184 research outputs found

    Accelerator Memory Reuse in the Dark Silicon Era

    Get PDF
    Accelerators integrated on-die with General-Purpose CPUs (GP-CPUs) can yield significant performance and power improvements. Their extensive use, however, is ultimately limited by their area overhead; due to their high degree of specialization, the opportunity cost of investing die real estate on accelerators can become prohibitive, especially for general-purpose architectures. In this paper we present a novel technique aimed at mitigating this opportunity cost by allowing GP-CPU cores to reuse accelerator memory as a non-uniform cache architecture (NUCA) substrate. On a system with a last level-2 cache of 128kB, our technique achieves on average a 25% performance improvement when reusing four 512 kB accelerator memory blocks to form a level-3 cache. Making these blocks reusable as NUCA slices incurs on average in a 1.89% area overhead with respect to equally-sized ad hoc cache slice

    A General Framework for Accelerator Management Based on ISA Extension

    Get PDF
    Thanks to the promised improvements in performance and energy efficiency, hardware accelerators are taking momentum in many computing contexts, both in terms of variety and relative weight in the silicon area of many chips. Commonly, the way an application interacts with these hardware modules has many accelerator-specific traits and requires ad-hoc drivers that usually rely on potentially expensive system calls to manage accelerator resources and access orchestration. As a consequence, driver-based interfacing is far from uniform and can expose high latency, limiting the set of tasks suitable for acceleration. In this paper, we propose a uniform and low-latency interface based on Instruction Set Architecture (ISA) extension. All the previous studies that proposed extensions, were deeply tailored to address a single accelerator. One of the biggest disadvantages of those methods is their inability to scale. Adding more of these accelerators to one System-on-Chip (SoC) would result in ISA bloat, increasing power consumption and complexifying the decoding phase proportionally. Our proposed framework consists of a six-instruction ISA extension and the corresponding architectural support that implements the interface abstraction and the reservation logic at the hardware level. Our proposal allows controlling a broad class of integrated accelerators directly from the CPU. The proposed framework is ISA-independent, which means that it is applicable to all the existing ISAs. We implement it on the gem5 simulator by extending the RISC-V ISA. We evaluate it by simulating three compute-intensive accelerators and comparing our interfacing with a conventional driver-based one. The benchmarks highlight the performance benefits brought by our framework, with up to 10.38x speed up, as well as the ability to seamlessly support different accelerators with the same interface. The speed up advantage of our technique diminishes as the granularity of the workloads increases and the overhead for driver-based accelerators becomes less important. We also show that the impact of its hardware components on chip area and power consumption is limited

    Intelligent Scheduling and Memory Management Techniques for Modern GPU Architectures

    Get PDF
    abstract: With the massive multithreading execution feature, graphics processing units (GPUs) have been widely deployed to accelerate general-purpose parallel workloads (GPGPUs). However, using GPUs to accelerate computation does not always gain good performance improvement. This is mainly due to three inefficiencies in modern GPU and system architectures. First, not all parallel threads have a uniform amount of workload to fully utilize GPU’s computation ability, leading to a sub-optimal performance problem, called warp criticality. To mitigate the degree of warp criticality, I propose a Criticality-Aware Warp Acceleration mechanism, called CAWA. CAWA predicts and accelerates the critical warp execution by allocating larger execution time slices and additional cache resources to the critical warp. The evaluation result shows that with CAWA, GPUs can achieve an average of 1.23x speedup. Second, the shared cache storage in GPUs is often insufficient to accommodate demands of the large number of concurrent threads. As a result, cache thrashing is commonly experienced in GPU’s cache memories, particularly in the L1 data caches. To alleviate the cache contention and thrashing problem, I develop an instruction aware Control Loop Based Adaptive Bypassing algorithm, called Ctrl-C. Ctrl-C learns the cache reuse behavior and bypasses a portion of memory requests with the help of feedback control loops. The evaluation result shows that Ctrl-C can effectively improve cache utilization in GPUs and achieve an average of 1.42x speedup for cache sensitive GPGPU workloads. Finally, GPU workloads and the co-located processes running on the host chip multiprocessor (CMP) in a heterogeneous system setup can contend for memory resources in multiple levels, resulting in significant performance degradation. To maximize the system throughput and balance the performance degradation of all co-located applications, I design a scalable performance degradation predictor specifically for heterogeneous systems, called HeteroPDP. HeteroPDP predicts the application execution time and schedules OpenCL workloads to run on different devices based on the optimization goal. The evaluation result shows HeteroPDP can improve the system fairness from 24% to 65% when an OpenCL application is co-located with other processes, and gain an additional 50% speedup compared with always offloading the OpenCL workload to GPUs. In summary, this dissertation aims to provide insights for the future microarchitecture and system architecture designs by identifying, analyzing, and addressing three critical performance problems in modern GPUs.Dissertation/ThesisDoctoral Dissertation Computer Engineering 201

