1,477 research outputs found

    APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

    Full text link
    We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture. Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera FPGA, are provided.Comment: 6 pages, 7 figures, proceeding of CHEP 2010, Taiwan, October 18-2

    On-board processing satellite network architecture and control study

    Get PDF
    The market for telecommunications services needs to be segmented into user classes having similar transmission requirements and hence similar network architectures. Use of the following transmission architecture was considered: satellite switched TDMA; TDMA up, TDM down; scanning (hopping) beam TDMA; FDMA up, TDM down; satellite switched MF/TDMA; and switching Hub earth stations with double hop transmission. A candidate network architecture will be selected that: comprises multiple access subnetworks optimized for each user; interconnects the subnetworks by means of a baseband processor; and optimizes the marriage of interconnection and access techniques. An overall network control architecture will be provided that will serve the needs of the baseband and satellite switched RF interconnected subnetworks. The results of the studies shall be used to identify elements of network architecture and control that require the greatest degree of technology development to realize an operational system. This will be specified in terms of: requirements of the enabling technology; difference from the current available technology; and estimate of the development requirements needed to achieve an operational system. The results obtained for each of these tasks are presented

    The Level-0 Muon Trigger for the LHCb Experiment

    Get PDF
    A very compact architecture has been developed for the first level Muon Trigger of the LHCb experiment that processes 40 millions of proton-proton collisions per second. For each collision, it receives 3.2 kBytes of data and it finds straight tracks within a 1.2 microseconds latency. The trigger implementation is massively parallel, pipelined and fully synchronous with the LHC clock. It relies on 248 high density Field Programable Gate arrays and on the massive use of multigigabit serial link transceivers embedded inside FPGAs.Comment: 33 pages, 16 figures, submitted to NIM

