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Abstract In this article, we present a set of lightweight mechanisms to enhance the
dependability of a safety-critical real-time distributed system referred to as an inte-
grated clinical environment (ICE). In an ICE, medical devices are interconnected and
work togetherwith the help of a supervisory computer system to enhance patient safety
during clinical operations. Inevitably, there are strong dependability requirements on
the ICE. We introduce a set of mechanisms that essentially make the supervisor com-
ponent a trusted computing base, which can withstand common hardware failures and
malicious attacks. The mechanisms rely on the replication of the supervisor compo-
nent and employ only one input-exchange phase into the critical path of the operation
of the ICE. Our analysis shows that the runtime latency overhead is much lower than
that of traditional approaches.
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W. Zhao, M. Q. Yang

1 Introduction

Information and communication technology has been penetrating to many fields to
enable automated operations, which not only improves efficiency and productivity,
but also increases safety. In recent years, it has been recognized that medical devices
could be interconnected together to streamline the workflow of clinical operations and
significantly improves the safety of patients. This effort has led to the specification of
integrated clinical environment (ICE), which aims to standardize howmedical devices
should interoperate together and work with decision-making systems [1]. One of the
main functionalities of an ICE is to ensure automated safety interlocks of operations,
which is prone to human errors [15]. For example, during a major surgery, a ventilator
may be used to provide the patient with oxygen and laser may be used for precise
incision. When the surgeon is ready to use the laser, the ventilator flow must be
temporarily turned down or off, and it must be turned back up to the normal level once
the surgeon finishes using the laser. If someone forgets to turn down the ventilator
flow when the laser is turned off, a fire hazard could ensue. On the other hand, the
consequence of failing to turn the ventilator back up after the laser operation could
cause the death of the patient.

An ICE interconnects medical devices and equipment for automated patient care
before, during, and after a clinical operation of a patient [1]. The main components in
an ICE are illustrated in Fig. 1. Most of these components are self-explanatory. The
difference between the medical device and the medical equipment is that a medical
device is connected directly to the patient while the equipment is not. The supervisor
is the most important component in an ICE because it takes the input from medical
devices and equipment, consults with medical records of the patient via an external
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health information system, and coordinates all commands and controls of the system,
including ensuring safety interlocks and alarm generations. Because the supervisor
must communicate with other entities in the system via the network controller, we
include the network controller as part of the supervisor.

The purpose of ICE dictates that it operates as a safety-critical real-time distributed
system. An ICE operates in rounds according to a predefined time period. In each
round, devices report to the supervisor regarding their status, and based on the input,
the supervisor would compute the commands for the round. Considering the criti-
cal role played by the supervisor component, it must be hardened to be resilient to
both hardware failures and malicious attacks. Even though dependable computing has
been studied for several decades, most solutions are designed for general-purpose dis-
tributed systems without real-time and safety restrictions [4,27]. How to enhance the
dependability of safety-critical real-time systems is challenging, and it has rarely been
studied in the past, especially in the presence of malicious attacks.

In this article, we propose a set of lightweight mechanisms to protect the supervi-
sor component from both partial hardware failures and malicious attacks, which will
enhance the dependability and trustworthiness of ICEs. First, the supervisor is repli-
cated. Space redundancy is necessary to protect the supervisor from partial hardware
failures while offering continuous high availability, which is essential for ICEs. Sec-
ond, by exploiting the fact that the supervisor logic is stateless (i.e., it does not keep
temporary state on behalf individual clients and its output is completed derived based
on the inputs it has collected), we are able to protect the integrity of the supervisor
operation without resorting to the use of traditional Byzantine fault tolerance algo-
rithms.We introduce only one input-exchange phase, which in the optimal case causes
the delay of a single communication step along the critical path of ICE operations.
Furthermore, our mechanisms do not require any replica to serve as the primary and
all replicas are peers of each other. Hence, our mechanisms avoid having to deal with
the issue of leader elections (referred to as view changes) when the primary replica
fails, which is highly expensive and will cause unpredictability to the operation of
ICEs.

