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ABSTRACT

With the massive multithreading execution feature, graphics processing units

(GPUs) have been widely deployed to accelerate general-purpose parallel workloads

(GPGPUs). However, using GPUs to accelerate computation does not always gain

good performance improvement. This is mainly due to three inefficiencies in modern

GPU and system architectures.

First, not all parallel threads have a uniform amount of workload to fully utilize

GPU’s computation ability, leading to a sub-optimal performance problem, called

warp criticality. To mitigate the degree of warp criticality, I propose a Criticality-

Aware Warp Acceleration mechanism, called CAWA. CAWA predicts and accelerates

the critical warp execution by allocating larger execution time slices and additional

cache resources to the critical warp. The evaluation result shows that with CAWA,

GPUs can achieve an average of 1.23x speedup.

Second, the shared cache storage in GPUs is often insufficient to accommodate

demands of the large number of concurrent threads. As a result, cache thrashing is

commonly experienced in GPU’s cache memories, particularly in the L1 data caches.

To alleviate the cache contention and thrashing problem, I develop an instruction-

aware Control Loop Based Adaptive Bypassing algorithm, called Ctrl-C. Ctrl-C learns

the cache reuse behavior and bypasses a portion of memory requests with the help

of feedback control loops. The evaluation result shows that Ctrl-C can effectively

improve cache utilization in GPUs and achieve an average of 1.42x speedup for cache

sensitive GPGPU workloads.

Finally, GPU workloads and the co-located processes running on the host chip mul-

tiprocessor (CMP) in a heterogeneous system setup can contend for memory resources

in multiple levels, resulting in significant performance degradation. To maximize

the system throughput and balance the performance degradation of all co-located

i



applications, I design a scalable performance degradation predictor specifically for

heterogeneous systems, called HeteroPDP. HeteroPDP predicts the application exe-

cution time and schedules OpenCL workloads to run on different devices based on

the optimization goal. The evaluation result shows HeteroPDP can improve the sys-

tem fairness from 24% to 65% when an OpenCL application is co-located with other

processes, and gain an additional 50% speedup compared with always offloading the

OpenCL workload to GPUs.

In summary, this dissertation aims to provide insights for the future microarchitec-

ture and system architecture designs by identifying, analyzing, and addressing three

critical performance problems in modern GPUs.

ii



ACKNOWLEDGMENTS

Exploring the darkest world to discover new opportunities, doing research is one

of the toughest adventures. It is a lonely, challenging, stumbling, and endless journey.

Yet, it is also the most exciting and joyful achievement when we see a beam of light

in the deep darkness. I am truly glad I have had a chance to enjoy this great moment,

watching a warm ray of light shining the ground.

I am grateful to my research advisor, Dr. Carole-Jean Wu. With her passion

in research, Carole opened a door for me to this amazing research space. With her

patience in teaching, Carole guided me overcoming all the challenges I had experi-

enced. This thesis would not have been possible without her enthusiasm for mentoring

students.

I would like to thank Dr. Chaitali Chakrabarti, Dr. Fengbo Ren, and Dr. Aviral

Shrivastava for serving on my dissertation committee and helping me improve my

research work.

I would like to thank my writing instructor, Gregory Fields, and all tutors from

the ASU writing center for reviewing and polishing my research papers as well as my

PhD dissertation.

I would like to thank my colleagues at AMD and Apple, Cyril de Chanterac, Dr.

Jin Chen, Dr. Ying Chen, Michael Christman, Michael Chung, Dr. Anas Lasram,

Dr. Timour Paltashev, Dhruv Saksena, Dr. Dana Schaa, Dr. Churayev Sergey,

Dr. Stephen Somogyi, and Charles Tan, for broadening my vision in industry and

inspiring me to find out new research ideas.

I would like to thank all my labmates and classmates in ASU, Akhil, Amrit,

Benjamin, Chia-Wen, Davesh, Dhinakaran, Digant, Duo, Hsing-Min, Jhe-Yu, Jian,

Jeevan, Ke, Moslem, Nishant, Shail, Vignesh, and Yooseong for assisting me in setting

up my experiment infrastructure and reviewing my code.

iii



I would like to thank Yen-Shao and Chung-Ying for preparing a geat apartment

for me before I arrived in Arizona.

I would like to thank Chi-Han and Yu-Ying for generously providing me a cozy

home in a foreign country.

Most importantly, I would like to thank for my parents and my old brother, Yu-

Rey, for supporting, encouraging, and motivating me finishing this adventure.

Without all your kindly encouragement, unlimited support, valuable suggestions,

as well as rigorous criticisms, I would never be able to arrive at a destination of such

a long journey. After four and a half years, now, it is the time to share this wonderful

moment with all of you in my life to sincerely express my best gratitude.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 GPGPU Architecture and Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The Inefficiencies of Current GPGPU and Accelerator-rich System

Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Execution Time Disparity and Warp Criticality . . . . . . . . . . . . 5

1.2.2 Resource Contention and Cache Thrashing . . . . . . . . . . . . . . . . . 6

1.2.3 Data Movement Overheads and Memory Interference . . . . . . . 7

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Warp Criticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Cache Thrashing Problem and Cache Management . . . . . . . . . . . . . . . . 14

2.3 Memory Interference in Heterogeneous Systems . . . . . . . . . . . . . . . . . . . 18

3 WARP CRITICALITY AND CRITICALITY-AWAREWARP SCHEDUL-

ING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 The Baseline GPGPU Architecture and its Computation Model . . . . 23

3.2 GPU Latency Hiding Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Factors Stalling Warp Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Latency Attribution Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.3 Characterization Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.4 Latency Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Warp Criticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



CHAPTER Page

3.4 Warp Scheduler Design Exploration for Critical Warp Acceleration . 39

3.4.1 CAWS Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 CAWS Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Evaluation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 COORDINATED CRITICALITY-AWARE WARP ACCELERATION. . . 48

4.1 Source of Execution Time Disparity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Workload Imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.2 Diverging Branch Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.3 Contention in the Memory Subsystem . . . . . . . . . . . . . . . . . . . . . 52

4.1.4 Latency Introduced by the Warp Scheduler . . . . . . . . . . . . . . . . 54

4.2 Coordinated Criticality-Aware Warp Acceleration Design . . . . . . . . . . 55

4.2.1 Critical Warp Identification with Criticality Prediction Logic 56

4.2.2 greedy Criticality-Aware Warp Scheduler . . . . . . . . . . . . . . . . . . 59

4.2.3 Criticality-Aware Cache Prioritization . . . . . . . . . . . . . . . . . . . . . 60

4.3 Evaluation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Experimental Environment and Methodology . . . . . . . . . . . . . . 65

4.3.2 Performance Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.3 Performance Analysis for CPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.4 Performance Analysis for gCAWS . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.5 Performance Analysis for CACP . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 INSTRUCTION-AWARE CONTROL LOOP BASED ADAPTIVE CACHE

BYPASSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vi



CHAPTER Page

5.1 GPU Cache Access Behavior Characterization . . . . . . . . . . . . . . . . . . . . 76

5.2 Control-Loop Based Adaptive Cache Bypassing . . . . . . . . . . . . . . . . . . . 83

5.2.1 Design Overview of Ctrl-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.2 Cache Line Reuse Prediction and iReuse Table . . . . . . . . . . . . . 84

5.2.3 Feedback Control Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.4 The Ctrl-C Cache Bypassing Algorithm . . . . . . . . . . . . . . . . . . . 87

5.3 Evaluation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Experimental Environment and Methodology . . . . . . . . . . . . . . 88

5.3.2 Performance Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.3 MPKI and Interconnect Traffic Reduction . . . . . . . . . . . . . . . . . 91

5.3.4 Fraction of Zero-reuse Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.5 Hardware Implementation Overhead . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 PERFORMANCE CHARACTERIZATION AND PREDICTION FOR

HETEROGENEOUS COMPUTER SYSTEMS WITH GPUS . . . . . . . . . . . 97

6.1 Heterogeneous Systems and the OpenCL Framework . . . . . . . . . . . . . . 97

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Experiment Infrastructure and Configurations . . . . . . . . . . . . . . 100

6.2.2 Workload Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Motivation for an Intelligent Execution Target Scheduler . . . . . . . . . . 101

6.3.1 Performance Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.2 Optimal Execution Target in the Presence of Memory In-

terference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.3 Performance Degradation with Different Co-location Scenarios105

vii



CHAPTER Page

6.3.4 Performance Degradation with Different Scheduling Priorities106

6.4 Performance Degradation Predictor for Heterogeneous Systems . . . . . 108

6.4.1 The HeteroPDP Prediction Scheme Overview . . . . . . . . . . . . . . 109

6.4.2 OpenCL Kernel Execution Time Prediction for alone . . . . . . . 110

6.4.3 OpenCL Kernel Execution Time Prediction for co-located . . . 111

6.4.4 Performance Model Training for OpenCL Kernels . . . . . . . . . . 111

6.4.5 Performance Degradation Prediction for Native CPU Ap-

plications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Evaluation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5.1 Execution Time and Execution Target Prediction Accuracy . 113

6.5.2 Evaluation for System Performance. . . . . . . . . . . . . . . . . . . . . . . . 115

6.5.3 HeteroPDP with Varying Scheduling Priorities . . . . . . . . . . . . . 116

6.5.4 HeteroPDP Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 CONCLUSIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

APPENDIX

A REGRESSION MODELS AND COEFFICIENTS FOR HETEROPDP . . 142

viii



LIST OF TABLES

Table Page

3.1 GPGPU-sim Configurations for Latency Characterization . . . . . . . . . . . . . 31

3.2 Benchmarks for GPGPU Latency Hiding Ability Characterization . . . . . 46

3.3 The Speedup and Frequency of Criticality Inversion within a Thread-

block for BFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 GPGPU-sim Simulation Configurations for CAWA . . . . . . . . . . . . . . . . . . . 66

4.2 Benchmarks for CAWA Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 GPGPU-sim Simulation Configurations for Ctrl-C . . . . . . . . . . . . . . . . . . . . 89

5.2 Default Configurations for the Ctrl-C Control Loop Design . . . . . . . . . . . . 90

5.3 Benchmarks for Ctrl-C Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 96

6.1 Memory Interference Infrastructure Setup and Configurations . . . . . . . . . 122

6.2 CPU Workloads for the Characterization Studies and Design evaluation123

6.3 OpenCL Workloads for the Characterization Studies and Design Eval-

uation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 The OpenCL Kernel Features Used for Execution Time Prediction . . . . 125

A.1 Coefficients for Predicting OpenCL Kernel Execution Time alone on

the Intel Core i7-3770 CMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2 Coefficients for Predicting OpenCL Kernel Execution Time alone on

the AMD FirePro S9150 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.3 Coefficients for Predicting OpenCL Kernel Execution Time co-located

on Intel Core i7-3770 CMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.4 Coefficients for Predicting OpenCL Kernel Execution Time co-located

on the AMD FirePro S9150 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

ix



LIST OF FIGURES

Figure Page

1.1 An Example of an Accelerator-rich Heterogeneous Computer System. . . 2

1.2 An Overview of the Modern GPGPU Microarchitecture . . . . . . . . . . . . . . . 3

3.1 The Execution Order with the Baseline RR Scheduler . . . . . . . . . . . . . . . . 24

3.2 Latency Breakdown for GPGPU Applications . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 An Example of Warp Criticality from the GPGPU Application BFS . . . . 37

3.4 Latency Breakdown for the BFS Application . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 The Speedup Comparison for Different Warp Scheduling Policies on BFS 42

3.6 Latency Breakdown for the BFS Application under the Oracle CAWS-

avg Scheduling Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Warp Execution Time Disparity Caused by Workload Imbalance for BFS 50

4.2 Warp Execution Time Disparity Caused by Diverging Branch Behavior

for BFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Warp Execution Time Disparity Caused by Memory Subsystem Delay

for BFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 L1 Data Cache Reuse Distance for the Critical Warps in BFS . . . . . . . . . . 54

4.5 Warp Execution Time Disparity Caused by Warp Scheduling Delay for

BFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 The CAWA Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 The Instruction Count Disparity Caused by Branches . . . . . . . . . . . . . . . . . 57

4.8 The Criticality-aware Cache Prioritization Scheme. . . . . . . . . . . . . . . . . . . . 60

4.9 Reuse Behavior of Different PCs for BFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.10 Performance Improvement of CAWA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.11 L1 Data Cache MPKI Reduction of CAWA . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.12 The Prediction Accuracy of CPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

x



Figure Page

4.13 The Performance Improvement of gCAWS . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.14 L1 Data Cache Critical Warp Hit Rate of CAWA. . . . . . . . . . . . . . . . . . . . . 72

4.15 L1 Data Cache MPKI Reduction of CACP with Different Warp Schedul-

ing Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.16 L1 Data Cache Performance Improvement of CACP with Different

Warp Scheduling Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Speedup of Different L1 Data Cache Configurations . . . . . . . . . . . . . . . . . . 77

5.2 An Example of Thrashing in GPU Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 The Distribution of L1 Data Cache Reuse Distance . . . . . . . . . . . . . . . . . . . 80

5.4 The Distribution of L1 Data Cache Reuse Distance per Insertion PC

of BFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Speedup with Varying an Instruction’s Insertion/Bypassing Ratio . . . . . 82

5.6 The System Diagram of Ctrl-C Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 The Performance Improvement of Ctrl-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.8 The L1 Data Cache MPKI Reduction of Ctrl-C . . . . . . . . . . . . . . . . . . . . . . 92

5.9 The L1 to L2 Caches Interconnect Traffic Reduction of Ctrl-C . . . . . . . . . 93

5.10 The Fraction of Zero-reuse Cache Lines with Ctrl-C . . . . . . . . . . . . . . . . . . 94

6.1 An Example of a Heterogeneous Computer System with Multiple OpenCL

Enabled Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 The Average Execution Time Speedup and Slowdown Fairness of Run-

ning OpenCL Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 The Execution Time Speedup of an OpenCL Application . . . . . . . . . . . . . 105

6.4 The Fairness Ratio between Running an OpneCL Kernel on the CMP

versus on the GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xi



Figure Page

6.5 The Fairness Ratio of Running an OpneCL Kernel on the CMP versus

on the GPU with Varying Scheduling Priorities . . . . . . . . . . . . . . . . . . . . . . 108

6.6 System Diagram of the HeteroPDP Prediction Scheme . . . . . . . . . . . . . . . . 109

6.7 The Prediction Accuracy of Selecting the Optimal Execution Target

Device to Run an OpneCL Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.8 The CDF of Prediction Errors for Predicting OpenCL Kernel Execu-

tion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.9 The System Speedup of HeteroPDP when Running an OpenCL Appli-

cation alone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.10 The Speedup and Fairness of HeteroPDP when an OpenCL Application

is co-located with a Native CPU Application . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.11 The Prediction Accuracy of Selecting the Optimal Target to Run an

OpneCL Kernel Co-located with a Native CPU Application Having

Varying Scheduling Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.12 The Speedup of HeteroPDP when Running Workloads Consisting of

an OpenCL Application and a Native CPU Application with Varying

Scheduling Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.13 The Prediction Accuracy of Selecting the Optimal Target Device to

Run an OpneCL Kernel co-located with Two Native CPU Applications . 120

6.14 The Speedup and Fairness of HeteroPDP when Running Workloads

Consisting of Two Native CPU Applications and One OpenCL Appli-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xii



Chapter 1

INTRODUCTION

Modern computer systems are accelerator-rich, equipped with many types of hard-

ware accelerators or sensors, e.g., graphics processing units (GPUs), tensor processing

units (TPUs) [56], digital signal processors (DSPs), image processors, audio proces-

sors, and field-programmable gate arrays (FPGAs) to speed up computation and/or

reduce energy consumption [25, 47, 105, 123]. Figure 1.1 exhibits an example of an

accelerator-rich heterogeneous system architecture which integrates a variety of ex-

ecution devices in a single computer machine. The advantage of having such kinds

of heterogeneous systems is that workloads can be dynamically distributed to run

on different devices based on their characteristics to maximize the overall system

throughput.

GPUs are a type of hardware accelerators in modern computer systems. They

are pervasively deployed to high performance computing clusters (HPCs). GPUs

were initially devised to perform graphics related computations, specifically frame

rendering, 3D modeling, video codec, and digital image processing. Nevertheless, the

capability of performing massive multithreading and fast context-switching has been

the forte of modern GPU architectures, which enables GPUs to accelerate general-

purpose parallel workloads such as scientific computation, weather forecasting, as well

as machine learning workloads. Therefore, it is getting more and more notice today to

offload and execute general-purpose GPU (GPGPU) workloads on the highly-parallel,

throughput-oriented architecture.
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Figure 1.1: An example of an accelerator-rich heterogeneous computer system.

1.1 GPGPU Architecture and Computation

GPUs are based on the single instruction multiple thread (SIMT) computation

paradigm where multiple threads are grouped together to form a warp or wavefront.

Threads in a warp are mapped to a single instruction multiple data (SIMD) execution

unit such that all threads execute the same instructions, but with different data.

The benefit of the large number of warps and fast context-switching is latency-

hiding—whenever the execution of a warp stalls, e.g., facing a cache miss and waiting

for the data to be ready, it can be swapped out and another warp can be swapped

in for immediate execution to maximize resource utilization without paying much

context-switching overhead.

A modern GPU consists of multiple streaming-multiprocessors (SMs) or com-

putation units (CUs). Each SM is similar to a SIMD processor, which has vector

2



Streaming Multiprocessor (SM)

Streaming Multiprocessor (SM)

Streaming Multiprocessor (SM)
Warp 

Scheduler

. . .
SIMD Lanes (adder)

..

Warp 0

Warp 1

Warp 2

Warp (N-1)

Warp Pool

. . .
SIMD Lanes (mult.)

. . .
SIMD Lanes (divider)

..

.

Inst. 
Buffers

L1
 In

st
. C

ac
h

e

..

.

L1 Data Cache

Reg. 
Files

In
te
rc
o
n
n
e
ct

Scoreboard

Memory Ports

To L2 Cache

Fetch Unit
Inst. 

Decoder

..

Figure 1.2: An overview of the modern GPGPU microarchitecture.

functional units, register file, cache memories, and instruction fetch/decode units as

what Figure 1.2 illustrates [79]. Additionally, an SM also has a warp pool to record

the context of all running threads for performing fast-context switching. To order

the execution of the large number of parallel warps, an SM employs a hardware warp

scheduler to dispatch and allocate computation resources for warp execution. Note

that, the components highlighted in yellow in Figure 1.2 are the main components in

the GPU microarchitecture which this thesis work focuses on.

At runtime, a GPGPU application first copies data from the host machine to a

GPU’s memory space. The application then spawns a massive number of threads that

execute the same piece of code in a kernel to process the data. Multiple threads are

grouped into a small batch, called a thread-block (TB) or a cooperative thread array

(CTA). Threads from a thread-block have the same life-cycle and are dispatched

to an SM for concurrent execution. For the threads to be executed by the vector

functional units in an SM, the threads in a thread-block are split into several warps.

All threads within a warp are executed simultaneously by the vector functional units.

At every cycle, the warp scheduler selects a ready warp for execution. When a

warp stalls, GPUs can perform fast context-switching to process another ready warp

without introducing any additional latency. By interleaving the execution with a
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large number of parallel warps, GPUs can hide execution latency to maximize the

pipeline utilization and achieve a considerable throughput.

1.2 The Inefficiencies of Current GPGPU and Accelerator-rich System Designs

Although modern GPUs can process a large number of threads in parallel, it has

been shown that directly employing GPUs to accelerate parallel workloads does not

always gain good performance improvements. This is mainly due to three reasons:

1. Not all warps have the same amount of workload. Warps have different number

of instructions for execution, and thereby there is an execution time disparity

between parallel warps. This execution time disparity can raise a sub-optimal

performance problem, called warp criticality.

2. The shared hardware resources are limited, in particular the cache storage and

memory bandwidth. It is difficult to fairly accommodate the demands of all

running threads. Concurrent running threads compete the shared computa-

tion resources that may introduce additional stall cycles, lowering the pipeline

utilization.

3. To perform computation on a GPU often requires to copy a large amount of data

between the host CMP and the GPU back and forth for communication and

synchronization. Because of the limited bandwidth capacity of the system bus

and the host main memory, these data transfer operations can incur significant

execution time overhead and memory interference, resulting in lower average

throughput than always using the host CMP to process the same workload.
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1.2.1 Execution Time Disparity and Warp Criticality

In the GPGPU computation paradigm, a thread-block is the basic computation

unit dispatched onto an SM. A thread-block contains a number of warps that have the

same life-cycle and are bounded to the same synchronization barrier. In other words,

warps from the same thread-block start execution at the same time, and are blocked

at the same synchronization barrier until all warps finish the associated computation

workloads.

However, not all warps have the same amount of workload, and therefore warps

do not always finish at the same time. A significant execution time disparity is

observed between warps in a thread-block for GPGPU workloads. As a result, fast

running warps have to wait at a synchronization barrier or kernel exit point until the

slowest running warp, or the so-called critical warp, finishes. This raises two problems

that significantly degrade the performance of GPUs. First, the execution time of a

thread-block is determined by the execution time of the critical warp. Although faster

running warps finish the assigned workloads, they are suspended at a synchronization

barrier without performing any meaningful computation. Consequently, it occupies

and wastes precious shared hardware resources such as the register file. Second,

when faster running warps finish execution and are idle, the number of active warps

decreases. In such a scenario, the GPU may not have enough ready warps to hide

latency stalls. When a warp, especially the critical warp, stalls, its execution latency

will be exposed and thereby the GPU pipeline is not fully utilized. This performance

problem is called the warp criticality problem.

