated Circuits (ASICs) are specially built ICs optimised 

for achieving maximum perfonnance under certain conditions and for executing certain 

computations, and thus they are very fast and efficient. However, once the circuit is 

fabricated it cannot be altered. To alter a functionality of a given ASIC, redesign and 

re-fabricate the chip is required. Although the unit cost of an ASIC is fairly cheap, the 

fabrication process is very expensive and time consuming. Another drawback is the fact 

that all the existing ASICs, which are to be upgraded, have to be replaced. Traditional 

network nodes (e.g. routers, switches) are based on ASICs. 

A more flexible solution is the use of software-programmed microprocessors. 

Processors perfonn a computation when they execute a set of instructions. Changing 

the instructions the system is altered without changing the hardware. However the cost 

of the flexibility is lower performance, if not in the clock speed then in the work rate. 

An inflexible feature of microprocessors is that their instruction set is defined at their 

fabrication time. 
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In order to adapt to new protocols, services, standards, and network applications, 

many modern routers are equipped with general purpose processing capabilitIes to 

handle (e g., route and process) data traffic in software rather than dedicated hardware. 

The implementation of network processors is a quite chaIlenging area. Network 

processors distribute the computational processes over several processors (e.g. from 

two to sixteen). The advances of VLSr technology resulted in network processors, 

which have multiple processors, with cache and DRAM on a single chip, reducing by 

this way considerably the memory access latency. The network processing of 

applications is divided in two categories. The first include header processing 

applications and the second payload processing applications. Payload-processing 

applications access and possibly modify the contents of a packet during network node 

processing. Therefore they have a considerable computational complexity as is shown 
, 

in figure 4.1. Computational complexity can be defined, as the number of instructions 

per byte required for an application operating on a given packet length. 

Computalional 
(,om Xlty 

encryptlon 

media 
transcodmg 

automatIC protocol 
deployment 

rehable multicast 

TypKal 
band\\Jdtb 

Figure 4.1: Bandwidth and computational complexity of some applications [94J. 

For a bit intensive application like on-the-fly encryption, with a link bit rate ofRlmk 

= 132 MB/sec (the slowest pcr throughput), the computational complexity N can be 

204 instructionlbyte according to [95). The header-processing ovedtead for the data 

stream can be ignored since payload processing dominates the computational 

. mstr 6 bytes 
compleXIty. Hence: M = N *Rlmk= 204 --* 132* 1 0 --= 26,928 MIPS 

byte sec 
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It is clear that a standard RISC processor by itself is sufficient for header processing 

at link speed, but will not provide adequate computational power for tasks that perform 

payload processing. The use of vector processing techniques for streaming applications 

(Le., embedded vector processors) or multiple parallel superscalar or VLIW processors 

on a chip are promising approaches to achieve link-speed payload processing. 

However, FPGAs stand in the middle of hardware and software solutions and can 

be considered the optimal candidate for a series of applications. While processors 

divide computations across time, the programmable logic devices like the FPGAs 

divide them across space (figure 4.2). Being far more flexible than hardware platforms 

like ASICs, and having considerably better performance than software, FPGAs give an 

answer to the technology gap. 

tt-x 
t2-x·A 
a-t2+B 
u=u*t1 
)=t2+c 

y=Ax'+Bx+C 

Temporal computation Spatial computatIOn 

x 

y 
Figure 4.2: temporal versus spatial computation 
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"Hard-wiring" a variety of IFs that are closely coupled with a microprocessor and 

programmable logic as well, the advantages of hardware and software platforms are 

combined. The result is a System-Qn-Chip (SoC). Hence a technology fusion is 

accomplished. It is obvious from both figures that the bit-intensive applications should 

be implemented in a hardware-based solution. 

As the VLSI technology progresses, the capacity and the performance of the FPGAs 

increases, making them even more attractive for a variety of applications and 

architectures. FPGAs performance increases in a pattem that follows Moore's La~. 

2 Moore observed an exponentIal growth m the number of tranSIstOrs per integrated cirCUIt and predIcted 
that thIS trend would continue. Moore's Law, the doubhng of tranSIStors every couple of years, has been 
mamtained, and stdl holds true today. 
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The FPGA constraints are related to the area utilization, the in-system programming 

times and the liD requirements. The table that follows is a synopsis of area utilisation, 

performance, and I/O metrics, taken from several applications notes from XIiinx: 

Application Family example device Fmax (Mllz) Slices lOB 
ADPCM, 1024 Channel SImplex Vlrtex-II Pro, XC2VP20-7 56 2753 69 

[961 Vlrtex-II, XC2V3000·6 51 2824 69 
e·Dlscrete Cosme Transform (97) Vtrtex, XCV200-6 66 1,772 23 

Virtex-E, XCV200E-8 83 1,769 23 
Virtex·II, XC2VI 000-5 83 1,802 24 
Spartan-II, XC2S200-6 76 1,772 23 

Spartan·IIE, XC2S300E-7 63 2,220 23 
JPEG Encoder (98) Spartan-3, XC3S40004 54 6192 151 

Virtex-II Pro, XC2VP20-6 106 6146 151 
Vlrtex-Il, XC2VI500-6 95 6153 151 

MPEG·2 HDTV I & P Encoder Vlrtex-II, XC2V3000-5 111 6508 113 
[991 Vlrtex-II, XC2V3000-5 111 5540 58 

MPEG4 VIdeo CompressIon Spartan-3, XC3S1 0004 58 2997 235 
Encoder (100) Vlrtex-II Pro, XC2VP7-7 85 2991 235 

Virtex-II, XC2VlOOO-6 78 2979 235 
MPEG4 VIdeo CompressIOn Spartan-3, XC3SlO004 62 1351 215 

Decoder (101) Vlrtex-II Pro, XC2VP7-7 82 1352 215 
Vlrtex-II, XC2VI 000-6 75 1350 215 

Tnple DES Encryptton (102) Spartan-3, XCV3SIOOO4 101 790 301 
Spartan-lIE, XCV2S300E- 117 790 301 

7 165 705 301 
Virtex-Il Pro, XC2VP7-7 182 705 301 
Virtex-II, XC2VlOOO-6 125 790 301 
Virtex-E, XCV300E-8 

AES Fast Encryptton (103) Spartan-3, XC3S1500-5 119 447 391 
Spartan-lIE, XC2S400E-7 79 499 391 
Virtex-Il Pro, XC2VP20· 7 217 447 391 

Virtex-II, XC2VIOO0-6 170 447 391 
Table 4.1: Implementation details for several FPGA-based applicatIOn implemented. 

Even the most bit intensive applications, such as media transcoding, can be 

efficiently implemented in the available FPGA devices as it is proved from the results 

of table 4.1. The parallel and concurrent nature of the FPGA processing ensures high 

performance (figures 42,4.3 and table 4.1). It can be claimed that hardware platforms 

based on FPGAs enable packet processing at link speed. As a general conclusion (and 

with reference to the previous figures), it can be claimed that it is more "profitable" to 

implement bit intensive applications and algorithms in FPGA devices rather than in 

ASICs or general purpose and special purpose microprocessors. 
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To summarise, it is important to point out that there is a constant increase in the 

demand of processing power in order to meet the challenges of the ever-growing 

electronic market. Some indicative reasons are given below: 

• The growth of the internet [104). 

• The increasing use of electronic equipment and especially computers, mobile 

phones and other electronic "gadgets". 

• The increasing number of users of high technology products. 

• The continuous introduction of new complex application and technology services. 

• The constant demand for applications, systems and services that deliver higher 

performance. 

The increasing number of users, applications and services that are open in the public 

domain creates security risks and thus new processing-consuming security policies and 

protocols have to be introduced. 

4.2 Active Networks - a critical computing system 

The theoretical background of Active Networks was covered in Chapter two. This 

section is an analysis of the apparent security implications which are involved with the 

definition and connotation of Active Networks. 
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Active networking supplies the users with the ability to download and execute code 

within a node. That is by its nature a security critical activity. In such an infrastructure 

the security implications are far more complex than in current static environments. In 

Active Networks the author of the active code, the user who deploys it, the owner of the 

nodes' hardware and the owner of the execution platform can be different entities 

governed by different security policies. In such a heterogeneous environment security 

becomes an extremely sensitive issue. The possibility of loading and executing active 

code in Active Network Nodes imposes considerable threats on the expected operation 

of the nodes and/or the network due to flaws in active code, malicious attacks by 

unauthorized users, conflicted code execution etc. Thus, security in Active Networks 

deals mainly with protecting the system (in~structure) from malicious (unauthorized) 

and erroneous use. The objective for the security architecture in this work is to 

guarantee robust/secure operation of the computing infrastructure despite the 

unintentional or intentional misbehaving of the applications. Fulfilling these objectives 

is fundamental for the usability, integrity and trustfulness of the system. Furthermore, 

an unintentional error in the design of a new network service, its implementation 

(active code), or its configuration can degrade performance of the critical system. 

Finally, a malicious or unintentional misbehaving of an application can severely 

degrade or even disable the network services perceived by other user(s) of the critical 

system. It is clear therefore that the Active Nodes (Le. Active Router) are more 

susceptible than those in current passive networks. Several scenarios of misuses 

concerning applications or services could be realised in Active Networks: 

• Misuse of an active network node by an active application. 

• Misuse of an active application by other active applications. 

• Misuse of an active application by an active network node. 

• Misuse of an active application and/or execution environment by the underlying 

network infrastructure. 

• Misuse of the Active Network as an entity 

Finally a combination of the above categories is possible. These kinds of attacks 

(the complex and collaborative ones) are very difficult to detect not to mention prevent 

or be effectively tackled. Classical examples include the co-operation of various hosts 
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against another Active Node or Active Application. Threats can also be analysed from 

the perspective of a single Active Network Node, and from the network-wide 

perspective. Of course, threats to a single node apply also to the whole Active Network 

(domain). However, network-wide threats can be more subtle and harder to combat, 

since they are based on the global, distributed nature of network protocols, and thus, 

their respective active codes. The scope of the initial security framework is hmlted 

mainly to the first and last category. 

The standard design flow for providing security to Active Networks (actually to 

Active Nodes like an Active Router) is given below. 

When a packet containing executable code arrives at a node, the system must: 

• Accept the authenticity of the credentials of the packet, 

• Identify the sending network element, 

• Identify the sending user, 

• Authorize access to appropriate resources based on these identifications and 

credentials, 

• Allow execution based on the authorizations and security policy, 

• Momtor and control access to system resources throughout the execution, 

• If needed, encrypt the packet to protect its code and data in transit. 

A reference monitor may be used to restrict the information, system resources and 

servtces that active applications are allowed to access and use. The reference monitor 

consults a security policy to determine if access is to be granted. Since access-level 

monitoring places restrictions directly on what an application can do, it is an effective 

method. However, the decision of granting permission for using some resources is 

based upon some credentials whIch are not able to gnarantee that a packet is harmless. 

The contribution of this thesis focuses in the monitor and control domain, which so 

far has only been implemented in software space. For the reasons quoted in sections 

2.2, 2.3, 2.4.4, and 2.6.3 it is apparent that the monitoring and control in a system like 

an Active Network must be delivered in a concurrent mode, especially when the 

execution enviromnent of the application is a FPGA device. This is secured by using a 

dedicated, embedded hardware monitor. 
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The general research requirements were already quoted in section 1.1. One of those 

was to select and study the properties of a real world critical system, based on a 

computer architecture. Active Networks are subject to "firm" time deadlines; they also 

demand that the Active Applications practice a fair utilisation of the host resources, 

they require high levels of integrity, availability and reliability and they have also 

security as well as performance requirements (see section 2.7.5). Their basic 

experimentation platform can be based on PC hosts. Therefore an Active Network or 

better a PC-based Active Router satisfies the above research/design property. 

Considering also the current mfrastructure, expertise and the know-how at 

Loughborough University [87) as far as the Active Networks are concemed, this 

particular system was an appropriate selection. The structure, properties and 

requirements of an Active Router were studied in order to deduce useful design 

demands that will enable the implementation a robust monitor and control module that 

it can be reused as a generic component in various critical computing systems. 

4.2.1 The security context 

The target topology, which will be examined comprises of an Active Router (or 

Active Node). This is a PC-based router that carries a PCI board with one FPGA device 

dedicated for applications that need a bit intensive processing environment (figure 4.4). 

Code 

.... 
• 
: Active 

Processing 
• Engine 

----_# 
Figure 4.4: An Active Network WIth a reconfigurable processmg engine. 
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Following the Active Network design approach, the Active Packets [87[ may have 

one of the following operation modes: 

1. In the first scenario the Active Packet has a pointer to a certain applicatIOn (IF 

core). The requested application is stored either in the Active Router or in a 

different location (e.g. a Code Server [105)). The Active Router detects and 

processes the Active Packet so as to serve the request. The requested application is 

then configured in the hardware platfonn. The Active Router forwards the user's 

data to the PC! card, so as to be processed by the Active Application. 

2. In the second approach, several Active Packets carry a configuration bitstream and 

data in their payloads. The Active Router detects and processes the Active Packets 

so as to serve the request. This processing stage includes authentication of the user, 

and integrity checks. The application is then configured in the target FPGA board 

and in the following stage the host transfers the user data. 

The Active Packets are identIfied as active when the Active Router processes their 

header infonnation (see also Appendix I). The Active Router then decides whether to 

download the new configuration bitstream in the FPGA device or not, depending on the 

current activity on the FPGA board. Apparently, as already stated in the previous 

sections, the new configuration can potentially extend and modify the network 

infrastructure. The routing and the forwarding of the packets are vital processes of an 

Active Router and must not be mterfered with, by any means since their maintenance is 

important for the viability of the network. Moreover, the operability of the routers is 

critical to the proper and correct running of many other important systems and services. 

Therefore, an Active Network system designer should consider new possible threats on 

top of the already existent network security issues. 

The security threat model has to be identified, considering all the platfonn-specific 

characteristics and requirements. The analysis of the security context that applies to the 

platfonn used for this research is based on how the basic packet functions of an IF 

network could affect the services, integrity and perfonnance of the system (or simply, 

the dependability of the system). Therefore, a set of potential threats (and their possible 

impact to the host computer) was identified. 
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4.2.1.1 Packet replication 

Replication of packets occurs in many different instances inside the context of a 

computer network in order to deliver specific services (i.e. multicasting). If an 

application that is configured in the FPGA device of the platform replicates packets in 

an uncontrolled manner or with malicious intentions, then as a consequence a side­

effect could result in contention of the PCI bus; thus leading to degradation of the 

services that the Active Router offers. Although this function is not necessarily 

considered to be malicious, it can even result in Denial of Service (DoS)3. Hardware 

versions of "hoaxes" and "viruses" could deliberately replicate packets. 

4.2.1.2 Packet corrnption 

There are various situations that can result in the production of corrupted packets 

(i.e. packet loss, communication channel noise, congestion, low QoS etc). The impact 

of packet corruption on the reconfigurable platform could be multiple PCI retries, 

aborts, disconnects and terminations. In a similar way to packet replication, these 

events are not necessarily treated as malicious. However, deliberately corrupted packets 

may lead the system in a computational loop. In the worst case scenario a configuration 

bitstream that targets the FPGA platform, could be intercepted and modified when it is 

sent through a public computer network. Packet corruption may result in retransmission 

of packets and therefore in delays for system functions and in an extreme scenario it 

can cause the hang-up of the system. 

4.2.1.3 Packet damage 

This type of failure can either be the result or the cause of a system misuse. Packet 

damage can be realised when an active packet destroys or changes the resources or 

services of a node by reconfiguring, modifying, or erasing them from the memory. 

Hence it can be connected with illegal accesses to restricted memory areas. A node may 

3 DenIal of Servtce· An acttve packet may overload a resource or servtce due to constantly consunnng 
network connecttons or usmg a great portion of the CPU cycles avatlable or by causmg bus contentton. 
The node cmmot functton properly under these circumstances and another acttve packet cmmot be 
executed or forwarded 
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also erase an active packet before the completion of its job in the node. Finally, active 

packets that share the same computational environment may attack each other. 

