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Abstract

The PRAM is a shared memory model of parallel computation which abstracts 

away from inessential engineering details. It provides a very simple architecture 

independent model and provides a good programming environment. Theoreticians 

of the computer science community have proved that it is possible to emulate the 

theoretical PRAM model using current technology. Solutions have been found for 

effectively interconnecting processing elements, for routing data on these networks 

and for distributing the data among memory modules without hotspots. This thesis 

reviews this emulation and the possibilities it provides for large scale general purpose 

parallel computation. The emulation employs a bridging model which acts as an 

interface between the actual hardware and the PRAM model. We review the evidence 

that such a scheme crn achieve scalable parallel performance and portable parallel 

software and that PRAM algorithms can be optimally implemented on such practical 

models. In the course of this review we presented the following new results:

1. Concerning parallel approximation algorithms, we describe an N C  algorithm 

for linding an approximation to a minimum weight perfect matching in a 

complete weighted graph. The algorithm is conceptually very simple and it 

is also the first jVC-approximation algorithm for the task with a sub-linear 

performance ratio.

2. Concerning graph embedding, we describe dense edge-disjoint embeddings of 

the complete binary tree with n leaves in the following n-node communication 

networks: the hypercubc, the dc Bruijn and shuffle-exchange networks and 

the 2-dimcnsional mesh. In the embeddings the maximum distance from a
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leaf to the root of the tree is asymptotically optimally short. The embeddings 

facilitate efficient implementation of many PRAM algorithms on networks 

employing these graphs as interconnection networks.

3. Concerning bulk synchronous algorithmics, we describe scalable transportable 

algorithms for the following three commonly required types of computation; 

balanced tree computations. Fast Fourier Transforms and matrix multiplica­

tions.

I v



Contents

1 Introduction I

2 Classical PRAM Design 6

2.1 Introduction......................................................................................... 6

2.2 The PRAM m o d e l ...............................................................................  9

2.2.1 Concepts of efficient and optimal a lg o rith m s .................... II

2.3 Basic PRAM techniques.....................................................................  12

2.3.1 Balanced t r e e ......................................................................... 12

2.3.2 Doubling..................................................................................  14

2.3.3 Divide-and-conquer............................................................... 15

2.3.4 Reducing the number of p rocessors..................................... 16

2.4 PRAM algorithmic to o ls ...................................................................... 18

2.4.1 Prefix computation..................................................................  18

2.4.2 List ra n k in g ............................................................................ 21

vi



\

Contents

1 Introduction 1

2 Classical PRAM Design 6

2.1 In troduction .........................................................................................  6

2.2 The PRAM m o d e l...............................................................................  9

2.2.1 Concepts of efficient and optimal a lg o rith m s .....................  II

2.3 Basic PRAM techniques...................................................................... 12

2.3.1 Balanced tree ......................................................................... 12

2.3.2 Doubling................................................................................... 14

2.3.3 Divide-and-conqucr...............................................................  15

2.3.4 Reducing the number of p rocessors..................................... 16

2.4 PRAM algorithmic to o ls ...................................................................... 18

2.4.1 Prefix computation..................................................................  18

2.4.2 List ra n k in g ............................................................................  21

vi



2.5 Graph algorithms ...............................................................................  23

2.5.1 Euler tour on t r e e s .................................................................. 25

2.5.2 Tree contraction .....................................................................  27

2.5.3 Ear decom position ............................................................... 27

2.5.4 Matrix computations............................................................... 28

3 Parallel Approximation Algorithm 30

3.1 In troduction.........................................................................................  30

3.2 Performance ratios of approximation algorithms...............................  32

3.3 Minimum weight perfect matching ............................................  33

3.4 Approximate minimum weight perfect matching in a complete weighted

graph ......................................................................................................  35