To address the warp criticality problem, in Chapter 3, I discuss the important fac-

tors that contribute to GPU pipeline stall and present the results that quantify the

severity of the warp criticality problem for GPGPU applications [68, 69]. I identify
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the sources of warp execution time disparity in Chapter 4 [72]. While the aver-

age execution time disparity between the warps that share a synchronization point

in a thread-block can result in reduced pipeline utilization and lower throughput,

the performance of GPGPUs is also significantly constrained by the memory subsys-

tem. I propose a coordinated warp scheduler and cache prioritization scheme, called

Criticality-Aware Warp Acceleration (CAWA), to effectively reduce the degree of

warp criticality [72].

1.2.2 Resource Contention and Cache Thrashing

Modern GPUs are often equipped with cache memories to filter out the intercon-

nect bandwidth demands as well as to reduce the average memory access latency.

However, because of the massive multithreading computation paradigm, cache capac-

ities, especially the L1 data caches, of GPUs are relatively small. For instance, an SM

of the NVIDIA Maxwell GPU can process up to 2048 concurrent threads and has a

24kB L1 data cache shared across all running threads [92]. Namely, on average, each

thread can only obtain a few bytes of the data cache storage. Threads contend for the

cache storage with each other, resulting in a severe cache thrashing problem, namely,

cache lines are frequently swapped in/out without receiving any reuse. Consequently,

GPGPU applications do not utilize cache memories efficiently.

The cache inefficiency in GPUs incurs two critical problems which often limit the

performance of GPUs. First, due to the cache thrashing problem, many GPGPU

applications have high data cache miss rates. GPU caches are not able to effec-

tively reduce the average memory access latency, leading to additional pipeline stalls.

Second, a large amount of adjacent data elements brought into the cache with the

demanded data is never referenced before being evicted. This injects additional data

traffic to the interconnect and can increase the queuing latency in the interconnect.
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Due to the unnecessary data traffic, applying caches to preserve spatial localities

significantly degrades the performance in some GPGPU workloads instead [51].

Many prior works proposed to apply cache bypassing techniques to alleviate the

degree of cache thrashing in GPUs. A widely used approach to bypass memory

requests from caches is to employ compilers to perform off-line analysis and identify

data that are unlikely to receive any reuse in the near future [51, 76, 77, 121]. However,

the compiler-based approaches are not flexible for input dependent applications. In

addition to the static compiler based schemes, a number of prior works proposed to

use additional hardware components to count and predict the reuse distances of cache

lines at runtime [74, 109]. However, the reuse distances of GPGPU cache lines can

be extremely long and exhibit a disperse distribution. It is challenging to accurately

predict reuse characteristics of GPGPU cache lines with low storage requirement.

These dynamic prediction algorithms, therefore, require a large number of hardware

counters and incur significant implementation overhead.

To tackle the cache inefficiency problem in GPUs, Chapter 5 of this thesis ex-

plores the cache access behavior of GPGPU applications. I propose a low hardware

implementation overhead cache bypassing algorithm—Control-Loop Based Adaptive

Cache Bypassing (Ctrl-C)—for GPGPUs to accurately predict the cache reuse be-

havior without the need of off-line analysis and dynamically bypass memory requests

to prevent cache lines from early eviction [70]. Ctrl-C significantly improves the

overall performance of GPGPUs and outperforms other state-of-the-art GPU cache

bypassing schemes.

1.2.3 Data Movement Overheads and Memory Interference

In a heterogeneous system, GPUs are usually attached to the host machine via

the PCIe or AGP bus interface. When offloading computation onto a GPU card, the
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system has to frequently copy data between the host main memory and the GPU

internal memory via the bus to synchronize the data. Since the system bus and main

memory bandwidth is a limited resource, the data movement operations frequently

become a critical performance bottleneck of GPUs and dominate the total execution

time [13, 37, 81, 93, 108]. As a result, exploiting GPUs to accelerate computation

does not always exhibit better overall throughput than processing on CMPs directly.

In order to eliminate the performance impacts of data movement operations, num-

bers of prior works, such as [6, 114, 115, 120], developed performance prediction

schemes to dynamically make offloading decisions. These works focused on adopting

machine learning or compiler techniques to profile and analyze the characteristics of

a GPGPU application to understand whether offloading the computation is able to

receive performance or energy benefits.

However, apart from the GPU application itself, in a realistic computer system,

there are many concurrent processes co-located on the same machine, sharing the

system bus and main memory bandwidth. For example, in an on-demand cloud com-

puting environment such as Amazon Web Service (AWS) [3], Google Cloud [36], and

Microsoft Azure [24], compute nodes are simultaneously servicing multiple applica-

tions or hosting multiple virtual machines with native CPU applications as well as

GPU acceleratable applications. In such execution environment, co-located applica-

tions contend for shared resources in the memory subsystem. Consequently, existing

task scheduling schemes that only consider the characteristics of an application itself

but do not take into account memory interference from co-located workloads are not

robust and provide sub-optimal performance gain.

To understand the need for an intelligent scheduler that can make an accurate

decision for which optimal execution target an application should be executed on

in the presence of memory interference, Chapter 6 of this thesis provides a detailed
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performance characterization study for accelerate-rich heterogeneous systems. Based

on the observations, I design a scalable Heterogeneous Performance Degradation

Prediction (HeteroPDP) scheme to accurately predict the system performance degra-

dation when an application is running on different execution targets with memory

interference [71]. With the prediction outcomes of HeteroPDP, a workload can be

dynamically to be dispatched to run on the optimal execution target device based on

the optimal goal.

1.3 Contributions

The goal of this thesis is to design architectural- as well as system-level solutions

to address the inefficiencies of GPGPU microarchitectures and system architectures

of accelerator-rich computers equipped with GPUs. Specifically, the thesis focuses

on discussing the warp criticality, cache contention, and memory interference prob-

lems in GPGPUs. Besides, this thesis also provides detailed characterization studies

and new insights of GPGPU architecture designs from different aspects, including

warp scheduling algorithms, memory management techniques, and performance pre-

dictions. Overall, this work makes the following key contributions:

1. Providing a detailed characterization of the latency hiding ability of GPGPUs.

2. Identifying the warp criticality problem and providing an in-depth study of the

warp execution time disparity in the massive multithreading computation of

GPGPUs.

3. Designing a coordinated warp scheduling and cache prioritization solution to

efficiently eliminate the warp criticality problem in GPGPUs.

4. Developing a control loop based cache bypassing algorithm to intelligently mit-

igate the cache contention problem in GPGPUs.
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5. Analyzing the system performance degradation in the presence of memory in-

terference in a CPU-GPU multiprogrammed computing environment.

6. Proposing a performance degradation mechanism to balance the execution time

slowdown and maximize the overall system throughput for accelerator-rich com-

puter systems.

The following chapters of this thesis present my research accomplishments in de-

tail. The rest of this thesis is organized as follows:

1. Chapter 2 discusses prior studies related to this thesis work.

2. Chapter 3 describes the warp criticality problem and shows the characterization

results for its impact on the performance of GPGPU workloads.

3. Chapter 4 presents a solution that accelerates the execution of critical warps,

called Criticality-Aware Warp Acceleration (CAWA).

4. Chapter 5 demonstrates a control loop based adaptive cache bypassing (Ctrl-C)

algorithm to effectively mitigate cache contention in GPGPUs.

5. Chapter 6 presents a performance degradation prediction (HeteroPDP) scheme

to accurately predict and balance the system performance degradation in the

presence of memory interference in a heterogeneous system setup.

6. Chapter 7 summarizes this thesis work and makes the conclusions.
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Chapter 2

RELATED WORK

To better understand the context and novelty of my thesis work, this chapter

focuses on reviewing and discussing prior studies in the related areas.

While the goal of this thesis work is to solve three inefficiencies in modern GPGPU

microarchitectures and accelerator-rich heterogeneous systems (i.e., the warp critical-

ity, the cache contention, and the system memory interference problems), I will first

review the prior studies relevant to warp criticality. I will then present the works re-

garding cache management in CPUs and GPUs. Finally, I will introduce the designs

related to the shared system resource management as well as the task scheduling in

heterogeneous computer systems.

2.1 Warp Criticality

Thread Criticality in CMPs. The concept of thread criticality in CMPs is similar

to the warp criticality problem in GPUs. A multithreading application often applies

barriers to synchronize between threads. However, not all threads arrive at a barrier

at the same time. Fast running threads are idle at a barrier to wait for the slowest

running thread. The execution time of a parallel application is dominated by the

execution time of the critical thread on CMPs. In order to improve the system

performance, it is important to identify the critical thread in advance and accelerate

the critical thread execution.

Li et al. pointed out that some threads in CMPs are often idle to wait for slower

running threads, resulting in energy waste [75]. In order to save energy, Liu et al.

presented a probability model to estimate the thread running time and guide the dy-
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namic voltage and frequency scaling (DVFS) of CMPs [80]. Cai et al. proposed using

compilers to insert check points in the parallel regions that all threads execute to eval-

uate the execution speed of each thread [17]. By monitoring the time a thread reaches

the check points, the critical thread can be detected. Bhattacharjee and Martonosi

observed that the critical threads often encounter more cache misses and have longer

average memory access latency [14]. Bhattacharjee and Martonosi designed a thread

criticality predictor (TCP) by monitoring the per-thread cache access behavior. TCP

is then used to guide the task stealing as well as DVFS of CMPs. Ebrahimi et al.

exploited the degree of resource contention at a spin lock as the metric to predict the

critical thread [30]. If a lock is frequently held by a particular thread, this thread has

likelihood to be the critical thread. Bois et al. proposed a stack based approach to

measure thread criticality by monitoring the number of waiting threads in a certain

time interval [15]. A thread has a higher degree of criticality if there are more threads

waiting at a spin lock when this particular thread performs computation. Turakhia

et al. observed that the number of instructions in a code section (i.e., the code be-

tween two consecutive barrier instructions) has locality [111]. In other words, two

consecutive code sections often have similar number of instruction counts. Based on

this observation, Turakhia designed a thread progress equalization (TPEq) scheme to

predict the degree of thread criticality by predicting and calculating the distance to

reach a barrier.

Although the concept of thread criticality in CMPs is similar to warp criticality

in GPUs, due to the distinct difference between CPU and GPU architectures and

computation paradigms, the effects introduced by the critical threads and critical

warps vary as well. Because GPU has a large number of parallel warps and frequently

switches the execution between the parallel warps, there are more factors that can
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lead to warp criticality as I will present in Chapter 4. It is still difficult to accurately

predict the critical warp with these thread criticality prediction algorithms for CMPs.

GPGPU warp scheduling. While the warp criticality problem can substantially

limit the performance of GPGPU workloads, this thesis work proposes using a criticality-

aware warp scheduling algorithm to eliminate the warp execution time disparity.

Next, I present the state-of-the-art warp scheduling algorithms to better understand

the design of warp schedulers.

Many prior works focused on improving the performance of GPUs by modifying

warp scheduling algorithms to prevent warps from stalling. Gebhart et al. and

Narasiman et al. designed a 2-Level scheduler to split warps into different subgroups

and keep only one group of warps active at a time [35, 87]. The warp scheduler

is only able to issue instructions from the active subgroup of warps, so that the

resource contention problem can be alleviated. Jog et al. further improved the 2-

Level scheduler by assigning warps with continuous IDs to different subgroups [54,

55]. Because memory requests from continuous warps have higher probability to

fall into the same L2 cache or DRAM bank, resulting in bank conflicts and longer

memory access latency. With this warp grouping algorithm, the GPU performance

can be improved by avoiding bank conflicts at the L2 cache and DRAM. Rogers et

al. proposed a cache conscious mechanism to monitor and measure the degree of

memory contention by a loose locality score (LLS) [101, 102]. The warp scheduler

then dynamically modulates the number of active warps based on the degree of LLS

value. If the cache controller detects cache lines in the L1 data cache are frequently

evicted due to the interference from inter-warp accesses (LLS value is high), the warp

scheduler will decrease the number of active warps. While applications might have

different preferences of warp scheduling policies, Awatramani et al. proposed a phase-

aware warp scheduling algorithm which applies compilers to analyze the GPGPU
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kernel source code and select the optimal warp scheduling policy, whereas Lee et

al. designed an adaptive algorithm to dynamically select the optimal scheduling

algorithm based on the instruction issue pattern at runtime [10, 67].

These proposed warp scheduling algorithms aim to prevent all warps from stalling

at the same time due to long latency memory operations to improve the pipeline

utilization. These scheduling policies allow the warp scheduler to tolerate memory

latency better by reducing the idle time of GPU pipeline. However, these warp

scheduler designs do not take the impact of warp criticality into account. The warp

criticality problem can still limit the performance of GPGPU workloads. In contrast,

my proposed criticality-ware scheduling design (Chapter 3 and 4) in this thesis aims

to resolve resource contention by ordering the warp execution based on warp criti-

cality and allowing critical warps to execute with larger time slices. Therefore, the

performance of GPGPU workloads can be significantly improved.

2.2 Cache Thrashing Problem and Cache Management

In addition to the warp criticality problem, memory contention and cache thrash-

ing is another main problem limiting GPU’s performance. To design a new cache

management policy to improve the cache efficiency in GPGPUs, I intend to review

prior studies that focused on lessening the degree of cache thrashing in CPUs and

GPUs next.

CPU cache management. Many cache management policies have been proposed

to mitigate cache thrashing in CPUs. Jiménez designed a tree-based pseudo LRU

(pLRU) cache replacement policy, which exploits machine learning techniques to find

out the optimal promotion and insertion position for cache lines on an LRU stack [53].

Qureshi et al. proposed the BIP cache insertion policy and set dueling mechanism to

insert new cache lines at the LRU position to achieve the optimal hit rate when cache
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thrashing occurs [97, 98]. Jaleel et al. designed an RRIP algorithm which predicts

the reuse distance of a cache line by giving each cache line a re-reference prediction

value (RRPV) and updating RRPV when a set is accessed [49]. Wu et al. proposed

a signature based framework, SHiP, to predict the reuse distance of an incoming

cache line based on the particular signature of a memory request, e.g., the insertion

program counter value and memory address [119]. Arunkumar and Wu designed a

reuse-and-cost aware memory access (ReMAP) scheme that takes the DRAM access

latency into account to select the best cache eviction candidate [8]. Lai et al. and

Khan et al. proposed dead block sampling algorithms to predict if a cache line will

not be reused in the near future [61, 63]. The dead block then can be bypassed or

evicted from the cache. However, all these reuse distance prediction works were built

on top of CPU’s last level caches, which usually have higher associativity with the

capacity in MB scale. For instance, the Intel Core i7-2600 CPU is equipped with

a 8MB L3 cache [44]. While the L1 data caches in GPUs are much smaller and

have lower way-associative, the cache trashing problem is severer. These CPU cache

management algorithms are not able to accurately predict the data reuse patterns in

GPUs.

In order to prevent cache lines from early eviction, Dung et al. proposed a PDP

protect algorithm to bypass part of memory requests [29]. In PDP, each cache line

has a protection counter which is decremented by one when the corresponding set is

accessed. A cache line can be evicted only when its protection counter reaches zero.

If no line has a zero protection value, then the new incoming memory request will

be bypassed. PDP guarantees a cache line will not be evicted within a short time

period. However, the reuse distances for GPGPU workloads can be extremely long

and often have a disperse pattern. It is difficult to predict and set up an optimal

protection distance.
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GPU memory and cache management. Stratton et al. conducted a detailed

characterization study and suggested that resource contention in the memory subsys-

tem is a critical performance problem limiting GPGPU performance [106, 107]. In or-

der to alleviate the memory contention in GPUs, Lee et al. designed a compiler-based

scheme to predict the per-thread working set size [66]. According to the prediction

outcome, GPUs can then limit the number of active threads to regulate the degree

of memory contention. Chatterjee et al. proposed a sub-channel architecture specifi-

cally for GPU DRAMs to mitigate the degree of contention in DRAM row buffers [18].

Choo et al. observed that using unified L1 data caches shared across multiple SMs can

improve inter-warp locality and mitigate cache contention [23]. Sethia and Mahlke

designed an Equalizer scheme that can dynamically monitor the demand of different

shared resources in GPUs [104]. If Equalizer detects the warp execution time is dom-

inated by memory access time, it throttles the warp execution by stopping creating

new thread-blocks on an SM.

Cache bypassing is an approach for balancing cache capacity scaling and its uti-

lization [85]. To effectively improve GPU cache utilization and mitigate the degree

of cache contention, many cache bypassing algorithms have been proposed. Jia et

al. designed a FIFO queue (MRPB) to reorder requests to reduce inter-warp con-

tention [52]. Additionally, MRPB bypasses requests if intra-warp memory contention

is detected. Chen et al. designed an adaptive resource management scheme that

monitors cache contention and interconnect congestion [22]. If the degree of cache

contention or bandwidth demand is too high, memory requests will be bypassed.

Mahmoud et al. proposed using cache miss rate as a metrics to evaluate if an appli-

cation is a streaming workload and make cache bypassing decision accordingly [60].

However, these prior designs do not distinguish reuse patterns among memory re-
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quests. Cache lines with near reuse distances may be bypassed, losing an opportunity

to improve the cache hit rate.

Xie et al. and Liang et al. modified compilers to analyze GPGPU applica-

tions source code and guide GPUs to bypass data which are unlikely to receive any

reuse [76, 77, 121]. Li et al. proposed a valley model to guide compilers analyzing

if a GPU application can benefit from cache bypassing [73] for varying number of

spawned threads. However, these compiler-based schemes are not able to predict the

reuse behavior of input dependent applications, e.g., applications with pointer chasing

execution behavior.

Tian et al. proposed the PC-based Adaptive Bypassing that uses confidence coun-

ters to predict zero-reuse lines and bypasses all requests if detecting cache lines will

not receive any reuse [109]. Lee et al. designed a region-aware caching mechanism

(GREEN) [65]. GREEN dynamically tracks the degree of locality and selectively

bypasses data that are located in the memory regions with poor locality. Li et al.

suggested adding additional tag array entries to track the data reuse patterns [74].

Nevertheless, the reuse distance can be extremely long for GPUs. It is challenging

to accurately predict the data reuse patterns with a limited number of confidence

counters or tag array entries.

Zheng et al. designed an adaptive cache and concurrency allocation (CCA) scheme

to dynamically trace the per-warp memory access footprint [125]. CCA then prevents

cache lines from early eviction by limiting the number of warp allowed to access to

the cache memory. Dai et al. developed a model-driven approach that dynamically

estimates the cache hit rate as well as execution time speedup improvement if reducing

the number of warps that can allocate the data cache storage [27]. The model-driven

approach then intends to bypass memory requests issued by a set of designated warps

to maximize the cache hit rate. However, with the imbalanced memory access time
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created by these works, the model-driven approach may increase the degree of warp

criticality, degrading GPU pipeline utilization.

Koo et al. developed an access pattern-aware cache management policy (APCM)

that dynamically identify the locality type (inter-warp locality, intra-warp locality,

and streaming) of each memory instruction [62]. If a memory instruction is predicted

to have streaming access behavior, APCM will then bypass requests issued by this

particular instruction. However, APCM bypasses all the memory requests if it pre-

dicts the memory access pattern is streaming. In such case, the hardware tracker

loses the information to examine the cache access pattern. It is difficult to identify

whether a bypassing decision is correct or not.

In contrast, in this work, I propose a low circuit implementation overhead design—

Ctrl-C (Chapter 5)—to dynamically learn the cache line reuse behavior and perform

selectively cache bypassing to alleviate the cache thrashing problem in GPGPUs with-

out a need of off-line analysis.

2.3 Memory Interference in Heterogeneous Systems

Memory Interference and Management The shared resource contention in the

CMP domain has been studied by an extensive amount of prior works. These works

mainly focused on discussing managing the capacity and bandwidth of the shared

memory subsystem. Mutlu and Moscibroda proposed a stall-time fair DRAM schedul-

ing algorithm to reduce the performance degradation and improve system slowdown

fairness caused by shared resource contention in the DRAM modules by dynamically

assigning different DRAM access priorities to the co-scheduled threads [86].

In order to understand the effects of cache interference in a CMP system, Hsu et al.

conducted a detailed characterization study to analyze the performance impacts with

different shared cache partition strategies. To mitigate the shared last-level cache
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contention, Jaleel et al. proposed a thread-aware dynamic insertion policy (TADIP)

to monitor and select the insertion policy for co-located applications that share the

last-level cache [48]. Qureshi and Patt designed a utility-based cache partitioning

(UCP) algorithm to eliminate the shared cache interference in a multiprocessor sys-

tem by allocating different size of cache storage to each co-located application based

on the cache utilization [96]. In order to solve the underutilization problem and re-

duce the implementation overhead of UCP, Xie and Loh proposed a pseudo partition-

ing (PIPP) scheme that simulate the cache partitioning algorithm by inserting a new

cache line at different positions [122]. Wang and Chen proposed a futility scaling (FS)

mechanism that targets at partition the cache storage for co-located processes with-

out losing the cache associativity [113]. Intra-application cache interference stemmed

from operating system activities and hardware prefetching can occur and degrade an

application’s performance as well. Wu and Martonosi studied the intra-application

cache interference problem and proposed an OS-aware cache insertion policy to elim-

inate the intra-application interference by prioritizing the memory requests asserted

by kernel- and user- space processes [118]. In order to accommodate the shared cache

resources for processes with different OS scheduling priorities, Wu and Martonosi de-

veloped a adaptive timekeeping replacement (ATR) policy to dynamically adjust the

cache decay intervals based on the optimization target [117].

In addition to using the architectural-level solutions to alleviate the shared re-

source contention problem, many works targeted at designing software scheduling

algorithms to allocate the shared resources. Mars et al. designed a low overhead

algorithm, called Bubble-up, to predict the degree of shared resource contention and

to schedule services to run on different computation nodes in data center execution

environments [82]. The Bubble-up algorithm aimed to maximize the per-node loading

without violation the real-time deadline or quality-of-service (QoS) constraints. On
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the other hand, Jaleel et al. proposed a cache replacement and utility-aware schedul-

ing (CRUISE) targeting at coordinating the OS scheduling and cache replacement

policy to maximize the system throughput on a single CMP machine [50]. To sched-

ule workloads running on a single-ISA heterogeneous multiprocessor system (e.g., the

big-little core architecture [7]), Craeynest et al. proposed a performance impact es-

timation (PIE) algorithm to predict the performance when a program runs on the

other core [26].