4.2.1.4 Packet theft 

An active packet may access and steal private information from a node. On the 

other hand, active packets can be manipulated and violated when they anive in an 

Active Node. Even if it is encrypted, it is not totally safe because it usually has to be 

decrypted in order to execute. Packet theft may also result in application hijacking. 

Hardware versions of "worms" as well as hardware version of spyware programs may 

attempt illegal memory reads and memory writes. Reverse engineering may also be the 

goal of packet theft. 

4.2.1.5 Packet transformation 

The packet transformation can be part of the processing sequence of many different 

Active Applications (encryption, compression, coding etc). The impact of packet 

transformation in the PCI-based reconfigurable platform is limited to PCI retries, 

aborts, disconnects and terminations if the core that is configured in the FPGA device 

fails to deliver a service successfully. All the previous PCI transactions events do not 

necessarily constitute errors but they should be treated with suspicion because if they 

exceed some limits they can degrade the performance and affect various services of the 

PC. 

4.2.1.6 Packet fission and fusion 

Packet fission can result in PCI bus contention and DoS, since a fissional node has 

the potential of forwarding more packets than it receives (e g. data decompression). 

Packet fusion is in a way an opposite packet function. It involves the merging of 

different data into a union. It is possible that the application that is configured in the 

PCI-based FPGA board, exercises fusion functions in data; this may result in several 

undesirable PCI events such as persisting disconnects, retries and in the extreme it can 

cause performance degradation of the whole node as an entity. 
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4.2.2 Hardware "bugs" and malicious attacks 

A system fatlure can also be realised by the logic failures of a digital design (or 

hardware bugs), which generate invalid computational cycles. A hardware bug may 

have analogous effects with a software bug; it may lie dormant within a rarely used 

block for a long time until a particular sequence of events satisfies the condition 

required for its activation. Hardware bugs can monopolise the PCI bus, try to read an 

empty memory, try to write to a full memory etc. Moreover iIlegal cycles can violate 

certain rules of a protocol specification and lead the system to "hang up". 

Malicious attacks can also take place. For example an application, which is 

configured in the PCI-based FPGA platform, deliberately activates a mechanism that 

adds noise to the output signals of the core. This could cause PCI protocol errors and 

generate random delays. Malicious attacks can also take place with hardware versions 

of viruses, hoaxes, Trojan horses and spyware programs (as already mentioned in the 

different Active Packet event properties). If the latter malicious attacks are 

Implemented in the heart of the reconfigurable system (i.e. PCI FPGA board) they can 

even have catastrophic results for the node and possibly for other computer entities that 

are dependent on the critical services that the host delivers. Considering also the fact 

that these malicious applications are implemented in FPGAs that have inherent 

parallelism in their operation, it is easy to understand that is even more difficult to 

confront and eliminate the consequences of their activity. 

4.2.2.1 A generic hardware attack scenario 

An application configured in a PCI FPGA device can have full access to the system 

and can communicate with any part of the address space. This means, among other 

things, that an attacker can read or write to the BIOS memory on the motherboard or in 

peripheral hardware. In earlier times, BIOS memory was stored in ROM or in EPROM 

chips which could not be updated from software. These older systems require the chips 

to be replaced or manually erased and rewritten. Since this is not very cost effective, 

new systems employ EEPROM chips, otherwIse known as Flash ROM. Flash ROM can 

be re-written from software. Modem embedded systems often include Flash ROM. A 

given computer can have several megabytes of Flash ROM on various controIler cards 
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and the motherboard. These Flash ROM chips are almost never fully utilized and leave 

lots of room to store backdoor information and viruses. To an attacker, the compelling 

reason for using these memory spaces is that they are hard to audit and almost never 

visible to software running on a system. To access such hardware memory" requires 

driver level access. Furthermore, this memory is immune to re-booting and system re­

installation. If someone suspects a viral infection, restoring the system from tape or 

backup will not help. EEPROM memory is fairly common on many computer systems. 

Ethemet cards, video cards, and multimedia peripherals may all contain EEPROM 

memory. The hardware memory may contain flash firmware or may just be used for 

data storage. 

4.3 Counteract framework 

The threats mentioned in section 4.2.1 do not constitute the complete and absolute 

security threat model for the platform. However, they can be thought as a solid 

introduction and a pathway that helps us to build a robust defence system in an 

incremental way. Table 4.2 is a summary of all the identified Active Application 

functions that can lead the reconfigurable PeI-based FPGA platform to a failure mode, 

as well as the effects and the causes of these failures. Although the causes of these 

faIlures or security "holes" in different critical computing systems may differ from each 

other, the effects of these failures are sharing common grounds between several similar 

computer architectures (i.e. the example systems quoted in section 1.2.5). 

For each of the functions in column 1 of table 4.2, a corresponding effect (or 

effects) were identified and listed in column 2. A failure effect is what the user of the 

critical FPGA PC platform will experience or perceive once the failure 

occurs. Examples of effects include: inoperability or performance degradation of the 

system or process, illegal memory accesses, contention, etc. Aside from its effect(s), the 

potential cause(s) of every listed failure mode must also be enumerated (column 3). A 

potential cause should be something that can actually trigger the failure to occur. 

Examples of failure causes include weak or inefficient design, hardware bugs, hardware 

version of ''viruses'', "warms", ''hoaxes'' and spyware programs, incompatible software 

or hardware functions etc. A severity rating was assigned reflecting the importance 



Using embedded hardware monitor cores in critical computer systems 68 

effect of each error. Each critical system has its own severity rating system, dependmg 

on the nature of its operation and the degree of dependability that it would like to apply. 

The error were grouped in a scale of 1-5, with '1' corresponding to 'no error effect' and 

'5' corresponding to maximum error-severity, such as the breakdown of a public or 

private critical computing system (Le. cost and loss of availability impact). The last 

column presents the event detection effectiveness which the monitoring system intends 

to apply, with reference to the time that is needed in order to prevent the propagation of 

the error and hence a potential failure. 

Application Failure effect Potential failure Severity Detection 
function cause ratillgll-S effectiveness 
Packet • PCIbus Bad design, Event driven 

replication contention network demand, 4 data monitor, 
• Services hardware version gradual 

degradation of "hoax", detection 
• Denial of Service 4'virus" 

Packet • PCI retries, aborts, Packet loss, Concurrent 
corruption disconnects, noise, 4 detection, 

terminations congestion, low event driven 
• System delays QoS, malicious timer 
• System hang-up interception 

Packet • reconfiguring, Malicious attack, Concurrent 
damage modifying, or hardware "bug", 5 detection 

erasing resources hardware "virus" 
from the memory 

Packet • Loss of private Hardware Concurrent 
theft information versions of 5 detection 

• Unauthorised "worms" and 
memory accesses spyware 

• Application programs, 
hijacking reverse 

engineering 
Packet • PCI retries, aborts, Bad design, Concurrent 

transformation disconnects and improper use of 3-4 detection, 
terminations the resources, gradual 

• Loops and System hardware "virus" detection 
hang-up 

Packet • PClbus Hardware "bug", Gradual 
fission/fusion contention hardware version 3-4 detection 

• Denial of Service of "hoax" 
Table 4.2: A synopsIs of the Active AppllcatlOnjimctlons and their effects. 
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Considering the Active Application effects as these are stated in section 4.2.1 and 

the sequence of events that results in a system failure (figure 2.8), all the Active 

Application functions quoted in table 4.2 are treated as potential errors; hence they are 

defined as the sources of instability, low security and low reliability. In critical 

computer systems (i.e. public network systems, private corporation networks etc), a part 

of which could be the Active Networks, dependability and security issues are raIsed and 

thus measures must be taken to overcome the effects of potential failures. The field 

programmable reconfigurable platform that was used applies a set of measures, which 

are divided into four levels of action: 

• Policy-based monitoring, 

• Timely detection of system threats, 

• Error tolerance, 

• Erroneous application removal and stable reconfiguration. 

4.3.1 Policy-based monitoring 

Dependable computer systems demand a policy-based (embedded) monitoring 

component because the standard failure avoidance techniques cannot ensure the high 

dependability requirements of such systems. Failure avoidance techniques aim to 

prevent errors from entering the system during the design stage. A way to apply this is 

to use applications that have already been verified and tested. Failure avoidance is also 

provided if the configuration bitstreams are encrypted with a standard encryption 

algorithm. Custom built cores (i.e. like the ones that Active Networks are supposed to 

host) may realize any circuit that can even physically destroy the target FPGA or other 

embedded components. Therefore, commercial application cores or open source cores 

are considered to be a much safer option compared to the applications implemented by 

unknown users. However, all the applications are subject to failures and hence none is 

considered to be bug-free. This last statement is proved to be true in our everyday 

experience, when verified and tested software or hardware components are 

malfunctioning. 

For this reason, a set of policy rules has to be designed and implemented in order to 

deal with the effects of errors. The policy based monitoring of a critical computing 
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system should be implemented in hardware for the reasons quoted earlier in this chapter 

two. The observability of the target hardware topology is achieved eIther by tapping a 

subset of crucial signals or by tapping all the signals if this is required. These signals 

can be used to form macros and complementary signal groups which are necessary in 

order to build the individual policy blocks. Each one of these blocks is feeding the 

overall policy framework. Next, the signal states are checked for validity according to 

the implemented policies. Comparator logic has to be developed for satisfying this 

design requirement. 

4.3.2 Timely detection of system threats 

The detection of potential threats or errors in critical computing systems should be 

realised while a service is being delivered. In this way, the effects of the failures are 

minimized or eliminated within the operational system. In such systems the pattern of 

monitoring, matching and collecting is impractical and inefficient because these steps 

involve a considerable and very crucial delay for the detection of the potential errors. In 

most of the cases these critical systems require a more solid, efficient and concurrent 

approach for providing protection against application bugs, protocol errors and misuse 

of resources. Therefore, the collecting of data is replaced with a concurrent application 

control mechanism while monitoring and matching are kept intact. The time that an 

error is detected is a critical factor especially if the severity rating of this partIcular 

error is high. An error with severity rating 5 should not propagate to other system 

components because in this case the stability, integrity, security and hence the 

dependabilIty of the whole system is endangered. Therefore, concurrent methods of 

error detection with parallel processing of signal states have to be applied. The most 

common techniques for error detection are: 

• Replication checks: In this case, multiple replicas of a component perform the same 

service simultaneously. The outputs of the replicas are compared, and any 

discrepancy is an indication of an error in one or more components. 

• Timing checks: Typically a timer is started and set to expire at a point at which a 

given service IS expected to be complete. If the service terminates successfully 
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before the timer expires, the timer is cancelled. However, if the timer times out, 

then a timing error has occurred. 

• Run-time constraints checking: This involves detecting that certain constraints, such 

as boundary values of variables not being exceeded, are checked at run time. 

• Diagnostic checks: These are typically background checks that determine whether a 

component is functioning correctly. In many cases, the diagnostic consists of 

driving a component with a known input for which the correct output is also known. 

A concurrent monitor detection component can be designed borrowing features of 

the above mentIoned error detection techniques. Indeed, as it will be described in the 

next chapter, the monitoring mechanism is integrating different controls and methods 

for error detection (Le. applying concurrent or timely detection of errors,) preventing 

the propagation of errors to other functions or services of the system. This requires a 

very good understanding of the flow of information in the system/component that is 

under monitor. 

4.3.3 Error tolerance 

Error tolerance is based on the fact that many digital systems exhibit acceptable 

behaviour even though they contain defects and occasionally output errors. A circuit is 

error-tolerant with respect to an application, if it contains defects that cause intemal and 

may cause external errors, and the system that incorporates this circuit produces 

acceptable results (106). 

In short, a class of errors may only have either local effects or minimal impact to 

the system operability. Thus thIS type of errors at the system outputs and their presence 

in the system can be easily tolerated. The policy exercised in this thesis follows the 

rule: when the severity rating of the failure is lower than five (see table 4.2), then error 

tolerance policy is applied in a realistic basis. Nonetheless, the presence of such errors 

should be detected to evaluate invisible degradation and to make reconfiguration 

decisions in a timely manner. Many digital systems -critical as well as low-end- carry 

out computations where the results do not always have to be "exactly" correct at all 

times. Examples of such systems include signal and image processing, voice and image 
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communication, and robust control systems. In such systems errors either cause no 

degradation or only cause acceptable degradation in the system outputs. 

4.3.4 Erroneous Application removal 

The monitoring mechanisms attempt to isolate a potential system error before this 

enters a service. Some of the errors may endanger the stability of the system. Therefore, 

when a configured application produces errors with high seventy rating, it is considered 

as a potential threat for the operability of the Active Router. As a first defensive step 

the monitoring system should attempt to stop the illegal/unauthorised/erroneous output 

of the configured application locally upon the detection of a predefined error. If the 

erroneous condition is persisting then the monitoring and control mechanism should 

safely reconfigure the FPGA device with a stable application. This should take place 

considering a minimal risk scenario for avoiding contention conditions either in the 

system bus (i.e. the PCI bus) or in a local bus interface. Therefore, it is highly desirable 

to employ dedicated system ports or interfaces, instead of utilising system resources 

(i.e. host handshake, memory transfers), which could lead in a deterioration of the 

erroneous conditions4
• 

Summary 

ThIs chapter presented the development research framework which is the "substrate" 

of the work presented in this thesis. The functionality of dependable computing system, 

such as Active Networks and Active nodes, was studied and a forensic analysis was 

delivered. Thus, the forming of policies and rules was based on architectural 

requirements and speCIfication of programmable networks. 

4 The use of. wrong .ppHcanon-removal and reconfiguranon method of the erroneous apphcation that IS 
configured In • PC!-based FPGA board, could accelerate the potennal system fatlure. ThtS could h.ppen 
tffor example. packet rephcallon error generated by the configured apphcation results In PC! bus 
contention condtnons; USIng. dedicated PC! Interface to remove the erroneous apphcanon and re­
configure the FPGA device WIth • stable one could make the system to ''hang up". 
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CHAPTERS 

Systeln A:rchitectu:re &: Design 

This chapter is a detailed description of how the four-level set of countenneasures 

were actually implemented in hardware. An initial definition of the requirements of the 

hardware platform is given, justifying the decisions for the selection of the individual 

components. The programming and design structure of the policy based monitoring 

together with the predefined rules is given next. A detailed presentation of the internal 

components and modules is also analysed in this chapter. 

5.1 Design issues 

This section reports the reasons for the selection of the hardware platform, 

including an explanation of the requirements and the system limitations, according to 

the available resources. It is also a discussion on the decisions that were made, in order 

to deliver the research results and meet the challenges for building a high-performance 

platform WIth FPGA support that satisfies high level of dependability. 

5.1.1 The hardware platform 

The selection of the appropriate software and hardware for achieving the goals of 

this research was a complicated issue, since many different considerations and 

dependencies had to be taken into account. The selection of the execution environment 

was the first main concern; FPGA devices were selected as the processing environment 

of the apphcations in order to satisfy the performance requirements of the system. For 

this reason, section 2.2 was deliberately extended in order to give a sufficient answer to 

one of the research targets that was set in section 1.1 (Le. define a flexible and high 

performance application-processing platform). The classification of FPGA-based 

custom computing systems includes the following two categories: 
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• FPGAs systems which communicate with general-purpose computers through 

standard serial or parallel communication interfaces 

• FPGA systems which are using a high speed multiplexed data/address/control bus 

in order to communicate with the host. 