3.4.1 Validity of the approximation ratio c l a i m ........................... 38

3.4.2 Parallel execution and complexity of the algorithm . . . .  41

3.5 Further w o rk .........................................................................................  44

4 Realistic Issues 46

4.1 Introduction.........................................................................................  46

4.2 Interconnection N e tw o rk s ..................................................................  47

4.2.1 The hypcrcubc fa m ily ...........................................................  48

4.2.2 The shuffle-exchange and dc Bruijn netw orks.....................  54

vii

I



*

4.2.3 Meshes ................................................................................... 56

4.2.4 Randomly-wired networks.....................................................  58

4.3 Contention and congestion ............................................................... 61

4.3.1 H a sh in g ..................................................................................  63

4.3.2 Combining...............................................................................  66

4.3.3 R o u tin g ................................................................................... 69

4.3.4 Information dispersal algorithm ...........................................  73

4.4 Synchrony and asynchrony..................................................................  74

5 Kmbcddings 75

5.1 In troduction.........................................................................................  75

5.2 Efficiency requirem ents...................................................................... 76

5.3 The em beddings................................................................................... 77

5.3.1 Embedding in the dc Bruijn g ra p h ........................................  79

5.3.2 Embedding in the shuffle-exchange g ra p h ........................... 82

5.3.3 Embedding in the 2-dimensional mesh ...............................  84

5.3.4 Embedding in the hypcrcubc..................................................  87

5.4 Depths of the embedded t r e e s ............................................................ 92

5.4.1 Maximum root-to-lcaf distances of the embeddings . . . .  93

5.4.2 Lower bounds for the embedded tree d ep th s .......................  95

viii

I



IX
5.5 Further remarks and algorithmic issues ........................................... 97

5.6 Summary and open p ro b le m s ...........................................................  100

6 Practical Parallel Models of Parallel Computation 102

6.1 In troduction .........................................................................................  103

6.2 The practical PRAM m o d e l ............................................................... 104

6.3 Latency h id in g ......................................................................................  106

6.4 Asynchronous com p u ta tio n ............................................................... 113

6.5 Memory m anagem ent......................................................................... 117

6.6 Conclusion............................................................................................  120

7 Bulk Synchronous Parallel Algorithms 121

7.1 In troduction .........................................................................................  121

7.2 Balanced tree computation..................................................................  123

7.3 Fast Fourier T ran sfo rm .....................................................................  124

7.4 TYansitive closure and graph algo rithm s........................................... 127

7.5 Further w o rk .........................................................................................  129

8 Conclusions 130

I



Chapter 1

Introduction

A few years ago parallel computers could be found only in research laboratories. 

Due to the rapidly decreasing cost of processors, memory and communication, 

they arc now available commercially. It is possible that, within a decade, parallel 

computation will dominate in all areas of computer science and its applications. A 

deep understanding of parallel computations is therefore highly desirable.

The complexity theory research community has developed a rich literature in the 

design and analysis of efficient parallel algorithms. To date, most of this work has 

been based on the Parallel Random Access Machine (PRAM). The PRAM mtxlcl 

consists a number of processing elements and a (shared) memory. The processing 

elements operate in lock step synchrony and access a location in the shared memory 

in unit time (chapter 2 gives a detailed description of the PRAM model). The 

realistic issues arc ignored by the PRAM model. The PRAM algorithms do not take 

account of the low level details of parallel computation, such as intcrproccssor or 

pnxessors-to-memory communication, memory management and hardware failure.

I I
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For this reason, the PRAM provides a very simple and natural model for architecture 

independent parallel algorithm design.

One benefit of PRAM studies is an extensive list of fast parallel algorithms. By 

a fast algorithm we mean one that that takes polylogarithmic parallel time using 

a polynomial number of processors. Problems which can be solved by a fast 

algorithm are said to belong to the class N C . This class name is an acronym for 

Nick (Pippenger’s) Class. The search for parallel solutions to place the problems 

in N C  has demonstrated that entirely new algorithmic techniques are appropriate 

and it is usually a bad starting point to attempt to parallelise the best sequential 

algorithms. Design techniques and tools have therefore been developed for parallel 

computation which are completely different from the sequential domain. In fact, 

some of the commonly used methods in sequential algorithm design do not adapt 

well to parallelism. Moreover, many problems in the class P, i.c. the problems have 

polynomial time sequential solution, have been proven P-complete. If a problem is 

P-complete then it is very unlikely that the problem belongs to the class N C .

The primary interest of the study of parallel complexity is placing the problems in 

P  into the class N C . In fact, there arc problems in P but we do not know whether 

they lie in N C , and they have not been proven to be P-complete. However, for 

such problems it may be possible to find an N C  approximation algorithm to the 

problems. For example, if the problem is a minimisation problem then we find a 

solution which is not minimum, but the solution is never greater than some factor of 

the optimal solution.

Although the PRAM model has been prominent in the development of the design

I
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and analysis of parallel algorithms, the unrealistic characteristics of the model 

may make us think that the model is not suitable for general purpose parallel 

computation. However, we shall see in this thesis that the PRAM model can be 

emulated by a feasible parallel computer. A feasible parallel computer is a number 

of processing elements interconnected by a network, where each processing element 

performs computational and/or memory operations and the processing elements may 

or may not have to be synchronised. The memory of a feasible parallel computer is 

distributed among memory modules.

In contrast to a PRAM, a (non local) memory access in a feasible parallel computer 

takes much longer than a local computation. This is because the data have to be 

transferred through an interconnection network. Further delays can occur due to 

congestion in the interconnection network and contention at the memory modules. 