Nevertheless, all of these existing solutions looked at the homogeneous architecture

domain only. In contrast, in my thesis, the proposed HeteroPDP scheme (Chapter 6)

targets at predicting and mitigating the degree of shared resource contention specifi-

cally in heterogeneous computer systems.

Shared Resource Management for Heterogeneous Systems Since many com-

mercial products have integrated CPU and GPU cores into one single die, how to

efficiently manage the shared resources between the different types of processors is a

significant research problem, especially for the shared last-level cache [41, 42]. Lee

and Kim proposed a thread-level parallelism aware policy (TAP) to partition the

shared cache storage for co-located CPU and GPU workloads [64]. Mekkat et al.

developed an algorithm, called HeLM, to dynamically determine the priority of CPU

and GPU cache accesses [83]. Kayıran et al. designed a concurrency management

scheme that mitigates the memory bandwidth contention in a heterogeneous system

by regulating the number of concurrent running on the GPU cores [57]. García et al.

quantified the impact of shared virtual memory space between the CPU and GPU

cores and suggested that developers have to redesign OpenCL programs to leverage

the utilization between CPU and GPU cores to optimize the system throughput [34].

Ausavarungnirun et al. developed a staged DRAM controller that aims to improve

the fairness of CPU-GPU shared DRAM by using dedicated CPU and GPU request
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queues in the memory controller and treat the CPU/GPU requests with different pri-

orities [9]. Seo et al. designed a memory-aware load balance algorithm (MLB) [103].

MLB aims to balance the performance degradation by allocating more DRAM band-

width for data movement between the host CPU and the hardware accelerators. None

of these works, however, addressed the shared resource contention problem from the

aspect of task scheduling by taking into account the degree of memory interference

from multiple levels of the memory hierarchy.

OpenCL Kernel Scheduling Many prior works have pointed out that employing

GPUs to accelerate OpenCL kernels does not always lead to performance improve-

ment, due to the data movement and synchronization overhead [13, 37, 42, 81, 93,

108, 124]. In order to identify the optimal execution target device to run an OpenCL

kernel, many works proposed applying a variety of machine learning techniques to

dynamically analyze and predict the behavior of an OpenCL kernel. Wu et al., de-

signed a performance and power predictor for GPUs by adopting the K-means al-

gorithm [120]. Wen et al., proposed using support vector machine (SVM) to model

the performance gain of GPUs [115]. Ardalani et al. employed regression models

to project the GPU kernel execution time by running the same kernel on CMPs [6].

Wen and O’Boyle designed a decision tree based algorithm to analyze the performance

benefits that offloading an OpenCL to run on an accelerator [114]. Aji et al. designed

a set of OpenCL API extensions enabling compilers to guide the OpenCL scheduler

select the optimal target device at runtime [1, 2].

Instead of predicting the performance gain, a number of studies focused on min-

imizing the data transfer overhead. Lustig and Martonosi developed a fine-grained

synchronization mechanism to early start the GPU kernel execution and hide the data

transfer latency [81]. Ham et al. proposed a supply-compute framework (DeSc) which

decouples the communication and compute engines to hide the data transfer overhead
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by out-of-order executing data fetching and computation [38]. Belviranli exploited

just-in-time (JIT) compilers to hide the communication overhead by automatically

reordering the GPU application programming interface (API) calls to overlap the

data transfer operations [13].

However, none of the prior works takes the shared resource interference introduced

by the co-located applications into account in making a scheduling decision. They

simply took an individual GPU kernel’s characteristics to do performance prediction

and optimization. While a realistic machine can service several processes or applica-

tions simultaneously, these designs are not robust. Instead, in this work the proposed

HeteroPDP in Chapter 6 aims to optimize the performance for the entire system.
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Chapter 3

WARP CRITICALITY AND CRITICALITY-AWARE WARP SCHEDULING

Modern GPUs achieve a high throughput by applying massive multithreading and

fast context-switching to hide the execution latency. When the execution of a warp

stalls, the warp can be swapped out and another ready warp can be swapped in for

execution. These stalls could be caused by cache misses or pipeline hazards, e.g., data

or structural hazards.

3.1 The Baseline GPGPU Architecture and its Computation Model

A GPGPU application is a highly multithreading program. Massive number of

parallel threads execute the same program code, called a kernel, with different data.

At runtime, a GPGPU application creates multiple thread-blocks to perform parallel

computations, where a thread-block is an array of concurrent threads that are dis-

patched to run on a GPU shader core together. Threads from the same thread-block

share global data and synchronize at barriers. A programmer can invoke barrier in-

structions (the API calls of __syncthread() in CUDA [91] or barrier() in OpenCL [16]

semantics) explicitly to block the thread execution and make threads synchronize. In

addition to the explicit synchronization barriers, threads are automatically blocked

to synchronize when they finish their own workloads as well, i.e., an implicit synchro-

nization barrier can be observed at the end of kernel code. When reaching a barrier

point, either explicit or implicit, a thread has to stop execution until all threads from

the same thread-block reach the same barrier.
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Figure 3.1: The execution order with the baseline RR scheduler.

A modern GPU is a cluster of multiple shader cores, called streaming multipro-

cessors (SMs) or computation units (CUs), where each SM is a unified graphics and

computing processor that can execute graphics rendering or general-purpose com-

putations as shown in Figure 1.2 [79]. An SM is a single instruction multiple data

(SIMT) processor, which processes massive number of parallel threads from the same

GPGPU program with vector functional units. In order to fit into the width of

the vector functional unit, multiple parallel threads from the same thread-block are

further grouped into a small batch, called a warp. A warp is the basic unit to be

scheduled and executed in the GPU pipeline.

In order to efficiently execute the large number of parallel warps, an SM applies

a warp pool and warp scheduler to manage the warp execution as highlighted in

Figure 1.2. The warp pool records the context of all running warps. At each cycle,

the warp scheduler selects a ready warp from the warp pool to be issued and executed.

The warp scheduler orders the warp execution based on its warp scheduling algorithm.
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For example, with the baseline round robin (RR) scheduling policy, the warp scheduler

iteratively selects a warp from the warp pool to executed as illustrated in Figure 3.1.

While the warp execution is interleaved, the warp execution latency can be hidden.

For example, in Figure 3.1, a warp is selected to be execute every four cycles. Any

operation with a latency fewer than 4 cycles will be hidden well and not affect the

pipeline throughput.

3.2 GPU Latency Hiding Ability

At every cycle, GPU’s warp scheduler selects an available warp from the warp

pool for execution as discussed in Chapter 3.1. If there is a ready instruction in the

selected warp’s instruction buffer without any pipeline hazards, the warp is ready

for execution; otherwise, the selected warp stalls. By interleaving the execution of

warps, GPU can hide the warp stall cycles and maximize the computation throughput.

However, GPUs are not always able to achieve a high throughput. To understand this

sub-optimal performance problem, I delve deep to investigate GPU’s latency hiding

ability.

3.2.1 Factors Stalling Warp Execution

In order to evaluate the effectiveness of the modern GPU’s latency hiding ability,

I first need to identify the sources of warp execution time delays. In the following, I

explain each of the potential factors that can delay a warp’s instruction from getting

executed:

1. Warp Scheduling Delay. At every cycle, the warp scheduler selects a warp

for execution based on the warp scheduling policy. In the baseline GPU archi-

tecture, a fair round robin (RR) scheduler is employed to select warps in the

warp pool. For instance, if there are 48 active warps in the warp pool, the RR
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warp scheduler will iterate over the 48 warps cycle-by-cycle to issue one instruc-

tion per warp. A warp is selected for instruction issue and execution every 48

cycles and will have up to 47 cycles delay from the RR scheduling policy to hide

any stall cycle from itself.

2. Instruction Buffer and Instruction Cache Miss. In order to store instruc-

tions fetched from the instruction cache, each warp has an instruction buffer.

When a warp selected for execution has no valid instruction in its instruction

buffer, additional latency penalty is paid due to the empty instruction buffer

caused by instruction cache misses.

3. Structural Hazard. If there is an available instruction in the selected warp’s

instruction buffer, the instruction will be placed in the scoreboard while also

accessing the source operands in the register file. This is when structural hazards

caused by contentions in the register file banks and at the various functional

units are examined. If the decoded instruction cannot proceed for execution

due to the unavailability of the register file bank or due to the unavailability of

the required functional unit, the warp stalls.

4. Control Hazard. Unlike CMPs that are often equipped with advanced branch

predictors, modern GPUs do not currently implement branch prediction logics

and rely on the massive multithreading feature to overlap the latency caused

by control hazards. However, it is possible for a warp to experience additional

control hazard stalls. For example, if a branch or function call instruction falls

onto the taken path for a particular warp, and there is no other active warp in

the pool at this time instance to help hide the branch address resolution latency,

the particular warp then has to spend additional cycle(s) until its target address

is calculated.
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5. Data Hazard. In addition to the stalls coming from structural and control

hazards, data dependency can introduce additional penalty to an active warp.

Currently, there is no data forwarding logics implemented in GPUs. There-

fore, warps have to wait until data dependency is resolved before it can proceed

execution. If an instruction is dependent on an older load instruction experienc-

ing a cache miss, this particular dependent instruction will spend a significant

amount of stall cycles until the data hazard is cleared.

6. MSHR and Data Cache Miss. Memory load and store instructions can

experience additional stall cycles if the miss status holding registers (MSHRs)

for the data cache are highly contended or if a data cache miss is encountered.

Depending on the availability of the MSHRs and where the requested data

resides, the amount of latency can vary.

7. Synchronization Primitives In addition to pipeline hazards, cache miss, and

scheduling latencies, implicit and explicit synchronization primitives in GPU

programs can make warp execution stall as well. This delay mainly comes from

how the communication between the parallel warps is structured.

3.2.2 Latency Attribution Algorithm

In order to understand how the different stall factors can contribute to a warp’s

execution time, I develop a latency attribution algorithm to count and reason about

where stall cycles come from for warps. Because latencies caused by the various stall

factors can be significantly overlapped in GPUs, it is a challenging task to accurately

and faithfully attribute stall cycles to the corresponding cause.

At every cycle, the warp scheduler looks for a ready warp by iterating over the

active warps in the instruction issue stage at the GPU pipeline as illustrated in Al-
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Algorithm 1 The warp scheduler in GPUs.
1: function WarpScheduler

2: while NoReadyWarp AND NotV isitedAllWarps do

3: . visiting the next warp based on the scheduling order

4: w ← nextWarp()

5: probe(w)

6: if w is ready then

7: . executing the instruction from w issue(w)

8: end if

9: end while

10: end function

gorithm 1. For each of the visited warps, whether they are ready or not, I record the

execution status of the warp by instrumenting the baseline warp scheduler’s imple-

mentation with a monitoring function, called probe() (Line 5 in Algorithm 1). If the

visited warp is not ready, the monitoring function will investigate the sources of stalls

and update the corresponding latency counting logics; otherwise, the visited warp is

ready for execution.

Next, I delve deeper into the monitoring function probe() and present the latency

attribution algorithm. First, I calculate the time during which a warp does not execute

any new instruction because of the scheduling policy (Line 3 – 5 in Algorithm 2). This

is determined to be the difference between the time when a warp is checked and the

time when this particular warp was last checked. The time difference signifies how

long the selected warp needs to wait until it can potentially issue the next instruction,

i.e., the scheduling delay.

After the scheduling latency is determined, the monitoring function next examines

whether the selected warp is ready or not. If ready, the w.Exec counter is incremented
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Algorithm 2 The warp latency attribution function.
1: function probe(w) . w: context of the input warp

2: . calculating the scheduling delay

3: t← CurrT ime− w.PrevT ime

4: w.Scheduling ← w.Scheduling + t

5: w.PrevT ime← CurrT ime

6: if waitingatasynchronizationbarrier then

7: w.Sync← w.Sync + 1

8: else if instructionbufferisempty then

9: w.Fetch← w.Fetch + 1

10: else if branchtaken then

11: w.CtrlHazard← w.CtrlHazard + 1

12: else if datadependencydetected then

13: if causedbyadatacachemiss then

14: if w.CurrPendingAddr 6= w.PrevPendingAddr then

15: w.DataHazard← w.DataHazard + 1

16: w.PrevPendingAddr ← w.CurrPendingAddr

17: else

18: w.DataCacheMiss← w.DataCacheMiss + 1

19: end if

20: else

21: w.DataHazard← w.DataHazard + 1

22: end if
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23: else if functionalunitunabailable then

24: w.StrlHazard← w.StrlHazard + 1

25: else

26: w.Exec← w.Exec + 1

27: end if

28: end function

(Line 26 in Algorithm 2). Otherwise, the monitoring function investigates the stall

factors sequentially – synchronization primitives, no available instructions in the in-

struction buffer or instruction cache misses, control hazard, data hazard, data cache

misses, and structural hazard. Because a warp can be stalled due to multiple stall

factors at the same time (the latency hiding feature by the massive multithreading

GPUs), I want to be cautious about not double-counting latencies overlapped by sev-

eral stall factors. For example, if a warp stalls due to data dependency on an older,

load instruction that misses in the data cache, I attribute only the first stall cycle

to the data hazard factor and any additional, subsequent stall cycle(s) to the data

cache miss factor. This is because the underlying reason for the warp stall is the data

cache miss encountered by the previous cache miss. If there is no following dependent

instruction on a previous load cache miss (while the cache miss is being serviced), this

latency attribution algorithm does not attribute any stall cycle for this data cache

miss. Therefore, it is important to note that the latency shown under the data cache

miss category represents only the latency penalties that stall pipeline execution.

I also want to highlight that since GPUs rely on the fast context-switching be-

tween the massive number of available warps to improve pipeline utilization, even

if a warp encounters no delay from pipeline hazards, memory accesses, or synchro-

nization overhead, it still suffers from delays caused by the scheduling policy. For
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Table 3.1: GPGPU-sim configurations for latency characterization.

Architecture NVIDIA Fermi GTX480

Num. of SMs 15

Max. # of Warps per SM 48

Max. # of Blocks per SM 8

Num. of Schedulers per SM 2

Num. of Registers per SM 32768

Shared Memory 48KB

L1 Data Cache 16KB per SM (32-sets/4-ways)

L1 Inst Cache 2KB per SM (4-sets/4-ways)

L2 Cache 768KB (64-sets/16-ways/6-banks)

Min. L2 Access Latency 120 cycles

Min. DRAM access Latency 220 cycles

Warp Size (SIMD Width) 32 threads

example, if a fair RR scheduling policy is applied for a GPU application that has 48

warps running on an SM, each warp will spend 47 cycles waiting until its next ready

instruction can be executed. These 47 scheduling cycles will be used to overlap with

other latencies caused by e.g., structural hazards, for a particular warp. These stall

cycles are attributed to the scheduling latency instead of structural hazards, since the

additional latencies are hidden by the warp scheduler which overlaps the scheduling

latency with the execution of other ready warps.

3.2.3 Characterization Methodology

In order to investigate the warp criticality problem, I use GPGPU-sim simulator

version 3.2.0 [11] to profile the behavior of GPGPU applications. GPGPU-sim is a
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Figure 3.2: Latency breakdown for GPGPU applications. Applications are sorted by

the latency hiding ability (Scheduling).

cycle-level performance simulator that models a general-purpose GPU architecture

supporting NVIDIA CUDA [91] and its PTX ISA [88]. I run GPGPU-sim with the

default configuration representing NVIDIA Fermi GTX480 architecture. Table 3.1

describes the simulation configuration and parameters in detail.

In addition to GPGPU-sim simulator, I choose 18 GPGPU applications from the

Rodinia [19] and Parboil [107] benchmark suites to characterize the latency-hiding

feature in modern GPUs. Table 3.2 lists the details of these 18 benchmarks along with

the input data set used for my characterization study, and the computation/memory-

intensive characteristics.
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3.2.4 Latency Characterization

Next, I apply the latency attribution algorithm to investigate GPU’s latency hid-

ing ability and analyze the source of warp stall. Figure 3.2 shows the latency char-

acterization results for GPGPU applications. The x-axis presents the latency break-

down of the GPGPU applications sorted by the degree of the scheduler’s latency-

hiding ability while the y-axis shows the latency stalls attributed by the various

factors. The latency results are the average number across all warps in each of the

applications. The bars illustrate the stall cycles contributed by each stalling factor.

Applications toward the right are the ones that benefit from the baseline RR schedul-

ing policy whereas the applications toward the left are the ones whose latency stall

cycles cannot be hidden by the scheduler.

First, I investigate the effectiveness of latency hiding ability of the baseline RR

scheduling policy by focusing on the Scheduling bars. The RR scheduling policy is able

to hide the majority of the warp stall cycles in applications, such as BP, TPF, KMN,

and PTH. These applications are considered as well-behaving GPGPU applications.

On the other hand, the latency-hiding ability of the RR scheduling policy is poor for

applications such as MYC and NW. This is because there lacks warp-level parallelism in

these two applications. In other words, there are not sufficient active warps in the

warp pool.

The next two factors dominating stall cycles are from Inst. Fetch and Data$ –

stalls caused by waiting for ready instructions in the instruction buffer and by waiting

for data to be served from the cache memory. Applications such as MYC and NW, suffer

from instruction fetch stalls significantly. This is again due to the lack of warp-level

parallelism. When there are enough active warps in the pool, warps will prefetch

instructions for each other. However, since the number of active warps in these two
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applications is small, instruction fetch often results in a cache miss. Furthermore, the

scheduler cannot overlap the instruction fetch latency with other concurrent warps.

As a result, the applications spend a significant amount of time waiting for available

instructions for execution.

Applications such as SC_small and SC_mid suffer from long-latency data cache

misses. The significant amount of stall cycles caused by data cache misses indicates

that these two applications heavily accesses the memory hierarchy and suffer signifi-

cantly from its low degree of memory-level parallelism.

I next look at the amount of latency stalls contributed by the three classic types

of pipeline hazards, i.e., data, structural, and control hazards. Data hazard stalls

are caused by the particular instruction ordering within an application. I observe

that applications, e.g., MYC, NW, and PF, suffer from data hazard stalls more than

other GPGPU applications. Structural hazard stalls are caused by the competition

for pipeline resources, in this case, the functional units in the pipeline. Applications

such as LMD, spend a significant amount of time waiting for the structural hazard to

be resolved. This is because the warps in LMD heavily compete for the load/store

unit in the pipeline. Over all GPGPU applications, I do not see much stall penalty

caused by control hazards. Compared with CPU applications, GPGPU applications

contain less branch instructions [59]. Furthermore, since the branch resolution latency

is relatively small, it can be easily hidden by the scheduler.

In addition to structural hazard caused by the unavailability of functional units,

contention in the miss status holding registers (MSHRs) can cause additional penalty.

LUD, in particular, experiences a significant amount of delay by the unavailabil-

ity of MSHRs. This is because warps in LUD, a memory-bandwidth intensive pro-

gram [19, 55], often request data from the memory in a burst manner. As a result,
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the performance of LUD is significantly degraded by MSHR contention. Such con-

tention happens to SR2 and BFS as well.

Finally, the Sync. component in Figure 3.2 indicates the amount of time warps

wait at synchronization barriers (e.g., the __syncthread() API calls) in the kernel.

BT, PF, and TPF are three applications whose warps spend a large amount of time

synchronizing on barriers. This significant synchronization time is caused by workload

imbalance between the warps.

3.3 Warp Criticality

By the latency attribution result, I find that, for some applications, warps often

wait at an explicit or implicit synchronization barrier, and the wait time cannot be

hidden well. This is caused by a problem—warp criticality.

In order to illustrate the warp criticality problem, I take BFS from the Rodinia

benchmark suite [19] as a motivating example. The CUDA version of BFS contains

two kernels that are called repeatedly in a loop. Both kernels have a thread-block

size of 512 threads that are grouped into 16 warps. These warps are then mapped

to the available SMs on the GPU. The first kernel expands the search frontier from

the current node to the next node level that contains multiple child nodes. The

second kernel performs the actual visit and then sets up the conditions for the next

iteration of the first kernel. All threads are synchronized at the end of each kernel.

Algorithm 3 illustrates the pseudo code of BFS. At the end of two kernels, all warps

are synchronized implicitly, without an explicit use of barriers, before all warps can

proceed.

To present the concept of warp criticality, I take a particular thread-block in BFS

as an example. Figure 3.3 shows the amount of idle time the non-critical warps spend

to wait for the critical warp to arrive at the end of the first kernel in Thread-Block
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Algorithm 3 The GPGPU application—BFS.
1: function kernel_1(node)

2: . tid: the unique thread ID

3: if node[tid].mask == True then

4: node[tid].mask ← False

5: i← 0

6: while i < node[tid].noofneighbors do

7: id← node[tid].child[i]

8: if node[tid].visited == False then

9: node[id].update← True

10: end if

11: end while

12: end if

13: . an implicit barrier here

14: end function

15: function kernel_2(node)

16: if node[tid].update == True then

17: node[tid].update← False

18: node[tid].mask ← True

19: node[tid].visited← True

20: end if

21: . an implicit barrier here

22: end function
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Figure 3.3: An example of warp criticality from the GPGPU application BFS.

2 SM 3 of BFS. The bars plot the compute and idle time normalized to the critical

warp, Warp 15. These show large warp stall times, with a worst-case stall time of

53% for Warp 0. In contrast, the right set of bars depict an ideal scenario, in which

the warp scheduler preferentially selects and executes warps based on their degrees

of criticality to equalize the execution time, resulting in a 1.35x speedup.