Though the implementation of the system can work with both, the second category 

was the specific FPGA system targeted by this research. This type of reprogrammable 

FPGA systems are designed to support a variety of computing applications through 

providing designers FPGA resources, memories, and sometimes other hardware such as 

crossbars, speciabzed interfaces (video, audio, etc.), and even general-purpose 

processors. This type ofFPGA-based custom computing systems are hosted by general­

purpose computers which provide them with programming data and, usually, data to 

process through a peripheral bus such as PCI or SCSI. In addition, they frequently 

provide designers and users with development environments for designing applications 

and controlling the FPGA-based custom computing systems. Early examples ofFPGA­

based custom computing systems include: Splash [107), Splash 2 [108), DecPerLe-l 

[109), Teramac [110), Pamette [111), the Wildforce and Wildstar family of boards 

[112), and the SLAAC family of boards [113). Nowadays the market is flooded with 

several different types of FPGA-based custom computing systems that can satisfy 

almost any design need. 

A PCI board was chosen in order to deliver the required field programmable 

features. An autonomous FPGA development board (i.e. working without the help of a 

host PC) [114) was rejected because of the major issues that were introduced: 

communication link overhead, cross-compatibility with the existent available 

infrastructure, as well as development problems and added developing cost. However, 

the implemented monitor component can be used in this particular FPGA-based custom 

computing system since it can be part of a PCI plug-in card (i.e. many ARM-based 

Excalibur boards have PCI slots). This can be achieved either when a similar 

development board uses an embedded Real Time Operating System (RTOS) or when 

additional logic is implemented in order to add operating functionality. A proof of the 

reusability and the portability of the platform is given by this way. It is clear, from what 

is mentioned so far, that the decision to use a PCI board followed the decision to use a 
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PC as the system host. Although the original idea for taking the above design decisions 

was made having in mind to implement an FPGA-based network-reconfigurable 

embedded system, it is clear that the hardwired monitor and control core, which was the 

outcome of this research, can also be used ID a variety of other PC-based systems. 

5.1.2 The specific properties ofthe PCI board 

Next, the remaining components that will comprise the FPGA-based PCI board had 

to be defined according to additional factors and requirements that constrained the 

implementation options. Thus, the selection of the individual hardware and software 

components had to be justified with reference to the target topology. After careful 

consideration of the design issues, the available resources and the technology reuse 

considerations, a commercial PCI board was chosen. Therefore, the system was 

selected in such a way in order not to depend on a custom-built prototype but in free-to­

access commercial boards. Moreover, as it will be explained later in this Chapter, the 

design of the system was kept simple. This can help the easy adaptation and integration 

of this work on currently available commercial products. It is also a practical way to 

reuse the current technologies without the need to improvise or design solutions that fit 

only to the exact specifications of this implementation. 

A final important task was to define the specifications of the PCI board as far as the 

needs for programmable logic are concemed. The PCI board has to carry two FPGA 

devices in order to comply with the following requirements: 

• The user applications must be able to use as large FPGA area as possible. 

• The physical separation of the hardware modules (i.e. PCI core, monitor core, user 

applications) is needed in order to apply more distinctively the security and error 

detection policy as well as manage the system without complex overheads (i.e. 

scheduling mechanism for partial reconfiguration). 

• The application monitor core has to be hardwired in an FPGA and should not 

interfere WIth the system processes. 

• A PCI-based board with one FPGA that hosts both the PCI core and the user 

application will result in rebooting the host computer each time the user application 

needs to be reconfigured. This can be avoided either by using partial 



Using embedded hardware monitor cores in critical computer systems 76 

reconfiguration features of modem FPGAs or by using a multiple FPGA board. The 

use of partial reconfiguration, apart from the many other overheads that introduces, 

it would have made the research and development work dependent on this particular 

technology, which is promoted only in specific Xilinx FPGA devices. 

• Both the local side signals of the PCI core and the registered versions of the PCI 

bus signals should be accessible. The PCI core has to be a soft-core in order to 

enable us to integrate the monitor core, without interfering with its operation. 

Obviously this is not possible if the PCI core is implemented as an ASIC. The soft 

PCI core has also the advantage of being more flexible having a reasonable degree 

of customisation. 

Also, the PCI board is required to have a flash type of memory in order to store 

locally an application that can play actively the role-back mechanism; in case of an 

error detection the application can be used in order to reconfigure the system and 

resume a stable condition for the critical computing system. Reconfiguration has also to 

be achieved via the JTAG port, which anyway is considered to be a standard 

communication interface in almost all the FPGA-based boards. The choice of the entity 

to be monitored was made bearing in mind the following issues: 

i) When the application that is configured in the target FPGA device produces an 

error, which may lead to a system failure, there must be enough time available 

(clock cycles) for counteracting, 

ii) The monitoring of the transactions should utilize a well-known communication 

standard, protocol or topology. 

hi) The security model of the Active router requires a per-cycle basis monitoring 

(software based solutions are insufficient in this context). 

iv) The monitoring realisation must be as SImple as possible and should not interfere 

with the operation of other functional components (i.e. other configured IPs) or 

applications. 

FPGA-based hardwired logic can be developed to monitor the functionality of the 

system components in real time. 

There are many different available commercial boards (115), [116), [117) in various 

configuration topologies that can satisfy all the design needs described so far. 
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Considering all the requirements and restrictions that critical systems have, the FPGA 

board environment could be realized with the potential board layout shown in figure 

5.1. 

PClbus 
.-----~ ~---------------------------4 

§~~~~----------------------------

.' , Error Detection 
~ l!.1onitor Unit 
• __ "noL>o_~~~~~'-'- ~_ , 

ServiceFPGA 

~~ Select Logic < iii 

Configuration ~--.&.I ~ ~ 
~ ____ ~~~~ __ ~(CP~L~D~~~ u 

FLASH 

I PCIBOARD 
-------------------------- ______ 1 

Figure 5.1: The reqUIred reconfigurable target components. 

An embedded component, permanently configured in one of the two FPGAs of the 

PC! board (i.e. service FPGA), acts as the system Error Detection Monitor Unit 

(EDMU). As already mentioned, the specification of the components (Le. number of 

FPGAs, communication interface, flash memory) was identified after taking into 

account many practical aspects concerning the effective implementation of the 

reconfigurable platform. The board has one FPGA that hosts the PC! core and the 

EDMU, and a second FPGA that hosts the user applications. The idea of implementmg 

the error detector monitor unit in the user application FPGA is not practical, because in 

this case every IP core (application) must integrate the error detection monitor unit as 

part of its design. Furthermore, the smgle-FPGA implementation of such a system will 
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imply the hard restartS of the hosting PC every time a new application configures the 

FPGA device; this, obviously, is the result of reconfiguring the PCI core of the board 

together with the new application.6 Therefore, this design scenario does not meet the 

scopes and the goals of this project. It would be a different way to apply the same 

scheme but it introduces an undesirable design and structure overhead. 

The implementation of a novel core, embedded in a PCI-based FPGA platform is 

the basic outcome of this research. The Error Detection Monitor Unit (EDMU) satisfies 

features like policy-based monitoring, timely detection of system threats, error 

tolerance when a low severity error occurs and finally stable reconfiguration. The 

EDMU operates in a "passive" way without interfering with the host functions. The 

implemented module works as a "firewall" preventing the communication of the 

configured apphcation with the host, only when an error occurs. 

5.2 The policy-based monitoring framework 

The monitoring policies were implemented in VHDL (VHSIC Hardware 

Description Language) as a conjunction of propositional formulas or properties, 

auxiliary state variable assignments, and other complementary assignments. The 

properties are used to specify correctness of states and not an explicit behaviour. There 

is no conversion of this to a state machine; this is precisely the code for the momtor. 

The policy formation is based on many small rules and intentionally avoids large state 

machines (i.e. state machine with actions specified for each state), because designing 

such state machines is a complex and error-prone task. The adopted design approach 

instead, relies on many small and generic state machines that track one thread of 

information; the bulk ofthe poliCIes is done using compact rules. 

An example is a 2-state, set-and reset machine which becomes set when a certain 

event happens and stays set until it is no longer needed. It is used to record certain 

information such as whether the transaction is a read or a write. Another example is a 

counter which counts the number of cycles from a certain event, or counts the number 

SA slnct requlfement of the system IS to be aVaIlable and operate uncorrupted, offenng by this way 
mamtaJnablhty and operablhty; hence it IS hIghly undeSIrable to restart the PC system. 
6 Tlus comphcation could only be aVOIded usmg the partial reconfiguratJon feature ofXdmx FPGAs 
[95]. 
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of occurrences of a special event. Only these two types of state machines (i.e. see figure 

5.2) were needed in order to implement the monitor for the two identified error 

categories. 

Figure 5.2: The two state machine types usedfor the monitor logic. 

Therefore, the structure of the monitor was intentionally kept simple in order to be 

maintainable, low error-prone, and simpler to extend, since a basic research goal was to 

provide a monitoring element that can be reusable and could be extended in an 

incremental way. This means that the hardware monitor was built with the inherent 

ability to be easily ported to similar critical computing architectures, having at the same 

time the ability to add more policies that fit to the particular needs of the system. 

Moreover, the architecture is flexible enough to allow changes in counter based 

events/policies~ This gives the advantage to apply a stricter version of the policy if the 

design needs of the target critical system require such a thing. For example, creating 

counter-based events that set shorter deadlines from the ones that a communication 

protocol specifies (i.e. the rule that an initiator in a PC! transaction must not keep 

IRDY# deasserted for more than seven PC! clocks during any data phase, can become 

more firm according to the specific needs of the critical computing system). 

The monitor logic is supported by a number of auxiliary signals. These are formed 

using the basic set of the PC! core signals combined in Boolean expressions. The 

auxiliary signals form the backbone design of the monitor. Although several of these 

signals can be taken directly from the ports of the PC! core (i.e. command register), it is 



Using embedded hardware monitor cores In critical computer systems 80 

preferable for the needs of the system to build them from the basic PC! core signals. 

Table 5.1 is an overview of these signals. A generic version of the PC! signals is given 

figure 5.3 [118); the particular version of the PC! core signals that were used for the 

actual implementation of the monitor logic are given in the diagram in Appendix II. 

One basic functionality of the monitor logic is to hold in registers the state of the 

signals that occurred one clock prior of their current state' (including PC! core signals, 

auxIliary structure signals and state machines output signals). This is crucial for the 

whole operation of the policy generation component. Several other states of the internal 

monitor logic were formed by the above mentioned signal groups using simple 

multiplexers and encoders. The state machines are triggered from a combination of all 

the types of signals mentioned so far that form Boolean expressions. 
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Figure 5.3: A general VIew of the PC! core signals [118}. 

7 The name of these sIgnals IS fonned byaddmg a ''p'' m front of the original sIgnal name. 
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Table 5.1: Auxiliary signals and their respective Boolean expression. 

The monitoring policies were also fonned using Boolean algebra expressions 

combining all the signals that were described so far. The policies define the correct 

status of the signals in a given clock instance (examples of these expressions will be 

_ given in the next section). In other words, the monitored signals are supplying with 

their values the Boolean expressions of the policies and they are compared for 

correctness in a given time-instance as it is shown in figure 5.4 (i.e. the comparator is 

not included in this diagram because its operation comes after the generation of the 

policies). Synchronous logic is used for this purpose. To sum up, a policy is fonned by 

using a Boolean expression containing a combination of the following input signals: 

• Registered versions of PCI core signals, 

• Auxiliary signals (as they are presented in table 5.1), 

• Previous state signals, 

• The state machines output signals. 

8 All the signals have negallve logic. 
9 ThIs is needed because of the delay ID slale machmes. Namely, m_abort can only become true a cycle 
after the occurrence of m_abort buI thIS vanable turns true in the same cycle as when a masler abort 
happens. 
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A more detailed explanation of the diagram of figure 5.4 follows. The PC! core 

signals (e.g. registered versions of local PC! core and PC! interface signals) are the 

source for the creation of the auxiliary signals through Boolean expressions. Both 

categories of signals give input to the previous state signals module. Various PC! core 

signals, auxiliary signals and previous state signals are forming the state machine 

triggers through Boolean expressions. Finally, the outputs of the state machine together 

with the other signal categories (e.g. PC! core signals, auxiliary signals, previous state 

signals) are forming the monitoring policies through Boolean expressions. An 

alternative representation of figure 5,4 that depicts in a different way the same 

information, including the specific signals that are the inputs of the policy generation 

component is given in figure 5.5. This figure has details for the PC! core which were 

initially monitored and reused in order to form the signal categories and internal 

structure of monitoring core. 

A monitor is an observer in a group of interacting modules, or agents which 

communicate via a set of protocol rules. In this context, the Error Detection Monitor 

Unit is a ''hardwired'' core that detects violations in the communication of a configured 

IP core WIth the host, over the PC! bus. The 62 identified errors were grouped in two 

sub-classes. This policy grouping was made according to the current number of 

identified errors that can potential result in a system failure, as these were stated in the 

previous chapter (section 4.3). 
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Figure 5.5: Another representation of the policy generation. 

5.2.1 PCI Protocol Errors 

The PCI (Peripheral Component Interconnect) bus protocol was used as the basis 

for forming rules written initially in behavioural VHDL. The PCI Local Bus 

Specification (revision 2.2) (118) includes the protocol, electrical, mechanical, and 

configuration specification, but the monitor covers mainly the protocol definitions. 

There are several versions of the PCI specifications which could be used for achieving 

the research goals of this work. Table 5.2 provides a comparison and justifies the 

selection that was not made with the present criteria (i.e. the selection of the 

specification to be studied was an early decision of this research). PCI Specification 2.2 

was adopted based on the current market demand. The decision is made based on the 

majority PC motherboard and PCI device manufacturers. However, the selection of the 

board was made taking into consideration the research target of extendibility. 

Therefore, the board was selected to be PCI-X compatible. 
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Specification Advantage Disadvantage 

r-~P~C=I~2~.~1 __ +-'_M~a~hrr~e~t=~~hn~0=10~ __________ -+ __ ~~==~~~~ __ ~ 
PCI 2.2 • Widely use, 

r-~~~ __ ~'~M~ahrr~e~t7~~hn~0=10~ ____________ +-~~~~~~~~~~ 
PCI-X • New technology, 

• Fast, 
• backward co atible with PCI 2.X 

~------~~~~~ 
Table 5.2: PC! specification comparison. 

The PCI bus protocol is being used inside millions of personal computers for 

communicating video, graphics, and networking data to the processor. A number of 

these computers are part of a critical system. The protocol is used to interconn~t 

peripheral add-in boards such as audio cards and graphic cards, and controller 

components such as LAN and SCSI controllers, with the processor/memory system. 

There are several different configurations for the bus architecture as was first stated in 

Chapter 4: 32-bit or 64-bit address/data path at 33MHz, or 32-bit or 64-bit address/data 

path at 66Mhz. 

Contradictions are a common problem with multiple-property specifications (Le. 

PCI protocol specifications), as two or more properties may unexp~tedly place 

conflicting requirements on signals under certain conditions. The EDMU applies PCI 

Protocol tracking and also checks for illegal signal changes in order to verify PCI 

specification compliance. For every clock cycle, the monitor defines protocol 

correctness instead of defining behaviour. The crucial observation is that a single 

propositional formula can describe a range of acceptable behaviour. The example 

property, "an acknowledge must happen sometime between three to eight clocks", can 

easily be specified in propositionallogic with a simple counter and a set-reset variable. 

In case of PCI protocol errors, the PCI core will respond according to its internal state­

machine logic. However, the outcome of this response cannot be considered a ''healthy'' 

condition, smce the side effects of the PCI protocol errors can threaten the operability, 

the throughput and thus the dependability of the critical computing system. 

The PCI protocol error ch~king logic acts as a bus analyser that is used to verify 

compliance of user-designed PCI interfaces. The PCI bus protocol properties were 

10 The majonty of the PC! deSIgns are budt for 33 MHzI32 bIt targets, thus addItional development is 
needed in order to be adapt them In the PCI-X speclficallon. 
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transformed into monitoring rules, according to the PC! bus specification. The 

representative PC! protocol policies are followed by the respective description in 

VHDL. 

