17,098 research outputs found

    Heart Failure Monitoring System Based on Wearable and Information Technologies

    Get PDF
    In Europe, Cardiovascular Diseases (CVD) are the leading source of death, causing 45% of all deceases. Besides, Heart Failure, the paradigm of CVD, mainly affects people older than 65. In the current aging society, the European MyHeart Project was created, whose mission is to empower citizens to fight CVD by leading a preventive lifestyle and being able to be diagnosed at an early stage. This paper presents the development of a Heart Failure Management System, based on daily monitoring of Vital Body Signals, with wearable and mobile technologies, for the continuous assessment of this chronic disease. The System makes use of the latest technologies for monitoring heart condition, both with wearable garments (e.g. for measuring ECG and Respiration); and portable devices (such as Weight Scale and Blood Pressure Cuff) both with Bluetooth capabilitie

    1st INCF Workshop on Sustainability of Neuroscience Databases

    Get PDF
    The goal of the workshop was to discuss issues related to the sustainability of neuroscience databases, identify problems and propose solutions, and formulate recommendations to the INCF. The report summarizes the discussions of invited participants from the neuroinformatics community as well as from other disciplines where sustainability issues have already been approached. The recommendations for the INCF involve rating, ranking, and supporting database sustainability

    mCAT: Development of a Generic mHealth Tool for Continuous Assessment, Automatic Intervention, and Analysis

    Get PDF
    Use of mobile health (mHealth) technology for behavioral and psychological studies through continuous assessment and intervention is found to be effective. Also, the use of smartphone has increased rapidly last few years, as well as its uses for health support. mHealth research is applied for smoking cessation, motivating cancer survivors and mentoring peers for social engagement. While in most settings researchers are developing their own intervention and assessment tool for each different research. In this study mHealth research is applied and generalized across a range of applications, including smoking cessation, motivating cancer survivors and mentoring peers to improve social engagement. Here at Ubicomp Lab, Marquette University we have developed similar tool – Mobile peer-mentoring: An approach to making veterans seek mental health care support a normality, and Walking Forward for Physical Activity: The mHealth Tool for Motivating Cancer Survivors. This study analyzed these research, and proposed a design and implemented it as a generic mHealth tool, named mCAT (Mobile Continuous Assessment Tool). We also have shown the complexity to design challenges to develop an effective smartphone application that meets user expectation. The goal of this generic mHealth tool is to help future research designed for continuous assessment and intervention. This tool provides the initial building block as modules, customizable features, and API to start with the actual implementation. mCAT expects to be cost effective, easily customizable, leverage learning curve on the open standard

    Dependability enhancing mechanisms for integrated clinical environments

    Get PDF
    In this article, we present a set of lightweight mechanisms to enhance the dependability of a safety-critical real-time distributed system referred to as an integrated clinical environment (ICE). In an ICE, medical devices are interconnected and work together with the help of a supervisory computer system to enhance patient safety during clinical operations. Inevitably, there are strong dependability requirements on the ICE. We introduce a set of mechanisms that essentially make the supervisor component a trusted computing base, which can withstand common hardware failures and malicious attacks. The mechanisms rely on the replication of the supervisor component and employ only one input-exchange phase into the critical path of the operation of the ICE. Our analysis shows that the runtime latency overhead is much lower than that of traditional approaches

    Platform for efficient switching between multiple devices in the intensive care unit

    Get PDF
    Introduction: This article is part of the Focus Theme of Methods of Information in Medicine on "Managing Interoperability and Complexity in Health Systems". Objectives: Handheld computers, such as tablets and smartphones, are becoming more and more accessible in the clinical care setting and in Intensive Care Units (ICUs). By making the most useful and appropriate data available on multiple devices and facilitate the switching between those devices, staff members can efficiently integrate them in their workflow, allowing for faster and more accurate decisions. This paper addresses the design of a platform for the efficient switching between multiple devices in the ICU. The key functionalities of the platform are the integration of the platform into the workflow of the medical staff and providing tailored and dynamic information at the point of care. Methods: The platform is designed based on a 3-tier architecture with a focus on extensibility, scalability and an optimal user experience. After identification to a device using Near Field Communication (NFC), the appropriate medical information will be shown on the selected device. The visualization of the data is adapted to the type of the device. A web-centric approach was used to enable extensibility and portability. Results: A prototype of the platform was thoroughly evaluated. The scalability, performance and user experience were evaluated. Performance tests show that the response time of the system scales linearly with the amount of data. Measurements with up to 20 devices have shown no performance loss due to the concurrent use of multiple devices. Conclusions: The platform provides a scalable and responsive solution to enable the efficient switching between multiple devices., Due to the web-centric approach new devices can easily be integrated. The performance and scalability of the platform have been evaluated and it was shown that the response time and scalability of the platform was within an acceptable range

    Graphical Database Architecture For Clinical Trials

    Get PDF
    The general area of the research is Health Informatics. The research focuses on creating an innovative and novel solution to manage and analyze clinical trials data. It constructs a Graphical Database Architecture (GDA) for Clinical Trials (CT) using New Technology for Java (Neo4j) as a robust, a scalable and a high-performance database. The purpose of the research project is to develop concepts and techniques based on architecture to accelerate the processing time of clinical data navigation at lower cost. The research design uses a positivist approach to empirical research. The research is significant because it proposes a new approach of clinical trials through graph theory and designs a responsive structure of clinical data that can be deployed across all the health informatics landscape. It uniquely contributes to scholarly literature of the phenomena of Not only SQL (NoSQL) graph databases, mainly Neo4j in CT, for future research of clinical informatics. A prototype is created and examined to validate the concepts, taking advantage of Neo4j’s high availability, scalability, and powerful graph query language (Cypher). This research study finds that integration of search methodologies and information retrieval with the graphical database provides a solid starting point to manage, query, and analyze the clinical trials data, furthermore the design and the development of a prototype demonstrate the conceptual model of this study. Likewise the proposed clinical trials ontology (CTO) incorporates all data elements of a standard clinical study which facilitate a heuristic overview of treatments, interventions, and outcome results of these studies
    • …
    corecore