I further investigate the latency breakdown for all warps in this thread-block that

is executed in lockstep. Figure 3.4 compares the latency breakdown of each warp

in the thread block. I observe that the critical warp (Warp 15) in this particular

thread block (Thread-Block 2 SM3) suffers from longer Scheduling, MSHR, Data$,

and Strcl. Hzrd. latency delays than other warps. As we will see later in this chapter
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Figure 3.4: Latency breakdown for the BFS application. Warps are sorted by the

execution time.

(Chapter 3.4 and 3.5), my proposed criticality-aware scheduling policies can reduce

these latencies for the critical warp and result in faster thread block execution time.

In BFS, based on the input dataset, each node has a different number of child nodes

as illustrated in Algorithm 3. A warp has to traverse through all neighbors (connected

nodes) in the graph. Because the number of child nodes varies in each node level, the

amount of work distributed to the warps in the same thread-block varies as well. This

causes an imbalanced workload distribution among the warps. The warp which needs

to traverse through more child nodes (Line 6 in Algorithm 3) finishes more slowly

and becomes the critical warp in the thread-block. In fact, the warp execution time

is proportional to the number of iterations of the algorithm. Therefore, I believe that
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the number of iterations specified in BFS could be a good indicator for predicting the

degree of warp criticality for this application (Chapter 4.1).

3.4 Warp Scheduler Design Exploration for Critical Warp Acceleration

3.4.1 CAWS Algorithms

To reduce warp execution time disparity, I explore a family of Criticality-Aware

Warp Scheduling (CAWS) policies and seek to bridge the execution time gap be-

tween the parallel warps.

1. Round robin (RR) scheduling. As the name suggests, the RR schedules

warps in an iterative manner. All warps in the warp pool are treated equally

regardless of their degree of criticality and are given the same amount of time

resource in the baseline GPU.

2. Thread block based CAWS (CAWS-blk) scheduling. This scheduling

policy aims to improve the execution time of a thread-lock (limited by the

execution time of the longest running, critical warp in the thread block) by

giving more time resource to the most critical warp in the thread block. By

giving higher priority to the most critical warp at the thread block granularity,

CAWS-blk allows thread-blocks to finish faster, such that hardware resources

become available to other thread-blocks earlier. Consequently, the resource

contention is alleviated.

3. Streaming multiprocessor based CAWS (CAWS-SM) scheduling. In-

stead of improving the execution time of the critical warp local to a particular

thread-block, I design a global, the CAWS-SM policy that aims to improve the

execution time of the critical warp(s) within the same SM but across different
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thread blocks. The idea behind this policy is to equalize the execution time of

all warps on an SM. CAWS-SM selects the top N critical warps from the warp

pool to accelerate, where N is equal to the number of thread blocks on an SM

in the design. The SM-based policy is particularly helpful when some of the

thread blocks mapped to the same SM do not contain any critical warp and

other thread-blocks contain one or more critical warps.

4. Average based CAWS (CAWS-avg) scheduling. Instead of giving more

time resource to the top critical warp in a particular thread-block (e.g., CAWS-

blk) or within a particular SM (e.g., CAWS-SM), I also design a CAWS-avg

scheduling policy that identifies a number of critical warps (ranging from none

to m) within either a thread block or a SM which require more time resource,

where m is determined by the average execution time of all warps scaled by a

factor. CAWS-avg evaluates warp criticality by the average execution time of all

warps. When the disparity of execution time for warps in an SM is insignificant,

giving the slowest warp a higher priority may cause criticality inversion, which

occasionally happens in CAWS-SM and CAWS-blk. The advantage of CAWS-

avg is to avoid the occurrence of criticality inversion.

3.4.2 CAWS Implementation

To implement CAWS, I design a per-warp priority counter that indicates the

degree of warp criticality. The counter value determines when a warp is going to

be selected by the scheduler for execution. For example, given there are 48 active

warps in the pool in the baseline RR scheduling policy, all warps would initially have

counter values from 0 to 47. The warp with a zero counter value is to be scheduled

and its counter is reset based on its priority. In this case, the counter for the selected

warp is always reset to be 47 since all warps are treated equally and have the same
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priority in the baseline policy. In addition to the selected warp, counters for other

warp are decremented by one.

Since the value of the priority counter determines how often a warp is scheduled

for execution (a smaller value indicates a warp is more important and needs to be

scheduled more often), I have to carefully select the counter value for the critical

warp(s). For example, to give critical warp(s) 20% more time resource, the scheduler

will have to schedule the critical warp(s) 20% more frequently compared to other

warps in the pool. In other words, in a pool with 48 warps, the counter value of the

critical warps should be reset to 0.8 * 48 and so on.

In the example application, BFS, I recognize that the execution disparity between

the fastest and the slowest warps is approximately 20% on average. To compare the

effectiveness of the CAWS policies explored in this thesis work, I experiment with a

counter configuration that guarantees 20% more time resource to the high-priority,

critical warp(s) identified in each policy by resetting the value of the priority counters

to 40 for critical warps and to 48 for the remaining warps

For the CAWS-avg policy in particular, I divide all warps in the pool into three

priority levels. Warps with execution time more than 20% of the average are deter-

mined to be critical warps and are given 20% more time resource. This implies that

the counter value for these warps are reset to 40 for a pool of 48 warps. Warps with

execution time less than 20% of the average are determined to be fast warps and are

given 20% less time resource by setting the counter value accordingly. Finally, the

remaining warps in the pool will adopt the default counter value as the baseline RR

policy.
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Figure 3.5: The speedup comparison for different warp scheduling policies on BFS.

3.5 Evaluation and Analysis

To guide CAWS schedulers to accelerate the critical warp execution, I encode

the oracle warp criticality information based on the warp execution time with the

baseline RR policy. Furthermore, in order to keep the simulation region consistent

and to create a fair comparison metric, in this chapter, I only use the first round of

kernel execution to present and analyze the performance of different warp scheduling

policies.

Figure 3.5 compares the performance of various CAWS implementations with

the baseline RR and the other state-of-the-art warp schedulers, GTO [101] and 2-

Level [87]. It reveals that when the oracle knowledge of the critical warps is available,

CAWS is able to achieve a 1.21x speedup for BFS with the CAWS-avg algorithm,
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which outperforms all other warp scheduling algorithms. Moreover, CAWS-blk and

CAWS-SM schemes also improves BFS performance by 16% and 18% respectively.

The reason CAWS-avg obtains better performance improvement than CAWS-blk

and CAWS-SM is because of the criticality inversion. Namely, the critical warp

receives more time slices for execution than needed. As a result, a fast running warp

become a new critical warp and worsen the performance. Table 3.3 compares the

frequency of criticality inversion in each of the three CAWS schemes with respect to

the execution time improvement. It clearly indicates that with a higher frequency

of criticality inversion occurrence, the amount of performance improvement is less.

Therefore, a scheduling policy that does not introduce criticality inversion (CAWS-

avg) can gain the performance improvement most.

Next, to illustrate how the CAWS policies can effectively reduce the execution time

of the critical warp(s), I compare the execution time of all warps in the particular

thread block (Thread-Block 2, SM 3) used previously in Figure 3.4. Figure 3.6 shows

the execution time and the latency breakdown for all the warps in the thread block

under the oracle, CAWS-avg scheduling policy. The execution time of the critical warp

(Warp 15) is reduced by 28.4% when compared to using the baseline RR scheduling

policy. This execution time improvement comes primarily from the reduction in the

scheduling delay (Scheduling), the contention in the MSHR entries (MSHR), and the

contention in the functional units (Strcl. Hzrd). These latency components are exactly

the ones that the CAWS policy intends to improve. When comparing to the warp

latency breakdown under the baseline RR scheduling policy in Figure 3.4, the Data$

latency component is increased under the oracle, CAWS-avg policy. This is because

the Data$ stall cycles of the critical warp are better hidden by the RR scheduling

policy. Overall, by applying the oracle, CAWS-avg policy, the execution time of this

particular thread block is improved by 27%.
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Figure 3.6: Latency breakdown for the BFS application under the oracle CAWS-avg

scheduling policy. Warps are sorted by the execution time under RR policy.

3.6 Chapter Summary

This chapter presents a detailed characterization and evaluation for the latency-

hiding capability of modern GPU architectures, highlighting the different factors that

comprise the execution latency in the GPU pipeline, across a wide range of GPGPU

applications. I find that the fast context-switching and massive multithreading archi-

tecture can effectively hide much of the latency [69]. However, for certain GPGPU

applications such as BFS, the overall performance is limited by the critical warps. To

address such a performance issue, I design a family of criticality-ware warp schedul-
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ing policies that aim to equalize the execution of all warps to maximize the hardware

resource utilization and minimize the application execution time [68].
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Table 3.2: Benchmarks for GPGPU latency hiding ability characterization. M and C

stand for memory- and computation-intensive respectively.

Abbrev. Application Dataset Category [20, 55]

BT B+Tree [19] M nodes M

BP Back Propgation [19] 65536 nodes M

BFS Breadth First Search [19] 65536 nodes M

GAU Gaussian [19] 1024x1024 matrix C

HTW Heartwall [20] 656x744 gray scale AVI C

HOT Hotspot 512x512 nodes [19] C

KMN K-Means [19] 494020 nodes M

LMD LavaMD [19] 10 nodes C

LEU Leukocyte [19] 640x480 gray scale AVI C

LUD LUD Decomposition [20] 2048x2048 matrix C

MYC Myocyte [19] 100 nodes C

NW Needleman-Wunsh [19] 1024x1024 nodes M

PF Particle Filter [19] 128x128x10 nodes C

PTH Pathfinder [19] 100000 nodes C

SR1 SRAD1 [19] 502x458 nodes C

SR2 SRAD2 [19] 2048x2048 nodes M

SC_small Streamcluster (small) [19] 32x4096 nodes M

SC_mid Streamcluster (mid) [19] 64x8192 nodes M

TPF Two-Point Angular [107] 487x100 nodes M
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Table 3.3: The speedup and frequency of criticality inversion within a thread-block

for BFS.

Policy Speedup Criticality Inversion

CAWS-blk 1.16 8.89%

CAWS-SM 1.18 2.22%

CAWS-avg 1.21 0%
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Chapter 4

COORDINATED CRITICALITY-AWARE WARP ACCELERATION

Chapter 3 showed that GPU’s performance is constrained by the warp criticality

problem. I demonstrated a criticality-aware warp scheduling design, CAWS, which is

able to improve GPU’s performance by accelerating the critical warp execution and

by reducing the warp execution time disparity. However, CAWS heavily relies on

the oracle criticality knowledge to guide the critical warp acceleration. In reality, it

is difficult to obtain the oracle criticality information in advance because, for many

applications, the workload distribution is dependent on the input data. Thus, it

cannot be statically known.

To design a more effective and practical solution for accelerating critical warp ex-

ecution, in this chapter, I first identify the root-causes of the warp execution time dis-

parity. I then propose a coordinated solution, Criticality-Aware Warp Acceleration

(CAWA) which accurately predicts the critical warps and efficiently manages com-

putation and memory resources to accelerate the critical warp execution dynamically.

4.1 Source of Execution Time Disparity

I observe that the significant execution time disparity between parallel warps can

be caused by four major factors:

1. workload imbalance,

2. diverging branch behavior,

3. contention in the memory subsystem, and
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Algorithm 4 BFS searching algorithm.
1: function bfs(w) . w: node (thread/warp)

2: while notY etV isitedAllNeighbors do

3: n← nextNode

4: if n.hasNotBeenV isited then

5: . This is a child node

6: n.Cost← w.Cost

7: n.hasNotBeenV isited← False

8: w.nChild← w.nChild + 1

9: else

10: . This is a non-Child node

11: w.nNonChild← w.nNonChild + 1

12: end if

13: end while

14: . kernel exit point/implicit barrier

15: end function

4. warp scheduling order.

I use BFS from the Rodinia benchmark suite [19] as an example application to illustrate

the degree of warp criticality contributed by each factor.

4.1.1 Workload Imbalance

In a GPGPU kernel function, tasks are not always uniformly distributed to each

thread. Therefore, some threads have heavier workloads than others, leading to the

scenario where some warps have heavier workloads than other warps. Warps with
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Figure 4.1: Warp execution time disparity caused by workload imbalance (imbalance

number of neighbors) for BFS.

heavier workloads require longer time to process their tasks. Consequently, warps

with heavier workloads often become slower running warps or the critical warps.

In BFS, workload imbalance comes from building and traversing an unbalanced

tree-like data structure. Each node has to traverse all of its neighboring nodes to

build a tree (Line 2 in Algorithm 4). Depending on the data inputs, the number of

child nodes of a particular node mapped to a warp could vary, resulting in different

per-warp workloads. Figure 4.1 shows the per-warp execution time for all warps in

a particular thread-block (Thread-Block 2 on SM 3) in BFS. The warps are sorted

based on the warp execution time and the per-warp workload (number of neighboring

nodes). The execution time disparity between the fastest and the slowest running

warps is approximately 20% of the fastest warp’s execution time, leading to a signif-

icant waiting time for the fastest running warp.
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4.1.2 Diverging Branch Behavior

In addition to the unbalanced workload scenario for parallel warps in a thread-

block, diverging branch behavior could also cause varying execution time for warps.

At runtime, warps can undergo different control paths leading to different num-

ber of dynamic instructions across different warps. This problem could be worsened

if threads in a warp also take diverging control paths, i.e., the branch divergence

problem, leading to a larger instruction execution gap between warps. Prior stud-

ies [32, 33, 84, 99] showed that the branch divergence problem can significantly de-

grade the performance of GPGPU applications.

To remove the workload imbalance effect and focus on the impact of the diverging

branch behavior, I modify the data input provided to BFS to represent a balanced tree.

Figure 4.2 shows the warp execution time for the same thread-block with a balanced

workload. Although the computation workload is equally distributed across warps, I

can still observe varying warp execution time. The execution time difference between

the fastest and the slowest warps is significant 40%. This is because while a node

traverses through its neighbors in the input graph, only the data represented child

nodes (nodes that have not yet been visited) need to be processed. Visiting child and

non-child nodes (nodes that have been visited before) fall onto different if-else blocks

(Line 4–12 in Algorithm 4). This introduces a varying number of per-warp dynamic

instruction counts, since some warps will execute the taken path while others execute

the not-taken path.

In the worst-case scenario, when thread-level branch divergence occurs [84, 99],

instructions in both the taken and not-taken paths need to be executed in some

warps, resulting in a higher number of dynamic instruction executed, while other

warps only have to execute one of the two paths. The dynamic instruction count
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Figure 4.2: Warp execution time disparity caused by diverging branch behavior for

BFS.

disparity between warps could be as high as 20% (number of instructions) in BFS as

illustrated by the red curve in Figure 4.2.

4.1.3 Contention in the Memory Subsystem

Hardware resource contention, particularly in the memory subsystem, can exac-

erbate the warp criticality problem. Jog et al. [54, 55] observed that the memory

subsystem has a significant impact on GPGPU applications. Poor data alignment

and warp scheduling design can introduce extra stall cycles which significantly reduce

the performance of GPUs. Jia et al. [51, 52] also pointed out that interference in the

L1 data cache as well as in the interconnect between the L1 data caches and the L2

cache are the major factors that limit GPU performance. This is because the data
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Figure 4.3: Warp execution time disparity caused by memory subsystem delay for

BFS.

cache capacity and the memory bandwidth are scarce resources servicing the memory

demand of the massively parallel GPUs.

The cache interference, particularly in the L1 data caches, could worsen the warp

criticality problem. Figure 4.3 shows the portion of a warp’s execution time caused

by delays in the memory subsystem. I observe that the slower-running warps often

experience higher memory access latencies. Figure 4.4 shows the reuse distance anal-

ysis of critical warp cache lines 1 . More than 60% of the cache blocks that could be

reused by the slower-running, critical warps are evicted before the re-references by

the critical warps. This is caused by the interference between critical and non-critical

cache blocks in the L1 data cache.
1Data is based on an L1 data cache of 16KB, 4-way set-associative, 128B cache block.
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Figure 4.4: L1 data cache reuse distance for the critical warps in BFS.

4.1.4 Latency Introduced by the Warp Scheduler

The execution of warps can experience additional delay in the warp scheduler.

Because of the particular warp execution order determined by the scheduler, when

a warp becomes ready for execution, it can experience up to N cycles of scheduling

delay, where N represents the number of warps. State-of-the-art warp scheduling

policies are criticality-oblivious and introduce additional delay that could further

degrade the performance of critical warps. As Figure 4.5 shows, scheduling policies

such as the baseline round robin (RR) scheduler, can contribute as much as 52.4%

additional wait time for the critical warp.
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Figure 4.5: Warp execution time disparity caused by warp scheduling delay for BFS.

4.2 Coordinated Criticality-Aware Warp Acceleration Design

In order to mitigate the execution time disparity between warps, I design a co-

ordinated warp scheduling and cache prioritization scheme, Criticality-Aware Warp

Acceleration (CAWA), based on the observations made in Chapter 4.1. CAWA

consists of three major components:

1. a dynamic warp criticality prediction logic (CPL),

2. a greedy criticality-aware warp scheduler (gCAWS), and

3. a criticality-aware cache prioritization technique (CACP)

Figure 4.6 illustrates a modern GPU pipeline with the newly-proposed components

in CAWA highlighted in the orange box.
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Figure 4.6: The CAWA architecture.

To accelerate the critical warp execution, CPL is designed to identify slower-

running warps that have a high likelihood to become critical warps at runtime.

gCAWS then allocates more computation resources to the predicted-to-be-critical

warps with higher scheduling priorities. This alleviates the dynamic workload imbalance-

caused warp criticality as well as the additional scheduling delay imposed onto the

critical warps.

In addition to reducing critical warp execution time by allocating more computa-

tion resources, CACP also proactively reserves a certain amount of cache capacity for

data that is useful to critical warps (CACP). By doing so, CAWA ensures a certain

degree of performance guarantee for the critical warps by reducing the amount of

long latency cache misses experienced by the critical warps. Next, I present the three

major components in CAWA in detail.

4.2.1 Critical Warp Identification with Criticality Prediction Logic

To identify critical warps at runtime, I develop a Criticality Prediction Logic

(CPL) to monitor the execution progress of individual warps in the scheduler’s pool

by implementing a criticality counter per warp. The per-warp criticality counter

represents the execution progress of each warp and is updated based on (1) the degree

of instruction count disparity caused by diverging branch behavior, and (2) stall
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Figure 4.7: The instruction count disparity caused by branches.

latencies caused by shared resource contention. The per-warp criticality counters are

used by the proposed gCAWS scheduler and CACP cache prioritization scheme for

critical warp acceleration.

To consider the influence of workload imbalance and diverging branch behavior on

warp criticality, CPL is designed to update per-warp criticality counters based on the

number of instructions in the executed branch path. Figure 4.7 shows an example to

highlight the possibility of diverging dynamic instruction counts per warp based on

the branch path behavior. Warps that experience thread-level branch divergence will

have to execute m+n number of instructions while other warps will execute either m

or n instructions based on the branch outcome. Depending on the values of m and

n, even without branch divergence, warps could face a significantly different amount

of instructions for execution. This could translate to diverging warp execution time.

Based on the branch outcome, CPL updates the per-warp criticality counter ac-

cordingly with the inferred size of the basic block determined with the current branch

instruction pointer (currPC) and the target instruction pointer (nextPC). By doing

so, CPL would increment or decrement the per-warp criticality counter. In addition
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Algorithm 5 An example of the instruction-based CPL.
1: [PC1] $L0 : @p0 bra $L2 . jump to PC4 if p0 is true (∆Inst = PC4 - PC1 +

1)

2: [PC2] $L1 : add.u64 %r1, %r1, %1 . jump to PC5 (∆Inst = PC5 - PC1 + 1)

3: [PC3] bra $L3

4: [PC4] $L2 : sub.u64 %r1, %r1, %1

5: [PC5] $L3 : mov.u64 %r2, %r1, %r2

to the branch outcomes, CPL also decrements the criticality counter whenever an

instruction is committed in order to balance the execution progress.

Algorithm 5 demonstrates an example of how the instruction-based CPL works. If

branch divergence occurs at PC1 for a particular warp, the warp has to run through

all three instructions (PC2, PC3, and PC4). On the other hand, there is no branch

divergence and depending on the branch outcome, the warp will execute either one

(PC4) or two (PC2 and PC3) instructions. After executing PC1, the target address

become available and is used to calculate the additional dynamic instructions per-

warp by CPL.

In addition to updating the per-warp criticality counters based on dynamic exe-

cution progress, CPL also records additional stall latencies experienced due to shared

resource contention as well as scheduler delays, while updating the criticality counter.

CPL monitors the stall cycles between the current and the next instruction execu-

tion for each warp and increment the criticality counter accordingly for all warps.

Algorithm 6 presents the criticality counter update mechanism based on stall cycles

in CPL, where the stallCycle represents the total stall cycles between executing two

consecutive instructions.
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Algorithm 6 The criticality counter with stall cycles.
1: function WarpScheduler . select a ready warp to execute

2: while NotV isitedAllWarps do

3: . select warps in the order based on the scheduling policy

4: w ← findNextWarp()

5: if w.isRready() then

6: . stallCycles = total stall time between two consecutive instructions

7: w.nStall← w.nStall + stallCycles

8: InstructionExecute(w)

9: break

10: end if

11: end while

12: end function

Overall, the per-warp criticality counter is updated as follows:

nCriticality = nInst× w.CPIavg + nStall; (4.1)

where nCriticality represents the value of the per-warp criticality counter, nInst rep-

resents the relative instruction count disparity between the parallel warps, w.CPIavg

represents the per-warp average CPI, and nStall is the stall cycles incurred by shared

resource contention and the scheduler.

4.2.2 greedy Criticality-Aware Warp Scheduler

With the critical warp identified by CPL, the greedy Criticality-Aware Warp

Scheduler (gCAWS) is designed to give more computation resources to critical warps

by prioritizing the execution of critical warps over other warps and by providing a

larger time slice to warps in a greedy manner. gCAWS incorporates the strengths
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Figure 4.8: The criticality-aware cache prioritization scheme.

of the Greedy-Then-Oldest (GTO) [101] and CAWS warp schedulers (Chapter 3).