• Master must raise irdy within 8 cycles of the assertion of frame. 

process ( elk, rst) 
begin 
1£ rstn = 'I' then 

correct~tr(6) <='1'; 
elsif elk'event and elk = '1' then 

then 

else 

If «(eorreet_mntr(6) and «not master1s) and 
p_irdyn»)='l') and (p_~initial = "00111") 

eorreet~tr(6) <= '0'; 

correct_mntr(6) <= 'I'; 
end l.f: 
end if; 

end process; 

• Master must raise irdy within 8 cycles of the last data completlon. 

process (elk, rst) 
begin 

1£ rstn = 'I' then 
correct~tr(7) <=11': 

elsif elk'event and elk = '1' then 

then 

else 

if «(eorreet_mntr(7) and «not masteris ) and 
p_irdyn»)='l')and (p~_subseq= ·00111") 

correct_mntr(7) <= '0'; 

correct_mntr(7) <= '1'; 
end if; 
end if; 

end process; 

• Once irdy# is asserted, frame# can never change its state from de-asserted to asserted 

until the data phase completes. One data phase transaction is also considered. 

process ( elk, rst) 
begin 

if rstn = '1' then 
correct~tr(5) <='1'; 

elsif clk'event and elk = 'I' then 
if «(eorreet_mntr(S) and «(not masteris and not p_irdyn) and 
not (not p_stopn or not p_trdyn» and «(not p_devseln or not 
p_devseln~1story) or p_initial_data-phase»» and not «not 
irdyn_e and not irdyn_o) or not ~abort»='l') or (p_framen_7 >= 
"00100") 

then 
correct_mntr(S) <= '0': 

else 
correct_mntr(S) <= '1': 

end l.fiend if: 
end process: 
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• Once irdy# is asserted, frame# can never change from deasserted to asserted until the 

data phase compl etes. 

process ( elk, rstn) 
beg~n 

if rstn = '1' then 
correct_mntr(9) <='1': 

elsif elk'event and elk = '1' then 

then 

else 

if «(eorreet_mntr(9) and «(not masteris and not p_irdyn) 
and p_framen) and p_dphase_done») = '1') 

eorreet~tr(9) <= '0'; 

correct~tr(9) <= '11; 
end 1.f; 
end if; 

end process; 

• irdy must be deasserted the clock following the completion of the last data phase. 

process ( elk, rstn) 
begin 

if rstn = '1' then 
correct_mntr(15) <='1'; 

els~f elk'event and elk = '1' then 

then 

else 

if «(eorreet_mntr(15) and (not masteris and not 
p_final_dphase_done»)= '1') 

eorreet~tr(15) <= '0'; 

correct~tr(15) <= '1'; 
end if; 
end if; 

end process; 
• There must be an idle after a transactIon terminated by a retry or disconnect 

process ( elk, rstn) 
begin 

if rstn = '1' then 
eorreet~tr(17) <='1'; 

e1s~f e1k'event and elk = '1' then 

then 

else 

~f «(eorreet_mntr(17) and ««not master~s and not 
p_devse1n) and not pp_stopn) and not 
p_fina1_dphase_done»» = '1') 

correct~tr(17) <= '0'; 

eorreet~tr(17) <= '1'; 
end 1.f: 
end if: 

end process; 
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5.2.2 Common application errors 

The EDMU goes beyond a typical validation of the PCI bus protocol at run time. 

Issues like bus ownership, latency, amounts of data that are transferred from and to the 

host are also considered in the policy framework. The goal is to control the above 

transaction events as well to prevent DoS, intended/unintended misuse of the resources 

and other undesirable events. 

The monitor logic allows the analysis of general events hke the count of actual data 

transfers, the matching of specified addresses, measuring and reporting bus utilization, 

latencies and retries, on-the-fly. In this category of errors the focus is not on PCI 

protocol-related errors but on PCI transactions and events that are considered either 

undesired or premature signs of anomalies that affect the dependability of the system. 

The auxiliary signals (i.e. table 5.1), the PCI core signals and the previous state signals 

are used in conjunction with the simple state machines in order to acquire useful 

information or metrics concerning the basic behavioural functions of the reconfigurable 

platform. An overview of these is given in table 5.3. 

• 110 ReadIWrite Commands 
• Memory ReadIWrites 
• ReadIWrite 
• Read 

Abort • 
• 
• with data 

Table 5.3: Monitoring events. 
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The monitoring events quoted in this table are the inputs in most of the policies that 

try to address potentially erroneous conditions of the configured FPGA applications of 

the system. Several of them are dependent exclusively to the auxiliary signals and 

simple timing state machines. 

A general grouping of the conditions that were defined as erroneous or error-prone 

is given next. It is clear that the following application events are caused from 

transactions that cannot be considered "officially" or fonnally as errors. However, the 

finn requirements of a dependable computing system (Le. as were described in Chapter 

4), create the need to monitor, record and control such events because their impact 

affects the stability of the reconfigurable system. For example the PC! interface can 

signal an abort (Le. target abort); this event often occurs due to incorrect programming 

or serious system errors. It can also signify that the initiator has incorrectly attempted to 

burst data beyond the address space of the target. The user application (or in thiscase 

EDMU) must respond appropriately. A list of potential error-events initiated by 

configured applications is quoted next (with reference to the hardware topology shown 

in figure 5.1). 

• Continuous request for bus ownership. A back-up latency timer (apart from the one 

that is implemented as a PC! configuration register) was implemented in order to 

deal with the above-mentioned issue. The value of this timer defines in a more 

custom way, the mimmum amount of time (in pcr clock periods) that the bus master 

is pennitted to retain ownership of the bus each time that it acquires bus ownership 

and initiates a transaction (see also the third block ofVHDL code that is given next). 

• Access of host's memory areas, which are out of the predefined range, is not 

allowed. This violation could either cause an error to other computational processes 

that are running in the host (e.g. memory writes) or can be related to packet theft 

(e.g. memory reads) and application hijacking (see also the second block ofVHDL 

code that is given next in this section). 

• Data corruption resulting in delays (figure 5.6), multiple requests for retry, 

disconnect or abort. These events are treated as potential errors. The activity is 

traced because in the extreme it could result in loops and system "hang-up". 
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Figure 5.6: A delayed transaction exampleIl [119}. 
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• System must inevitably return to the idle state; if there are any deadlock states which 

forbid this from happening, checking for this characteristic should find such a 

problem. In other words, the system must always force the interface to reset to idle 

eventually. This characteristic has to hold because only when the bus is idle, can a 

new agent start a transaction. If the bus is never idle because one agent is constantly 

driving it, this agent has effectively taken over the bus never allowing other agents to 

use it. To avoid such a situation, the system must force an agent to eventually 

relinquish the use of the bus as a master and let the bus state be idle. The FPGA 

application can remain in a non·idle state and not relinquish the bus in various cases. 

Essentially such cases occur when a frame is de-asserted while irdy# is asserted by 

the configured application (i.e. the FPGA application while being in idle state, it can 

assert irdy# and remain in this non-idle-bus state forever12
) • 

•• Theoretically, .f a target is always very slow, a delayed transaction would never take place. 
" Also, during the data phase of a smgle data phase transaction, frame is deasserted and mly# is asserted. 
Ifa target doesn't respond WIth a trdy# or a stop, the master can remam m th.s non-idle-bus state forever. 
Another case could be dunng the last data phase of a transaction; frame IS deasserted and lrdy# .s 
asserted If a target does not respond WIth a final trdy# or a stop, the agent can remam ID th.s non-.dle­
bus state forever. 
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• Generating illegal read or write cycles. One example of this application error occurs 

when multiple writes to the same location are perfonned as a single wnte on the 

other side of the bridge. Collapsing is defined as reducing multiple writes posted to 

the same location to only one write that delivers the final data to the location. 

Although collapsing is not allowed for any type of write transactions, a bridge may 

allow collapsing within a specific range when a device driver indicates that this will 

not cause operational problems. This event is monitored and controlled within the 

system. 

• When the user application requests the bus for an initiator operation, it may not be 

granted the bus for quite some time. In the meantime, another agent may mitiate a 

target access to the user application. Denying the other agent access by forcing a 

target retry will be disastrous in a system with priority-based arbitration. The 

initiating agent may keep retrying the transaction because it has higher priority, and 

the user application will never access the bus. This results in deadlock. (However, in 

a round-robin system, forcing a target retry is a good way for the user application to 

perfonn its pending transaction first. It can then respond to the target access when it 

is later retried by the other agent) 

• Bus contention is realised when the PCI bus reaches its throughput limit. This 

problem is not considered to be exactly an error. However, it can result in Denial of 

Service, or in crashing the operating environment of the PC. In such cases hard re­

booting of the PC is needed. This state is highly undesirable for the system. Thus, a 

mechanism that monitors the transactions was implemented to prevent such 

incidents. This comprises monitoring events (i.e. table 5.3) combined with dedicated 

timing state machines. 

• Slow targets result in delayed transactions. A target that cannot transfer the first data 

item within 16 clocks from the assertion of fi'ame#, must issue a retry. Thus, the 

transaction is rejected and the master must retry the transaction on a periodic basis 

until the target is able to transfer the first data item within 16 clocks. Theoretically, if 

the target is always slow, the transaction will never take place. Obviously, this is not 

allowed because it can end up to a loop. 
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An indicative number of policies and concerning erroneous events is given next. The 

policies were written in synthesizable VHDL. 

• If frame# does de-assert and irdy was not asserted on the same clock and a data 

phase has not just completed, a master abort condition must hold. 

process ( elk, rst) 
begin 

if rst = '1' then 
correct_mntr(4) <='1'; 

e1sif e1k'event and elk = '1' then 

then 

else 

if «(eorreet_mntr(4) and ««not masteris and not (not 
p_stopn or not p_trdyn)} and not p_framen} and not 
p_irdyn} and «(not p_devse1n or not p_devse1n_h~story) or 
p_initia1_data-phase}}}}}='1'} or (p_frame~7 >= "00100") 

correct_mntr(4) <= '0'; 

correct_mntr(4) <= '11; 
end if; 
end if; 

end process; 
• The user application is not allowed to access host memory areas that are out of the 

predefined memory range. 

process ( elk, rst) 
begin 

if rst = '1' then 
correct_mntr(l) <='1'; 

e1sif e1k'event and elk = '1' then 

then 

else 

if (eorreet~tr(l) and (masteris and in_addr-phase)}= '1' 
and (ad >= "XXXXXXXX" or "YYYYYYYY" <= ad) 

correct_mntr(l) <= '0'; 

correct_mntr{l) <= '1'; 
end if; 
end if; 

end process; 

• It has to be either a read or write command. 

process ( elk, rstn) 
begin 

if rstn = '1' then 
correct_mntr(24) <='1'; 

e1sif e1k'event and elk = '1' then 

then 

else 

if «(eorreet_mntr(24) and (p_framen}) or (not 
rea~eommand or not write_eommand)}='l'} 

correct_mntr(24) <= '0'; 

correct_mntr(24) <= '1'; 
end if;end if; 

end process; 
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• If gnt# is deasserted before the natural completion of the transaction and there is a 

timeout, continued use of the bus is not allowed. 

process ( elk, rstn) 
beg1n 

1£ rstn = '1' then 
eorreet_mntr(lO) <='1'; eorreet~tr(ll) <='1'; 
correct_mntr(12) <='1'; 

els1f elk'event and elk = '1' then 

then 

else 

if «(eorreet_mntr(10) and ««(not masteris and not 
p_timeout) and p_gntn) and not p_dphase_done) and not 
p_framen) and not p_irdyn») = '1') 

eorreet_mntr(10) <= '0'; 

correct_mntr{lO) <= '1'; 
end if; 

then 

else 

if «(eorreet_mntr(ll) and ««not masteris and not 
p_timeout) and p~tn) and not p_framen) and p_irdyn») = 
'1' ) 

correct_mntr(11) <= 'Q'; 

eorreet~tr(ll) <= '1'; 
end if; 

then 

else 

if «(eorreet_mntr(12) and «««not masteris and not 
p_timeout) and p_gntn) and not p_framen) and not p_1rdyn) 
and p_devseln_history») = '1'» 

correct_mntr(12) <= '0'; 

correct_mntr(12) <= '1'; 
end J.f; 
end if; 

end process; 

5.3 The Error Detection Monitor Unit 

The policy generation was a significant part of the research and development time 

spent in this work. The reconfigurable platform was enforced with a policy framework 

that defines erroneous conditions, which were written in synthesizable VHDL code. 

However, another fundamental goal was to detect the errors in a timely (if not 

concurrent) manner, as well as to provide error tolerance and prevent the propagation of 

high-severity rated errors in the system. This additional functionality is essential for the 

reconfigurable platform, if it is going to be used as part of a critical computing system, 

as the one described in Chapter 4. This section includes information for the remaining 

important components that form the Error Detection Monitor Unit (EDMU). 
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The actual implementation of the policy generation, (as this was presented earlier in 

section 5.2) uses a particular version ofaXilinx PCI core (120). However, the design of 

EDMU can be easily extended in order to include the PCI-X core features, by applying 

minor modifications and additions in its structure. The number of the formed policies is 

just a representative sample; the design structure of the EDMU was kept simple in 

order to be able to add more policies in an incremental way. 

A basic finding during the implementation and testing of EDMU is that several 

signals of the PCI core are not accessible (i.e. any attempt to monitor them obviously 

causes contention). However, it is still possible to access the functionality of the PCI 

core signals by using their registered versions, while many signals were still not 

accessible. The solutton was to indirectly produce these signals after studying the 

internal behaviour of the PCI core. A representative block with VHDL code for this 

type of signals is given next: 

--reqn ~s defined 
process (rst, request, request64) 
begin 

if rst = '1' then 
reqn_ds <= t l' ; 

elsif (request or request64) = 'I' then 
reCItl-ds <= I 0 f ; 

elsif (request= '0' and request64= '0') then 
reCItl-ds <= '1'; 

end if; 
end process; 

reqn <= reqn_ds; 
--gntn ~s defined 
process (elk, rst, ~ADD~) 
begin 

if rst = '1' then 
gntIl.-ds <= 11'; 

elsif ~ADDR~ = '0' then 
gntn_ds <='0'; 

els~f elk'event and elk = '1' then 
if irdyn = 'Q' then 

gntn_ds <= 11'; 
end if; 

end if; 
end process; 
gntn <= gntn....ds; 

The architecture of the momtor component does not depend on the way that the two 

(or more) FPGAs of the board are interfaced. This means that the EDMU is 

independent of the type of local bus that is used to interconnect the two (or more) 
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FPGAs. That is because every PCI board manufacturer that uses "soft" PCI cores, 

provides a wrapper that maps the signals of the local bus with the signals of the PCI 

core local side. Therefore the monitoring activity is triggered first by the local side 

signals and next by the registered version of the PCI interface signals. 

PCI core FPGA 

Local Bus User PCI 
Application applicatioD core PCI • FPGA local side Loeal interface 

wrapper Side 

EDMU 

FIgure 5.7: The EDMU is passively integrated WIth the PC! core. 

• • • • • • • 

~ • • • • • • • • • : 

• • • • • · • 
PCI: 
BUS: 

• · • • • • • : 

The design of the EDMU as a plug-in component of soft PCI cores was 

implemented considering all the sensible requirements and constraints of the PCI bus 

functionality. The hardware monitor can be thought as a hardware firewall that operates 

passively and does not interfere with the vital services that a PCI core delivers (figure 

5.7). The selection of the PCI board components was decided according to this 

property. The applications are running in a dedicated FPGA device and thus the 

monitor module does not introduce any realistic intrusiveness to the resources that are 

allocated to the application FPGA. The EDMU is integrated with the PCI core in a 

second FPGA of the board, occupying a particular area of it, and therefore it does not 

interfere with the area of the application FPGA. 