Moreover, a PRAM assumes that the processors and the communications links 

are fault-free. Theoretical solutions have been found for routing data to the right 

processing clement within a reasonable time, for distributing the data among memory 

modules so that the distribution will not slow down the computation, and for coping 

with processors and network failures.

At present, almost all of the parallel software designed for a realistic physical 

parallel model is not portable. This is because the algorithms arc often developed 

for a particular network topology of fixed size. This software is not based on general 

principles and to date has not been written for a common virtual machine. Progress 

in technology suggests to us that rapid changes in parallel machines arc still to come. 

Hence, current software will not have a long life time. The major challenge in parallel

3
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computing is developing architecture independent parallel software with an expected 

lifetime of several decades. We need an interface (or bridging) model between the 

software and hardware. Such a model will offer architecture independent software 

and will be compatible with technological evolution.

Using the theoretical solutions for routing and for memory management we can 

build a bridging model with virtual shared memory. A user can view this model 

as an extended PRAM, which hides hardware details from the user. The model is 

called practical PRAM. Recently a number of practical PRAMs have been proposed 

which variously take account of communication delay, contention and congestion, 

asynchrony and component failures. In this thesis we review these models and show 

that it is possible to develop an architecture independent software with a long life 

time.

The remainder of this thesis is organised as follows.

• Chapter 2 reviews the design techniques and tools of parallel computation, 

and provides the evidence for the significance of the PRAM model.

• Chapter 3 gives a novel approximation algorithm for a problem whose parallel 

complexity remains unknown. It is not known whether the problem lies in 

N C , and it has not been proven to be P-complete.

• Chapter 4 focuses on the realistic issues which arc ignored by the PRAM 

model. If an interconnection network is to be used for general problem solv­

ing then it ought have certain desirable graph theoretic properties. Chapter 4 

describes interconnection networks which satisfy these properties. Further-
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more, chapter 4 reviews the theoretical solutions for routing, for memory 

management and for fault tolerance.

• The most commonly occurring structure in parallel computation is the com­

plete binary tree. It is precisely because such logarithmic depth structures are 

used (either explicitly or implicitly) that polylogarithmic time complexities 

are attained for many PRAM algorithms. Chapter 5 shows that the complete 

binary tree can be embedded in the interconnection networks, the mesh, hy­

percube, de Bruijn and shuffle-exchange networks, so that an algorithmically 

important parameter, the maximum distance from a leaf to the root, is opti­

mised asymptotically. Thus, O(logn) time PRAM algorithms which use the 

complete binary tree as the algorithmic structure can be translated to optimal 

time on the interconnection network.

• With the use of theoretical solutions which arc described in chapter 4, chapter 6 

demonstrates that there is no hindrance in designing practical parallel models 

of parallel computation. Moreover, this chapter shows that a PRAM algorithm 

can be implemented on the practical parallel model without any significant 

delay in run time.

• Chapter 7 shows that scalable transportable algorithms for practical parallel 

models can be written for certain basic tasks, balanced tree computations, Fast 

Fourier transforms and matrix multiplication.

I



Chapter 2

Classical PRAM Design

2.1 Introduction

The PRAM model of parallel computation is described in detail in section 2.2. At 

first glance, the PRAM model of computation might not appear to be suitable as 

a general model for designing and analysing parallel algorithms. For sequential 

computation, it has been of considerable advantage to deal with an abstraction of 

the von Neumann machine, namely the Random-Access Machine or RAM (sec (3] 

for details of the model). Similar advantages justify the PRAM model:

• Ease o f use: Algorithms can he specified with little intricacy.

• Portability: PRAM algorithms do not need to take into account memory 

organisation, network topology or other hardware design attributes o f real 

parallel machines, so that they eliminate obstacles to portability.

6
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• Scalability: Typically the number o f processors which are used can be in­

creased in a natural way such that the speed o f the computation retains the 

same functional dependence on the problem size.

The main preoccupation of PRAM algorithm designers has been to place the problem 

in hand in the class N C . Various idealised models of parallel computation other 

than the PRAM model have been used in the study of parallel algorithms and their 

complexity. These include Boolean circuits and alternating Turing machines. The 

complexity class N C  remains unchanged when defined by these models 1138. 149]. 

This motivates the definition of the complexity class N C . Note that when using a 

family of Boolean circuits as a model of parallel computation, the family is usually 

required to satisfy a logspace uniformity condition [ 139]. A family of Boolean 

circuits is logspacc uniform if there is a deterministic l uring machine can construct 

some standard encoding of the n,h circuit using Of log //) work space.