At each cycle, gCAWS selects a ready warp for execution based on the degree of

warp criticality determined by the per-warp criticality counter in CPL. If there are

multiple warps having the same criticality, the warp scheduler will select the oldest one

based on the GTO algorithm. Then gCAWS greedily executes instructions from the

selected critical warp until this particular warp has no further available instructions.

Consequently, the critical warp not only receives a higher scheduling priority but also

benefits from a larger time slice.

4.2.3 Criticality-Aware Cache Prioritization

In addition to allowing the critical warps to access pipeline resources more often

and for a longer time duration, Criticality-Aware Cache Prioritization (CACP) is

designed to allocate a certain fixed amount of the L1 data cache capacity to data that
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Figure 4.9: Reuse behavior of different PCs for BFS.

will be used by the critical warps for performance guarantee. The insight that CACP

built upon is that not all cache lines have equal importance—Data that will be used

by critical warps is latency-critical and should be treated with higher priority at the

L1 data cache. To do so, among all incoming cache lines, CACP first predicts critical

cache lines (cache lines that will be used by critical warps) with the critical cache

block predictor, and retains these critical cache lines in the cache partition reserved

for critical warps. Figure 4.8 shows the proposed CACP.

CACP partitions the L1 data cache into two parts in the granularity of ways:

critical cache ways and non-critical cache ways. The number of ways dedicated to

critical versus non-critical cache blocks are determined through experimental analysis
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of various benchmarks. Through sensitivity analysis, CACP achieves the best overall

performance when 8 out of 16 ways are dedicated to critical cache blocks.

Based on the unique characteristics of GPGPU—relatively small instruction foot-

print but diverse reuse behavior—I design a Critical Cache Block Predictor (CCBP)

to differentiate critical cache lines from non-critical cache lines such that an incom-

ing cache block will either be inserted in the cache partition reserved for critical or

non-critical cache lines. Figure 4.9 shows that there are six memory instructions in

the application BFS, which all warps execute. The left bar within each memory in-

struction represents the reuse pattern of critical cache blocks in a 256KB data cache

whereas the right bar represents the reuse pattern of critical cache blocks in the base-

line 16KB data cache. First, when the cache is large enough, cached blocks have a

high likelihood of reuse by both critical or non-critical warps. However, the L1 data

cache in GPUs are often too small to accommodate the active working set of the entire

application. The second observation is that the reuse patterns for the various memory

instructions are different. For instance, the majority of the cache blocks brought by

PC-5 never receive any reuse before being evicted from the cache. With the two key

observations, CCBP is designed to learn the reuse patterns for cache blocks based on

the insertion instructions and predict which cache blocks will be reused by critical

warps at runtime.

CCBP is built upon the idea of the signature-based cache hit predictor (SHiP)

that was originally proposed for the last-level CMP cache [119]. CCBP learns whether

an incoming cache line will be used by critical warps or not based on a signature. I

design the signature for CCBP to be a combination of instruction program counters

(PCs) and memory address regions as the two pieces of information have been shown

to be useful in learning and correlating cache block reuse patterns [58, 61, 63, 119].

A signature is formed by XOR-ing the lower 8 bits of an instruction PC and the
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Algorithm 7 The pseudo code of the cache miss pperation for CACP.
1: function atMiss(req)

2: . select partition and insert cache line

3: line.signature← (req.pc XOR req.addr)

4: if CCBP [line.signature] > Threshold then

5: . predict to be critical line

6: L1D.CriticalPartition.insert(line)

7: L1D.CriticalPartition.setPosition(line) . set SHiP insertion position

8: else

9: . predict to be non-critical line

10: L1D.NonCriticalPartition.insert(line)

11: L1D.NonCriticalPartition.setPosition(line) . set SHiP insertion

position

12: end if

13: end function

lower 8 bits of the memory address, and is used to index into the CCBP which is

a simple array of 2-bit saturating counters. The operations of CCBP is outlined in

Algorithm 7, 8, and 9 in detail.

In addition to CCBP, CACP includes an additional signature-based cache hit

predictor (SHiP) that learns and predicts the reuse pattern of any incoming cache

blocks based on the same signature used for CCBP. The outcome of SHiP is used to

guide the insertion position of the cache block. For example, if a 2-bit re-reference

interval prediction (RRIP) replacement policy is used [49], the outcome of SHiP will

guide a cache block insertion position to be in the long (re-reference prediction value

= 2) versus in the distance (re-reference prediction value = 3) re-reference prediction.

63



Algorithm 8 The pseudo code of the cache hit operation for CACP.
1: function atHit(req)

2: . set RRIP promotion position

3: if InCriticalPartition(line) then

4: L1D.CriticalPartition.setPromotion(line)

5: else

6: L1D.NonCriticalPartition.setPromotion(line)

7: end if

8: if IsCriticalWarp(req.WarpID) then

9: . correct prediction

10: line.c_reuse← TRUE

11: CCBP [line.signature] + +

12: SHiP [line.signature] + +

13: else

14: . hit is from non-critical warp

15: line.nc_reuse← TRUE

16: SHiP [line.signature] + +

17: end if

18: end function

CCBP plays the role of identifying cache lines that will be reused by critical warps

and inserts these cache lines in the critical partition of the cache. To maximize hits,

SHiP is used so that only the cache lines that receive reuse are retained in the cache.

With the help of CCBP and SHiP, CACP is able to capture both cache lines that have

intra-warp and inter-warp localities. Furthermore, CACP complements the gCAWS

warp scheduler. While gCAWS prioritizes the critical warp execution, CACP re-

serves larger cache space to the critical warps to further reduce the execution latency.
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Algorithm 9 The pseudo code of the cache line eviction operation for CACP.
1: function atEvict(line)

2: if (line.c_reuse == FALSE) AND (line.nc_reuse ==

TRUE) AND (partition == CriticalPartition) then

3: . incorrect prediction

4: CCBP [line.signature]−−

5: else if (line.c_reuse == FALSE) AND (line.nc_reuse == FALSE) then

6: . no reuse

7: SHiP [line.signature]−−

8: end if

9: end function

Thus, CAWA is able to take the coordinated approach of criticality prediction, warp

scheduling, as well as cache prioritization to provide the best performance speedup.

4.3 Evaluation and Analysis

4.3.1 Experimental Environment and Methodology

To evaluate the CAWA design, I use GPGPU-sim simulator version 3.2.0 [11] to

explore the behavior of GPGPU applications. I run GPGPU-sim with the default

configuration mimicking the NVIDIA Fermi GTX480 architecture and configure the

per-SM L1 data cache as 16-way set-associative. Table 4.1 describes the simulation

configuration and parameters used for the design evaluation for CAWA.

I select GPGPU applications from the Rodinia [19, 20] and Parboil [107] bench-

mark suites to evaluate the performance improvement of the coordinated CAWA

design in GPUs. Table 4.2 lists the details of the benchmarks and their datasets used

to evaluate the CAWA design. Since CAWA mainly aims to improve the performance
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Table 4.1: GPGPU-sim simulation configurations for CAWA.

Architecture NVIDIA Fermi GTX480

Num. of SMs 15

Max. Num. of Warps per SM 48

Max. Num. of Blocks per SM 8

Num. of Schedulers per SM 2

Num. of Registers per SM 32768

Shared Memory 48KB

L1 Data Cache 16KB per SM (8-sets/16-ways)

L1 Instruction Cache 2KB per SM (4-sets/4-ways)

L2 Cache 768KB shared cache (64-sets/16-ways/6-

banks)

Min. L2 Access Latency 120 cycles

Min. DRAM Access Latency 220 cycles

Warp Size (SIMD Width) 32 threads

of those applications with irregular execution behavior as well as cache utilization, I

categorize these benchmarks into two groups based on their execution time dispar-

ity and sensitivity to L1 data cache performance as sensitive (Sens) or non-sensitive

(Non-sens).

4.3.2 Performance Overview

Overall, CAWA improves GPGPU performance by an average of 23% compared

to the baseline RR warp scheduler for Sens applications and by an average of 9.2%

over all applications, as Figure 4.10 shows. In particular, CAWA speeds up the per-

formance of KMN, which suffers from severe cache thrashing, the most, by a significant
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Table 4.2: Benchmarks for CAWA evaluation.

Abbrev. Application Dataset Category

BFS Breadth First Search [19] 65536 nodes

Sensitive

(Sens)

BT B+Tree [19] 1 million nodes

HTW Heartwall [20] 656x744 gray scale AVI

KMN K-Means [19] 494020 nodes

NW Needleman-Wunsh [19] 1024x1024 nodes

SR1 SRAD_1 [19] 502x458 nodes

SC_small Streamcluster (small) [19] 32x4096 nodes

BP Back Propagation [19] 65536 nodes

Non-sensitive

(Non-sens)

PF Particle Filter [19] 128x128x10 nodes

PTH Pathfinder [19] 100000 nodes

SC_mid Streamcluster (mid) [19] 64x8192 nodes

TPF Two-Point Angular [107] 487x100 nodes

3.13x over the baseline. I also compare the performance of CAWA with two other

state-of-the-art warp schedulers, i.e., 2-Level [87] and GTO. Across the seven Sens

applications, CAWA improves the performance the most by an average of 23% while

2-Level and GTO improves the performance by -2% and 16% respectively.

For memory intensive GPGPU applications such as KMN, performance is mainly

restricted by the efficiency of the data caches. Because of the large amount of data

which is streamed over the relatively small L1 data caches, the cached data is evicted

from the L1 caches before it receives any additional reuses. GTO alleviates the cache

thrashing problem by limiting the number of warps that could be active such that

the active working set is kept small and the intra-warp data locality can be better

captured in the L1 data cache. The significant performance improvement from CAWA
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Figure 4.10: Performance improvement of CAWA.

is achieved for a similar reason. gCAWS is able to limit the number of active warps

such that the aggregate working set can well fit into the L1 data cache. Furthermore,

CACP reserves a fixed cache capacity for data useful to the critical warps thereby

reducing the degree of interference between critical and non-critical cache blocks.

Figure 4.11 shows the number of misses per kilo instructions (MPKI) reduction for

the GPGPU workloads under 2-Level, GTO, and CAWA respectively. Overall, CAWA

reduces the L1 cache MPKI the most when compared to the other two schemes. For

memory intensive applications such as KMN, CAWA significantly reduces the cache miss

rate by 26.2%. For other applications such as HTW and SC_small, MPKI is instead

increased under CAWA. This is because CACP prioritizes critical cache blocks over

non-critical cache blocks over the baseline cache replacement policy that is designed
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Figure 4.11: L1 data cache MPKI reduction of CAWA.

to minimize cache misses. Although MPKI is increased for HTW and SC_small, the

corresponding speedup is improved by 3.3% and 3.6% respectively. This is because

CAWA trades off cache blocks that may be used more often with cache blocks that

are critical.

4.3.3 Performance Analysis for CPL

The critical warp prediction mechanism is a vital component in CAWA and is

used to guide compute and memory resource prioritization. To evaluate the accuracy

of CPL, I compare the periodic prediction outcomes with the slowest, critical warp

based on its total execution time. To calculate the prediction accuracy, I define that

if a warp’s criticality is larger than 50% of warps in a thread-block, this warp is

a slow warp. Since warp criticality could change at runtime which is not captured

by the static warp execution time analysis, it is difficult to calculate the prediction
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Figure 4.12: The prediction accuracy of CPL.

accuracy. Thus, I count the prediction accuracy as the frequency that the critical

warp is identified as a slow warp. Figure 4.12 shows the warp criticality prediction

accuracy comparison. On average, CPL can accurately identify critical warps as a slow

warp with a prediction accuracy of 73% 2 . Since CPL learns the sources and degree

of delay dynamically and reflects the delay and execution progress in the per-warp

criticality counters, CPL is able to adjust its warp criticality prediction outcomes at

runtime.

4.3.4 Performance Analysis for gCAWS

To understand how gCAWS help CAWA improve GPU performance, I compare

the performance improvement of gCAWS with CAWS. Figure 4.13 shows the perfor-
2CPL results in an 100% prediction accuracy for NW because it is an application which lacks

warp-level parallelism, i.e., a thread-block has only one or two warps
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Figure 4.13: The performance improvement of gCAWS.

mance improvement comparison for CAWS with the oracle warp criticality knowledge,

gCAWS, and CAWA. With the oracle warp criticality information obtained off-line,

CAWS performs the best on small GPU kernels such as BFS, BT and NW. This is

because for these small kernels, the prediction and training overhead of CPL is rela-

tively high. Although CPL has a good prediction accuracy, gCAWS and CAWA are

not able to achieve the potential speedup under using the oracle knowledge. On the

other hand, for large kernel code such as HTW and SR1, my proposed gCAWS and CPL

can further improve performance compared with CAWS.

I also notice that gCAWS and CAWA achieve a greater performance improvement

on KMN than CAWS. This is because KMN has heavy memory contention and prefers to

run with fewer number of warps. gCAWS adopts a greedy scheme to temporarily limit
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Figure 4.14: L1 data cache critical warp hit rate of CAWA.

the number of active warps while minimizing warp criticality and resource contention.

Because CAWS does not limit the number of active warps to mitigate the memory

contention, gCAWS and CAWA outperforms CAWS on KMN.

Overall CAWA can obtain an additional 5% speedup on Sens benchmarks com-

pared with gCAWS. This additional performance improvement is due to the cache

prioritization with CACP. However, BT and SC_small have a slight performance

degradation under CAWA. This is because these two particular applications have

high degree of inter-warp data reference and spatial locality. While memory requests

from the critical warps have higher priority to be allocated, CACP does not take the

inter-warp reference pattern into account. Therefore, warps may encounter longer

memory access latency with CACP.

4.3.5 Performance Analysis for CACP

Next, I perform analysis for the cache prioritization scheme. CAWA relies on the

CACP to accelerate the execution of critical warps, thereby reducing latencies coming
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Figure 4.15: L1 data cache MPKI reduction of CACP with different warp scheduling

policies.

from the memory subsystem. CACP separates the data cache to the critical and the

non-critical partitions explicitly. Based on the prediction outcome from the CCBP

and from the SHiP, cache blocks are inserted into either the critical or the non-critical

cache partitions with the appropriate insertion positions. Figure 4.14 shows the nor-

malized cache hit rate received by critical warp memory requests under CAWA when

compared to the baseline. The explicit cache partitioning with CCBP significantly

improves the hit rate for critical warps, by an average of 2.46x and by as much as

7.22x for KMN, which outperforms other state-of-the-art warp schedulers. Schedulers,

e.g., GTO, that are criticality-oblivious, will not specifically improve the memory

performance specifically for critical warps; therefore, the cache hit rate performance

is less consistent across the applications.
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Figure 4.16: L1 data cache performance improvement of CACP with different warp

scheduling policies.

To understand how well CACP performs in isolation from the gCAWS scheduler

and in the presence of other state-of-the-art warp scheduling algorithms, I apply

CACP to the baseline RR, GTO, and 2-Level schedulers. Independent from the

warp schedulers, CACP employs the warp criticality prediction from CPL for cache

prioritization. Figure 4.15 shows the MPKI reduction for the different warp schedulers

under the influence of CACP and Figure 4.16 shows the corresponding performance

improvement. When CACP is used in conjunction with the various state-of-the-art

schedulers, additional performance improvement is achieved from 2% to 16.5% while

the proposed coordinated management still performs the best.
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4.4 Chapter Summary

This chapter introduces a new coordinated computation and memory resource

prioritization design for GPGPU critical warp acceleration. Built upon the insights

observed from the warp criticality characterization results, I design CAWA to dy-

namically predict critical warps and accelerate the execution of the critical warps

with higher scheduling priorities and with larger scheduling time slices. Furthermore,

CAWA reserves a partition of the L1 data cache for data predicted-to-be-useful for

the critical warps. Therefore, the interference between critical and non-critical cache

blocks is minimized. The simulation results show that the proposed design improves

performance by an average of 23% for GPGPU workloads which have high warp

execution time disparity and are cache-sensitive [72].
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Chapter 5

INSTRUCTION-AWARE CONTROL LOOP BASED ADAPTIVE CACHE

BYPASSING

In addition to the synchronization overhead and warp criticality, another sig-

nificant factor that contributes to GPGPU application performance degradation is

the memory subsystem (Chapter 3.2). Because GPUs execute programs in a mas-

sive multithreading manner, thousands of threads run simultaneously and compete

for hardware resources such as the L1 data caches, L2 caches, and the interconnect

bandwidth. This makes cache capacity and interconnect bandwidth critical resources

for GPUs.

5.1 GPU Cache Access Behavior Characterization

GPU cache capacity sensitivity. To understand how caches improve GPU’s per-

formance, I first investigate the performance sensitivity to the data cache capacity.

Figure 5.1 shows the performance sensitivity of GPGPU applications to the L1 data

cache capacity. The x-axis represents the wide range of GPGPU applications studied

in this paper (more methodology detail is given in Section 5.3) whereas the y-axis

represents the speedup normalized to the baseline 16kB L1 data cache configuration.

I observe that a large number of GPGPU applications—the cache sensitive (CS)

workloads—gain a significant speedup with the increase in the L1 data cache capac-

ity. When the L1 data cache size is quadrupled from the baseline 16kB configuration

to 64kB, an average of 2.29x performance speedup is gained for the CS GPGPU appli-

cations. This indicates that a significant room of potential performance improvement

can be gained if the L1 data cache capacity is increased or is managed more efficiently,
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Figure 5.1: Speedup of different L1 data cache configurations over the baseline 16kB

L1 data cache.

such that the large working sets common in GPGPU workloads can be accommodated

more effectively.

Moreover, from Figure 5.1, I also notice that there are a number of GPGPU ap-

plications benefiting from turning off the L1 data caches completely, e.g., MM, PRK and

KMN. This is because in these GPGPU applications, a large amount of data elements

adjacent to the demanded data in a same cache line are brought into the cache but are

not reused during its cache lifetime before being evicted from the cache (early evic-

tion). Thus, spatial locality is not exploited efficiently, resulting in poor cache line

utilization that wastes interconnect bandwidth and introduces additional queuing la-

tency [51, 100]. Since simply increasing cache capacities and interconnect bandwidth

to speed up the execution of GPGPU applications costs tremendous storage overhead,

it is an impractical solution. A more sophisticated cache management approach is

needed to improve the resource utilization efficiency of the memory subsystem in

GPUs.
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Algorithm 10 An example of GPGPU kernel source code from KMN.
1: function kernel(out[], in[], m)

2: for i in [0 : m] do

3: . tid = the unique thread id from 0 to (n - 1)

4: v ← in[tid ∗m + i]

5: performing computations on v

6: out[tid ∗m + i]← v

7: end for

8: end function

GPU data cache reuse behavior. In general, cache thrashing occurs when the

data working set is larger than the cache capacity. Caches repeatedly swap in and

out a cache line without receiving any hit. To illustrate the cache thrashing behavior

commonly observed in GPUs, I take the cache access pattern of KMN, a cache sensitive

application from the Rodinia benchmark suite [19], as an example. Algorithm 10

shows the pseudo code of KMN kernel. KMN iteratively reads input data from the in

array and performs computations on each array element with n concurrent threads,

where each thread works on m array elements. At each iteration, array elements

(in[i], in[m + i], in[2 ∗m + i], ..., in[n ∗m + i]) are accessed sequentially by different

threads and these array elements are mapped to multiple cache lines as shown in

Figure 5.2. Since n is usually very large for GPGPU workloads, an access pattern

of (a0, a1, ..., ak)N in a single cache set would be observed, where ai represents a

unique access to the cache set and N represents the number of repeats. When k (or

equivalently the reuse distance) is greater than the cache set associativity (S), cache

thrashing occurs. Cache lines are evicted before receiving any re-reference and all

memory accesses result in cache misses. Because GPUs process thousands of threads

in parallel with large working sets, a similar cache access pattern with a large k can
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Access	Sequence:	in[0],	in[N],	in[2N],	in[1],	in[N+1],	in[2N+1],	in[3],	…,	in[kN+m]

Access	1:	Miss

Access	2:	Miss

Access	3:	Miss

Access	4:	Miss

Access	5:	Miss

Access	6:	Miss

Way	0
Offset	0 Offset	1 … Offset	N-1

in[0] in[1] in[N-1]…

Way	1
Offset	0 Offset	1 … Offset	N-1

…

in[0] in[1] in[N-1]… in[N] in[N+1] in[2N-1]…

in[3N] in[3N+1] in[3N-1]… in[N] in[N+1] in[2N-1]…

in[3N] in[3N+1] in[3N-1]… in[0] in[1] in[N-1]…

in[0] in[1] in[N-1]…in[N] in[N+1] in[2N-1]…

in[N] in[N+1] in[2N-1]… in[3N] in[3N+1] in[3N-1]…

Figure 5.2: An example of thrashing in GPU caches. The data structure in is accessed

sequentially by different threads and each access reads a word of a cache line. A

cache line will never receive a hit since the working set is larger than the cache

capacity. In this example, the references are mapped to a particular cache set that

can accommodate two cache lines in a 2-way set-associative cache.

be commonly seen in GPGPU workloads. Cache thrashing is one of the primary

bottlenecks limiting the performance of GPGPU workloads.

For such thrashing access behavior, it has been proved that inserting exactly S

cache lines and bypassing all other memory requests can achieve an optimal cache

hit rate [12, 97]. However, it is virtually impossible to identify k in advance with

the diverse behavior of GPGPU workloads. Each GPGPU application has its own

preference of the data cache configuration. Figure 5.3 shows the distribution of L1

data cache reuse distances (k) for GPGPU applications. The stacked bars show the

distribution of reuse distance whereas the black curve indicates the median reuse

distance. This figure provides three important insights for cache access behavior of

GPGPU workloads.
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Figure 5.3: The distribution of L1 data cache reuse distance. The stacked bars show

the distribution whereas the black curve indicates the median value.