Figure 5.8 represents a more detailed view of the EDMU with all its sub­

components and modules. As it is seen, both the PCI interface signals (i.e. registered 

version of the signals) and various local side PCI signals are monitored. Next, the 

monitored signals are supplying the inputs of the state machines (i.e. timing and set­

reset state machines) as well as the inputs of the auxiliary signals block. The outputs of 

these three discreet blocks are activating the (static, predefined) policies as they were 

described in the two previous sections. The following stage includes the data values 

collection and the consequent policy checker. The output of this block supplies the 
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input to a component that is responsIble to trigger an alert whenever an error is 

detected. The classification of the error importance takes place on the following block 

based on predetermined assumptions (see also section 4.3). The comparator and error 

classifier blocks are the inputs of an encoder that forms a vector which in the next block 

is memory-mapped with an area of a PCI register (Le. BARD). This register together 

with the control component (interrupt generation and application abort) are the outputs 

of the EDMU that can be sampled by the host (i.e. PCItree [121] or any other dedicated 

API). The control component takes immediate action, issuing an interrupt as well as 

initiating an abort sequence of the error (with high importance rating). 

PCI core FPGA 

Application ~ 

Local Bus User PCI 

FPGA application core PCI 
local side Local interface 
wrapper Side 

Interrupt Application Memory mapped Signal -generation abort PCI register Monitoring 

Control component t 

t Output vector 
Event-based -. - timing state ~ encoding 

machines 
Error 

~ t .. 
classifier 

Data collection I Event-based 

t - Policy checker - Set-reset .. 
(comparator) state machines 

Error detection t t alert 
Generation of 

t Policy formation I 
auxiliary ~ Policy repository 

EDMU signals 

Figure 5.8: An "X-ray" of the EDMU. 
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An alternative way to describe the main functionality of EDMU is shown in the 

simple ASM chart of figure 5.9. The first three boxes are also the basis for the 

formation of each monitoring policy. The first state box is a Boolean expression of the 

monitored signals (i.e. PCI core signals); the decision box that follows (i e. the policy 

checking) compares the output of the first state box with the predefined policy rules. 

Finally, the conditional output box (i.e. error detection alert) flags the potential system 

error. The values of each monitored signal are checked for state correctness every clock 

cycle by using this design approach. 

Reset 

No 

Interrupt, 
eneration ':' 

Figure 5.9: An indicative ASM chart of the EDMU functlonalzty. 

As it is already mentioned, the monitored signals (together with all the auxiliary 

signals) are compared with the predefined policies in almost a concurrent mode of 
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operation; the inherent parallelism of the FPGA devices allows us to check for state 

correctness in every PC! clock. The outputs of the policy rules (i.e. correct_ mntr(x» are 

grouped in a vector. This vector is encoded into a 32 bit word and stored in an internal 

register (i.e out_reg) providing by this way the ''health'' status of the critIcal 

reconfigurable system for each clock cycle (see the block with the VHDL code that 

follows). 

process (elk, rst) 
begin 

if rst = '1' then out_reg <= "00000000000000000000000000000000'; 
elsif elk'event and elk = '1' then 
if eorreet~tr(O) = '0' then out_reg <= 
"00000000000000000000000000000001"; 
elsif eorreet_mntr(1) = '0' then out_reg <= 
"00000000000000000000000000000010"; 

e1sif eorreet_mntr(61) = '0' then out_reg <= 
"00000000000000000000000000111110"; 
else 
out_reg <= "11011110101011011011111011101111"; 
end l.f; 

end if; 
end process; 

As it will be shown in the discussion of the results in the next chapter, when a pcr 
transaction breaks a predefined rule, the value of the "out_reg" register is updated one 

clock after the actual policy violation takes place. This register is memory-mapped to a 

Base Address Register (i.e. BARO) of the PC! core. The host is able to read the value of 

the output register by sampling BARO (i.e. reading the BARO memory space). An offset 

value was chosen (i.e. Ox7C or "11111 00" in binary form), according to the 

specification of the pcr board that was used for implementing the EDMU in 

hardware13
• The block of VHDL code that follows describes the above mentioned 

processes. A multiplexer is preventing contention when the "S_DATA_IN" signal is 

used. 

13 More detaIls for the board are gIven in Chapter SIX, whIle several board speClficaltons are quoted ID 

Appendix I11 
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proeess(rst, eLK) 
beg1n 

if rst = '1' then 
barO_rd <= I 0 I ; 

elsif (elk'event and elk '1') then 
if BAS~HIT(O) = '1' then 

barO_rd <= not S_WRDN; 
elsif S_DATA = '0' then 

barO_rd <= 'Q'i 
end if; 

end if; 
end process; 
barO_r~es <= barO_rd; 
oe_mntr_reg <= barO_r~es and S_DATA; 

98 

MY_S_DATA_IN <= ("11011110101011011011111011101111" & out_reg) when 
«oe mntr reg = '1') and ADDR(6 downto 0) = "1111100") ELSE S_DATA_IN; 

As soon as the Policy Checker (i.e. comparator) sets an alert for the presence of an 

error (or errors) an interrupt is generated (figure 5.8). The EDMU acknowledges the 

host asynchronously of an error that occurred, at the same clock cycle that the violation 

is detected (i.e. see the VHDL code that follows14
). 

INT_N_S <- INT_N; 
INTER_N <= INTERJCS; 
int-p_S <= 'Q' when INT~_S ='1' else '1'; 
int_trg <= 'Q' when correct~tr = 
'11111111111111111111111111111111111111111111111111111111111111" else 
'1' ; 
INTE~_S <= '0' when (int_trg or int-p_s) = '1' else '1'; 

Following the interrupt event, the host can take a qualitative view of the potential 

errors by sampling BARO. This communication interface is a simple but at the same 

time a very efficient and timely way to pass the monitoring information to the host. 

There is a debate, regarding if this data has to be further processed by the host; such 

functionality is common in hardware monitors that are designed and used solely for 

system debugging and verification. However, the goal of the hardware monitor is to be 

integrated and used as part of a dependable system without overloading their operation 

with additional data processing. 

14 A multiplexer was used in tins case, In order to aVOId contentIon with the pOSSIble Interrupts that can 
be generated from the user apphcanon. 
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It is clear that each error has a different impact in the operability, avaIlability and 

maintainability of the system. Therefore, the system errors were grouped into different 

categories according to the severity of the threat; a scale from one to five indicates the 

importance of the error. This means that the system can tolerate an error when it poses a 

low level threat but will not tolerate an important one. Certain errors are identified at a 

very early stage before their activity becomes threatening to the system. This is 

achieved by monitoring some signals of the local side of the PCI core (i.e. the 

address/data bus of the local side). For example as already described before in this 

chapter, the error detection core prevents an erroneous application from making an 

illegal memory transfer (i.e. wnting to a memory space of the host that is allocated to a 

different application). In this case the illegal memory access is detected, exactly one 

clock cycle afterwards. The categorisation and classification of the errors according to 

their severity level (i.e. represented with an array) and the possible impact to the 

stability of the system gives this qualitative measure in the host. This SUb-component of 

the EDMU was implemented following the theoretical approach of the error 

classIfication that was descnbed in Chapter four (table 4.2). 

process (clk, rst) 
begin 

if rstn = '1' then 
correct_mntr(x) <='1'; 
sever~ty <= "111·; 

els~f elk'event and elk = '1' then 
if eorrect_mntr(x) = '0' then 
severity <= -101·; 

else 
severity <= -111-; 
end if; 

end if; 
end process; 

Another critical task that the EDMU component delivers is to isolate the PCI-based 

FPGA board upon the detection of an error. EDMU acts in similar way that firewalls 

do, "locks" the reconfigurable PCI platfonn and forces the configured application to an 

abort. At thIS stage the host decides if the erroneous application is going to be removed 

from the FPGA device. The decision is taken according to the importance of the error. 

The recovery of the system is achieved when the FPGA device is configured with a 
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stable application, which has previously been exhaustively tested and verified. The 

abort sequence is implemented using registered versions of the local side signals of the 

PC! core. 

Summary 

This chapter is a description of all the implementation and development issues 

related to the design of Error Detection Monitor Unit. The functionality and structure of 

this core is analysed and VHDL code examples were given to illustrate the 

development stages and system components. 
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CHAPTER 6 

RESULTS 

This Chapter presents the behavioural simulation and the real time debugging results. 

Several details concerning the simulation and real time test-benches are given together 

with detailed description of the applications and the software that was used. 

6.1 Design validation 

Verifying the functionality of the EDMU was the capstone of the overall testing, 

debugging, and validation effort. It was important to ensure that the monitor policies of 

the design (especially the ones that check PCI protocol validity) are not error-prone 

themselves and that they are correctly implemented in accordance with the PCI bus 

specification. A thorough study of the PCI protocol was needed for this reason, as 

already stated before in chapter five. The validation ofEDMU was accomplished using 

very simple and exhaustively tested applications as well as dedicated hardware­

debugging tools (i.e. ChipScope Pro, freeware PCI core debugging tools). In more 

detail, during this stage, it was verified that within the correctly reachable state space, 

the antecedents of all the properties will each become true at some point during 

execution. If there is a property where the antecedent is always false, the property is 

never "fired" and is therefore vacuous. Since it is meaningless to have a property that is 

never in force, it can be safely assumed that the property is not stated correctly and 

requires modification. 

The open source applications that were used for simulation and real-time testing of 

the system provided a direct access to the source code as well as reliable simulation 

test-benches. The source-code level modifications of these applications had as a goal to 

produce erroneous conditions that will violate specific rules of the policy framework in 

order to validate through this way the response and efficiency of EDMU. For this 
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reason the application errors WIth high severity rating were exercised and applied to the 

system for verifying its functionality, while this was operating in real-time conditions. 

Proof of concept was provided in this way; nevertheless, there is undeniably plenty of 

(design) space for extensions and improvements of this hardware monitor and control 

core. However, the initial motivation and conception of the need for research has to be 

followed by realistic design and implementation targets; research without realistic 

development targets is not acceptable in today's engineering community. This is 

particularly important in the hardware design cycle where the implementation, 

simulation and verification of a system or application is significantly more demanding 

and time-consuming compared to the software design cycle. The development and 

validation stage is equally important and demanding with the research stage. 

6.2 Simulation results 

A pcr compliant simulation testbench was used in order to test the behaviour of 

EDMU and verify its functionality. Testing scenarios test the basic transactions 

between two agents on a pcr bus; one agent being the pcr device under test (OUT) and 

other being the behavioural model of a pcr Initiator. The behavioural model of EDMU 

was built to intervene passively among these two agents. The tests aimed to verify if the 

DUT and EDMU were pcr complaint or not. There are two types of testing that were 

performed in order to verify that EDMU design is functional: system-level testing and 

pcr bus protocol testing. System-level testing set up modules in order to transfer data 

back and forth within the system (checking to see if the data was actually sent and 

whether it arrived at the destination or not). However, the correct operating procedure 

was not checked in system-level testing. pcr bus protocol testing was used to determine 

if the modules of the system (together with EDMU) operated within the rules of the 

protocol. pcr protocol tests were performed by EDMU after verifying its pcr 
compliance. 

System behavioural simulation was a time consuming period of the modelling stage 

that required substantial effort. All the considerations and requirements were initially 

introduced in the simulation stage; the debugging required a very good understanding 

of pcr protocol issues as well as of reconfigurable hardware and programmable 
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network concepts. The intention during the initial design stage was to use Altera 

products for the final implementation of the system. However, technology issues that 

Xilinx FPGAs offer for further future development of this research project (i.e. partial 

reconfiguration of the FPGA device), made them a more suitable solution. Hence, 

Xilinx products were chosen for the realisation of the platform, although the EDMU 

was simulated for verification purposes with versions of Altera and Xilinx PCI cores 

using their respective PCI simulation test-benches. 

The EDMU was simulated with the Altera PCI megacore function [122) using the 

Altera PCI testbench as it is represented in figure 6.1. A number of applications were 

used in order to test the validity and efficiency of the rules. The Altera reference design 

[123) is an indicative example of how to establish communication between an SDRAM 

controller and the PC! MegaCore function; this was used as a guideline for constructing 

the testbench. The principal application was X-MatchPRO [124] which is a hardware 

implementation of a high-speed lossless data compressor/de-compressor. The available 

access to the source code allowed us to make some necessary modifications in order to 

use this application during the behavioural Simulation stage. Therefore, it was a suitable 

application for demonstrating the functionality of the system. 

r--------------------------------------, 
PCI bus 

Figure 6.1: The Altera PC! simulation testbench. 



Using embedded hardware monitor cores In critical computer systems 104 

The EDMU was also simulated with the Xilinx PCI functional simulation testbench 

[1251 (figure 6.2). The validity and efficiency of the rules was tested using certain 

applications. For example, the PING6415 application was used to verify the design 

flow; PING64 design accepts data as a target PCI device and then uses the data to 

perform initiator transactions over the PCI bus. The simulation testbench contains HDL 

behavioural stimulus files and a top-level file, PCIM_TOP. The stimulus files contain 

behavioural models of an arbiter, two targets (one 32-bit target and another 64-bit 

target), and a central resource. These behavioural modules interface to PCIM _TOP 

through the PCI bus. The HDL wrapper, PCIM_TOP, combines three sub-modules. 

The first sub-module is PCIM_LC, a wrapper for the LogiCORE. The second is the 

PING64 application. The third is the CFG module, which configures the LogiCORE 

interface. The PING64 sub-module is an HDL design that interfaces to the user­

application signals from the PCIM_LC module. EDMU is also integrated in this 

simulation testbench monitoring the activity between the user application and the PCI 

core. Figure 6.2 shows a block diagram of the complete system. Modelsim was used for 

the modelling and behavioural simulation of the EDMU core. 

PCIBus 

STM ARB UUT TRG3Z TRG64 

FIgure 6.2: The Xilmx simulation testbench. 

IS The PING64 module takes Its name from the TCPIIP utIlIty named ping whIch al\ows network users to 
venfy that a partIcular machine IS on a network and "alIve". As such, PING64 IS deSIgned to proVIde 
'~ust enough" functIonalIty to venfy a design flow. 
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The access decode logic was used to generate configuration space, memory space, 

and 110 space select signals. This was achieved by monitoring the CFG _HIT and 

BASE_HIT signals which indicate that the current pcr transaction is dtrected at the 

pcr core configuration space or to an address space mapped by one of the Base 

Address Registers (BARs) in the PCI interface. In this design, BARO is configured as 

an 110 space, BAR! is configured as a 32-bit memory space, and BAR2 is configured 

as a 64-bit memory space. EDMU is using BARO register in order to transfer the output 

values of the monitor as it is shown in figure 6.3 (i.e. signals base_hit, barO_rd). 