Our mechanisms protect the integrity of ICEs from malicious supervisor replicas
and ensure that (1) commands issued by a faulty supervisor replicawill not be accepted
by any nonfaulty medical devices (unless it behaves as a nonfaulty replica and gen-
erates the same commands as those of a nonfaulty replica), and (2) no two nonfaulty
supervisor replicas issue different commands for the same round (it is acceptable that
some nonfaulty replicas are not able to issue any command).

This article is organized as follows. Section 2 discusses related work. Section 3
specifies our systemmodel. Section4describes the lightweightmechanisms to enhance
the dependability of ICEs. Section 5 concludes this article.

2 Related work

The possibility of using closed-loop control to ensure patient safety in an ICE was
studied in [3,16]. In this study, a specific scenario was consideredwhere the supervisor
would collect information from a pulse oximeter. If the information shows that the
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patient has shown signs of pain medicine overdose, the supervisor would ask the PCA
pump to stop releasing more pain medicine. The study demonstrated that closed-loop
control is achievable in an ICE. However, it pointed out that the network must be
reliable and guarantee tightly bounded message delivery.

In [13], Kim et al. introduced a network-aware supervisory system (NASS) for ICE.
The system has two layers. The first layer allows the implementation of the supervisory
logic using a synchronous network model. The second layer adds safety provisions by
handling network failures. The systemoperates in rounds. In each round, the supervisor
collects information from each device and computes a set of commands for each device
for the next round. An interesting contribution is distribution of a command vector
to each device instead of a single mode. If a device fails to receive a new command
vector, it would execute the next mode in the vector. When it reaches the last mode in
the vector, it switches to the fail-safe mode.

In this research, we follow and extend the open-loop design proposed in [13]. This
open-loop design imposes a strong assumption that the supervisor is trusted [13]. We
extend this design by using a set of lightweight mechanisms to protect the supervisor
component from hardware failures and cyber attacks.

Later, Kang and Wu et al. [12,21] proposed an organ-based hierarchical coordi-
nation architecture for ICE. In this architecture, several levels of controllers are used
so that they can make localized control decisions for medical devices at the same
time. The advantage of this proposed hierarchical architecture is that the system is
more resilient to network failures because the network failure of one section might not
impact other sections.However, allowing concurrent and localized decisions inevitably
raises the global consistency issue. If not handled properly, the inconsistency could
lead safety violations. To achieve a global consistency, a lock-based coordinator pro-
tocol is employed. This additional mechanism adds complexity of the system. In the
presence of malicious attacks, this additional protocol must also be protected. Hence,
we favor the flat architecture for the reduced complexity and robustness.

In addition to safety issues, the security of ICEs has also been studied. In [11], the
secure communication requirements for ICE were elaborated and the applicability of
existing security protocols in ICEs was discussed. Furthermore, common attacks on
ICE and possible mitigation methods of these attacks were introduced in [19,20]. In a
later work [18], the threats on a particular ICE were analyzed in the context of patient
pain medication management. However, similar to previous research, the supervisor
was assumed tobe trusted.Attentionwasplacedon the attacks by compromiseddevices
or malformedmessages over the network.We disagree with this important assumption
for two reason. First, medical devices are directly attached to the patient. Actuating
devices, such as PCA pumps, can put the patient in grave danger directly, if they are
compromised. It does not seem logical to talk about the attacks from these devices.
Second, an external adversary cannot easily access medical devices because they must
go through the supervisor first before reaching to the medical devices according to the
ICE architecture. It is inconceivable for an adversary to penetrate a medical device
without compromising the supervisor first. Strong physical security in operating rooms
would help protect medical devices from being attacked. That is why in this research,
we focus on the protection of the supervisor.