1. The reuse distances (k) of these GPGPU applications often exceed 8. Since a

common configuration for the GPU L1 data cache is 4 or 8-way set associative,

a huge portion of cache lines will never be reused during its lifetime.

2. GPGPU applications have a diverse reuse behavior. For example, PVR has a

long median reuse pattern whereas FLD has a short median reuse pattern.

3. The reuse distance can be extremely long and the distribution is dispersed

within an application. For instance, in PVR, 29% of cache lines have reuse

distances longer than 128 while 17% of cache lines have reuse distances less

than 4, which are expected to receive cache hits.

According to these observations, it is difficult to design a static cache configuration

or cache management policy that can achieve the optimal hit rate for all GPGPU

applications.
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Figure 5.4: The distribution of L1 data cache reuse distance per insertion PC of BFS.

The stacked bars show the distribution whereas the black curve indicates the median

value.

To identify cache lines having long reuse distances within an application, I find

that the distribution of reuse distances is highly correlated to the memory load/store

instructions that insert a cache line. Figure 5.4 shows an example of the distribution of

L1 data cache reuse distances with different memory instructions from BFS. It reveals

that cache lines inserted by the same load instructions often have a similar reuse

pattern. For instance, most cache lines inserted by PC_0, PC_1, PC_6, and PC_8

in BFS have short reuse distances. On the other hand, the cache lines from the other

memory instructions have long reuse distances that are likely to incur cache misses.

This implies that the unique program counter (PC) values of memory instructions

can be a signature to predict and identify the behavior of cache lines.

GPU cache bypassing. Cache bypassing is a widely used technique to mitigate

cache thrashing. Nevertheless, rather than bypassing all requests, bypassing only a

selective portion of memory requests can achieve a better cache hit rate and execution
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Figure 5.5: Speedup with varying an instruction’s insertion and bypassing ratio. The

bars represent different insertion/bypassing ratios. N indicates the insertion proba-

bility of memory requests from an instruction. A memory request has 1
2N probability

to be inserted into the L1 data cache.

time speedup [12, 97]. I have identified that different memory instructions have

different cache reuse patterns. I also find that, instead of bypassing all memory

references from an instruction with long reuse behavior, bypassing only a selective

portion of the memory references is able to offer additional performance gain.

Figure 5.5 shows the application execution time speedup with different per-instruction

bypassing probabilities. The x-axis represents memory instructions from different

GPGPU applications and the y-axis represents the speedup normalized to no cache

bypassing. Each bar represents a bypassing probability—(1- 1
2N )—imposed on a mem-

ory instruction. With a greater N , a larger portion of memory requests are bypassed

stochastically whereas, with a smaller N , a larger portion of memory requests are

inserted into the cache. It is obvious that not all memory instructions benefit from

the same degree of cache bypassing. The optimal bypassing probability varies from
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instruction to instruction, and from application to application. For example, the op-

timal N for ELL’s PC_3 is 3, for BFS’s PC_4 is 7 (or bypassing all), and for KMN’s

PC_0 is 5. Moreover, not all instructions benefit from bypassing, e.g., BFS’s PC_6.

To capture the significant performance improvement potential with bypassing, a de-

sign must be able to intelligently learn the reuse patterns and dynamically adopt a

variable bypassing probability on the basis of instructions.

5.2 Control-Loop Based Adaptive Cache Bypassing

5.2.1 Design Overview of Ctrl-C

In order to tackle the cache inefficiency problem in GPUs, I propose a low circuit

implementation overhead design—Control Loop Based Adaptive Cache Bypassing

(Ctrl-C)—to accurately predict the per-instruction cache reuse behavior and dynam-

ically bypass memory requests to prevent cache thrashing.

Ctrl-C dynamically learns the per-instruction cache line reuse pattern in GPGPU

applications, and then bypasses memory requests from the L1 data caches for in-

structions that generate requests with a low possibility of reuse. To do so, Ctrl-C

employs feedback control loops to train the entries of an instruction reuse prediction

table (iReuse Table) with the reuse history of evicted cache lines. When the fraction

of zero-reuse cache lines inserted by a particular instruction is higher than a thresh-

old, Ctrl-C starts bypassing memory requests from this instruction and increases its

bypassing aggressiveness until a stable state is reached; namely, cache lines inserted

with the instruction start receiving hits. Hence, a portion of the data working set is

retained in the cache, leading to increased cache utilization and efficiency.
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5.2.2 Cache Line Reuse Prediction and iReuse Table

In order to learn and predict the per-instruction cache line reuse pattern, I first

design an instruction reuse prediction table (iReuse Table). iReuse Table records

and predicts whether a cache line inserted by an instruction will receive reuses. The

intuition is that if a cache line inserted by a particular instruction receives hits, the

other cache lines inserted by the same instruction will also be likely to receive hits.

To explicitly correlate the reuse patterns to the insertion instructions, I implement

the iReuse Table with a simple hash table that is indexed by the lower bits of an

instruction’s PC value.

iReuse Table is an array of 1-bit counters with 128 entries and is indexed by the

lower 7-bit of the instruction PCs. Since a GPGPU workload typically contains only

tens of memory load/store instruction, a 128-entry hash table is sufficient to cover all

distinct instructions without aliasing. The value of each iReuse Table entry indicates

the reuse prediction for each instruction. Specifically, 0 means memory requests

generated by this instruction are predicted to have long reuse distances, and should

be bypassed from the cache because the likelihood of reuse is low. On the other hand,

1 indicates memory references predicted to have short reuse distances, and should be

retained in the caches.

iReuse Table is trained with the reuse histories of cache lines in the L1 data caches.

To track the reuse histories, Ctrl-C augments each cache line by two additional fields:

1. a 1-bit reuse which is used to indicate if the cache line has ever received a

re-reference, and

2. a 7-bit insertion instruction which records the lower 7-bit of the instruction

PC that brings the cache line in.
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When a cache miss occurs, an eviction candidate is selected based on the underlying

cache replacement policy. The reuse history of the evicted cache line, (insertion

instruction, reuse), is then used to train the corresponding iReuse Table entry with

a feedback control loop.

5.2.3 Feedback Control Loop

The goal of the per-instruction feedback control loops in Ctrl-C is to predict the

reuse distances and to modulate the aggressiveness of per-instruction bypassing until

a portion of the instruction’s inserting data is retained in the cache. While iReuse

Table separates instructions that generate memory requests with high likelihood of

reuses from instructions with low likelihood of reuses to minimize the interference be-

tween the two types of memory accesses, for this instruction-based reuse learning and

prediction mechanism to perform well, a design must handle bypassing appropriately.

First, memory requests from an instruction, if bypassed, must have a chance to be

inserted into the cache such that its reuse pattern can be captured by iReuse Table.

Second, for instructions with long reuse distances, if the corresponding reuse distance

can be predicted well, a portion of the instruction’s active working set can be retained

in the cache to start receiving cache reuses. Ctrl-C achieves this by inserting cache

lines stochastically into the cache and by modulating the aggressiveness of bypassing

for each individual instruction with a feedback control loop.

The feedback controller applies four additional counters to track the cache utiliza-

tion behavior:

1. a 3-bit AGG which represents the aggressiveness of bypassing and controls the

probability of cache line insertion,

2. a 7-bit BYP which records the total number of bypassing memory requests,
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Algorithm 11 The operations of Ctrl-C at a cache miss—determining bypassing or

insertion.
1: function atMiss(memRequest)

2: . determining whether bypassing or not

3: ctrl← iReuse[request.PC]

4: if ctrl.BY P < ((1� ctrl.AGG)− 1) then

5: . bypassing the request

6: bypass(memRequest)

7: ctrl.BY P ← ctrl.BY P + 1

8: else

9: . inserting a new cache line

10: evictedLine← insert(memRequest)

11: atEviction(evictedLine)

12: ctrl.BY P ← 0

13: end if

14: end function

3. a 10-bit ZERO which counts the total number of zero-reuse cache lines, and

4. a 10-bit INSERT which tracks the total number of inserting cache lines.

The AGG and BYP counters are used to regulate the aggressiveness of bypassing

whereas the ZERO and INSERT counters are used to keep track of the cache uti-

lization. Specifically, cache lines of an instruction have a probability of 1
2AGG to be

inserted into the cache.
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Figure 5.6: The system diagram of Ctrl-C design.

5.2.4 The Ctrl-C Cache Bypassing Algorithm

Next, I present the operations of Ctrl-C in detail. Figure 5.6 illustrates the ar-

chitecture and bypassing algorithm of Ctrl-C. When a cache miss occurs, the corre-

sponding iReuse Table entry is accessed for a decision on either inserting or bypassing

the cache line. If a cache line is to be bypassed, the instruction’s controller increments

BYP and bypasses the cache line. If a cache line is to be inserted into the cache, an

eviction candidate is selected and its reuse history information (insertion instruction,

reuse) is input to the feedback controller to train the iReuse Table. The controller

increments INSERT to keep track of the number of insertions that have occurred thus

far. If the evicted cache line’s reuse bit is 0, indicating that it has never received a

reuse during its cache line lifetime, the controller also increments ZERO to keep track

of the number of zero-reuse lines. Then, the feedback controller for the corresponding

instruction updates BYP with a bypassing decision. If a cache line gets evicted in the

meantime, iReuse also increments INSERT and updates ZERO based on whether the

evicted cache line has received a reuse or not during the line’s lifetime in the cache.

The feedback controller learns the optimal bypassing aggressiveness by periodi-

cally examining the current cache utilization, namely, the number of zero-reuse cache
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lines out of the total inserted cache lines ( ZERO
INSERT

). Specifically, the controller aims

to keep ZERO
INSERT

within a target range (THRESHOLD_H and THRESHOLD_L) in

order to improve the cache efficiency. If ZERO
INSERT

shifts from the target range, the feed-

back controller tunes the bypassing aggressiveness by modulating AGG. Specifically,

during a time period, if ZERO
INSERT

is greater than a certain target threshold (THRESH-

OLD_H), the number of zero-reuse cache lines is too high. This implies that the reuse

distance of this instruction’s cache lines is too long—more memory requests shall be

bypassed from the cache to prevent data from early eviction. Thus, the controller

increments AGG by 1 to increase the probability of bypassing for this instruction. On

the other hand, if ZERO
INSERT

is lower than the low threshold (THRESHOLD_L), the

controller decrements AGG by 1 to bypass memory requests less aggressively in order

to recover from an incorrect prediction. When ZERO
INSERT

settles between THRESH-

OLD_H and THRESHOLD_L, the controller is in a stable state with the optimal

degree of bypassing. Consequently, the cache retains a portion of the instruction’s in-

serting data probabilistically and its utilization is more efficient. Algorithm 11 and 12

illustrate the operations of Ctrl-C at a cache miss and cache line eviction in detail.

5.3 Evaluation and Analysis

5.3.1 Experimental Environment and Methodology

I use GPGPU-sim version 3.2.2 [11] to evaluate the performance of the Ctrl-C. I

build the Ctrl-C design on top of GPGPU-sim and run with the default configuration

to simulate the NVIDIA Fermi GTX480 GPU [89]. As a comparison, I also implement

a PC-based Adaptive Bypassing, which exploits per-instruction confidence counters

to predict the reuse patterns [109, 119]. When detecting cache lines inserted by an

instruction do not have any reuse, the PC-based Adaptive Bypassing bypasses all
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Table 5.1: GPGPU-sim simulation configurations for Ctrl-C.

Architecture NVIDIA Fermi GTX480

Num. of SMs 15

Max. Num. of Warps per SM 48

Max. Num. of Blocks per SM 8

Num. of Schedulers per SM 2

Num. of Registers per SM 32768

Shared Memory 48kB

L1 Data Cache 16kB per SM (32-sets/4-ways)

L1 Instruction Cache 2kB per SM (4-sets/4-ways)

L2 Cache 768kB unified cache (64-sets/8-ways/12-

banks)

Min. L2 Access Latency 120 cycles

Min. DRAM Access Latency 220 cycles

Warp Size (SIMD Width) 32 threads

memory requests generated by this particular instruction. Table 5.1 and 5.2 show the

configurations of the simulation infrastructure and the control loop configurations for

Ctrl-C in detail.

I select a wide range of GPGPU applications from the Mars [39], NVIDIA SDK [90],

Pannotia [21], and Rodinia [19, 20] benchmark suites to represent the diverse behav-

ior of GPGPU workloads. Based on the performance sensitivity to the cache size

quadruples from the baseline 16kB to 64kB, I classify these applications into two cat-

egories: (1) Cache-Sensitive (CS) applications which achieves a speedup greater than

1.2x with the 64kB L1 data caches and (2) Non-Cache-Sensitive (NS) applications

89



Table 5.2: Default configurations for the Ctrl-C control loop design.

Design Configuration

Size of iReuse Table 128 1-bit counters

AGG 3-bit counter

BYP 7-bit counter

REF 10-bit counter

ZERO 10-bit counter

SAMPLE_PERIOD (1024 » AGG) cache evictions

Target Threshold [0.1, 0.4]

which has less than 1.2x speedup with the 64kB L1 data caches. Table 5.3 lists the

details of the benchmarks and their input datasets.

5.3.2 Performance Improvement

My evaluation indicates Ctrl-C can achieve a significant speedup that is close to

using a double sized (32kB) L1 data cache, and outperforms the PC-based Adaptive

Bypassing. Figure 5.7 shows the overall performance improvement of the proposed

Ctrl-C design. Compared to the baseline 16kB L1 data cache configuration, with

Ctrl-C, all CS applications, except FLD, obtain more than 1.1x speedup and can be

as high as 2.39x (KMN). I notice that FLD does not achieve a good speedup. This

is because FLD does not have a high fraction of zero-reuse lines. Thus, Ctrl-C does

not bypass any memory request and the performance is the same as the baseline

configuration. Overall, Ctrl-C improves the performance of the CS applications by

an average of 1.42x speedup.

In contrast, the PC-based Adaptive Bypassing improves the performance of the

CS workloads by an average of 1.23x speedup, which is lower than Ctrl-C. This is
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Figure 5.7: The performance improvement of Ctrl-C.

because, instead of bypassing cache lines of an instruction probabilistically, when the

PC-based Adaptive Bypassing detects a portion of cache lines of an instruction do

not receive reuse hits, it starts bypassing all memory references from this instruction.

As a result, this design loses the opportunity to learn and capture the cache lines

that can receive potential reuses once it has learned the per-instruction reuse history.

Moreover, it is difficult to detect an incorrect prediction in such a design if it bypasses

all requests. Therefore, with the PC-based Adaptive Bypassing, an application may

instead experience performance degradation, e.g., FLD.

5.3.3 MPKI and Interconnect Traffic Reduction

Ctrl-C gains a great speedup by alleviating the data cache miss rate and the L1

to L2 caches interconnect traffic. Figure 5.8 and Figure 5.9 present the normalized

MPKI and interconnect traffic with Ctrl-C for all CS applications.

For CS applications, the working set is typically much larger than the data cache

capacity. A large amount of data is evicted from the data caches before receiving
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Figure 5.8: The L1 data cache MPKI reduction of Ctrl-C.

any reuse. Therefore, the performance of CS applications is mainly restricted by

the cache thrashing problem. However, Ctrl-C adaptively protects cache lines from

early eviction by bypassing a part of the memory requests and thereby a significant

number of cache misses turn into hits. Additionally, Ctrl-C also effectively filters out

the interconnect traffic since the data caches receive more hits and reduce the number

of zero-reuse data elements in a cache line. Overall, with Ctrl-C, the MPKI of L1

data caches and the L1 to L2 caches interconnect traffic are reduced 9.9% and 43.7%

respectively. The MPKI and interconnect traffic reductions are translated into 41.5%

performance improvement.

5.3.4 Fraction of Zero-reuse Lines

Although CS applications have a significant portion of zero-reuse lines due to the

severe cache thrashing problem with the baseline 16kB L1 data caches, Ctrl-C can

effectively eliminate zero-reuse lines. Figure 5.10 shows the percentage of zero-reuse

lines with Ctrl-C. Since the default target threshold for the feedback control loops is
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Figure 5.9: The L1 to L2 caches interconnect traffic reduction of Ctrl-C.

0.1 to 0.4 (Table 5.2), I observe that the average fraction of zero-reuse lines reduces

from 79.5% to 30.8%, which meets the target threshold for CS applications with

Ctrl-C.

5.3.5 Hardware Implementation Overhead

The proposed Ctrl-C is a low circuit implementation overhead design. Its im-

plementation overhead includes iReuse table, the feedback controllers, and the two

additional meta data fields per cache line. Overall, with the baseline 16kB data cache

(32-set, 4-way set associative), Ctrl-C needs only 608 bytes additional storage. Com-

pared to the baseline 16kB cache, this corresponds to approximately 3.5% storage

overhead. This extra storage raises a significant 41.5% speedup for CS applications.

5.4 Chapter Summary

This chapter presents a dynamic scheme to perform cache bypassing specifically

for GPUs without the need of off-line analysis. This work identifies GPU cache
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Figure 5.10: The fraction of zero-reuse cache lines with Ctrl-C.

line reuse patterns and the optimal bypassing settings vary across different memory

instructions. Based on this key observation, I introduce a novel cache bypassing

scheme, called Ctrl-C, to mitigate the data cache inefficiency problem in GPUs by

learning and adjusting the optimal bypassing aggressiveness per memory instruction.

The evaluation results shown here suggest that Ctrl-C is able to significantly reduce

the MPKI and interconnect bandwidth demand. With the proposed Ctrl-C design,

cache sensitive GPGPU applications can achieve an average of 1.42x speedup.
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Algorithm 12 The operations of Ctrl-C at a cache line eviction—updating the by-

passing aggressiveness.
1: function atEviction(evictedLline)

2: . updating iReuse table

3: ctrl← iReuse[evictedLine.insertPC]

4: ctrl.INSERT ← ctrl.INSERT + 1

5: if evictedLine.reuse == FALSE then

6: ctrl.ZERO ← ctrl.ZERO + 1

7: end if

8: if ctrl.INSERT ≥ SAMPLE_PERIOD then

9: fract← ctrl.ZERO/ctrl.INSERT

10: . NOTE: ctrl.AGG is a saturating counter

11: if fract > THRESHOLD_H then

12: . predicting long reuse distance

13: ctrl.AGG← ctrl.AGG + 1

14: else if fract < THRESHOLD_L then

15: . predicting short reuse distance

16: ctrl.AGG← ctrl.AGG− 1

17: end if

18: ctrl.INSERT ← 0

19: ctrl.ZERO ← 0

20: end if

21: end function
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Table 5.3: Benchmarks for Ctrl-C performance evaluation.

Abbrev. Application Dataset Category

BO Binomial Options [90] 512 Options

Non-Cache

Sensitive

(NS)

PTH Pathfinder [19] 100k nodes

HOT Hotspot [19] 512x512 nodes

BP Back Propagation [19] 65536 nodes

FWT Fast Walsh Transform [90] 32k samples

HTW Heartwall [20] 656x744 AVI

SR1 SRAD1 [19] 502x458 nodes

NW Needleman-Wunsh [19] 1024x1024 nodes

SR2 SRAD2 [19] 2048x2048 nodes

SC Streamcluster [19] 32x4096 nodes

BT B+Tree [19] 1M nodes

DCT Discreet Cos Trans. [90] 10 blocks

WC Word Count [39] 86kB text file

MIS Maximal Ind. Set [21] ecology

CLR Graph Coloring [21] ecology

Cache

Sensitive

(CS)

PF Particle Filter [19] 28x128x10 nodes

PVR Page View Rank [39] 1M data entries

BC Betweenness Central [21] 1K (V), 128K (E)

CSR Dijkstra-CSR [21] USA road NY

FLD Floyd Warshall [21] 256(V), 16K (E)

SS Similarity Score [39] 1024x256 points

BFS Breadth First Search [19] 65536 nodes

STR String Match [39] 165k words

ELL Dijkstra-ELL [21] USA road NY

PRK Pagerank-SPMV [21] Co-Author DBLP

MM Matrix Mul [39] 1024x1024

KMN K-Means [19] 494020 objects

96



Chapter 6

PERFORMANCE CHARACTERIZATION AND PREDICTION FOR

HETEROGENEOUS COMPUTER SYSTEMS WITH GPUS

In Chapters 3 to 5, I focus on discussing GPU designs in the perspective of mi-

croarchitecture. Aside from the microarchitecture designs, communication with the

host CMP is also a critical factor limiting the performance gain of GPUs, especially for

discrete GPU cards. Commercial GPU cards are attached to the host machine with

the peripheral component interconnect express (PCIe) [94] or the accelerated graph-

ics port (AGP) [43] interface. When a GPU kernel is launched to a GPU card, the

system has to synchronize the input data and computation results stored in the host

main memory as well as the GPU’s internal memory. With the limited bandwidth of

the system bus and host main memory, the data transfer and synchronization oper-

ations are expensive in terms of execution time, becoming a significant performance

bottleneck of GPU acceleration. Therefore, offloading computation onto a hardware

accelerator, such as a GPU, does not have promising performance improvement. To

deliver the optimal system throughput, there is a need to have a prediction mech-

anism which is able to accurately estimate the performance benefits for offloading

versus not offloading the computation.

6.1 Heterogeneous Systems and the OpenCL Framework

Modern computer systems are accelerator-rich, integrating with many types of

hardware accelerators in a single machine, e.g., GPUs. By coordinating different

execution abilities provided by the accelerators, a system is able to obtain better

computation throughput or lower energy dissipation. To efficiently exploit the vari-
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eties of hardware accelerators, open computing language (OpenCL) is proposed as

an industry standard that defines a unified programming interface for developing

and running an application across different instruction set architectures (ISAs) [16].