I I\rI!..lbJiJtMIcl 
I I\rI!.. tbIWIi£IrlIn 
I I\rI!.. ibJIlIII.eIIJ_ 
I 1\rI!..1biuJIINril,n 
I 1\rI!..1hIuJM'bil,n 
I ~1bJiJtMI~"", 
I 1\rI!..1bJiJtMIre.ren 

!B-II\rI!..IbJiJtMI,_~ 

!B-Il\rI!..lbJiJtMIoII 
!B-Il\rI!..lbJiJtMIoiJ 

I I\rI!..lbJiJtMIoII JI! 
I I\rI!.. ibIuJII.eIKiseI 
I I\rI!..lbJiJtMIleqJe$I 
I I\rI!..lbIII.IABheq.oesl64 
I I\rI!..lbhu!iJ!llItoll_n 
I 1\rI!..IbJiJtMI,_" .. 
I 1\rI!..1bJiJtMI,-,iala 

!B-1 ~IbJiJtMI,_dala_n 
!B-Il\rI!..lbJiJtMIny_tdaltn 
!B-I1\rI!..~-'i 

I I\rI!..lb/lllMlalt Id 
I 1\rI!..1bJiJtMIIaO_Id_CI 

!B-Il\rI!..lbJiJtMIcooectnJe 
I I\rI!..IbIIIIM'iI_n_" 
I I\rI!.. ibIuJII.eIm_n 
I I\rI!.. ibIuJII.eIm_"_' 
I l\rI!..ibluJll.elri_"_n_' 
I ~IbIIIIM'iIJI-' 
Il\rI!..lbIIIIM'iIjig 
I 1\rI!..1bJiJtMI,"-"Yli-,eg 

1 
o 
1 
o 

o 
00lJ00lJ 
11llllllJ 
fFIFFFFF 
o 
o 
o 
o 

o 

ffffffffffffffff 
Df.!JlBEEFOOJlllll 

111111111111111111 
1 
o 
o 
1 
o 

1 

11lllllI10 

1mu.u 
1mu.u 

UIlIJ 

J I f--

IlIlDllll 111 00lJ 

&~h ~m 

ut! B !Ut! BEHIIJ.I.U.IU 
IIJJJ.IIIJ1 -

Figure 6.3: When the host sample BARO (i.e. signal barO Jd) the output data of 

EDMU are transferred to the my _s _data _in vector signal. 
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The simulation timing diagram of figure 6.3 lists a series of PC! interface signals 

(e.g. rstn, framen, irdyn, trdyn, devseln, stopn), local-side PC! core signals (e.g. addr, 

adio, addr_vld, request, request64, m_addr_n, s_wrdn, s_data, s_data_in, base_hit, 

barOJd, barOJd_cs, intr_n) and just few EDMU signals (e.g. my_s_data_in, 

correct_rule, int_trg). EDMU detects a PC! protocol error16 which has the decimal 

encoded number 38. The same instance that the error is detected (Le. change In value of 

correct_rule) BARO is sampled (the signal barO_rd is asserted), and an interrupt is 

generated (assertion of intr_n, int_trg) The EDMU output data, which contain error 

identification information, are transferred to the host using the S_DATA_IN and 

MY_S_DATA_IN signals through a multiplexer. This does not always happen the 

same clock cycle that an error is detected but when the host generally attempts to read 

the contents ofBARO register (Le. assertion ofbarO_rd signal). 

The application testbench was deliberately set to produce errors. Two different 

methods were used to test the core in simulation mode. In the first case the application 

was changed in order to produce simple but at the same time highly undesirable events 

(Le. PC! writes out of the predefined memory range). In the second case a simulation 

library was integrated (126] within the testbench in order to insert a degree of 

randomness in the system, generating random delays in the signals. This resulted in PC! 

protocol errors, which were detected by the EDMU. These two types of errors represent 

the two major categories that were mentioned in the previous chapter (i.e. PC! protocol 

errors and common application errors). 

Another indicative capture of simulation results is given in figure 6.4. This is also a 

PC! protocol related error (during the address phase for a non-b2b transaction, irdy# is 

not to be driven Immediately following an idle). The error severity rating for this policy 

violation is low and therefore EDMU is applying an error tolerance practice. This 

waveform capture of the system simulation provides additional evidence of a 

significant property of EDMU: the per-cycle basis monitoring of the configured 

application. When an error is detected (t=2948ns, figure 6.4), the "correct_rule" is 

instantly changing value. At the same clock an interrupt (int_ trig) is generated to signal 

16 Once target has asserted stop, It cannot change devsel, trdy, or stop unltl the data phase completes. 
Tlus IS rule is dIvided mto 3 sub-rules that descnhe each mdlVldual case. 
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the host. On the next clock the value is passed to the register (out_reg) that is memory 

mapped to BARO. The host at the same clock can sample BARO and get a view of the 

activity in the PeI-based FPGA platform as far as the policy framework is concerned 

(this is not taking place at this instance). This figure shows therefore the way that vital 

information concerning the output of the EDMU can be passed in an almost concurrent 

way to the host. 

Ielk 1 
IIstn 0 
Iframen 
lirdyn 0 
"rdyn 1 
/;topn 1 
Idevseln 1 
Is_cbe 
Im_cbe 
laddr 
laddr_vld 0 
Imy_s_dalajn 
Ibase_hit 
Icorrectrule 
finUrg 1 
lout_reg 

Figure 6.4: The detection of a PC! protocol error in simulation (error tolerance). 

The response time of the control component ofEDMU during simulation time had to 

be tested as well. The ability ofEDMU to stop the configured application when an error 

is detected was an equally significant feature that had to be successfully implemented. 

The obvious goals of the control component are to prevent the propagation of the error 

in the system and also to prevent transactions (initiated by the configured application) 

that can later produce an erroneous condition. 
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Figure 6.5 is a simulation waveform-capture that represents the way that EOMU 

responds to an error with high severity rating (for example illegal memory read). Once 

the error is detected (t=533ns), an interrupt is generated in a similar way that was 

described in the previous waveform-capture example. The value of the output vector is 

also updated (the correct_rule vector signal) encoded and written to an internal register 

(the signal outJeg as it is shown in this waveform capture). 
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Figure 6.5: EDMU forces the con figured applicatIon to issue a target abort. 
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The host is able to sample the value of this register since it is memory-mapped in a 

memory area of BARO. However, in this case it cannot apply an error tolerance policy 

because the detected error was pre-classlfied as a serious one. Consequently the control 

component ofEDMU forces the application to an "abort" (i.e. target abort). As a result 

the user transaction cannot take place (trdy is not asserted) and the application issues a 

target abort. This is achieved by taking advantage of control signals on the local side of 

the PCI core (e.g. S _ABORT a ''registered'' signal of the local side of the PCI core). 

The signal mapping of the top-level vhdl file was also changed accordingly. An 

indicative description of a target abort sequence as this is described in the Xilinx PCI 

LogiCore user guide is given on Appendix IV. 

Considering the functionality of the system, it can be claimed that EDMU observes 

the outputs of the design under verification, flags behavioural errors and assigns blame 

to the appropriate module during a system-level simulation. The EDMU was original 

designed in order to be integrated in a real-time system for fast error detection, rather 

than for verifying other PCI-based applications. However, this fact reveals another 

important use of the hardware monitoring component. 

6.3 Real time verification of the Error Detection Monitor Unit 

Proof of concept for this work was established by constructing a real time testbench 

using commercially available network and FPGA components. Xilinx products were 

selected for the implementation of the system; various technology reasons related both 

with the features!7 of the Xilinx FPGAs and the Xilinx PCI core (i.e. the easier access 

to the local side signals) made us chose them at that specific time. The current version 

ofEDMU was synthesized with Synplify Pro together with the Xilinx PCI64 core (127) 

(version V3.0.137). The EDMU performance was tested at 66 MHz although in most 

application examples the maximum frequency was 33 MHz. 

17 The partial reconfiguration property ofX1hnx FPGAs and the vanety of embedded "hard-WIred" cores 
(I e. gtgablt tranSCeIvers, DSP modules) and speCIfically the 32bltl33MHz "hard-WIred" mIcroprocessor. 
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The selected FPGA family for the synthesis and implementation of EDMU was the 

Virtex 11 (XC2VIOOO). Table 6.1 summarises the relevant synthesis information for the 

Error Detection Monitor Core. The Xilinx ISE design tools were used for the place and 

route process18
• 

After the implementation, the Xilinx simulation testbench was used once again for a 

back-annotated timing simulation. This simulation verified the functional and timing 

correctness of the behavioural model of EDMU. However, the final and most 

significant part of the EDMU development and verification is the testing of the system 

in the actual FPGA PCI board using a real time testbench. 

A Xilinx based PCI board (128) was chosen for the realisation of the platform. The 

selection of the board follows the analysis that was made in section 5.1 and as is shown 

in figure 6.6 this board satisfies most (if not all) of the design, implementation and 

futnre extension requirements. Various other commercial PCI board-level solutions 

were available at that time. However, It was the optimal choice considering the design 

requirements, the properties and the specifications of this board (e.g. double PCI FPGA 

board with a "soft" PCI core, various I/O interfaces and extendibility design options 

through the embedded microprocessor). 

The board (ADM-XPL) supports Xilinx Virtex-II PRO devices, which have a "hard­

wired" embedded PowerPC processor. The board utilises a FPGA PCI bridge that 

supports 64 bit PCI at up to 66MHz. With some enhancements it can also provide 

compatibility with PCI-X protocol. A high speed multiplexed address and data bus 

connects the bridge to the target FPGA. Memory resources provided on-board include 

18 Total number of shces. 4875 out of 5120 (95%) 
The average connection delay for thIs desIgn IS· 1.190 ns 
The maJ<lmum pm delay IS: 6 2 I 6 ns 
The average connection delay on the 10 worst nets is: 4.979 ns 
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DDR SDRAM, pipelined ZBT and flash, all of which are optimised for direct use by 

the FPGA using IP and toolkits provided by Xilinx. 
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Figure 6.6: The ADM-XPL board topology [129]. 
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The ADM-XRC SDK that comes along with this board is a set of resources 

including an application-programming interface. The API makes use of a device driver 

that is nonnally not directly accessed by the user's application. The API library takes 

care of open, close and device I/O control calls to the driver. A set of simple, open­

source applications is also [130) included within the above mentioned SDK. The 

following application list helped to build a real-time testbench and verify EDMU in real 

operating conditions . 

• The "DMA" application demonstrates demand mode DMA, using the DDMA19 

sample FPGA design. The application works as follows: it loads the DDMA bitstream 

into the FPGA, using a DMA transfer. Then it creates two DMA buffers; one for the 

'send' direction (host-to-FPGA), one for the receive direction (FPGA-to-host). In the 

next step it creates a 'sender' thread, which perfonns demand-mode DMA transfers 

from the host to the FPGA, using the host-to-FPGA DMA buffer. Finally, it creates a 

19 The DDMA FPGA deSign demonstrates demand-mode DMA WIth burstlOg. Data IS read from an 
apphcation buffer 10 host memory and then slInply wntten back to another apphcatIon buffer unchanged. 
In order to use demand-mode DMA, the host must spectfy the appropnate mode when perfonOlng DMA 
transfers. ThIs IS demonstrated by the DMA sample apphcatIon. 
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'receiver' thread, which perfonns demand-mode DMA transfers from the FPGA to 

the host, using the FPGA-to-host DMA buffer. The DDMA FPGA design simply 

perfonns a loopback operation, placing data from the send thread in a FIFO, to be 

read out by the receiver thread. The receiver thread checks the data received for 

correctness. 

• The "Master" FPGA design demonstrates direct master access by the FPGA to host 

memory. The design implements several registers for generating Direct Master 

transfers to and from host memory. The application allocates a user-space buffer. It 

then obtains a scatter-gather map of the buffer. Finally, it initialises the user-space 

buffer to contain known data and waits for the user to enter commands. 

• The "Memtest" application uses the ZBT FPGA design to test the SSRAM of the 

board. The ZBT FPGA design demonstrates how to implement a host interface to the 

SSRAM in an FPGA design. The design divides the 4MB FPGA space into a lower 

2MB region for register and an upper 2MB window for accessing the SSRAM. A 

page register is provided so that all of the SSRAM on a card is available to the host. 

• The "Simple" application, which demonstrates how to implement host-accessible 

registers in an FPGA design. The registers can be accessed via API caIls, or via a 

memory-mapped region. The user enters hexadecimal values, which the application 

writes to a register in the FPGA. The application reads the values back from the 

FPGA and displays them. The FPGA rubble-reverses the values before returning 

them. 

• The "DLL" application demonstrates the clock doubling capability of Virtex DLLs 

and Virtex-II DCMs. The user gives a frequency for the local bus clock on the 

command line. The application sets the local bus clock frequency to the value 

specified, which is doubled and used to clock a 32-bit counter. The application reads 

the counter once per second, displaying the difference between the current and last 

readings. 

The above set of applications was part of the testing environment of the PCI board. 

Having free access to the source code, their content was deliberately modified in order 

to produce erroneous outputs. ChipScope Pro was used in order to apply advanced real­

time debugging and verification of the system, by inserting soft debug cores into the 
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top-level design file. After place and route, these on-chip cores were used to capture 

real-time signal data. This hardware debugging tool was proved to be very helpful for 

validating the system functionality, operability and effectiveness. 

FIgure 6.7 is an indicative waveform capture of the monitonng process of EDMU. 

ChipScope Pro Analyzer was used for this reason. After applYIng some small changes 

in the design of the "master" application (that required re-compiling and re­

implementation of the application), a state that is classified as an error for EDMU was 

deliberately produced (i.e. an illegal access during a write cycle, whenever irdy# is 

asserted, and the bus is driven by the master). 
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Figure 6.7: PrOViding e"or-toierance in the system operation. 

An indicative notice is that the signal "error_detect" remains asserted because 

another error (PC! protocol this time) is detected after the detection of the first one (i.e. 
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for b2b transactions since the master needs to be the same for the second transaction). 

However, the severity rating of both errors is pre-classified as low. Therefore, no action 

is taken since an error-tolerance policy is applied for these specific errors. This 

waveform represents signal values captured when the system is operating in real-time; a 

careful comparison with the simulation results indicates that the EDMU is functioning 

in a very similar way. An interrupt is generated (assertion of signal INTER_N_S) at the 

same time when an error is detected ( error_detect). The next clock cycle the data are 

writeen to the outout register (out_reg) ChipScope Pro Analyzer also gave us the 

opportunity to venfY the correct functionality of the auxiliary signals of EDMU as well 

as of the monitor-event signals (i.e. in_addr"phase, data"phase, in_write_tran etc). 

A similar waveform that was captured from the ChipScope Analyzer is shown in 

figure 6.8. The different combination of events that IS signalled as an error, includes a 

"disconnect with data" monitoring event. 
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Figure 6.8: Another case of error tolerance. 
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The reaction ofEDMU is the same with the one described above, applying an error­

tolerance policy. One of the auxiliary signals, is asserted indicating a "disconnect with 

data" PCI event. Disconnects with or without data is a common event during pcr 

transactions, but it has to be monitored in order to prevent undesirable consequences as 

these were described in Chapter 4. 

The value of the output interface register (namely out_reg) that is memory mapped 

at a certain memory area of BARO (i.e. Ox7C) can be sampled by the host. A freeware 

program was selected (from the various available), in order to apply this memory read. 

PCrtree (121) is a graphical Windows tool that allows access of all the hardware 

devices of the pcr bus. Information about the devices and its vendors is obtained from 

a separate database. PCltree allows read and wnte access to the configuration registers 

of each device and even to each device's memory given by the BAR. This tool was used 

as an additional debugging and verification aid for testing the custom PCI core. The 

BARO memory read gives us a qualitative view of the errors that are detected by the 

EDMU (figure 6.9). The memory read at location 07xC gave the hexadecimal value 

(x00000002) that appears also in figure 6.7. However, this BARO memory read takes 

place in a later stage; this hexadecimal value represents the same error, happening at a 

different time. 
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Fzgure 6.9· The PC/tree application "reads" the BARO memory space. 
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Figure 6.10 is another indicative capture of a wavefonn from ChipScope Analyzer, 

when a corrupted version of the "memtest" application is configured in the 

reconfigurable board. The application is trying to access a restricted memory area of the 

host (i.e. actually, it is the area that was predefined as restricted). This is considered to 

be an error with high severity rating. The reaction therefore is almost immediate (i.e. 

according to the details presented so far, the reaction comes one clock cycle after the 

actual occurrence of the error). Such errors need to be treated drastically, by limiting or 

ideally, completely stopping their effects. For this reason, EDMU forces the configured 

applicatJon to issue a target abort. 
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-p.r'q 1 1 I 
, .... -'"~~, ~,----,~T~~~~ ... · '" ->t" 'P -

-Cb7".' 0 0 I I . . . ... 
-IllTER_N_S 1 1 I 
,.....,-,~..,..,-~ ~_ "'V'''".,. ... ''' ......... r ~ -EJ- error_detect 111 111 111111111111111111111111111111111111 ~111 ~111 ~ 111 ~101 ~111111 .. . . .. .. .. · 

!l- •• t_l"e1J DEi DEA DEADBEEF :vOOO :vOOO :vooo ~OOO 
"~"'-"""'--r'-'" .. .. 