    ์„ฑ๋Šฅ๊ณผ ์šฉ๋Ÿ‰ ํ–ฅ์ƒ์„ ์œ„ํ•œ ์ ์ธตํ˜• ๋ฉ”๋ชจ๋ฆฌ ๊ตฌ์กฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(์ง€๋Šฅํ˜•์œตํ•ฉ์‹œ์Šคํ…œ์ „๊ณต), 2019. 2. ์•ˆ์ •ํ˜ธ.The advance of DRAM manufacturing technology slows down, whereas the density and performance needs of DRAM continue to increase. This desire has motivated the industry to explore emerging Non-Volatile Memory (e.g., 3D XPoint) and the high-density DRAM (e.g., Managed DRAM Solution). Since such memory technologies increase the density at the cost of longer latency, lower bandwidth, or both, it is essential to use them with fast memory (e.g., conventional DRAM) to which hot pages are transferred at runtime. Nonetheless, we observe that page transfers to fast memory often block memory channels from servicing memory requests from applications for a long period. This in turn significantly increases the high-percentile response time of latency-sensitive applications. In this thesis, we propose a high-density managed DRAM architecture, dubbed 3D-XPath for applications demanding both low latency and high capacity for memory. 3D-XPath DRAM stacks conventional DRAM dies with high-density DRAM dies explored in this thesis and connects these DRAM dies with 3D-XPath. Especially, 3D-XPath allows unused memory channels to service memory requests from applications when primary channels supposed to handle the memory requests are blocked by page transfers at given moments, considerably increasing the high-percentile response time. This can also improve the throughput of applications frequently copying memory blocks between kernel and user memory spaces. Our evaluation shows that 3D-XPath DRAM decreases high-percentile response time of latency-sensitive applications by โˆผ30% while improving the throughput of an I/O-intensive applications by โˆผ39%, compared with DRAM without 3D-XPath. Recent computer systems are evolving toward the integration of more CPU cores into a single socket, which require higher memory bandwidth and capacity. Increasing the number of channels per socket is a common solution to the bandwidth demand and to better utilize these increased channels, data bus width is reduced and burst length is increased. However, this longer burst length brings increased DRAM access latency. On the memory capacity side, process scaling has been the answer for decades, but cell capacitance now limits how small a cell could be. 3D stacked memory solves this problem by stacking dies on top of other dies. We made a key observation in real multicore machine that multiple memory controllers are always not fully utilized on SPEC CPU 2006 rate benchmark. To bring these idle channels into play, we proposed memory channel sharing architecture to boost peak bandwidth of one memory channel and reduce the burst latency on 3D stacked memory. By channel sharing, the total performance on multi-programmed workloads and multi-threaded workloads improved up to respectively 4.3% and 3.6% and the average read latency reduced up to 8.22% and 10.18%.DRAM ์ œ์กฐ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์€ ์†๋„๊ฐ€ ๋Š๋ ค์ง€๋Š” ๋ฐ˜๋ฉด DRAM์˜ ๋ฐ€๋„ ๋ฐ ์„ฑ๋Šฅ ์š”๊ตฌ๋Š” ๊ณ„์† ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋กœ ์ธํ•ด ์ƒˆ๋กœ์šด ๋น„ ํœ˜๋ฐœ์„ฑ ๋ฉ”๋ชจ๋ฆฌ(์˜ˆ: 3D-XPoint) ๋ฐ ๊ณ ๋ฐ€๋„ DRAM(์˜ˆ: Managed asymmetric latency DRAM Solution)์ด ๋“ฑ์žฅํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ ๋ฐ€๋„ ๋ฉ”๋ชจ๋ฆฌ ๊ธฐ์ˆ ์€ ๊ธด ๋ ˆ์ดํ„ด์‹œ, ๋‚ฎ์€ ๋Œ€์—ญํญ ๋˜๋Š” ๋‘ ๊ฐ€์ง€ ๋ชจ๋‘๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๋ฐ€๋„๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ ๋•Œ๋ฌธ์— ์„ฑ๋Šฅ์ด ์ข‹์ง€ ์•Š์•„, ํ•ซ ํŽ˜์ด์ง€๋ฅผ ๊ณ ์† ๋ฉ”๋ชจ๋ฆฌ(์˜ˆ: ์ผ๋ฐ˜ DRAM)๋กœ ์Šค์™‘๋˜๋Š” ์ €์šฉ๋Ÿ‰์˜ ๊ณ ์† ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ๋™์‹œ์— ์‚ฌ์šฉ๋˜๋Š” ๊ฒƒ์ด ์ผ๋ฐ˜์ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์Šค์™‘ ๊ณผ์ •์—์„œ ๋น ๋ฅธ ๋ฉ”๋ชจ๋ฆฌ๋กœ์˜ ํŽ˜์ด์ง€ ์ „์†ก์ด ์ผ๋ฐ˜์ ์ธ ์‘์šฉํ”„๋กœ๊ทธ๋žจ์˜ ๋ฉ”๋ชจ๋ฆฌ ์š”์ฒญ์„ ์˜ค๋žซ๋™์•ˆ ์ฒ˜๋ฆฌํ•˜์ง€ ๋ชปํ•˜๋„๋ก ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋Œ€๊ธฐ ์‹œ๊ฐ„์— ๋ฏผ๊ฐํ•œ ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์˜ ๋ฐฑ๋ถ„์œ„ ์‘๋‹ต ์‹œ๊ฐ„์„ ํฌ๊ฒŒ ์ฆ๊ฐ€์‹œ์ผœ, ์‘๋‹ต ์‹œ๊ฐ„์˜ ํ‘œ์ค€ ํŽธ์ฐจ๋ฅผ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์ € ์ง€์—ฐ์‹œ๊ฐ„ ๋ฐ ๊ณ ์šฉ๋Ÿ‰ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์š”๊ตฌํ•˜๋Š” ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์œ„ํ•ด 3D-XPath, ์ฆ‰ ๊ณ ๋ฐ€๋„ ๊ด€๋ฆฌ DRAM ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด๋Ÿฌํ•œ 3D-ํ†”์†Œ๋ฅผ ์ง‘์ ํ•œ DRAM์€ ์ €์†์˜ ๊ณ ๋ฐ€๋„ DRAM ๋‹ค์ด๋ฅผ ๊ธฐ์กด์˜ ์ผ๋ฐ˜์ ์ธ DRAM ๋‹ค์ด์™€ ๋™์‹œ์— ํ•œ ์นฉ์— ์ ์ธตํ•˜๊ณ , DRAM ๋‹ค์ด๋ผ๋ฆฌ๋Š” ์ œ์•ˆํ•˜๋Š” 3D-XPath ํ•˜๋“œ์›จ์–ด๋ฅผ ํ†ตํ•ด ์—ฐ๊ฒฐ๋œ๋‹ค. ์ด๋Ÿฌํ•œ 3D-XPath๋Š” ํ•ซ ํŽ˜์ด์ง€ ์Šค์™‘์ด ์ผ์–ด๋‚˜๋Š” ๋™์•ˆ ์‘์šฉํ”„๋กœ๊ทธ๋žจ์˜ ๋ฉ”๋ชจ๋ฆฌ ์š”์ฒญ์„ ์ฐจ๋‹จํ•˜์ง€ ์•Š๊ณ  ์‚ฌ์šฉ๋Ÿ‰์ด ์ ์€ ๋ฉ”๋ชจ๋ฆฌ ์ฑ„๋„๋กœ ํ•ซ ํŽ˜์ด์ง€ ์Šค์™‘์„ ์ฒ˜๋ฆฌ ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์—ฌ, ๋ฐ์ดํ„ฐ ์ง‘์ค‘ ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์˜ ๋ฐฑ๋ถ„์œ„ ์‘๋‹ต ์‹œ๊ฐ„์„ ๊ฐœ์„ ์‹œํ‚จ๋‹ค. ๋˜ํ•œ ์ œ์•ˆํ•˜๋Š” ํ•˜๋“œ์›จ์–ด ๊ตฌ์กฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ, ์ถ”๊ฐ€์ ์œผ๋กœ O/S ์ปค๋„๊ณผ ์œ ์ € ์ŠคํŽ˜์ด์Šค ๊ฐ„์˜ ๋ฉ”๋ชจ๋ฆฌ ๋ธ”๋ก์„ ์ž์ฃผ ๋ณต์‚ฌํ•˜๋Š” ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์˜ ์ฒ˜๋ฆฌ๋Ÿ‰์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ 3D-XPath DRAM์€ 3D-XPath๊ฐ€ ์—†๋Š” DRAM์— ๋น„ํ•ด I/O ์ง‘์•ฝ์ ์ธ ์‘์šฉํ”„๋กœ๊ทธ๋žจ์˜ ์ฒ˜๋ฆฌ๋Ÿ‰์„ ์ตœ๋Œ€ 39 % ํ–ฅ์ƒ์‹œํ‚ค๋ฉด์„œ ๋ ˆ์ดํ„ด์‹œ์— ๋ฏผ๊ฐํ•œ ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์˜ ๋†’์€ ๋ฐฑ๋ถ„์œ„ ์‘๋‹ต ์‹œ๊ฐ„์„ ์ตœ๋Œ€ 30 %๊นŒ์ง€ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์ตœ๊ทผ์˜ ์ปดํ“จํ„ฐ ์‹œ์Šคํ…œ์€ ๋ณด๋‹ค ๋งŽ์€ ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ๊ณผ ์šฉ๋Ÿ‰์„ ํ•„์š”๋กœํ•˜๋Š” ๋” ๋งŽ์€ CPU ์ฝ”์–ด๋ฅผ ๋‹จ์ผ ์†Œ์ผ“์œผ๋กœ ํ†ตํ•ฉํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ง„ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์†Œ์ผ“ ๋‹น ์ฑ„๋„ ์ˆ˜๋ฅผ ๋Š˜๋ฆฌ๋Š” ๊ฒƒ์€ ๋Œ€์—ญํญ ์š”๊ตฌ์— ๋Œ€ํ•œ ์ผ๋ฐ˜์ ์ธ ํ•ด๊ฒฐ์ฑ…์ด๋ฉฐ, ์ตœ์‹ ์˜ DRAM ์ธํ„ฐํŽ˜์ด์Šค์˜ ๋ฐœ์ „ ์–‘์ƒ์€ ์ฆ๊ฐ€ํ•œ ์ฑ„๋„์„ ๋ณด๋‹ค ์ž˜ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ ๋ฒ„์Šค ํญ์ด ๊ฐ์†Œ๋˜๊ณ  ๋ฒ„์ŠคํŠธ ๊ธธ์ด๊ฐ€ ์ฆ๊ฐ€ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธธ์–ด์ง„ ๋ฒ„์ŠคํŠธ ๊ธธ์ด๋Š” DRAM ์•ก์„ธ์Šค ๋Œ€๊ธฐ ์‹œ๊ฐ„์„ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ ์ตœ์‹ ์˜ ์‘์šฉํ”„๋กœ๊ทธ๋žจ์€ ๋” ๋งŽ์€ ๋ฉ”๋ชจ๋ฆฌ ์šฉ๋Ÿ‰์„ ์š”๊ตฌํ•˜๋ฉฐ, ๋ฏธ์„ธ ๊ณต์ •์œผ๋กœ ๋ฉ”๋ชจ๋ฆฌ ์šฉ๋Ÿ‰์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•๋ก ์€ ์ˆ˜์‹ญ ๋…„ ๋™์•ˆ ์‚ฌ์šฉ๋˜์—ˆ์ง€๋งŒ, 20 nm ์ดํ•˜์˜ ๋ฏธ์„ธ๊ณต์ •์—์„œ๋Š” ๋” ์ด์ƒ ๊ณต์ • ๋ฏธ์„ธํ™”๋ฅผ ํ†ตํ•ด ๋ฉ”๋ชจ๋ฆฌ ๋ฐ€๋„๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ๊ฐ€ ์–ด๋ ค์šด ์ƒํ™ฉ์ด๋ฉฐ, ์ ์ธตํ˜• ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์šฉ๋Ÿ‰์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ, ์‹ค์ œ ์ตœ์‹ ์˜ ๋ฉ€ํ‹ฐ์ฝ”์–ด ๋จธ์‹ ์—์„œ SPEC CPU 2006 ์‘์šฉํ”„๋กœ๊ทธ๋žจ์„ ๋ฉ€ํ‹ฐ์ฝ”์–ด์—์„œ ์‹คํ–‰ํ•˜์˜€์„ ๋•Œ, ํ•ญ์ƒ ์‹œ์Šคํ…œ์˜ ๋ชจ๋“  ๋ฉ”๋ชจ๋ฆฌ ์ปจํŠธ๋กค๋Ÿฌ๊ฐ€ ์™„์ „ํžˆ ํ™œ์šฉ๋˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์‚ฌ์‹ค์„ ๊ด€์ฐฐํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์œ ํœด ์ฑ„๋„์„ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด ํ•˜๋‚˜์˜ ๋ฉ”๋ชจ๋ฆฌ ์ฑ„๋„์˜ ํ”ผํฌ ๋Œ€์—ญํญ์„ ๋†’์ด๊ณ  3D ์Šคํƒ ๋ฉ”๋ชจ๋ฆฌ์˜ ๋ฒ„์ŠคํŠธ ๋Œ€๊ธฐ ์‹œ๊ฐ„์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฉ”๋ชจ๋ฆฌ ์ฑ„๋„ ๊ณต์œ  ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์•ˆํ•˜์˜€์œผ๋ฉฐ, ํ•˜๋“œ์›จ์–ด ๋ธ”๋ก์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์ฑ„๋„ ๊ณต์œ ๋ฅผ ํ†ตํ•ด ๋ฉ€ํ‹ฐ ํ”„๋กœ๊ทธ๋žจ ๋œ ์‘์šฉํ”„๋กœ๊ทธ๋žจ ๋ฐ ๋‹ค์ค‘ ์Šค๋ ˆ๋“œ ์‘์šฉํ”„๋กœ๊ทธ๋žจ ์„ฑ๋Šฅ์ด ๊ฐ๊ฐ 4.3 % ๋ฐ 3.6 %๋กœ ํ–ฅ์ƒ๋˜์—ˆ์œผ๋ฉฐ ํ‰๊ท  ์ฝ๊ธฐ ๋Œ€๊ธฐ ์‹œ๊ฐ„์€ 8.22 % ๋ฐ 10.18 %๋กœ ๊ฐ์†Œํ•˜์˜€๋‹ค.Contents Abstract i Contents iv List of Figures vi List of Tables viii Introduction 1 1.1 3D-XPath: High-Density Managed DRAM Architecture with Cost-effective Alternative Paths for Memory Transactions 5 1.2 Boosting Bandwidth โ€“ Dynamic Channel Sharing on 3D Stacked Memory 9 1.3 Research contribution 13 1.4 Outline 14 3D-stacked Heterogeneous Memory Architecture with Cost-effective Extra Block Transfer Paths 17 2.1 Background 17 2.1.1 Heterogeneous Main Memory Systems 17 2.1.2 Specialized DRAM 19 2.1.3 3D-stacked Memory 22 2.2 HIGH-DENSITY DRAM ARCHITECTURE 27 2.2.1 Key Design Challenges 29 2.2.2 Plausible High-density DRAM Designs 33 2.3 3D-STACKED DRAM WITH ALTERNATIVE PATHS FOR MEMORY TRANSACTIONS 37 2.3.1 3D-XPath Architecture 41 2.3.2 3D-XPath Management 46 2.4 EXPERIMENTAL METHODOLOGY 52 2.5 EVALUATION 56 2.5.1 OLDI Workloads 56 2.5.2 Non-OLDI Workloads 61 2.5.3 Sensitivity Analysis 66 2.6 RELATED WORK 70 Boosting bandwidth โ€“Dynamic Channel Sharing on 3D Stacked Memory 72 3.1 Background: Memory Operations 72 3.1.1. Memory Controller 72 3.1.2 DRAM column access sequence 73 3.2 Related Work 74 3.3. CHANNEL SHARING ENABLED MEMORY SYSTEM 76 3.3.1 Hardware Requirements 78 3.3.2 Operation Sequence 81 3.4 Analysis 87 3.4.1 Experiment Environment 87 3.4.2 Performance 88 3.4.3 Overhead 90 CONCLUSION 92 REFERENCES 94 ๊ตญ๋ฌธ์ดˆ๋ก 107Docto