Applications implemented in OpenCL can be dynamically compiled by an OpenCL

just-in-time (JIT) compiler and adapted for running on the designated execution

targets that support the standard (e.g., CMPs, GPUs, or FPGAs) without paying

additional porting efforts. Hence, depending upon the requirements of an application

(e.g., size of data transfer), the optimization goal, as well as the performance/power

characteristics of the available devices, an intelligent OpenCL scheduler can schedule

the application kernels onto different devices to be processed to improve the system

efficiency as shown in Figure 6.1. For example, if the OpenCL scheduler finds out

that the data movement overhead may dominate the overall execution time for a ker-

nel, the scheduler will dispatch the kernel to run on the host CMP to minimize the

execution time.

State-of-the-art OpenCL scheduling frameworks, such as [6, 114, 115], proposed to

build predictive models to determine an optimal execution target among all available

accelerators of different compute and power characteristics. Nevertheless, these prior

works focus on scheduling a single OpenCL kernel only and do not consider realistic

runtime effects such as memory interference stemmed from background processes, op-

erating system activities, and co-located applications. For example, in an on-demand

cloud computing environment, e.g., AWS [3], Google Cloud [36], and Azure [24],

a compute node is able to concurrently service multiple user requests or run several

copies of virtual machines with native CPU applications and OpenCL applications. In

such an execution environment, co-located applications contend for shared resources

in the memory subsystem and receive a varying degree of performance degradation

from memory interference. Thus, existing OpenCL schedulers that only consider the
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Figure 6.1: An example of a heterogeneous computer system with multiple OpenCL

enabled devices. This diagram exhibits a machine equipped with a CMP and multiple

hardware accelerators, including a GPU. All the CPU cores share the last-level cache,

interconnect, PCIe controller, and main memory. An OpenCL application, e.g., ma-

chine learning, can be scheduled to run on the CMP or an accelerator according to

the optimization goal.

characteristics of the application itself but do not take into account memory interfer-

ence from co-located workloads are not robust and provide sub-optimal performance

gain.

To understand the need for an intelligent scheduler that can make an accurate

decision for which optimal execution target an application should be executed on in

the presence of memory interference, I first perform detailed performance character-

ization studies for a diverse set of OpenCL applications alone and with co-located
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applications in Section 6.3. Based on the observations, I then develop a light-weight

and scalable performance prediction scheme, called HeteroPDP, to guide the OpenCL

scheduler to accurately select the optimal execution target with the presence of mem-

ory interference in Section 6.4.

6.2 Methodology

This section introduces the experimental setup for the performance characteriza-

tion studies and the design evaluation on a real heterogeneous computer system.

6.2.1 Experiment Infrastructure and Configurations

To explore the memory interference and performance degradation on a heteroge-

neous multiprogrammed environment, I build a system that comprises an Intel Core

i7-3770 processor (a quad core CMP with an 8MB shared last-level cache) [45] and

an AMD GCN2.0 Hawaii discrete GPU card [4] attached via a PCI-e 16x bus. On

this system, the host processor and the GPU card share the same host DRAM con-

troller and main memory modules. Both the CMP cores and GPU card are OpenCL-

compatible and are able to execute OpenCL programs. The detailed experiment setup

and system configurations are presented in Table 6.1.

To collect application-specific information for performance prediction, I instru-

ment the OpenCL JIT compiler to generate the static information, e.g., the static

instruction count (Section 6.4), as the input for the HeteroPDP predictors. To col-

lect runtime system resource utilization information such as the last-level cache miss

count, I integrate Intel’s performance counter monitor toolkit (PCM) [116] into Het-

eroPDP to periodically collect system resource utilization information at runtime.
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6.2.2 Workload Construction

I use a wide range of workloads exhibiting varying execution behavior for the

performance characterization studies. I use 6 applications from the SPEC2006 [40]

benchmarks suite with the reference dataset to represent the native CPU workloads.

I classify the native CPU applications into two categories: computation or memory

intensive benchmarks, based on the average miss per kilo instruction (MPKI) [78]. I

take various applications from the AMD SDK [5], Intel SDK [46], Hetero-Mark [108],

Pannotia [21], Rodinia [19, 20], SHOC [28], and XSBench [110] benchmark suites to

evaluate the behavior of OpenCL applications. Due to the resolution of the perfor-

mance counters used in HeteroPDP, I do not use OpenCL kernels that finish faster

than 2 seconds and focus my studies on the longer-running 26 OpenCL application

kernels as the representative benchmarks in this work. Table 6.2 and Table 6.3 list

the native CPU and OpenCL benchmarks used respectively.

For the co-located execution scenario, I construct workload combinations by pair-

ing one native CPU application and one OpenCL application, which results in 6*26

= 156 multiprogrammed workloads. To study the scalability of HeteroPDP, I in-

crease the number of native CPU applications and synthesize an additional 38 mul-

tiprogrammed workloads, consisting of two SPEC applications and one OpenCL ap-

plication from the listed benchmarks. To prevent the experimental machine from

overheating and from thermal throttling, the 38 workloads are the combinations that

complete within 5 minutes.

6.3 Motivation for an Intelligent Execution Target Scheduler

In this section, I present the performance characterization and analysis for the

alone and co-located execution scenarios to motivate the need of an accurate perfor-
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mance degradation predictor and execution target scheduler for heterogeneous sys-

tems. In the alone case, an OpenCL application is the sole application running on

a heterogeneous system and is to be dispatched onto an execution target among all

available processors or accelerators (discrete GPU cards in my thesis). On the other

hand, in the co-located case, an OpenCL application is to be dispatched onto the

heterogeneous system, which is servicing other applications, i.e., native CPU appli-

cations.

6.3.1 Performance Characterization

Offloading an OpenCL application onto a hardware accelerator does not always

lead to performance improvement or energy reduction. This is mainly because of

three reasons. First, to perform computations on an accelerator, it often requires

moving a considerable amount of data between the host system and the accelerators

to synchronize the execution, which is expensive in terms of execution time and energy

consumption [13, 37, 81, 93, 108]. Second, to make the shared data accessible by the

host CPU as well as the hardware accelerators, the device driver or operating system

has to frequently modify the page tables and translation lookaside buffers (TLB) to

remap the data into different memory spaces, which can introduce very long operation

latencies [112]. Third, the OpenCL JIT compiler is not always able to transform and

optimize the OpenCL kernel code well to fully utilize the dedicated target accelerator,

making the performance sub-optimal [114]. Consequently, offloading computations

onto an accelerator may instead degrade the application performance and incur higher

energy dissipation.

Figure 6.2 shows the system performance for running an OpenCL application on

the Intel CMP or the discrete GPU card alone and co-located, averaged across the

26 OpenCL applications. The horizontal axis indicates the execution target of the
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OpenCL application whereas the y-axis represents the system performance: execution

time speedup for alone and fairness for co-located. Note that, fairness is a commonly-

used metric to evaluate the execution time slowdown for multiprogrammed execution

environments [9, 31, 86]. It is defined as the ratio of the minimum and the maximum

execution time slowdown among all concurrent applications as shown in Equation 6.1,

where i represents any of the co-located applications and slowdown is the ratio of an

application’s execution time in co-located and that in alone.

Fairness = min(slowdowni)
max(slowdowni)

(6.1)

Figure 6.2(a) shows that, although offloading the OpenCL application to the GPU

achieves an impressive speedup on average as compared with the CMP execution tar-

get, there is ample room for performance improvement. With the oracle execution

target information, the application performance can be further improved by an av-

erage of 50%. Furthermore, Figure 6.2(b) shows a similar performance trend for

co-located cases. Clearly, to maximize system performance, an intelligent execution

target scheduler is needed for both the alone and co-located execution scenarios.

6.3.2 Optimal Execution Target in the Presence of Memory Interference

I delve deeper into a few workload combinations to illustrate that the optimal

OpenCL execution target varies in the presence of memory interference from a memory-

intensive co-located application. In this study, I use mcf as the memory-intensive

application running on the CMP. When an OpenCL application is co-located with

mcf on the CMP, shared last-level cache contention degrades application performance

whereas when the OpenCL application is offloaded to the GPU, performance degra-

dation comes from a different level of the memory hierarchy, i.e., the DRAM memory
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Figure 6.2: The average execution time speedup of running OpenCL Applications

alone and the execution time slowdown fairness of co-located on a quad-core CPU,

GPU, and the optimal execution target between the CPU and GPU devices.

bandwidth. The already expensive data transfer cost for OpenCL application offload-

ing is exacerbated.

Figure 6.3(a) shows the execution time speedup of five different OpenCL ap-

plications alone on the CMP versus the GPU accelerator and the optimal, higher-

performing execution target. Figure 6.3(b) shows the execution time speedup of the

same OpenCL applications co-located with mcf and the optimal execution target. The

optimal execution target for three out of the five OpenCL applications, i.e., BIT, HIS,

and XSB, is changed. It is clear that the scheduling decision depends upon the memory

intensities and interference between the co-located workloads. Hence, simply consid-

ering the features of an OpenCL application is insufficient to maximize application

and system performance—it is crucial for an intelligent execution target scheduler to

take into account the characteristics of all co-located applications.
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Figure 6.3: The execution time speedup of an OpenCL application for (a) it is running

alone and (b) it is co-located with the native CPU application mcf. The labels on the

top indicate that the optimal target device based on the execution time speedup.

6.3.3 Performance Degradation with Different Co-location Scenarios

To fairly evaluate the overall system performance, the fairnessmetric is commonly-

used for co-located workloads in the multiprogramming execution as defined in Equa-

tion 6.1 [9, 31, 86]. The goal of using fairness as the optimization goal is to ensure a

fine balance of the slowdown among all co-located applications. A fairness number of

1.0 represents a system with equal slowdown among all co-located workloads. That

is, an ideal system design for a multiprogramming environment is to make the fairness

closer to 1.0.

In order to identify the execution target preference in my experimental platform

with optimal fairness, I also define the GPU and CPU fairness ratio as shown in

Equation 6.2. That is, with a higher fairness ratio, it implies an OpenCL kernel
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has stronger preference to run on the GPU and vice versa. Figure 6.4 shows the

execution target preference for the OpenCL application in the co-located scenario

for all 156 workload combinations in this study. The x-axis represents all workload

combinations while the y-axis represents the fairness ratio of the OpenCL application

running on the CMP versus on the GPU. The data points are sorted based on the

fairness ratio in the increasing order. We can observe that, for a large number of

workload combinations (toward either end of the curve), there is a clear OpenCL

execution target preference. Besides, the fairness ratio varies significantly, from 0.001

to 100.

Fairness Ratio = FairnessCMP

FairnessGP U

(6.2)

6.3.4 Performance Degradation with Different Scheduling Priorities

Real-time constraint and scheduling priorities of processes can affect the schedul-

ing decision as well. Many interrupt services, for example, must be handled by the

host processor with a hard real-time deadline. To evaluate how scheduling priorities

can influence the scheduling decision of an OpenCL application and affect the over-

all system performance, I adopt the metric of weighted slowdown [31] and use it to

calculate fairness as defined in Equation 6.3 and 6.4, where weighti represents the

scheduling weight given to the process i. Figure 6.5 presents the fairness ratio based

on the weighted slowdown of each co-located native CPU application with the weight

factor varying from 0.5 to 2.5. 0.5 means the co-located native CPU application is

more latency tolerable than the OpenCL application, whereas 2.5 indicates the co-

scheduled native CPU application is highly latency critical. The weights can also be

representative of, for example, the operating system scheduling priority. We see that
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Figure 6.4: The fairness ratio between running an OpneCL Kernel on the CMP versus

on the GPU for workloads comprising one OpneCL application and one native CPU

application. Higher than 1.0 indicates running on CMP has higher fairness number

and thereby preferring to run on the CMP.

when the scheduling priority of the co-located native CPU process increases, the fair-

ness ratio shifts remarkably as well, favoring GPU as the OpenCL execution target as

labeled with the blue boxes in Figure 6.5. Therefore, in order to meet the real-time

deadline, an intelligent OpenCL execution target scheduling framework should also

consider the process scheduling priorities to reach a correct target selection decision.

WeightedSlowdowni = slowdowni × weighti (6.3)

WeightedFariness = min(WeightedSlowdowni)
max(WeightedSlowdowni)

(6.4)
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Figure 6.5: The fairness ratio of running an OpneCL Kernel on the CMP versus on

the GPU when the co-located native CPU application is assigned to have different

OS scheduling priorities/weights. The blue boxes point out workloads having vary-

ing target execution devices when the co-located application has different scheduling

weights.

6.4 Performance Degradation Predictor for Heterogeneous Systems

Based on the performance characterization studies discussed in Section 6.3, I de-

sign a simple, light-weight performance prediction and optimization framework, called

HeteroPDP. The goal of HeteroPDP is to estimate application slowdown for each co-

located application and schedule the OpenCL application to an execution target in

a heterogeneous system to maximize the fairness, system throughput, or weighted

speedup.
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Figure 6.6: System diagram of the HeteroPDP prediction scheme.

6.4.1 The HeteroPDP Prediction Scheme Overview

HeteroPDP is implemented as a part of the OpenCL independent client driver

(ICD). When an OpenCL API is invoked within an application, HeteroPDP col-

lects application-specific information such as the size of data transfer between the

host and device memories, available in the command queue of the ICD. Based on

the application-specific features important for performance prediction, HeteroPDP

estimates application execution time for both OpenCL application and native CPU

applications, and selects an execution target for the OpenCL application. The pro-

posed HeteroPDP framework is illustrated in Figure 6.6.

To predict the execution time and performance degradation for OpenCL kernels,

I use a regression-based approach. While a full-fledge machine learning technique can

also be used and may offer higher prediction accuracies, my evaluation result in the

later section (Section 6.5) indicates a simple performance model works sufficiently

well to facilitate the execution target selection for OpenCL kernels.
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6.4.2 OpenCL Kernel Execution Time Prediction for alone

To establish the regression model for predicting the performance of an OpenCL

application or kernel when it is running alone in a heterogeneous system, I first

analyze and identify a set of important kernel characteristics, including both static

and dynamic features. The static features of a kernel can be retrieved by the OpenCL

JIT compiler at the compilation time, e.g., the number of static instructions. On the

other hand, the dynamic features of a kernel include parameters such as input data

sets and user commands specified at the kernel launch time (e.g., the total number

of threads).

The kernel characteristics are extracted with the instrumented OpenCL JIT com-

piler and the device driver, and are used to train the regression-based performance

prediction models: one for predicting the OpenCL application execution time of the

host CMP execution target and the other for the GPU execution target.

I run an OpenCL kernel with a varying number of threads and different sizes of in-

put data sets and collect its corresponding execution time by querying the clGetEvent-

ProfilingInfo() API. I construct the correlation between the features and the execu-

tion time. Overall, the regression model expresses the predicted execution time as a

function of a number of important features, as shown in Equation 6.5, where ci and

fi represent the i-th coefficient and feature, respectively. Table 6.4 summarizes the

kernel-specific features used in the performance prediction models for the execution

targets of the host CMP and the GPU. Note that, these parameters and features

are chosen to form the regression models because they are identified to be highly

correlated to kernel execution time.

Performanceexecution target =
∑

i

ci × fi (6.5)

110



6.4.3 OpenCL Kernel Execution Time Prediction for co-located

Similar to predicting the execution time for an OpenCL application alone, I build

an additional regression model to predict the kernel execution time in the presence

of co-located applications. In such an execution scenario, shared memory resource

utilization, e.g., the last-level cache and the DRAM bandwidth on the host CMP,

influences the OpenCL application performance. To consider the memory interference

effects, I include two additional features into the regression performance prediction

model for co-located: (1) the shared last-level cache miss counts on the host CMP

and (2) the host DRAM bandwidth utilization incurred by the co-located native CPU

applications.

In summary, when an OpenCL kernel is launched, I use the regression models to

predict the OpenCL kernel execution time for (1) each of the two available execution

targets, alone (timealone with Equation 6.5) and (2) each of the two available execution

targets, co-located (timeco−located). Then, HeteroPDP estimates the slowdown factor

of the OpenCL application for the two execution targets with Equation 6.6. Details

of the parameters and features used for the regression model training and the kernel

execution time prediction are summarized in Table 6.4.

Slowdown = timeco−located

timealone

(6.6)

6.4.4 Performance Model Training for OpenCL Kernels

To build the regression models for OpenCL kernel execution time prediction in

HeteroPDP, I take a large set of 63 distinct OpenCL kernels with varying input data

set sizes as the training set. I apply the commonly-used K-fold cross validation algo-
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rithm [95] with 32 test passes to eliminate overfitting and to maximize the coefficient

of the determination value (R-square) by narrowing down the training set size from

63 to 45 kernels. Coefficients employed for the regression models evaluated in this

research work are listed in Appendix A.

6.4.5 Performance Degradation Prediction for Native CPU Applications

To assess fairness or weighted speedup of multiple concurrent applications run-

ning on the heterogeneous system, HeteroPDP has to determine the performance of

native CPU applications as well. It does so with an offline-trained table. A major

advantage of using an offline-trained table is the ease of computation overhead. There-

fore, instead of applying a prediction model to project the execution time slowdown

of co-located native CPU applications, I adopt the previously proposed Bubble-up

algorithm to measure and estimate the CPU application slowdown caused by the co-

schedule OpenCL application after the compilation of the OpenCL application [82].

In Bubble-up, a simple hash table is accessed at the compilation time to predict the

degree of performance degradation under different levels of shared memory contention

caused by other co-located applications. The table is constructed for each native CPU

application and is trained with a collection of microbenchmarks that generate a fixed

level of contention for a specific shared memory resource, such as the last-level cache

or the shared DRAM bandwidth. Note, Bubble-up was originally proposed for ap-

plication slowdown estimation of CPU applications in a multiprogramming execution

scenario. I revise the algorithm for the purpose of performance degradation prediction

for native CPU applications in a heterogeneous system setup.

For HeteroPDP, if an OpenCL kernel is running on the host CMP, the main

resource contention occurs at the shared last-level cache. To predict the pressure

the OpenCL kernel imposes onto the shared cache, I use the maximum number of
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concurrent threads that can run on the CMP’s SIMD units and the total working set

size to estimate its demand for the shared cache capacity. On the other hand, when

the OpenCL kernel is offloaded onto the discrete GPU, the major resource interference

occurs at the data movement operations for the shared main memory bandwidth. To

predict the slowdown caused by the bandwidth contention, HeteroPDP uses the total

size of data transfer required for launching the OpenCL kernel to evaluate the host

DRAM bandwidth requirement.

6.5 Evaluation and Analysis

In this section, I present the evaluation results for the accuracy of the prediction

model as well as the performance of the proposed HeteroPDP scheme in the alone

and co-located execution scenarios.

6.5.1 Execution Time and Execution Target Prediction Accuracy

The ultimate goal of the HeteroPDP framework is to predict the optimal execution

target for an OpenCL application in the alone and co-located execution scenarios.

Since HeteroPDP depends its execution target prediction on the four execution time

prediction models, I also evaluate the prediction accuracy for the four individual

models. Figure 6.7 presents the execution target selection accuracy for alone and co-

located. The different portions of the bar represent the different prediction outcomes

[predicted execution target, optimal execution target]. For instance, [CMP,

GPU] means that the predicted execution target for the OpenCL application is the

CMP host processor and the optimal execution target is the GPU card, resulting in

an incorrect prediction outcome. For the alone case, the execution target is selected

such that the execution time of the OpenCL application is minimized. In contrast,

for the co-located case, the execution target is selected such that fairness, as defined
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Figure 6.7: The prediction accuracy of selecting the optimal execution target device

to run an OpneCL kernel when (a) running alone, and (b) co-located with a native

CPU process.

in Equation 6.1, is maximized. Overall, HeteroPDP achieves 80% and 72% execution

target prediction accuracy for the alone and co-located scenarios, respectively.

I investigate the prediction accuracy for the individual execution time models as

well. Figure 6.8 shows the cumulative density function (CDF) for the execution time

prediction accuracy for (1) the OpenCL application on the host CMP, alone, (2) the

OpenCL application on the GPU, alone, (3) the OpenCL application on the host

CMP, co-located, and (4) the OpenCL application on the GPU, co-located. We can

observe that the execution time prediction error rate for the majority of applications

or workload combinations is below 10%. For the four respective models, (1)–(4), 73%,

70%, 68%, and 72% of the workloads can meet the 20% error rate cutoff.

114



0% 
20% 
40% 
60% 
80% 

100% 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

CD
F	
of
	W

or
kl
oa

ds

Error

CMP	alone GPU	alone CMP	co-located GPU	co-located

20%	error	margin

Figure 6.8: The CDF of prediction errors for predicting OpenCL kernel execution

time. The red dash line indicates the 20% error margin.

6.5.2 Evaluation for System Performance

I next investigate the application and system performance impacts of HeteroPDP

for alone and co-located. Figure 6.9 shows the performance speedup for an OpenCL

application running alone on the target heterogeneous system. The bars represent

the OpenCL application running on different execution target (CMP, and GPU), the

execution target selected by HeteroPDP, and the optimal execution target (Opt),

whereas the y-axis plots the speedup over the baseline execution target (CMP). We

can observe that the always offloading to GPU choice improves the OpenCL appli-

cation performance by 2.5x, while HeteroPDP improves the application performance

by 3.0x. HeteroPDP bridges the performance gap between always offloading to GPU

and the optimal target selection by 72%.

Figure 6.10 shows the respective performance speedup for the native CPU appli-

cation and the OpenCL application of the co-located multiprogrammed workloads.
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Figure 6.9: The system speedup of HeteroPDP when running an OpenCL application

alone.

The x-axis again shows the execution target of the OpenCL application (the Avg bar

indicates the average throughput across all co-located applications), the left y-axis

shows the application performance speedup normalized to the baseline (where the

OpenCL application runs on the host CMP), and the right y-axis plots the fairness

evaluation. Similar to the alone execution scenario, the proposed HeteroPDP im-

proves the weighted speedup over the always offloading to GPU choice and, at the

same time, improves the fairness of the co-located applications.

