458 research outputs found

    Optical control plane: theory and algorithms

    Get PDF
    In this thesis we propose a novel way to achieve global network information dissemination in which some wavelengths are reserved exclusively for global control information exchange. We study the routing and wavelength assignment problem for the special communication pattern of non-blocking all-to-all broadcast in WDM optical networks. We provide efficient solutions to reduce the number of wavelengths needed for non-blocking all-to-all broadcast, in the absence of wavelength converters, for network information dissemination. We adopt an approach in which we consider all nodes to be tap-and-continue capable thus studying lighttrees rather than lightpaths. To the best of our knowledge, this thesis is the first to consider “tap-and-continue” capable nodes in the context of conflict-free all-to-all broadcast. The problem of all to-all broadcast using individual lightpaths has been proven to be an NP-complete problem [6]. We provide optimal RWA solutions for conflict-free all-to-all broadcast for some particular cases of regular topologies, namely the ring, the torus and the hypercube. We make an important contribution on hypercube decomposition into edge-disjoint structures. We also present near-optimal polynomial-time solutions for the general case of arbitrary topologies. Furthermore, we apply for the first time the “cactus” representation of all minimum edge-cuts of graphs with arbitrary topologies to the problem of all-to-all broadcast in optical networks. Using this representation recursively we obtain near-optimal results for the number of wavelengths needed by the non-blocking all-to-all broadcast. The second part of this thesis focuses on the more practical case of multi-hop RWA for non- blocking all-to-all broadcast in the presence of Optical-Electrical-Optical conversion. We propose two simple but efficient multi-hop RWA models. In addition to reducing the number of wavelengths we also concentrate on reducing the number of optical receivers, another important optical resource. We analyze these models on the ring and the hypercube, as special cases of regular topologies. Lastly, we develop a good upper-bound on the number of wavelengths in the case of non-blocking multi-hop all-to-all broadcast on networks with arbitrary topologies and offer a heuristic algorithm to achieve it. We propose a novel network partitioning method based on “virtual perfect matching” for use in the RWA heuristic algorithm

    Interpolation theorem for a continuous function on orientations of a simple graph

    Get PDF
    summary:Let GG be a simple graph. A function ff from the set of orientations of GG to the set of non-negative integers is called a continuous function on orientations of GG if, for any two orientations O1O_1 and O2O_2 of GG, f(O1)f(O2)1|f(O_1)-f(O_2)|\le 1 whenever O1O_1 and O2O_2 differ in the orientation of exactly one edge of GG. We show that any continuous function on orientations of a simple graph GG has the interpolation property as follows: If there are two orientations O1O_1 and O2O_2 of GG with f(O1)=pf(O_1)=p and f(O2)=qf(O_2)=q, where p<qp<q, then for any integer kk such that p<k<qp<k<q, there are at least mm orientations OO of GG satisfying f(O)=kf(O) = k, where mm equals the number of edges of GG. It follows that some useful invariants of digraphs including the connectivity, the arc-connectivity and the absorption number, etc., have the above interpolation property on the set of all orientations of GG

    Ramified rectilinear polygons: coordinatization by dendrons

    Full text link
    Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic l1l_1-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either 4-cycles or paths of length at most 3. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group D4D_4), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.Comment: 27 pages, 6 figure

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    Aspects of practical implementations of PRAM algorithms

    Get PDF
    The PRAM is a shared memory model of parallel computation which abstracts away from inessential engineering details. It provides a very simple architecture independent model and provides a good programming environment. Theoreticians of the computer science community have proved that it is possible to emulate the theoretical PRAM model using current technology. Solutions have been found for effectively interconnecting processing elements, for routing data on these networks and for distributing the data among memory modules without hotspots. This thesis reviews this emulation and the possibilities it provides for large scale general purpose parallel computation. The emulation employs a bridging model which acts as an interface between the actual hardware and the PRAM model. We review the evidence that such a scheme crn achieve scalable parallel performance and portable parallel software and that PRAM algorithms can be optimally implemented on such practical models. In the course of this review we presented the following new results: 1. Concerning parallel approximation algorithms, we describe an NC algorithm for finding an approximation to a minimum weight perfect matching in a complete weighted graph. The algorithm is conceptually very simple and it is also the first NC-approximation algorithm for the task with a sub-linear performance ratio. 2. Concerning graph embedding, we describe dense edge-disjoint embeddings of the complete binary tree with n leaves in the following n-node communication networks: the hypercube, the de Bruijn and shuffle-exchange networks and the 2-dimcnsional mesh. In the embeddings the maximum distance from a leaf to the root of the tree is asymptotically optimally short. The embeddings facilitate efficient implementation of many PRAM algorithms on networks employing these graphs as interconnection networks. 3. Concerning bulk synchronous algorithmics, we describe scalable transportable algorithms for the following three commonly required types of computation; balanced tree computations. Fast Fourier Transforms and matrix multiplications

    Some Results on Seymour’s Second-Neighborhood Conjecture and on Decompositions of Graphs

    Get PDF
    This dissertation consists of two parts. In the first part, I examine Seymour’s Second-Neighborhood Conjecture, which states that every orientation of every simple graph has at least one vertex v such that the number of vertices of out-distance 2 from v is at least as large as the number of vertices of out-distance 1 from it. I present alternative statements of this conjecture using the language of linear algebra, the last one being completely in terms of the inverse of some matrix. In the second part of this dissertation, comprising of Chapters 2 and 3, I examine two conjectures on graph decompositions. The first one proposes that every even order hypercube Q2n has a symmetric Hamilton decomposition, meaning that every cycle can be derived from every other cycle just by permuting the axes. I show that this conjecture holds when n is of the form 2^a.3^b. The second conjecture states that for every graph G its edge set can be partitioned into two sets E1 and E2 such that the contractions G/E1 and G/E2 are K4-minor free. This conjecture is currently open, but I ask and answer two slightly different questions: If I use three sets in the partition, contracting two sets at a time, I can avoid K4 as a minor, but if I use two sets in the partition, contracting one set at a time, there are some graphs that force a K2,3 minor
    corecore