    A scalable hardware and software control apparatus for experiments with hybrid quantum systems

    Get PDF
    Modern experiments with fundamental quantum systems - like ultracold atoms, trapped ions, single photons - are managed by a control system formed by a number of input/output electronic channels governed by a computer. In hybrid quantum systems, where two or more quantum systems are combined and made to interact, establishing an efficient control system is particularly challenging due to the higher complexity, especially when each single quantum system is characterized by a different timescale. Here we present a new control apparatus specifically designed to efficiently manage hybrid quantum systems. The apparatus is formed by a network of fast communicating Field Programmable Gate Arrays (FPGAs), the action of which is administrated by a software. Both hardware and software share the same tree-like structure, which ensures a full scalability of the control apparatus. In the hardware, a master board acts on a number of slave boards, each of which is equipped with an FPGA that locally drives analog and digital input/output channels and radiofrequency (RF) outputs up to 400 MHz. The software is designed to be a general platform for managing both commercial and home-made instruments in a user-friendly and intuitive Graphical User Interface (GUI). The architecture ensures that complex control protocols can be carried out, such as performing of concurrent commands loops by acting on different channels, the generation of multi-variable error functions and the implementation of self-optimization procedures. Although designed for managing experiments with hybrid quantum systems, in particular with atom-ion mixtures, this control apparatus can in principle be used in any experiment in atomic, molecular, and optical physics.Comment: 10 pages, 12 figure
    • โ€ฆ
    corecore