6.5.3 HeteroPDP with Varying Scheduling Priorities

Assigning equal weights to the native CPU applications and the OpenCL appli-

cation is not reflective of the scheduling priorities to be enforced in typical systems.

As previously mentioned, HeteroPDP can be configured to consider the priorities of

co-located applications when making a scheduling decision. Thus, I perform a char-

acterization study by varying the weight ratio of the native CPU application and the
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Figure 6.10: The speedup and fairness of HeteroPDP when an OpenCL application

is co-located with a native CPU application. The label Native CPU represents native

CPU workloads, OCL represents OpenCL workloads, and Avg is the average speedup

across all co-located applications.

OpenCL application. This weight ratio is then taken into account when fairness of the

system is calculated and thereby influencing the scheduling decision of the OpenCL

application.

Figure 6.11 shows the execution target prediction accuracy evaluation for Het-

eroPDP with the weight ratio varying from 0.5 to 2.5. A weight ratio less than

1 indicates that the native CPU application has a lower priority than that of the

OpenCL application, a weight ratio of 1.0 means all applications have an equal pri-

ority, and a weight ratio higher than 1.0 indicates that the native CPU application

has a higher priority than that of the OpenCL application. As the importance of

the native CPU application’s speedup increases with a larger weight ratio, the opti-

mal execution target for the OpenCL application increasingly switches to the GPU,

as expected. HeteroPDP achieves a similarly good prediction accuracy of 75% for

117



0% 

20% 

40% 

60% 

80% 

100% 

0.5 1.0 1.5 2.5
Weight	of	the	Native	CPU	Application

[CMP,	CMP] [GPU,	GPU] [CMP,	GPU] [GPU,	CMP]

Accurate
prediction	64%

Accurate
prediction	72%

Accurate
prediction	75%

Accurate
prediction	73%

Figure 6.11: The prediction accuracy of selecting the optimal target to run an Op-

neCL kernel co-located with one native CPU application that has varying scheduling

weights.

selecting the execution target. Figure 6.12 shows the corresponding system perfor-

mance impact for HeteroPDP with varying scheduling priorities (weight ratios). As

the native CPU application is given a heavier weight, its performance improvement

becomes more important when maximizing the overall system throughput. We can

observe that when the weight ratio is 0.5, the performance of OpenCL applications

is lower than having equal weight (i.e., weight 1.0). This is because HeteroPDP’s

target prediction accuracy is slightly lower than with other weight ratios as shown in

Figure 6.11. This also reflects upon the trend of weighted fairness improvement of

the system.

6.5.4 HeteroPDP Scalability Analysis

Finally, I assess the scalability of the proposed design by increasing the number of

native CPU applications on the four-core CMP. In this study, I co-locate two native
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Figure 6.12: The speedup of HeteroPDP when running workloads consisting of one

OpenCL application and one native CPU application with varying scheduling weights.

CPU application on the host CMP and evaluate the prediction trend of HeteroPDP

for the OpenCL application. Figure 6.13 shows the prediction accuracy of the target

device selection under such more resource-stressed execution environment. The eval-

uation result indicates that, although the number of co-located processes increases,

HeteroPDP can still achieve a similarly good prediction accuracy of 70% as compared

to the execution scenario with only one native CPU process (Figure 6.7). Similarly,

the good execution target prediction accuracy translates into system throughput im-

provement for HeteroPDP. Figure 6.14 shows the respective speedup of the co-located

applications as well as the system throughput and fairness results. HeteroPDP is

able to continue its accurate execution target prediction without the need for pre-

diction model revision and continues to mitigate the performance degradation in the

co-located execution environment.
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Figure 6.13: The prediction accuracy of selecting the optimal target device to run an

OpneCL kernel co-located with two native CPU applications.

6.6 Chapter Summary

This chapter presents a detailed performance characterization study for the multi-

programming heterogeneous computation environment. I show that the performance

of an OpenCL application can be significantly affected by co-located native CPU

applications and vice versa. Hence, a high-performing, robust OpenCL framework

design should take the entire system utilization into account instead of only consid-

ering the characteristics of the OpenCL application.

In order to balance the performance degradation of a heterogeneous system, I

develop a light-weight and scalable performance degradation predictor (HeteroPDP),

based on simple regression models. HeteroPDP can accurately select the target exe-

cution device in a heterogeneous system to optimize and balance the performance

degradation among all co-located workloads. HeteroPDP is designed and imple-

mented within the existing OpenCL framework, and is evaluated on a real system
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Figure 6.14: The speedup and fairness of HeteroPDP when running workloads con-

sisting of two native CPU applications and one OpenCL application.

consisting of an Intel Core i7-3770 x86-64 CMP and an AMD FirePro GCN2.0 GPU.

Overall, HeteroPDP improves the performance of OpenCL applications by 3x by in-

telligently selecting the execution target between the host CMP and the GPU while

the always offloading to GPU decision produces 2.5x speedup. This bridges the per-

formance gap between always offloading to GPU and the optimal target selection by

72%. This chapter shows that the simple regression model approach and the consid-

eration of the multi-level memory interference in HeteroPDP can effectively improve

the scheduling decision of OpenCL applications, leading to higher application perfor-

mance and system throughput.
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Table 6.1: Memory interference infrastructure setup and configurations.

Device Configuration

Host CPU

Intel Core i7-3770 x86-64 CPU

4 cores

3.4GHz core frequency

8MB shared last-level cache

disabling turbo boost

disabling hyperthreading

Host DRAM

DDR3-1600 24GB

2 channels

22GB/s max available bandwidth

Accelerator (GPU)

AMD FirePro S9150 GCN2.0 Hawaii GPU

44 compute units (CUs)

900 MHz core frequency

PCIe 3.0 x16 8GT/s

GPU DRAM

GDDR5-1250 16GB with ECC

512-bit width

320GB/s max avaiable bandwidth

Software Runtime

Ubuntu 16.04

Linux kernel v4.4.0

clang/clang++ v3.8.0

Intel PCM toolkit v2.11

Intel OpenCL driver v1.2.0.18

AMD OpenCL driver v2264.10
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Table 6.2: CPU Workloads for the characterization studies and design evaluation. M

and C stand for memory- and computation-intensive respectively.

Benchmark Type Suite

bzip2 C

SPEC2006 [40]

calculix C

lbm M

mcf M

perlbench C

xalancbmk C
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Table 6.3: OpenCL workloads for the characterization studies and design evaluation.

M and C stand for memory- and computation-intensive respectively.

Benchmark Type Suite Benchmark Type Suite

AC M

AMD SDK [5]

BC M

Pannotia [21]BIN M CSE M

BS C ELL M

HIS M CFD M

Rodinia [19, 20]

LUD C GAU M

MCA C HTW C

AES C

Hetero-Mark [108]

KMN M

FIR C LEU C

KMN M PTH C

PR C SC M

BIT M

Intel SDK [46]

S3D C SHOC [28]

GEMM M XSB M XSBench [110]

MF C

MC C
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Table 6.4: The OpenCL kernel features used for execution time prediction.

Feature Category

# of scalar ALU instructions

Static features for predicting

execution time on the CMP

# of scalar memory instructions

# of vector ALU instructions

# of vector memory instructions

# of branch instructions

# of atomic instructions

# of memory instructions

Static features for predicting

execution time on the GPU

# of integer instructions

# of float-point instructions

# of special math instructions

# of branch instructions

# of barrier instructions

# of threads spawned
Dynamic features

size of memory buffer allocated

last-level cache miss count System utilization for predicting

execution time of co-locatedhost DRAM bandwidth utilization
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Chapter 7

CONCLUSIONS

Employing a variety of hardware accelerators to improve system throughput and/or

reduce energy consumption is the future trend of computer designs. In such kinds

of heterogeneous computer systems, GPUs are a type of hardware accelerators that

target at accelerating general-purpose parallel workloads by exploiting the massive

multithreading computation paradigm. However, as presented in the prior chapters

of this thesis, offloading parallel workloads onto a GPU does not always receive good

performance benefits. To address the inefficiencies of GPU acceleration, my thesis

delves into the microarchitecture as well as the system architecture of modern GPU

designs to characterize the performance limits and propose practical solutions. Specif-

ically, my thesis explores and solves three critical performance problems in modern

GPU microarchitecture designs and heterogeneous systems with GPU accelerators.

In Chapter 3, I design a novel algorithm to characterize the latency hiding abil-

ity of the massive multithreading, throughput-oriented processors. With the latency

breakdown algorithm, I show that the latency hiding ability is poor for many ap-

plications in GPUs. I then find out that warp criticality is one of the significant

factors making the latency hiding ability sub-optimal. In Chapter 4, I further iden-

tify the root-causes of the warp criticality problem and propose an efficient solution,

the Criticality-Aware Warp Acceleration (CAWA) mechanism, to dynamically mit-

igate the degree of warp criticality. By allocating larger execution time slices and

reserving more cache storage for the critical warps, GPGPU workloads are able to

receive higher performance gain.
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While the design philosophy of GPU acceleration is to hide the operation latency

by running a massive number of concurrent threads, it has got noticed that the large

number of parallel threads can severely contend for the cache storage and interconnect

bandwidth. In Chapter 5, I observe that the cache contention problem can be effec-

tively alleviated by bypassing a portion of memory request and yielding the precious

cache resource to the frequently referenced data. Based on this important observa-

tion, I designed a novel cache bypassing algorithm, the Instruction-Aware Control

Loop Based Cache Bypassing (Ctrl-C) scheme, to maximize the GPU throughput by

dynamically adjusting the bypassing aggressiveness per memory instruction. As a

result, with a small circuit overhead, the performance of GPUs can be increased to a

level similar to doubling the data cache capacity.

In addition to optimizing the GPU microarchitectures, in Chapter 6, I find that

in a heterogeneous system, the GPU performance gain can be significantly affected

by the memory interference at different levels of the memory hierarchy introduced by

co-located applications. In order to maximize the system throughput and balance the

execution time slowdown, I propose a light-weight and scalable Performance Degrada-

tion Predictor for Heterogeneous Systems (HeteroPDP) to dynamically evaluate the

performance degradation of running an OpenCL kernel on different OpenCL enabled

devices. With the high prediction accuracy of HeteroPDP for the execution target de-

vice, the overall system throughput and performance degradation of each co-located

application can be optimized for heterogeneous computation environments.

Overall, my thesis breaks grounds as follows:

1. This thesis provides a new view to investigate the latency hiding ability and

the inefficiencies of massive multithreading processors, specifically GPGPUs,

by applying a novel latency breakdown algorithm.
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2. This thesis presents a novel instruction granularity probabilistic cache bypassing

design that can effectively mitigate the degree of L1 data cache contention in

GPGPUs.

3. This thesis presents that the cache contention problem is a critical performance

bottleneck for GPUs. The degree of cache contention, however, can be effec-

tively mitigated by bypassing a portion of memory requests.

4. This thesis highlights the need of an intelligent OpenCL scheduling design which

should consider the impacts of memory interference incurred by co-located ap-

plications on a multiprogramming heterogeneous computer system.

5. This thesis proposes architectural- and system-level solutions, i.e., CAWA [72],

Ctrl-C [70], as well as HeteroPDP [71], to address the inefficiencies in modern

GPU designs. With the proposed solutions, the performance gain of employing

GPGPUs to accelerate computation can be further improved by an average of

1.23x (CAWA), 1.42x (Ctrl-C), and 3.0x (HeteroPDP).

In summary, my thesis gives new insights of future GPU designs in both mi-

croarchitectures and system architectures by offering detailed characterization and

performance evaluation studies. With the essential studies of scheduling and memory

management designs for GPUs, this thesis not only points towards a new direction

for performance optimization, but also creates an ample space for future research in

the computer architecture as well as the operating system domains.
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APPENDIX A

REGRESSION MODELS AND COEFFICIENTS FOR HETEROPDP
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This appendix shows the coefficients used for the regression models in the Het-
eroPDP design. Note that, to better correlate each factor, the regression models are
trained as the interactive mode. Therefore, each term in the regression model is a
product of two factors as shown in Equations A.1 and A.2. The coefficients of each
term are listed in Tables A.1 to A.4

termi = factor_1i × factor_2i (A.1)

Time =
∑

i

coefficienti × termi =
∑

i

coefficienti × factor_1i × factor_2i

(A.2)

Table A.1: Coefficients for predicting OpenCL kernel execution time alone on the
Intel Core i7-3770 CMP

Term CoefficientFactor_1 Factor_2
# of threads 1 0.000000009173792

# of scalar ALU inst. 1 -0.001291950266492
# of scalar MEM inst. 1 -0.000708449667275
# of vector ALU inst. 1 -0.005027805769920
# of vector MEM inst. 1 0.001527459744997

# of branch inst. 1 0.020511412895212
# of atomic inst. 1 0

buffer size 1 0.000000001752382
# of threads # of scalar ALU inst. -0.000000000858425
# of threads # of scalar MEM inst. 0.000000000774906
# of threads # of vector ALU inst. -0.000000001312955
# of threads # of vector MEM inst. 0.000000002987590
# of threads # of branch inst. 0
# of threads # of atomic inst. 0.000000001526019
# of threads buffer size -0.000000705248815

# of scalar ALU inst. # of scalar MEM inst. 0.000224981312450
# of scalar ALU inst. # of vector ALU inst. -0.000349975851307
# of scalar ALU inst. # of vector MEM inst. -0.000291671393497
# of scalar ALU inst. # of branch inst. 0
# of scalar ALU inst. # of atomic inst. 0.000714793051486
# of scalar ALU inst. buffer size -0.000000829173211
# of scalar MEM inst. # of vector ALU inst. 0.000120515879912
# of scalar MEM inst. # of vector MEM inst. 0.000231489317965
# of scalar MEM inst. # of branch inst. 0
# of scalar MEM inst. # of atomic inst. 0.000223155952517

Continued on next page
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Table A.1 – continued from previous page
Term CoefficientFactor_1 Factor_2

# of scalar MEM inst. buffer size 0.000066733510292
# of vector ALU inst. # of vector MEM inst. -0.000364289913766
# of vector ALU inst. # of branch inst. 0
# of vector ALU inst. # of atomic inst. 0.002190538539154
# of vector ALU inst. buffer size -0.000000013133745
# of vector MEM inst. # of branch inst. 0
# of vector MEM inst. # of atomic inst. -0.001299923605429
# of vector MEM inst. buffer size 0.000576849602103

# of branch inst. # of atomic inst. -0.009194662724052
# of branch inst. buffer size 0
# of atomic inst. buffer size 0.000000000044371

Table A.2: Coefficients for predicting OpenCL kernel execution time alone on the
AMD FirePro S9150 GPU

Term CoefficientFactor_1 Factor_2
# of threads 1 -0.000000461723788

# of MEM inst. 1 -0.000004961109670
# of INT inst. 1 -0.001555207427860
# of FP inst. 1 0.007097661815404
# of math inst. 1 0
# of branch inst. 1 0
# of barrier inst. 1 0

buffer size 1 0.000000004301985
# of threads # of MEM inst. -0.000000000162581
# of threads # of INT inst. 0.000000000012263
# of threads # of FP inst. 0.000000000278928
# of threads # of math inst. -0.000000843926919
# of threads # of branch inst. 0.000000000255150
# of threads # of barrier inst. -0.000000001623380
# of threads buffer size -0.000000000051832

# of MEM inst. # of INT inst. 0.000000605781747
# of MEM inst. # of FP inst. 0.000143796621602
# of MEM inst. # of math inst. 0
# of MEM inst. # of branch inst. 0.000014196556354
# of MEM inst. # of barrier inst. -0.001386335986034
# of MEM inst. buffer size 0.000000000706951
# of INT inst. # of FP inst. 0.000013853357393
# of INT inst. # of math inst. -0.000724741599509
# of INT inst. # of branch inst. 0.000006526006563
# of INT inst. # of barrier inst. -0.000300708162003
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Table A.2 – continued from previous page
Term CoefficientFactor_1 Factor_2

# of INT inst. buffer size 0
# of FP inst. # of math inst. 0.000059471218335
# of FP inst. # of branch inst. -0.001039671674845
# of FP inst. # of barrier inst. 0.001405577586221
# of FP inst. buffer size -0.000000005460802
# of math inst. # of branch inst. 0
# of math inst. # of barrier inst. 0
# of math inst. buffer size 0
# of branch inst. # of barrier inst. 0.003844312920723
# of branch inst. buffer size 0
# of barrier inst. buffer size -0.000000000378301

Table A.3: Coefficients for predicting OpenCL kernel execution time co-located on
the Intel Core i7-3770 CMP

Term CoefficientFactor_1 Factor_2
# of threads 1 0.000000464380971

# of scalar ALU inst. 1 0
# of scalar MEM inst. 1 0
# of vector ALU inst. 1 0
# of vector MEM inst. 1 0

# of branch inst. 1 0
# of atomic inst. 1 0

buffer size 1 0.000000000321057
LLC miss count 1 -0.000000009308307

DRAM bandwidth 1 0
# of threads # of scalar ALU inst. 0.000000045932829
# of threads # of scalar MEM inst. -0.000000037158650
# of threads # of vector ALU inst. -0.000000012339376
# of threads # of vector MEM inst. 0.000000033186243
# of threads # of branch inst. 0.000000050576133
# of threads # of atomic inst. 0
# of threads buffer size -0.000000034050131
# of threads LLC miss count 0
# of threads DRAM bandwidth 0.000000000284800

# of scalar ALU inst. # of scalar MEM inst. 0.000583138870637
# of scalar ALU inst. # of vector ALU inst. -0.010686656463813
# of scalar ALU inst. # of vector MEM inst. 0.017553583556379
# of scalar ALU inst. # of branch inst. 0
# of scalar ALU inst. # of atomic inst. 0
# of scalar ALU inst. buffer size 0
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Table A.3 – continued from previous page
Term CoefficientFactor_1 Factor_2

# of scalar ALU inst. LLC miss count -0.000000000979732
# of scalar ALU inst. DRAM bandwidth -0.005239040745939
# of scalar MEM inst. # of vector ALU inst. 0.004980999755519
# of scalar MEM inst. # of vector MEM inst. -0.006079469682139
# of scalar MEM inst. # of branch inst. -0.001821087047881
# of scalar MEM inst. # of atomic inst. 0
# of scalar MEM inst. buffer size 0.000000058302141
# of scalar MEM inst. LLC miss count 0.000000000576634
# of scalar MEM inst. DRAM bandwidth 0.003039032020751
# of vector ALU inst. # of vector MEM inst. 0.000111461903008
# of vector ALU inst. # of branch inst. 0.006308844739137
# of vector ALU inst. # of atomic inst. 0
# of vector ALU inst. buffer size 0
# of vector ALU inst. LLC miss count -0.000000000043673
# of vector ALU inst. DRAM bandwidth -0.000216858477800
# of vector MEM inst. # of branch inst. -0.018731831118366
# of vector MEM inst. # of atomic inst. 0
# of vector MEM inst. buffer size 0.000000007754859
# of vector MEM inst. LLC miss count 0.000000000162284
# of vector MEM inst. DRAM bandwidth 0.000762235532871

# of branch inst. # of atomic inst. 0
# of branch inst. buffer size 0
# of branch inst. LLC miss count -0.000000000087090
# of branch inst. DRAM bandwidth 0.000546133983535
# of atomic inst. buffer size -0.000000000115041
# of atomic inst. LLC miss count -0.000000003697363
# of atomic inst. DRAM bandwidth -0.023775141869708

buffer size LLC miss count -0.000000000923101
buffer size DRAM bandwidth -0.000000007331325

LLC miss count DRAM bandwidth 0.000000002764534

Table A.4: Coefficients for predicting OpenCL kernel execution time co-located on
the AMD FirePro S9150 GPU

Term CoefficientFactor_1 Factor_2
# of threads 1 -0.000000461723788

# of MEM inst. 1 -0.000004961109670
# of INT inst. 1 -0.001555207427860
# of FP inst. 1 0.007097661815404
# of math inst. 1 0
# of branch inst. 1 0

Continued on next page

146
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Term CoefficientFactor_1 Factor_2

# of barrier inst. 1 0
buffer size 1 0.000000004301985

DRAM bandwidth 1 0.0000000004
# of threads # of MEM inst. -0.000000000162581
# of threads # of INT inst. 0.000000000012263
# of threads # of FP inst. 0.000000000278928
# of threads # of math inst. -0.000000843926919
# of threads # of branch inst. 0.000000000255150
# of threads # of barrier inst. -0.000000001623380
# of threads buffer size -0.000000000051832
# of threads DRAM bandwidth 0

# of MEM inst. # of INT inst. 0.000000605781747
# of MEM inst. # of FP inst. 0.000143796621602
# of MEM inst. # of math inst. 0
# of MEM inst. # of branch inst. 0.000014196556354
# of MEM inst. # of barrier inst. -0.001386335986034
# of MEM inst. buffer size 0.000000000706951
# of MEM inst. DRAM bandwidth 0
# of INT inst. # of FP inst. 0.000013853357393
# of INT inst. # of math inst. -0.000724741599509
# of INT inst. # of branch inst. 0.000006526006563
# of INT inst. # of barrier inst. -0.000300708162003
# of INT inst. buffer size 0
# of INT inst. DRAM bandwidth 0
# of FP inst. # of math inst. 0.000059471218335
# of FP inst. # of branch inst. -0.001039671674845
# of FP inst. # of barrier inst. 0.001405577586221
# of FP inst. buffer size -0.000000005460802
# of FP inst. DRAM bandwidth 0
# of math inst. # of branch inst. 0
# of math inst. # of barrier inst. 0
# of math inst. buffer size 0
# of math inst. DRAM bandwidth 0
# of branch inst. # of barrier inst. 0.003844312920723
# of branch inst. buffer size 0
# of branch inst. DRAM bandwidth 0
# of barrier inst. buffer size -0.000000000378301
# of barrier inst. DRAM bandwidth 0

buffer size DRAM bandwidth 0.000000000370901
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