    Multicore architecture optimizations for HPC applications

    Get PDF
    From single-core CPUs to detachable compute accelerators, supercomputers made a tremendous progress by using available transistors on chip and specializing hardware for a given type of computation. Today, compute nodes used in HPC employ multi-core CPUs tailored for serial execution and multiple accelerators (many-core devices or GPUs) for throughput computing. However, designing next-generation HPC system requires not only the performance improvement but also better energy efficiency. Current trend of reaching exascale level of computation asks for at least an order of magnitude increase in both of these metrics. This thesis explores HPC-specific optimizations in order to make better utilization of the available transistors and to improve performance by transparently executing parallel code across multiple GPU accelerators. First, we analyze several HPC benchmark suites, compare them against typical desktop applications, and identify the differences which advocate for proper core tailoring. Moreover, within the HPC applications, we evaluate serial and parallel code sections separately, resulting in an Asymmetric Chip Multiprocessor (ACMP) design with one core optimized for single-thread performance and many lean cores for parallel execution. Our results presented here suggests downsizing of core front-end structures providing an HPC-tailored lean core which saves 16% of the core area and 7% of power, without performance loss. Further improving an ACMP design, we identify that multiple lean cores run the same code during parallel regions. This motivated us to evaluate the idea where lean cores share the I-cache with the intent of benefiting from mutual prefetching, without increasing the average access latency. Our exploration of the multiple parameters finds the sweet spot on a wide interconnect to access the shared I-cache and the inclusion of a few line buffers to provide the required bandwidth and latency to sustain performance. The projections presented in this thesis show additional 11% area savings with a 5% energy reduction at no performance cost. These area and power savings might be attractive for many-core accelerators either for increasing the performance per area and power unit, or adding additional cores and thus improving the performance for the same hardware budget. Finally, in this thesis we study the effects of future NUMA accelerators comprised of multiple GPU devices. Reaching the limits of a single-GPU die size, next-generation GPU compute accelerators will likely embrace multi-socket designs increasing the core count and memory bandwidth. However, maintaining the UMA behavior of a single-GPU in multi-GPU systems without code rewriting stands as a challenge. We investigate multi-socket NUMA GPU designs and show that significant changes are needed to both the GPU interconnect and cache architectures to achieve performance scalability. We show that application phase effects can be exploited allowing GPU sockets to dynamically optimize their individual interconnect and cache policies, minimizing the impact of NUMA effects. Our NUMA-aware GPU outperforms a single GPU by 1.5×, 2.3×, and 3.2× while achieving 89%, 84%, and 76% of theoretical application scalability in 2, 4, and 8 sockets designs respectively. Implementable today, NUMA-aware multi-socket GPUs may be a promising candidate for performance scaling of future compute nodes used in HPC.Empezando por CPUs de un solo procesador, y pasando por aceleradores discretos, los supercomputadores han avanzado enormemente utilizando todos los transistores disponibles en el chip, y especializando los diseños para cada tipo de cálculo. Actualmente, los nodos