123



Dependability enhancing mechanisms for integrated…

This research is also related to Byzantine fault tolerance. Byzantine fault tolerance
has been intensely studied sinceCastro andLiskov revitalized this researchfield [4,25].
The strategy employed in this research is along the line of application-aware Byzantine
fault tolerance [5–7,23,24,28–30]. The essence of this strategy is tominimize of use of
traditional Byzantine agreement algorithms, which typically incurs high runtime over-
head (in terms both latency and throughput), by exploiting application semantics [27].
In this research, we are able to avoid using full Byzantine agreement algorithm because
the supervisor operation is stateless. Previously, we investigated the same issue in a
conference publication [26]. However, a full Byzantine agreement is used for every
round of operation, which not only adds latency, but adds uncertainty to the system as
well due to possible view changes caused by the failures of the primary replica. As we
will show in Sect. 4 of this article, our lightweight mechanisms incur about half of the
latency overhead of what we proposed in [26] when the primary replica is not faulty.
When the primary replica is faulty and one round of view change is needed, the latency
overhead for the traditional approach we proposed in [26] is significantly higher than
that of the lightweight mechanisms, and it increases nonlinearly with respect to the
replication degree.

3 System model

Similar to [13], we assume that medical devices normally operate correctly. When
a device suffers from a hardware failure, it would switch to a predefined fail-safe
mode for patient safety. Furthermore, we assume that there are no malicious insider
adversaries because they would be free to bypass strong physical security in operating
rooms and arbitrarily manipulate medical devices and equipment, which would make
it impossible to defend using any computational algorithms and mechanisms.

We assume that the supervisor is replicated for fault tolerance. 3 f + 1 supervisor
replicas are needed to tolerate up to f faulty replicas. Each replica has amonotonically
increasing replica id k (from 0 to 3 f ). We assume a bounded processing delay at all
components. Furthermore, we assume that message transmission, propagation, and
delivery are also bounded normally, but we do allow the network to exceed the bound
occasionally.

It is intuitive to assume or require that a new round of commands can be sent to all
medical devices atomically. Unfortunately, this assumption would make the system
very vulnerable to disruptions in the network. If the commands for the current round are
not delivered atomically, one actuating medical device may execute the new command
while another act on the next command from the command vector received previously.
This could result in safety violations. Consider the airway-laser surgery as an example.
The laser must not activate until the oxygen flow has been reduced by the ventilator.
If one assumes that the command to turn on the laser and the command to block the
oxygen flow at the ventilator can be delivered atomically, and the two commands are
issued in the same round, nonatomic delivery of the two commands will lead to a
serious safety problem. The mechanism introduced in [13] helps to some extent by
suppressing the new command vector when one or more devices fail to acknowledge
the receipt of the command of the previous round. However, the mechanism still
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could not address the fundamental atomic command delivery issue because it cannot
guarantee that the new command vector can reach all medical devices in the current
round. If a device receives the new command, it would execute the new command. On
the other hand, if another device fails to receive the new command in time, it would
have to execute the next command from the previous command vector. Unless the new
command vector and the previous command vector are carefully crafted, the safety
risk might still occur.

In our opinion, ensuring time-bounded atomic command delivery to multiple
devices across the network while the network cannot guarantee absolute real-time
bound is an intractable problem. Hence, instead of pursuing atomic command deliv-
ery, a more reasonable approach is to remove the need for atomic command delivery
by spacing inter-locking commands in different rounds. Using the same airway-laser
surgery example, instead of instructing the laser to turn on and the ventilator to block
the oxygen flow in the same round, the supervisor logic should ask the ventilator to
block the oxygen flow in one or two rounds before asking the laser to turn on. For the
reverse operation, we want to make sure that the laser has already been turned off (in
a previous round) before the supervisor logic issues a new command to turn on the
oxygen flow at the ventilator. By sending inter-locking commands in different rounds,
we can rely on the acknowledgment of the previous round to decide whether or not
to issue a new command to turn on the laser. Hence, we could remove the atomic
command delivery requirement while ensuring the safety of ICEs.

Because an ICE operates in rounds and a new set of commands is computed based
on the input provided by themedical devices and equipment, the supervisor is stateless.
This gives us the opportunity to significantly reduce the complexity of themechanisms
needed to enhance the dependability of ICEs.

4 Correctness properties

Our mechanisms are designed to satisfy three correctness properties. The three cor-
rectness properties specify the consistency, liveness, and safety requirements for the
ICE.

– Consistency property: All nonfaulty medical devices accept the same set of com-
mands in each round.

– Liveness property: A faulty supervisor replica cannot prevent an ICE frommaking
progress when a progress should be made according to the system condition.

