4,177 research outputs found

    Function allocation theory for creative design

    Get PDF
    Function structure influences on systems architecture (or product architecture). This paper discusses a design method for creative design solutions that focuses on the allocation of functions. It first proposes a theory called “Function Allocation Theory” to allocate a function to an appropriate subsystem or component during the systems decomposition phase. By doing so, the complexity of design solutions can be reduced. The theory is applied to some examples including collaborative robots and robotics maintenance. Finally, the paper illustrates a case study of designing a reaction-free fastening system using this theory

    Federated Embedded Systems – a review of the literature in related fields

    Get PDF
    This report is concerned with the vision of smart interconnected objects, a vision that has attracted much attention lately. In this paper, embedded, interconnected, open, and heterogeneous control systems are in focus, formally referred to as Federated Embedded Systems. To place FES into a context, a review of some related research directions is presented. This review includes such concepts as systems of systems, cyber-physical systems, ubiquitous computing, internet of things, and multi-agent systems. Interestingly, the reviewed fields seem to overlap with each other in an increasing number of ways

    Architecting a Blockchain-Based Framework for the Internet of Things

    Get PDF
    Traditionally, Internet-of-Things (IoT) solutions are based on centralized infrastructures, which necessitate high-end servers for handling and transferring data. Centralized solutions incur high costs associated to maintaining centralized servers, and do not provide built-in guarantees against security threats and trust issues. Therefore, it is an essential research problem to mitigate the aforementioned problems by developing new methods for IoT decentralisation. In recent years, blockchain technology, the underlying technology of Bitcoin, has attracted research interest as the potential missing link towards building a truly decentralized, trustless and secure environment for the IoT. Nevertheless, employing blockchain in the IoT has significant issues and challenges, related to scalability since all transactions logged in a blockchain undergo a decentralized consensus process. This thesis presents the design and implementation of a blockchain-based decentralized IoT framework that can leverage the inherent security characteristics of blockchains, while addressing the challenges associated with developing such a framework. This decentralized IoT framework aims to employ blockchains in combination with other peer-to-peer mechanisms to provide: access control; secure IoT data transfer; peer-to-peer data-sharing business models; and secure end-to-end IoT communications, without depending upon a centralized intermediary for authentication or data handling. This framework uses a multi-tiered blockchain architecture with a control-plane/data-plane split, in that the bulk data is transferred through peer-to-peer data transfer mechanisms, and blockchains are used to enforce terms and conditions and store relevant timestamped metadata. Implementations of the blockchain-based framework have been presented in a multitude of use-cases, to observe the framework's viability and adaptability in real-world scenarios. These scenarios involved traceability in supply chains, IoT data monetization and security in end-to-end communications.With all the potential applications of the blockchain-based framework within the IoT, this thesis takes a step towards the goal of a truly decentralized IoT

    Emergent behaviors in the Internet of things: The ultimate ultra-large-scale system

    Get PDF
    To reach its potential, the Internet of Things (IoT) must break down the silos that limit applications' interoperability and hinder their manageability. Doing so leads to the building of ultra-large-scale systems (ULSS) in several areas, including autonomous vehicles, smart cities, and smart grids. The scope of ULSS is both large and complex. Thus, the authors propose Hierarchical Emergent Behaviors (HEB), a paradigm that builds on the concepts of emergent behavior and hierarchical organization. Rather than explicitly programming all possible decisions in the vast space of ULSS scenarios, HEB relies on the emergent behaviors induced by local rules at each level of the hierarchy. The authors discuss the modifications to classical IoT architectures required by HEB, as well as the new challenges. They also illustrate the HEB concepts in reference to autonomous vehicles. This use case paves the way to the discussion of new lines of research.Damian Roca work was supported by a Doctoral Scholarship provided by FundaciĂłn La Caixa. This work has been supported by the Spanish Government (Severo Ochoa grants SEV2015-0493) and by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P).Peer ReviewedPostprint (author's final draft

    Enterprise Composition Architecture for Micro-Granular Digital Services and Products

    Get PDF
    The digitization of our society changes the way we live, work, learn, communicate, and collaborate. This defines the strategical context for composing resilient enterprise architectures for micro-granular digital services and products. The change from a closed-world modeling perspective to more flexible open-world composition and evolution of system architectures defines the moving context for adaptable systems, which are essential to enable the digital transformation. Enterprises are presently transforming their strategy and culture together with their processes and information systems to become more digital. The digital transformation deeply disrupts existing enterprises and economies. Since years a lot of new business opportunities appeared using the potential of the Internet and related digital technologies, like Internet of Things, services computing, cloud computing, big data with analytics, mobile systems, collaboration networks, and cyber physical systems. Digitization fosters the development of IT systems with many rather small and distributed structures, like Internet of Things or mobile systems. In this paper, we are focusing on the continuous bottom-up integration of micro-granular architectures for a huge amount of dynamically growing systems and services, like Internet of Things and Microservices, as part of a new digital enterprise architecture. To integrate micro-granular architecture models to living architectural model versions we are extending more traditional enterprise architecture reference models with state of art elements for agile architectural engineering to support the digitalization of services with related products, and their processes
    • …
    corecore