de cálculo de un sistema de Computación de Altas Prestaciones (CAP) utilizan CPUs de múltiples procesadores, optimizados para el cálculo serial de instrucciones, y múltiples aceleradores (aceleradores gráficos, o many-core), optimizados para el cálculo paralelo. El diseño de un sistema CAP de nueva generación requiere no solo mejorar el rendimiento de cálculo, sino también mejorar la eficiencia energética. La siguiente generación de sistemas requiere mejorar un orden de magnitud en ambas métricas simultáneamente. Esta tesis doctoral explora optimizaciones específicas para sistemas CAP para hacer un mejor uso de los transistores, y para mejorar las prestaciones de forma transparente ejecutando las aplicaciones en múltiples aceleradores en paralelo. Primero, analizamos varios conjuntos de aplicaciones CAP, y las comparamos con aplicaciones para servidores y escritorio, identificando las principales diferencias que nos indican cómo ajustar la arquitectura para CAP. En las aplicaciones CAP, también analizamos la parte secuencial del código y la parte paralela de forma separada, . El resultado de este análisis nos lleva a proponer una arquitectura multiprocesador asimétrica (ACMP) , con un procesador optimizado para el código secuencial, y múltiples procesadores, más pequeños, optimizados para el procesamiento paralelo. Nuestros resultados muestran que reducir el tamaño de las estructuras del front-end (fetch, y predicción de saltos) en los procesadores paralelos nos proporciona un 16% extra de área en el chip, y una reducción de consumo del 7%. Como mejora a nuestra arquitectura ACMP, proponemos explotar el hecho de que todos los procesadores paralelos ejecutan el mismo código al mismo tiempo. Evaluamos una propuesta en que los procesadores paralelos comparten la caché de instrucciones, con la intención de que uno de ellos precargue las instrucciones para los demás procesadores (prefetching), sin aumentar la latencia media de acceso. Nuestra exploración de los distintos parámetros determina que el punto óptimo requiere una interconexión de alto ancho de banda para acceder a la caché compartida, y el uso de unos pocos line buffers para mantener el ancho de banda y la latencia necesarios. Nuestras proyecciones muestran un ahorro adicional del 11% en área y el 5% en energía, sin impacto en el rendimiento. Estos ahorros de área y energía permiten a un multiprocesador incrementar la eficiencia energética, o aumentar el rendimiento añadiendo procesador adicionales. Por último, estudiamos el efecto de usar múltiples aceleradores (GPU) en una arquitectura con tiempo de acceso a memoria no uniforme (NUMA). Una vez alcanzado el límite de número de transistores y tamaño máximo por chip, la siguiente generación de aceleradores deberá utilizar múltiples chips para aumentar el número de procesadores y el ancho de banda de acceso a memoria. Sin embargo, es muy difícil mantener la ilusión de un tiempo de acceso a memoria uniforme en un sistema multi-GPU sin reescribir el código de la aplicación. Nuestra investigación sobre sistemas multi-GPU muestra retos significativos en el diseño de la interconexión entre las GPU y la jerarquía de memorias cache. Nuestros resultados muestran que se puede explotar el comportamiento en fases de las aplicaciones para optimizar la configuración de la interconexión y las cachés de forma dinámica, minimizando el impacto de la arquitectura NUMA. Nuestro diseño mejora el rendimiento de un sistema con una única GPU en 1.5x, 2.3x y 3.2x (el 89%, 84%, y 76% del máximo teórico) usando 2, 4, y 8 GPUs en paralelo. Siendo su implementación posible hoy en dia, los nodos de cálculo con múltiples aceleradores son una alternativa atractiva para futuros sistemas CAP.Postprint (published version