– Safety property: Patient safety is guaranteed as long as no more than f supervisor
replicas fail.

It is well known that it is impossible for processes in a distributed system to reach a
consensus if the system is asynchronous and processes in the system might be subject
to crash faults [10]. In order to ensure processes in such a system to reach a consensus,
compromises are typically made, such as the use of an unreliable failure detector [8].
Our mechanisms do not require atomic command delivery even though it is quite intu-
itive to require this for consistency. By implementing the inter-locking mechanism in
two or more rounds instead of the same round, we relax the requirement on the system
and on the network. By doing this, we are imposing a hard time bound on the operation
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of the system. If no message is received within the maximum round period, we claim
that the message is lost and proceed forward based on this assumption. Essentially, we
are using a form of unreliable failure detector to work around the impossibility result.
Hence, we can ensure the consistency property with our mechanisms.

5 Mechanisms for enhancing the dependability of ICE

In this section, we first describe a set of mechanisms for enhancing the dependability
of an ICE and then provide a proof of correctness of the mechanisms.

5.1 Dependability mechanisms

As shown in Fig. 2, we add an input-exchange phase between the existing input phase
and the command dissemination phase in each round of operation of an ICE.

5.1.1 Input phase

In this phase, all connected medical devices report their status to all supervisor repli-
cas. The status message has the form of 〈status, r, t, d, P〉σd , where d is the device
identifier, r is amonotonically increasing round number, t is the timestamp of the status
message (to prevent replay attacks), P contains the device state and the acknowledg-
ment for the last command received, and σd is the digital signature signed by device
d. A device must use a one-to-many reliable multicast mechanism to ensure that its
message will reach all nonfaulty supervisor replicas.

5.1.2 Input-exchange phase

In this phase, a replica first keeps collecting the status messages sent by different
devices. After the replica has collected messages from all devices, or a predefined
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Fig. 2 The main phases in one round of ICE operation. R0, R1, R2, R3 denote the supervisor replicas,
and D1, D2, D3 denote medical devices. Here we assume that R3 is able to collect the entire PS set from
all devices, in which case, R3 sends the set to all other replicas
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timeout has occurred, it multicasts the set of status messages that it has collected to
other replicas. This phase increases the likelihood of all nonfaulty replicas receive all
status messages within the current round. The input-exchange message has the form
〈input- exchange, r, i,PS〉σi , where i is the replica identifier, and PS is the set of
original status messages signed by the medical devices.

A replica keeps collecting the input-exchange message sent by other replicas until
either it has received from all other replicas, or a predefined timeout has occurred.
This timeout is set so that it is guaranteed that the replica can receive at least from 2 f
other replicas. Subsequently, each replica would examine the collected PS set to build
a superset of the status for hopefully all devices. The status for a device is included in
the superset if it is in any of the PS set.

To further increase the probability for more replicas to receive the status messages
sent by all medical devices, a replicamulticasts the completePS set to all other replicas
if it could build a complete set of status messages (one from every medical device).

5.1.3 Command dissemination phase

If and only if a replica manages to receive the status message from every medical
device, it computes the commands for the next round of operation and sub-
sequently multicasts them to all medical devices. The message takes the form
〈command, r, t, i,PS, O〉σi , where t is the timestamp of the message, i is the iden-
tifier of the sending replica, PS is the complete set of signed inputs from all medical
devices, and O is the set of command vectors computed by replica i . If a replica could
not receive input from all medical devices, it won’t generate a new command because
the supervisor might not be able to compute the next set of commands if it is missing
information regarding the status of the medical devices.

On receiving a command vector from a supervisor replica, a device verifies the
digital signature for the command, makes sure that the round number r is indeed
the current round, and verifies every digitally signed status message sent by medical
devices. If the message passes all these tests, the device buffers the message prior to
executing it. A medical device will not accept the new command vector and execute
the first one in the vector until it has collected matching command vectors from at
least f + 1 different supervisor replicas. By matching, we mean that two messages
have identical r, t, i, S, O components.

5.2 Proof of correctness

In this section, we prove that our mechanisms satisfy the consistency, liveness, and
safety correctness properties.