!l-lIDDR rea rea . .. · 
--1n_sddr-phase 0 0 I I -- --.------- -~,..".- .. -..~ ~ .. ~~">'·r__,_'..,- 1"".,.,,-_ r..,.....,... -.-,." --..,..-,.--::;.,-

, -idle 1 1 1 I 
. . .. .. ,. - . , . . . 

-- f1nal_dphase_c1one 1 1 I 1 
-, '"'''''''''''''''''''' " " "J,,-,,«> - ~ 

-r.try 1 1 L I . 
--data_transfer 1 1 
~ _r ~ _ • __ -.. ... _ ....... .. o· . 
~d1!connect_wdata 1 1 . .. . . . . . .. . . 
--d!sconnect_voutdata 1 1 I I 
---~--- ---- - . . -. -------.--~--~--

Figure 6.10: A data capture from the ChlpScope Analyzer. 

The control of several signals (i.e. the s_abort signal of the local PC! core side) with 

the appropriate signal mapping in the top-level file of the implemented system has as a 

result that trdy# remains de-asserted, because the EDMU is configured to prevent such 

an event. As a consequence, the application that is configured in the application FPGA 

, 

." 

' . 

-
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fails to transfer data in a given time, leading the PCI transaction to disconnect without 

data and issue at the same time a "retry". An additional indication of this is shown by 

an auxiliary EDMU signal (Le. data_tranfer remains de-asserted). This has, as an 

eventual result the detection of multiple errors (after the detection of the first one), 

which are related to the "abort" event. Nevertheless, these errors have lower severity 

ratings. An output vector (error_detect) updates an internal register (out_reg), which is 

memory mapped to BARO. An interrupt is generated (inter_n_s) when the errors occur, 

in order to signal the host. The interrupt line remains asserted during the detection of 

the consequent errors. It can be claimed that the particular error described above is not 

malicious, since its impact is not related with a fatal failure of the system. However, it 

could be connected with application hijacking or other illegal activities related to 

security issues as was described in Chapter 4. 

An example where the control component of EDMU applies both error tolerance 

and abort policy is shown in Figure 6.11. Violations of policies with different severity 

ratings are detected. 

! : DusISlgnoI , x 0 ;, ~-'~~",~, ~~1~?; ~;,:f;~~~;~~:\: '~/~:,i!~~~~,~ ,.:~:.~~ I <, ~c 1~' ~Ili?/~~?, '~\1 ." 

:-tl:91!! 1 1 I 
, 

-1rdy 1 1 J , 
-tIdy 1 1 

- - - ~ .- -, ,_A , 
-devsel 1 1 I I i - - -
r- stop 1 1 I 

- , ' 0 -
f-cbeD._e 1 1 I 

-IIITER_"_' 1 1 L L 
0 

t1- error_detect III III 11111 ~OOI11 ~11111 Xl11111 ~11111 ~11111 

fj-ollt_reg DU DE> 00000032XDEADBEE~00000038XDEADBEE~00000002X00000032XDEADBEEF -
fj-JDDR rc. rc. Jc FC800090 

0 

rin _add!: ""phase 1 1 
00 

:- dau_ ttansfet 1 1 I , 
'-tinu_dpha8luione 1 1 J 

rdphase_done 1 1 
0' 

f- d13connect_vdata 1 1 I 

~d1sconnect_woutdata 1 1 j 
~ 

-in_tead_tl:an 1 1 
,,- _~~ __ T_ 

o 

r1n_wr1t!:_~en 1 1 J , 
f-1dle 0 0 

Figure 6.11: Multiple errors with different severity rating are detected by EDMU. 
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The most serious one comes last and as a result the execution of the application is 

interrupted because the application is forced to issue a target abort. As a result the 

application issues a "disconnect with data". Following the detection of an important 

error and the consequent target abort that is initiated by EDMU, the application FPGA 

is reconfigured with a stable application. 

Figure 6.12 is a representative screenshot that shows how the execution of the 

"memtest" application is affected by the way that EDMU is acting in order to stop a 

detected Illegal process. 

C:'ADMXHC_SDK4.5.1'bin>memtest 
Size !'cg 0x00000002 
Info I'eg = Ox01100000 
Status }'cg = 0x00000003 

PCl'fol'rlling memo.'y tc!>ts using DNA 
Testing 2048 kB in pipe lined mode __ _ 
Repetition 11 
\h'it ing 0xSS5SSS55 _ •• 
EI'I'OI' at index 0x000fJ0000: expected/actual 
El'}'OI' at index 0x00fZ100001: expected/actual 
EI'I'OI' at index 0x00000002: expected/actual 
EI'I'OI' at index 0x00000003: expected/~1.ctual 
EI'I'OI' at index 0x00000004: expected/actual 
EI'I'O}' at index 0x00000005: expected/actual 
EI'I'OI' at index 0x00000006: expected/actual 
Erl"OI" at index 0x00000007: expected/actual 
El"l"OI' at index 0x00000008: expected/actual 
El'I"OI" at index 0x00000009: expected/actual 
EI'I'OI" at index ~x0~011111111a: expected/actual 
El"I'OI" at index 0x0001101111b: expected/actual 
El"I'OI" at index 0x00000011c: expected/actual 
El"I'OI' at index 0x0000000d: expected/actual 
El'I'OI' at index 0x0000000e: expected/actual 
El"I'OI" at index 0x0000000f: expected/actual 
El"I"OI' at index 0x00000010: expected/actual 
El"l"Ol" at index 0x00000011: expected/actual 
EI"1"OI" at index 0x00000012: expected/actual 
El'I"OI" at index 0x00000013: expected/actual 
[pto)"e el"I'OI"S ___ ] 
- FAILED uith 521288 el"I'Ol'(S) 
Pel"fol"flIing byte enable tests using pl'ogl"dfllflled 
Testing byte enables in pipelined mode ••. 
pnSSED 

Measuring access speed ••• 
SSHAM to host tl11'oughput 72266.0MB/s 
Uost to SSHAM throughput = 711S9.0MB/s 

Ox55555SSS/0x00000000 
0xSSSSSSS5/0x00000000 
0xS55S5555/0x00000000 
0xS55S5555/0x00000000 
0x55555555/0x00000000 
0xSS55555S/flx00000000 
0xSS555555/flx00000000 
0xS5555555/0x000U0000 
0xS555SSSS/0x00000000 
0xSSSSS55S/0x00000000 
0x55~55S55/0x0011011111111 
OxSSSSSSSS/0x00000000 
OxSSSSS555/0x00000000 
0x5SS55S55/0x00000000 
0x5SS5S555/0x00000000 
0x55SSS555/0x00000000 
Ox5555S555/0x00000000 
0xSS555555/0x00000000 
0x5555S555/0x00000000 
0x55SS5555/0x00000000 

I/O 

FIgure 6.12: The execution of "memtest" is interrupted due to error detection. 

The reconfiguration of the application FPGA is accomplished either by using the 

ADM-XRC SDK application interface (i.e. building a C++ interface that includes SDK 

functIons in order to program the devices through the PC! bus) or through the ITAG 
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port using a parallel cable connecting the parallel port of the host directly to the IT AG 

connector of the board together with the XiIinx iMPAcr20 (figure 6.13). 

IUght chck deVIce to .elect oper.uon. 

1IC2vp7 
-F~e?·· 

.c2vl 000 
-File?-

.. 18v04 
··File?-

',. 

Figure 6.13: The JTA G chain shows the 3 programmable devices of the ADM-XPL 
board: the appbcation FPGA, the PC! corelEDMU FPGA and the EEPROM. 

The easiest and most straightforward solution is to use a script that initiates the 

JTAG chain. Once the chain has been fully described, it can be saved for later use in a 

file with .cdf extension. The choice of reprogramming the FPGA devices through this 

way is preferable (in similar dependable systems) compared to programming them 

through the PC! bus; the reason behind this selection is the fact that the (erroneous) 

configured application in the user FPGA is likely to produce errors (PC! protocol or 

application errors) that will prevent or harden this effort when application replacement 

is attempted. Although this could only happen under extreme erroneous conditions, it is 

still preferable to apply the reconfiguration of the FPGA devices through the IT AG port 

(bypassing the PC! bus), in order to satisfy the dependable computing features of the 

20 IMPACT enables you to configure PLD designs through four modes of configuration; Boundary-Scan, 
Slave Senal, SelectMAP, and Desktop Configuranon. 
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system (the ITAG pins are used for reconfiguring devices of a board or for 

communicating with embedded cores through hardware Analyzer software like 

ChipScope Pro). Bus contention conditions could also deteriorate while trying to use 

the PCI bus for downloading the new configuration bitstream. The reconfiguration 

through the ITAG port using the Xilinx Impact software is slower compared to the 

reconfiguration through the PCI bus; however it is reliable enough to serve the scope 

and the functionality of the EDMU. 

The effectiveness of the core was tested and verified using this real time testbench. 

A stable version was passively integrated with the Xilinx PCI core, offering a robust 

error monitoring reconfigurable platform. The simulation and real-time results prove 

that the outcome of this research satisfies the required and desirable system properties 

(as described in Chapter four) of a PCI-based reconfigurable hardware platform. 

6.4 EDMU and Active Networks 

Modem System-on-Chip and embedded FPGA-based systems are exhaustively 

tested and are built specifically for serving testability targets. Part of the evaluation of 

the system could also be its formal verification21
• Although formal verification is useful 

for static verification of system functionality or the validity of a protocol, there is a 

variety of critical systems that require online monitoring, control and debugging. The 

external interfaces that were once used extensively for development of System-on-Chip 

(SoC) based designs have moved on-chip, leaving few points to attach extemal tools 

such as logic analyzers. One approach to overcoming development challenges is on­

chip monitor support circuits that allow observation of critical system nodes, such as 

processor cores and buses. Important tools include on-chip trace and triggers. Many 

interactions within a SoC do not involve a processor core, making data tracing 

essential. One aspect of the delivered research as far as EDMU is concerned is the 

formation of a generic PCI-based approach that is compatible with many different 

system units, and supports design reuse. 

21 In the context of hardware and software systems, formal venfication is the act ofprovmg or dlsprovmg 
the correctness of a system WIth respect to a certaIn formal speCIfication or property, using formal 
methods. Formal methods refer to mathemancally based techniques for the speClficanon, development 
and venficanon of software and hardware systems. 
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Therefore, EDMU can be integrated in many critical computing environments due 

to the operation features and the advantages that offers. Various networking PC 

structures which make use of PCI boards for processing and/or forwarding of packets 

can take benefit of the EDMU. Online PC systems such as Active RouterslNodes which 

are part of programmable and/or Active Networks need to: 

• operate constantly, 

• operate uninterrupted (i.e. avoid "hard" re-starts), 

• operate under the presence of errors and 

• demand fast error detection and error isolatiOn/recovery. 

The experimental Active network that was implemented at Loughborough 

University [87] (as it is also presented in Appendix I), can integrate the EDMU in order 

to monitor and control erroneous and malicious applications. The active node is a 

fundamental unit of the Active Network which is also part of a standard IP network 

Thus, it is configured to WOlk as a router for the standard IP packets, applying at the 

same time active processing to these IP packets (Active Packets) that either carry 

executable code in their payload or request an application that is pre-stored (locally in 

the active router or in a dedicated application server). The Active Applications are 

downloaded and configured in a FPGA device. The EDMU can add observability in 

this system by monitoring these applications in real time or in a nearly concurrent way. 

The system can also continue to operate in the presence of detected errors, as long as 

the errors do not interfere with vital functions of the system. The EDMU can initiate an 

application abort sequence, during which the application is not able to communicate 

with the host microprocessor (the data transactions fail as it is shown in figure 6.12). 

Next, the erroneous application that is configured in the application FPGA could be 

replaced with a new configuration (i.e. bitstream). This could be achieved either 

through the Lmux interface presented in (87) (through the PCI bus), or through the 

JTAG chain as it was presented in the previous section (see also the indicative figure 

5.1). The use of JTAG port for reconfiguring the FPGA erroneous application is slower 

but more reliable and hence more preferable for guaranteeing system stability (i.e. the 

reconfiguration process overpasses the PCI bus functionality). 
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The EDMU can be considered as a very useful component of critical PC-based 

systems; Active Networks can become more robust ensuring the delivery of services in 

users and therefore provide maintainability and availability to the whole network 

operation. 

Summary 

This chaptered covered the simulation and real-time debugging results. The 

functionality of EDMU was verified and tested successfully and a stable version is 

running on a FPGA-based PC! board providing timely detection of PC! protocol and 

application errors. The monitor core is applying different policies to the erroneous 

application which are configured in one of the FPGAs of the PC! board. As a result, it 

could be claimed that the operation of EDMU resembles that of a "firewall". 
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CBAPTER7 

CONCLUSION 

7.1 Synopsis of achievements 

This work has followed the rationale that the convergence of the computing and 

communications fields applies to reconfigurable computing and reconfigurable 

networking. The increasing design-complexity of FPGA-based reconfigurable 

platforms (i.e. System-on-Chip) makes observability and controllability a significant 

factor for their proper and correct running, especially when such systems are integrated 

as part of cntical computing application or services. System vahdation methods such as 

omine testing, debugging and formal verification have to be complemented by online 

monitor and control functIons which are performed by embedded system components. 

The research motivation that supports this work claims that the critical computing 

systems, based on PC archltectures, should include in their infrastructure a permanently 

configured hardware monitor component. This should not introduce any additional 

costs (Le. area utilisation) as far as the execution environment of the application is 

concerned. Hence, it has to be integrated passively, consuming as few local resources 

as possible. The reasons for choosing a hardware monitor and control module for 

critical PC-based systems instead of a software or hybrid one, were stated in chapter 

two (sections 2.2, 2.3, 2.4, 2.5, 2.6). The inherent process-parallelism of the FPGAs 

satisfied the requirement for immediate response to errors, in order to prevent their 

propagation (or their trespassing) to security sensitive domains and thus prevent system 

failures in this way. The concurrent system observability through embedded hardware 

components is an emerging research area that meets the needs of complex critical PC 

systems 

Although Active Networks were used as the source-model for buIlding the monitor 

and control core (essentially a PC-based Active Router with FPGA-based hardware 
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acceleration of the Active Applications), the policy framework can be considered non­

deterministic and platform independent. It is true that the hardware monitor logic was 

built according to the specifications, performance requirements, potential failure 

operation-modes and the security threats of an Active Router. However, there are many 

other conceptual domains that EDMU can be applied; similar architectural 

requirements are found in critical systems that are comprised not only by PCs but SBCs 

as well. The Error Detection Monitor Unit can be thought of as a monitor and control 

wrapper for the PCI core that achieves observability of the application transactions with 

the host. Several PCI-based environments can take advantage of the characteristics of 

EDMU and integrate it in their structure or even expand its current functionality and 

operation. EDMU also secures quality in the offered services of the PC-based critical 

system, since it provides maintainability, availability and dependability features. The 

constant and simultaneous monitoring (i.e. implemented in hardware) traces the activity 

between the configured application and the host. Suspicious or undesirable transactions 

are treated according to the policy framework and the host can maintain its operation; 

this was one of the main targets of the research and development effort. The following 

lines include a short description of the characteristics of the EDMU and the 

achievements that it claims: 

• Reliability: A PCI-based reconfigurable platform that can be integrated in several 

critical computing systems (i.e. remote upgrade of FPGAs, Active Networks) and is 

able to add reliability and operability features. 