    Multicore architecture optimizations for HPC applications

    Get PDF
    From single-core CPUs to detachable compute accelerators, supercomputers made a tremendous progress by using available transistors on chip and specializing hardware for a given type of computation. Today, compute nodes used in HPC employ multi-core CPUs tailored for serial execution and multiple accelerators (many-core devices or GPUs) for throughput computing. However, designing next-generation HPC system requires not only the performance improvement but also better energy efficiency. Current trend of reaching exascale level of computation asks for at least an order of magnitude increase in both of these metrics. This thesis explores HPC-specific optimizations in order to make better utilization of the available transistors and to improve performance by transparently executing parallel code across multiple GPU accelerators. First, we analyze several HPC benchmark suites, compare them against typical desktop applications, and identify the differences which advocate for proper core tailoring. Moreover, within the HPC applications, we evaluate serial and parallel code sections separately, resulting in an Asymmetric Chip Multiprocessor (ACMP) design with one core optimized for single-thread performance and many lean cores for parallel execution. Our results presented here suggests downsizing of core front-end structures providing an HPC-tailored lean core which saves 16% of the core area and 7% of power, without performance loss. Further improving an ACMP design, we identify that multiple lean cores run the same code during parallel regions. This motivated us to evaluate the idea where lean cores share the I-cache with the intent of benefiting from mutual prefetching, without increasing the average access latency. Our exploration of the multiple parameters finds the sweet spot on a wide interconnect to access the shared I-cache and the inclusion of a few line buffers to provide the required bandwidth and latency to sustain performance. The projections presented in this thesis show additional 11% area savings with a 5% energy reduction at no performance cost. These area and power savings might be attractive for many-core accelerators either for increasing the performance per area and power unit, or adding additional cores and thus improving the performance for the same hardware budget. Finally, in this thesis we study the effects of future NUMA accelerators comprised of multiple GPU devices. Reaching the limits of a single-GPU die size, next-generation GPU compute accelerators will likely embrace multi-socket designs increasing the core count and memory bandwidth. However, maintaining the UMA behavior of a single-GPU in multi-GPU systems without code rewriting stands as a challenge. We investigate multi-socket NUMA GPU designs and show that significant changes are needed to both the GPU interconnect and cache architectures to achieve performance scalability. We show that application phase effects can be exploited allowing GPU sockets to dynamically optimize their individual interconnect and cache policies, minimizing the impact of NUMA effects. Our NUMA-aware GPU outperforms a single GPU by 1.5×, 2.3×, and 3.2× while achieving 89%, 84%, and 76% of theoretical application scalability in 2, 4, and 8 sockets designs respectively. Implementable today, NUMA-aware multi-socket GPUs may be a promising candidate for performance scaling of future compute nodes used in HPC.Empezando por CPUs de un solo procesador, y pasando por aceleradores discretos, los supercomputadores han avanzado enormemente utilizando todos los transistores disponibles en el chip, y especializando los diseños para cada tipo de cálculo. Actualmente, los nodos de cálculo de un sistema de Computación de Altas Prestaciones (CAP) utilizan CPUs de múltiples procesadores, optimizados para el cálculo serial de instrucciones, y múltiples aceleradores (aceleradores gráficos, o many-core), optimizados para el cálculo paralelo. El diseño de un sistema CAP de nueva generación requiere no solo mejorar el rendimiento de cálculo, sino también mejorar la eficiencia energética. La siguiente generación de sistemas requiere mejorar un orden de magnitud en ambas métricas simultáneamente. Esta tesis doctoral explora optimizaciones específicas para sistemas CAP para hacer un mejor uso de los transistores, y para mejorar las prestaciones de forma transparente ejecutando las aplicaciones en múltiples aceleradores en paralelo. Primero, analizamos varios conjuntos de aplicaciones CAP, y las comparamos con aplicaciones para servidores y escritorio, identificando las principales diferencias que nos indican cómo ajustar la arquitectura para CAP. En las aplicaciones CAP, también analizamos la parte secuencial del código y la parte paralela de forma separada, . El resultado de este análisis nos lleva a proponer una arquitectura multiprocesador asimétrica (ACMP) , con un procesador optimizado para el código secuencial, y múltiples procesadores, más pequeños, optimizados para el procesamiento paralelo. Nuestros resultados muestran que reducir el tamaño de las estructuras del front-end (fetch, y predicción de saltos) en los procesadores paralelos nos proporciona un 16% extra de área en el chip, y una reducción de consumo del 7%. Como mejora a nuestra arquitectura ACMP, proponemos explotar el hecho de que todos los procesadores paralelos ejecutan el mismo código al mismo tiempo. Evaluamos una propuesta en que los procesadores paralelos comparten la caché de instrucciones, con la intención de que uno de ellos precargue las instrucciones para los demás procesadores (prefetching), sin aumentar la latencia media de acceso. Nuestra exploración de los distintos parámetros determina que el punto óptimo requiere una interconexión de alto ancho de banda para acceder a la caché compartida, y el uso de unos pocos line buffers para mantener el ancho de banda y la latencia necesarios. Nuestras proyecciones muestran un ahorro adicional del 11% en área y el 5% en energía, sin impacto en el rendimiento. Estos ahorros de área y energía permiten a un multiprocesador incrementar la eficiencia energética, o aumentar el rendimiento añadiendo procesador adicionales. Por último, estudiamos el efecto de usar múltiples aceleradores (GPU) en una arquitectura con tiempo de acceso a memoria no uniforme (NUMA). Una vez alcanzado el límite de número de transistores y tamaño máximo por chip, la siguiente generación de aceleradores deberá utilizar múltiples chips para aumentar el número de procesadores y el ancho de banda de acceso a memoria. Sin embargo, es muy difícil mantener la ilusión de un tiempo de acceso a memoria uniforme en un sistema multi-GPU sin reescribir el código de la aplicación. Nuestra investigación sobre sistemas multi-GPU muestra retos significativos en el diseño de la interconexión entre las GPU y la jerarquía de memorias cache. Nuestros resultados muestran que se puede explotar el comportamiento en fases de las aplicaciones para optimizar la configuración de la interconexión y las cachés de forma dinámica, minimizando el impacto de la arquitectura NUMA. Nuestro diseño mejora el rendimiento de un sistema con una única GPU en 1.5x, 2.3x y 3.2x (el 89%, 84%, y 76% del máximo teórico) usando 2, 4, y 8 GPUs en paralelo. Siendo su implementación posible hoy en dia, los nodos de cálculo con múltiples aceleradores son una alternativa atractiva para futuros sistemas CAP