5.2.1 Consistency property

All nonfaulty medical devices accept the same set of commands in each round.

Proof Because we assume that all medical devices are semi-trusted, they all attempt
supply their status honestly to all replicas of the supervisor. Due to network delays,
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some of the status messages might not reach some or all supervisor replicas. Further-
more, a replica generates a new set of commands only if it has received the status
message from every medical device (directly or indirectly). Because no supervisor
replica could possibly fabricate any status message, all nonfaulty replicas must have
computed the new set of commands based on the same set of status messages, which
would lead to the same set of commands. Furthermore, because a medical device must
have collected f + 1 matching command sets, and there are at most f replicas can be
faulty, at least one of the f + 1 matching command sets is generated by a nonfaulty
replica. This proves the consistency property. ��

5.2.2 Liveness property

A faulty supervisor replica cannot prevent an ICE from making progress when a
progress should be made according to the system condition.

Proof By progress, we mean that all devices could receive a new set of commands and
execute them in the current round. This will happen when all medical devices have
successfully reached all nonfaulty supervisor replicas in the current round (directly
or indirectly). The faulty replicas (at most f of them) could collude and attempt to
stall the progress by not forwarding the status messages received to other replicas.
However, because there are other 2 f + 1 or more nonfaulty replicas, they can work
together to propagate the status messages they have received to increase the likelihood
that other replicas could receive them as well by forwarding such messages to each
other.

Faulty replicas could also collude together by not sending any commands to the
devices. This won’t be successful either because there are 2 f + 1 or more other
nonfaulty replicas that would send their commands to all devices. ��

5.2.3 Safety property

Patient safety is guaranteed as long as no more than f supervisor replicas fail.

Proof In an ICE, a safety violation is caused by incompatible actions taken by different
medical devices.When supervisor is replicated, ourmechanisms guarantees that if two
or more nonfaulty replicas issue the command vectors for the current round, they must
be consistent. It is possible some nonfaulty replicas won’t be able to issue a new
command vector because of the lack of status messages. However, this will not cause
different medical devices to accept conflicting command vectors. Therefore, the safety
property holds. ��

6 Cost analysis

In this section, we analyze the latency overhead of our mechanisms. Our mechanisms
only introduce a single additional phase, the input-exchange phase, in each round.
We use Dn to represent the worst-case latency for transmission and propagation of
a message, and Dp to represent the worst-case latency for each execution step at
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each supervisor replica. By execution step, we mean an action taken at a replica,
such as digitally signing a message, verifying the digital signature of a message, and
logging of messages. Because messaging signing and verification are significantly
more expensive than other local processing, we only consider these two execution
steps and ignore other local processing.

During the input-exchange phase, a replica signs an input-exchange message and
transmits the message, and then it verifies and collects up to 3 f such messages sent
by other replicas. Note that when verifying a message, a replica must not only verify
the digital signature of the input-exchange message itself, but each status message in
the PS set. For the analysis, we assume there are n number of medical devices. To
optimize the verification process, a replica performs a full digital signature verification
for each medical device only once (i.e., the first time the replica receives the status
message from a device). If a status message is valid, the replica produces a secure hash
of the message and stores it in its data structure. For repeated status message received,
the replica simply compares the stored hash and the hash of the later one. Hashing
a message and comparing two hashes are very fast operations. Hence, we omit such
cost from our analysis.

Furthermore, a replica might have to wait until it receives a rebroadcast message
sent by another replica that has received the status messages from all medical devices.
Hence, in the worst case, the total delay in this phase, Dix , is the sum of the following
delays: (1) two communication steps (i.e., 2Dn), one for the input-exchange message,
and the other for the rebroadcast; (2) digitally signing the input-exchange message
at the replica (i.e., Dp); (3) digitally signing the rebroadcast message at another
replica (i.e., Dp); (4) 3 f + 1 actions on verifying the digital signature of the 3 f
input-exchange messages and the one rebroadcast message [i.e., (3 f + 1)Dp]; (5) n
number of actions on verifying the digital signature of the status message sent by n
medical devices. Hence, Dix is defined by Eq. 1:

Dix = 2Dn + 2Dp + (3 f + 1)Dp + nDp = (3 f + 3 + n)Dp + 2Dn (1)

Note that the above worst-case analysis holds regardless whether or not there are
faulty supervisor replicas. This is very different from the case when a traditional
Byzantine agreement algorithm is used, which requires the use of a primary replica.
The use of special replica makes the algorithm subject to additional attacks on the
primary replica, which could lead to one or more rounds of view changes (i.e., leader
elections). View change algorithms are notoriously costly and unpredictable.