• Reusability: A reusable plug-in module suitable for "soft" PCI cores that adds 

observability and control features to PCI-based applications. 

• Polzcy framework: A failure-resistant policy framework that includes an incremental 

list ofmles, applied to the configured applications ofa PCI-based FPGA board. 

• Interference: A hardware module configured permanently in the programmable logic 

platform that operates transparently without interfering with the host PC's 

computational processes. 

• Detection response: Detection of predefined erroneous conditions that can result in a 

potential system failure in a nearly concurrent mode of operation. 
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• PC] protocol mOnltormg: PCI bus transactions monitoring system, tightly coupled 

with the PCI core, detecting errors initiated by applications which misuse the PCI 

bus protocol. 

• Categorisation: System threat identification and classification. 

• Control: An embedded control component that acts as a "firewall" preventing the 

communication between the configured application and the host computer, if a 

policy-violation is detected. 

• Error tolerance: The communication between the FPGA board and the host is 

selectively controlled, following an error-tolerant policy. 

• Reconfiguratlon: Recovery of the system to a stable state is possible after the 

detection of an error. 

Concluding, it is useful to mention that the EDMU can be used in various ways; it 

can be integrated and specially configured to serve different design or system-operation 

targets. The analysis made so far, revealed different applications approaches for using 

EDMU. The most apparent ones are mentioned in the following lines: 

1. Omine FPGA-based, PCI applications debugging, testing and validation. The 

EDMU can also be thought as a design-for-testability embedded component, 

2. System-level integration22 and online operation of the hardware monitor core in 

critical computing systems. 

3. A useful "soft" PCI core plug-in module that can be adapted to fit specific design 

and/or operational needs. 

The research and development results delivered through this work claim a useful 

contribution to the field of concurrent hardware monitoring applied to dependable PC­

based systems with FPGA application support. The outcome of this research in its 

current stable version can be the starting point for answering more research questions. 

The growth of the FPGA market and the respective applications, along with the key 

role of SoCs in future critical systems make observability an important factor. The table 

7.1 includes the most significant properties of EDMU as far as their efficiency and 

impact to the system are concerned. 

22 The deSIgn and operalton requIrements ofthe candtdate systems have to be sinnlar to those of a PC­
based Acltve Router or any other networked reconfigurable FPGA PC archItecture 
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EDMU properties Property effect Comment 
Perturbation Minimal EDMU is passively integrated with the PCI core 

and thus It does not interfere with the application 
that is configured in a separate FPGA. The 
overhead of the area utilisation does not 
surcharge the application execution domain. 

Perfonnance High The selection of FPGAs for application-
processing and application monitoring, secures 
high perfonnance of the hardware monitor due to 
the inherent process parallelism of the FPGAs. 

Error detection! Fast Most of the erroneous events are detected almost 
policy violation concurrently, one clock cycle after their 

occurrence. Several other policies are based on 
counter-based measurements and their effect 
follows error-tolerance procedures. 

Preventmg error High If the detected error has a predefined high 
propagation severity rating, ED MU acts as a firewall by 

blocking the communication of a configured 
application with the host, one clock cycle after 
the detection of an error. 

Area utilisation Low EDMU was deliberately deSigned to occupy low 
FPGA area in order to satisfy the finn area 
utilisation requirements of dependable systems. 

Portabilityl High The hardware monitor can be easily integrated 
reusabilityl with other "soft" PCI cores (Le. by designmg a 

compatibility wrapper file). EDMU is also operating system 
independent. Any configuration environment 
that uses the PCI protocol, and thus a "soft" PCI 
core, can integrate EDMU as an embedded 
monitor conlJlonent (Le. PCs, SBCs). 

Extendibility High The predefined policies can be modified in order 
to follow a stricter framework. The simple 
structure of the hardware monitor component 
allows the integration of additional policies. The 
design ofEDMU can be easily extended in order 
to include the PCI-X core features 

Reduction of cost High The combination of the reconfigurable nature of 
the FPGAs with the monitor and control features 
of the EDMU minimises the need for spares, 
replacements and field testing; at the same time 
the system reliability is increased. Thus, the 
critical computing systems that integrate this PCI 
board configuration can achieve a cost-reduction. 

Table 7.1: A synopsIs of the most Important properties of the EDMU. 
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7.2 Future Work 

It is clear that any research work of this type can undergo considerable 

improvements and adaptations in order to achieve expansion of the functionality, better 

performance and greater portability and reusability. Many other related research fields 

can also take advantage of the current results. Taking into account these facts the 

hardware monitor was built in an incremental and simple way. The outcome is a 

hardware component with extendibility options and properties. 

One obvious extension to this work could be a comparison with software based bus­

monitor modules and error detectors. This comparison can underline the usefulness and 

the need of an embedded core for monitoring and controlling the transactions between 

the host and the PCI board. 

The EDMU can be enforced with more policies that will reflect the needs of other 

systems, or more complex needs of the currently proposed target architectures. The 

structure of the EDMU allows the easy system-level introduction of new rules. These 

rules will refer mainly to application initiated errors and not to PCI protocol errors 

since this study claims that the PCI protocol is verified in real time. The current 

simulation and real-time testbenches offer easy integration and testing of the potential 

new policies. 

Another significant expansion to this research work could be the real time 

performance analysis of the configured FPGA-based application. This can involve 

statistical analysis of several data samples that are collected at a specified rate or 

behavioural analysis of the application. The implementation of such an added 

mechanism in hardware, will require substantial amount of resources (i.e. embedded 

memory, LUTs). The current design does not occupy significant resources of the FPGA 

as was shown in table 6.1. Hence, the inclusion of on-chip performance analysis 

features on the existing EDMU structure will be an additional design, integration and 

cost issue, since it requires the use of state-of-the-art large FPGA devices. 

Alternatively, the data can be passed to the host and the whole process can be 

implemented in software. In this case the overhead in area utilisation is smaller (i.e. 

FIFO, interface with the host) but the host is overloaded with this processing 

consuming function. 
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A very useful and interesting extension to this research work could be the integration 

and cooperation of an embedded "soft" or ''hardwired'' microprocessor for delivering a 

hybrid monitoring scheme. There are many different ways that the microprocessor can 

be used in conjunction with the EDMU. For example the performance analysis can take 

place in the local embedded microprocessor and not in the host. Another indicative case 

could be the formation of the policies in software; writing, compiling and executing the 

policies in a software environment offered by the embedded microprocessor. The 

EDMU can be much more flexible in this sense; however, the monitoring component 

loses at the same time the performance advantage that it has in its current version, 

where all the computations are implemented in hardware. The integration of a 

microprocessor for enforcing and extending the monitoring functions of the EDMU 

will provide a hybrid monitoring system in this sense. 
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APPENDIX] 

Active packets have to be distinguished from passive packets. It is also important to 

have a system that is compatible with the existing IP networks infrastructure. Hence, in 

order to satisfy both of the aforementioned conditions, an active header encapsulating 

an IP packet was defined. Related work in Active Packet protocols is presented in [1] 

and [2]. The active header carries information as It is shown in Table 1. 

The Active Header 
Name Size (bits) 
type 8 

seq_ no 8 
options 16 

id 32 
last node 32 

Table 1. The ActIve Header 

Passive IP packets are encapsulated in UDP packets (figure 1). ACT is the active 
header. 

JP I UDP I ACT I JP I UDP or TCP I Payload I 
, , , , 
: .. Passive Packet .. ; 

Figure 1: The Active Header. 

The active packets are distinguished from the passive packets using the destination 

UDP port 44075 (active port) of the first transport header. The second transport header 

(UDP or TCP) is application-specific. The type field specifies the type of the active 

packet. The current active types that have been defined are: 

• type 0: UDP active packets (not encapsulated packets), 

• type 1: TCP active packets (wrapped TCP packets), 

• type 2: UDP active packets (wrapped UDP packets), 

• type 3: UDP active packets (administrative packets, not wrapped). 

The sequence number (se~no) is used to help the introduction of reliabihty 

schemes where measurement or reliability is required. The options field can be used to 

specify options for coding modules. The id field specifies the unique code module 
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number. This refers to the code module of a particular packet which should be handled. 

The last active node (last_node) field specifies the last active node that the packet 

passed through. 

The Active Packets may have one of the following operation modes: 

1. In the first scenario the Active Packet has a pointer to a certain application (JP 

core). The requested application is stored either locally in the Active Router or in a 

different location (e.g. a Code Server [3]). The Active Router detects and processes 

the Active Packet so as to serve the request. The requested application is then 

configured in the hardware platform. The Active Router forwards the user's data to 

the PCI card, so as to be processed by the Active Application. 

2. In the second approach, several Active Packets carry a configuration bitstream and 

data in their payloads. The Active Router detects and processes the Active Packets 

so as to serve the request. This processing stage includes authentication of the user, 

and integrity checks. The application is then configured in the target FPGA board 

and in the following stage the host transfers the user data. 

An experiment has already taken place in the Active Network of Loughborough 

University. The experiment described in the following lines is based on the topology 

shown in figure 3. The XiIinx PCI board, which is used in the current experiment [4], 

simplifies the process of reconfiguring the FPGA multiple times due to the build-in 

functions of the Linux software API. Rapid implementation of reconfigurable 

computing applications is made feasible in a time effective way using this PCI board. 

Three applications were used for configuring the Active Router (AR) on-the-fly. 

These applications are: 

1. A software-based application that computes the first complement of the data that is 

contained in the active packets' payload. It is a simple application (just for 

demonstration purposes) written in C. It has been assigned the module id=1. 

2. A hardware-based application that nibble-reverses the data of the active packet's 

payload. This is done in the FPGA and the nibble-reversed values are passed back 

to the appropriate active module. This application has been assigned the module 

id=2. 
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3. A hardware-based DES (Data Encryption Standard) encryptionldecryption 

algorithm. The ECB (Electronic Codebook) mode is used. The DES IP core was 

provided by the Free-IP Project [5]. This application has been assigned the module 

id=3. 

The active module that runs in the host splits the packets' payload into 32-bit words 

and passes them to the FPGA board via the PCI bus. The actJve module acts as a master 

and the FPGA as a slave. Each time, the active module performs five "PCI writes" and 

two "PCI reads". A 32-bit PCI bus is used. The block diagram of the DES algorithm is 

shown in the figure 2 below. The "PCI reads and writes" are: 

• 1st PCI-write: a 32-bit word (from the packet's payload) is passed to the FPGA, 

• 2nd PCI-write: a second 32-bit word is passed to the FPGA (these are the 64-bit 

length input data, "data in" in figure 2), 

• 3rd PCI-write: the key for the encryption or decryption is 64 bit long so it is split 

into two 32-bit words. The 3rd PCI-write passes the last 32 bits of the key, 

• 4th PCI-write: the first 32 bits of the key are passed to the FPGA, 

• 5th PCI-write: a 32-bit word is passed to the FPGA; this word has the value 0 or 1. 

If it is 0, the FPGA will decrypt the mput data and if it is 1 it will encrypt them 

("encrypt" in figure 2). 

Figure 2: The DES encryption/ decryption JP core. 
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After all these data are passed to the FPGA (they are stored in registers), two PCI­

reads are needed to take the encrypted or decrypted data back (32-bit data in each PCI­

read). This procedure is repeated until all the data of the packet's payload have been 

encrypted (or decrypted). The module id=3 has been assigned to the DES 

encryptionldecryption application. 

The Active Router is part of the experimental network shown in figure 9. The 

Active Router consists of two separate hosts: The Router-Active Forwarding Engine 

and the Active Element. The Router-Active Forwarding Engine consists of two 

modules: 

• A kernel-space loadable module that forwards the incoming active packets to the 

AE. 

• A user-space process that monitors the AE to check if it is "alive" (by sending 

ICMP requests). If it is not "alive" it removes the kernel-space module and hence 

no more packets are forwarded to the Active Element. It reloads it as soon as the 

Active Element is available again. 

192.1l'R 

Figure 3: An Active Network With a reconfigurable processing engme. 
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An application that is running on host A generates UDP packets having as 

destination host B. These packets are wrapped in host A into active packets of type 2 by 

an Active Daemon. The module unique identification is 2. 

At default, the active application with module id= 1 is running in the Active Router 

(AR). This is an active application that changes the data of the packets' payload to their 

first complement. When an active packet of type 2 (and module id=2) is transmitted 

from host A to host B, it will be routed by the AR. Prior to routing, the AR verifies that 

the active packet has module id=2 and checks which module is currently configured in 

the reconfigurable platform. In the tested case the configured application has module 

id= 1. At that point the AR has to make a decision: either to stop application 1 and run 

application 2 or to continue running the current application and just route unmodified 

the active packet to its destination. The AR has to check the available resources in the 

target platform. If there are enough, it stops application 1 and loads application 2, 

configuring the FPGA board with the appropriate bitstream. The AR downloads the 

bitstream from the code server and invokes the active module no 2. This active module 

configures the FPGA on the fly with the appropriate bitstream and passes all 

consequent active packets (with module id=2) to and from the FPGA. The application 

that 'runs' in the FPGA nibble-reverses the payload data of the packets. 

Next, Host A sends an active packet with module id=3. The application with 

module id=3 is an FPGA-based DES (Data Encryption Standard) encryption algorithm. 

The AR follows the same procedure as above (resources check, authorised packet etc) 

and then it stops the application that runs in the FPGA (no 2) and loads application no 3 

(DES encryption). Hence, the AR is able to switch from one application to another 

(1,2,3) and configure the FPGA device on-the-fly. 
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Offset Name Function 

OXOO LSOB Local space 0 base address reClster 
Ox04 LSOR Local space 0 rance remster 
OxOS LSOCFG Local seace 0 confiauratlon reOlster 
OxOC ReseNed 
Oxl0 LS1B Local space 1 base address rernster 
Ox14 LS1R Local space 1 range reClster 
OxlS LS1CFG Local space 1 confiouratlon reolster 
OxlC ReseNed 
Ox20 LTO Local bus tlmeout realster 
Ox24 ReseNed 
Ox2S LCTL Local bus control reClster 
Ox2C to ReseNed 
Ox4C 
Ox50 PICTL PCllnterruet control reClster 
Ox54 PISTAT PCI InterrUiil status reQIster 
Ox5S to ReseNed 
Ox7C 
Ox80 DOPAL DMA channel 0 PCI memory address reClster 
Ox84 ReseNed 
Ox88 DOLA DMA channel 0 local address reOlster 
Ox8C DOSIZ DMA channel 0 transfer size and direction reOrster 
0x90 DONDL DMA channel 0 next descnotor address reOlster 
Ox94 ReseNed 
0x98 DOCFG DMA channel 0 coniinurabon renlster 
Ox9C DOCTL DMA channel 0 control reolster 
OxAO D1PAL DMA channel 1 PCI memory address reOlster 
OxA4 ReseNed 
OxA8 D1LA DMA channel 1 local address reOlster 
OxAC D1SIZ DMA channel 1 transfer size and direction reClster 
OxBO D1NDL DMA channel 1 next descnntor address reOlster 
OxB4 ReseNed 
OxB8 D1CFG DMA channel 1 confiauratlon reClster 
Ox BC D1CTL DMA channel 1 control renister 
OxCO to Reserved 
OxFC 

Genenc bridge registers. 
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APPENDIX IV 
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Th,s tIming waveform demonstrates the behaviour of the PCI Interface when a target 

signals an abort (target abort). Th,s event often occurs due to Incorrect programming 

or serious system errors. It can also signifY that the Initiator has Incorrectly attempted 

to burst data beyond the address space of the target. The user application must respond 

appropriately. 
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This timmg waveform demonstrates the behaviour of the PCI interface when no target 

responds (master abort). This event IS expected during some configuration transactions 

and special cycle broadcast cycles. However, during normal operation, this would 

occur due to incorrect programming or serIOus system errors. It is cntical that the user 

application respond appropriately. 






