24,878 research outputs found

    Reasoning About the Reliability of Multi-version, Diverse Real-Time Systems

    Get PDF
    This paper is concerned with the development of reliable real-time systems for use in high integrity applications. It advocates the use of diverse replicated channels, but does not require the dependencies between the channels to be evaluated. Rather it develops and extends the approach of Little wood and Rush by (for general systems) by investigating a two channel system in which one channel, A, is produced to a high level of reliability (i.e. has a very low failure rate), while the other, B, employs various forms of static analysis to sustain an argument that it is perfect (i.e. it will never miss a deadline). The first channel is fully functional, the second contains a more restricted computational model and contains only the critical computations. Potential dependencies between the channels (and their verification) are evaluated in terms of aleatory and epistemic uncertainty. At the aleatory level the events ''A fails" and ''B is imperfect" are independent. Moreover, unlike the general case, independence at the epistemic level is also proposed for common forms of implementation and analysis for real-time systems and their temporal requirements (deadlines). As a result, a systematic approach is advocated that can be applied in a real engineering context to produce highly reliable real-time systems, and to support numerical claims about the level of reliability achieved

    On Throughput Maximization of Grant-Free Access with Reliability-Latency Constraints

    Full text link
    Enabling autonomous driving and industrial automation with wireless networks poses many challenges, which are typically abstracted through reliability and latency requirements. One of the main contributors to latency in cellular networks is the reservation-based access, which involves lengthy and resource-inefficient signaling exchanges. An alternative is to use grant-free access, in which there is no resource reservation. A handful of recent works investigated how to fulfill reliability and latency requirements with different flavors of grant-free solutions. However, the resource efficiency, i.e., the throughput, has been only the secondary focus. In this work, we formulate the throughput of grant-free access under reliability-latency constraints, when the actual number of arrived users or only the arrival distribution are known. We investigate how these different levels of knowledge about the arrival process influence throughput performance of framed slotted ALOHA with KK-multipacket reception, for the Poisson and Beta arrivals. We show that the throughput under reliability-latency requirements can be significantly improved for the higher expected load of the access network, if the actual number of arrived users is known. This insight motivates the use of techniques for the estimation of the number of arrived users, as this knowledge is not readily available in grant-free access. We also asses the impact of estimation error, showing that for high reliability-latency requirements the gains in throughput are still considerable.Comment: Accepted for publication in ICC'201
    corecore