According to Eq. 1, the latency overheadwe introduce is linearly proportional to the
following parameters: (1) replication degree f ; (2) the worst-case processing delay
Dp; (3) the worst-case message delivery delay Dn ; (4) and the number of medical
devices. The relationship between the latency overhead and the replication degrees
f is shown in Fig. 3 (using the parameters Dp = 2ms, Dn = 10ms, and n = 10).
As shown in Fig. 3a (the curve labeled as Lightweight Mechanisms), the overhead is
lower than 120ms even when f = 12. This is significantly below the 200ms round
period given in [13]. Hence, the latency overhead introduced by our mechanisms is
insignificant and would allow the ICE to operate normally.
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Fig. 3 The latency overhead for our lightweight mechanisms in comparison with the traditional approach
where a Byzantine agreement is used. a The latency when the primary replica is not faulty. b The latency
when the primary replica is faulty and a view change is involved

To demonstrate the advantages of using our lightweight solution, we also include
the comparison with our previous work [26], which used a full round of Byzantine
agreement to ensure the consistency of the commands generated by the supervisor
replicas. If the primary replica is not faulty, the consensus can be reached in three
communication steps, and the corresponding latency overhead for the consensus step,
Dcn , is given in Eq. 5 of [26] and reproduced here:
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Dcn = (4 f + 4)Dp + 3Dn (2)

The latency overhead of the traditional approach is about twice as the lightweight
solution proposed in this article, as shown in Fig. 3a.

If the primary is faulty, a view change is needed to reach the consensus, which
makes the latency overhead much higher. In our previous work, we have derived the
total cost of latency in the presence of a successful round of view change, Dcc, which
is given in Eq. 10 of [26] and reproduced here:

Dcc = f D f d + (4 f 2 + 7 f + 4)Dp + (2 f + 3)Dn (3)

The comparison of the total latency overhead in the presence of one round of
successful view change for different replication degrees is shown in Fig. 3b (the
fault detection time is assumed to be 200ms). Because the view change latency is
proportional to f 2, the total latency overhead for the traditional approach increases
nonlinearly with respect to the replication degree. Note that the log scale is used so
that both latency curves are clearly shown for Fig. 3b.

Finally, because our mechanisms are based on the open-loop design mechanism
proposed in [13], the latency overhead we report here is with respect to the baseline
established in [13]. Note that because redundancy is not used in [13], it cannot tolerate
faults in the supervisor component. Both our approach and the traditional Byzantine
fault tolerance approach can tolerate crash and malicious faults in supervisor replicas.
Becauseweuse the same systemmodel as that of the traditional approach, the hardware
complexity (in terms of hardware redundancy) is identical for both approaches.

7 Conclusion

In this article, we discussed the need of the strong dependability and trustworthiness
for ICE, an emerging safety-critical real-time distributed system that is promising
to revolutionize clinical operations for patient safety. By exploiting the fact that the
supervisor logic is stateless, we proposed a set of lightweight mechanisms to enhance
the dependability of ICEs. In our approach, the supervisor is replicated for fault and
intrusion tolerance. Our mechanisms ensure that an ICE could continue operating
correctly without stop even if a small portion of the replicas are faulty or have been
compromised. Our cost analysis for the lightweight mechanisms shows that for the
extra delays introduced by the mechanisms are not significant enough to impact the
round-based normal operation of the ICEs while making the ICE significantly more
resilient to hardware failures and cyber attacks.

We should also note that even though the context of our discussion in this article is
integrated clinical environments, similar consensus requirement could arise in other
biomedical applications [2,9,17,22], such as teleoperation [14]. The approach we
introduced in this article could be applied to solving these consensus problems in an
efficient and robust manner.
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