    A Review on AI Chip Design

    Get PDF
    In recent years, artificial intelligence (AI) technologies have been widely used in many business areas. With the attention and investment of scientific researchers and research companies around the world, artificial intelligence technologies have proven their irreplaceable value in traditional speech recognition, image recognition, search/recommendation engines, and other areas. At the same time, however, the computational effort for artificial intelligence technologies is increasing dramatically, posing a huge challenge to the computing power of hardware devices. First, in this paper, we describe the direction of AI chip technology development, including the technical shortcomings of existing AI chips. So, we present the directions of AI chip development in recent years

    Castell: a heterogeneous cmp architecture scalable to hundreds of processors

    Get PDF
    Technology improvements and power constrains have taken multicore architectures to dominate microprocessor designs over uniprocessors. At the same time, accelerator based architectures have shown that heterogeneous multicores are very efficient and can provide high throughput for parallel applications, but with a high-programming effort. We propose Castell a scalable chip multiprocessor architecture that can be programmed as uniprocessors, and provides the high throughput of accelerator-based architectures. Castell relies on task-based programming models that simplify software development. These models use a runtime system that dynamically finds, schedules, and adds hardware-specific features to parallel tasks. One of these features is DMA transfers to overlap computation and data movement, which is known as double buffering. This feature allows applications on Castell to tolerate large memory latencies and lets us design the memory system focusing on memory bandwidth. In addition to provide programmability and the design of the memory system, we have used a hierarchical NoC and added a synchronization module. The NoC design distributes memory traffic efficiently to allow the architecture to scale. The synchronization module is a consequence of the large performance degradation of application for large synchronization latencies. Castell is mainly an architecture framework that enables the definition of domain-specific implementations, fine-tuned to a particular problem or application. So far, Castell has been successfully used to propose heterogeneous multicore architectures for scientific kernels, video decoding (using H.264), and protein sequence alignment (using Smith-Waterman and clustalW). It has also been used to explore a number of architecture optimizations such as enhanced DMA controllers, and architecture support for task-based programming models. ii

    Instrumenting and analyzing platform-independent communication in applications

    Get PDF
    The performance of microprocessors is limited by communication. This limitation, sometimes alluded to as the memory wall, refers to the hardware-level cost of communicating with memory. Recent studies have found that the promise of speedup from transistor scaling, or employing heterogeneous processors, such as GPUs, is diminished when such hardware communication costs are included. Based on the insight that hardware communication at run-time is a manifestation of communication in software, this dissertation proposes that automatically capturing and classifying software-level communication is the first step in performing fast, early-stage design space exploration of future multicore systems. Software-level communication refers to the exchange of data between software entities such as functions, threads or basic blocks. Communication classification helps differentiate the first-time use from the reuse of communicated data, and distinguishes between communication external to a software entity and local communication within a software entity. We present Sigil, a novel tool that automatically captures and classifies software-level communication in an efficient way. Due to its platform-independent nature, software-level communication can be useful during the early-stage design of future multicore systems. Using the two different representations of output data that Sigil produces, we show that the measurement of software-level communication can be used to analyze i) function-level interaction in single-threaded programs to determine which specialized logic can be included in future heterogeneous multicore systems, and ii) thread-level interaction in multi-threaded programs to aid in chip multi-processor(CMP) design space exploration.Ph.D., Electrical Engineering -- Drexel University, 201
    corecore