It is reasonable to seek an N C  algorithm for a problem, if the problem can be 

solved sequentially in polynomial time. Let P be the class of decision problems 

that can be solved by a deterministic Turing machine within a polynomial number 

of sequential steps [3]. We can sec that N C  C / ’ by converting N C  algorithms into 

sequential algorithms in the obvious way. A fundamental open question is whether 

every problem in P lies in NC. The parallel computation thesis states that “time 

bounded parallel machines arc polynomially related to space bounded sequential 

machines" [18, 22, 43, 57. 122], That is N C  computation! can be simulated by 

Turing machines using only polylogarithmic space. Thus, P N C  would imply 

that P is contained in a class of problems that can be solved in polylogarithmic

I
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space by a sequential machine, which is considered very unlikely. This is why we 

believe that there exists problems which do not adapt well to parallelism. In fact, 

many problems have been proven to be in P-complele. For a list of P-complete 

problems see [59, 107]. If a problem is P-complele then the problem is unlikely 

to lie in NC. More formally, a problem L 6 P  is said to be P-complete if every 

other problem in P can be transformed into L by a deterministic Turing machine 

using only log space (such a transformation is said to be a log space reduction). 

It follows that, if L € P-complete and L 6 N C  then P = NC. It turns out that 

some of the commonly used methods in sequential algorithms are likely inherently 

sequential methods. Thus the design of parallel algorithms requires new paradigms 

and techniques.

In this chapter we show that, the benefit from the PRAM model is not only in the 

extensive list of efficient and parallel algorithms that have been designed, but also 

fundamental paradigms and design techniques and tools have emerged. These arc 

usually completely different from the best known sequential solutions to the same 

problems and indicate new paradigms for parallel algorithm design. Sections 2.3 

and 2.4 describe the techniques and tools respectively. In section 2.5 we review sonic 

graph algorithms, and show that these arc useful not only in their own right for the 

problems they solve, but also as common subroutines in many parallel algorithms. 

Note that in this chapter we consider only graph algorithms. Of course, the PRAM 

can be and has been used to solve problems in many other areas. For example, survey 

papers [ 3K| and [65] list references for computational geometry anil pattern matching 

respectively. Many other references can be found in [42, 52, 68, 76. 103, I66|.
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Processors

Main control program "~J

Shared
Memory

Figure 2.1:

2.2 The PRAM model

The PRAM model is an abstract shared memory model. It was introduced in 

[43. 169]. There arc a number of processors working together and communicating 

through the shared memory. The processors synchronously execute the same pro­

gram through the central main control (see figure 2.1). Although performing the 

same instructions, the processors can be operating on different data. Hence, such a 

model is a Single-Instruction. Multiple-Data model, namely an SIMD model. Each 

processor is a uniform-cost random-access machine or RAM with usual operations 

and instructions. The cost of arithmetical operations (addition, subtractions, equal­

ity predicate and so on) is constant. In one step each processor can access (cither 

reading from it or writing to it) one memory location or execute a single RAM 

operation.

Memory access leads to variants of the model which allow or do not allow more 

than one processor to read or to write to the same memory location. For example the
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EREW PRAM (exclusive read exclusive write parallel random access machine which 

allows no concurrent reads and no concurrent writes), the CREW PRAM (concurrent 

reads allowed but only exclusive writes) and the CRCW PRAM (in which both 

concurrent writes and concurrent reads are allowed). In general concurrent reads 

cause no logical errors. However, with concurrent writes additional rules are required 

to resolve the outcome. This leads to variants of the CRCW PRAM, namely the 

so-called common, arbitrary and priority variants. These resolves the write conflicts 

as follows: in the common variant all processors writing into the same location write 

the same value, in the arbitrary variant any one processor participating in a common 

write may succeed and the algorithm should work regardless of which one does, 

and in the priority variant there is a linear order on the processors and the minimum 

numbered processor succeeds in writing.

Any algorithm that works on an EREW PRAM works on a CREW PRAM, any 

algorithm that works on a CREW PRAM works on a common CRCW PRAM, and 

so on. Moreover, the list of variants of the PRAM model: EREW, CREW, common 

CRCW, arbitrary CRCW and priority CRCW, represents the PRAM models in 

increasing order of their power. But, they do not differ much in their power. The 

following theorem 1164] indicates this. This justifies the class N C\ the class remains 

unchanged regardless of variants of the PRAM model.

Theorem 2.2.1 Any algorithm for a priority CRCW PRAM o f p processors can be 

simulated by a EREW PRAM with the same number o f processors and with the 

parallel time increased by a factor o f 0 (  log p).



11

2.2.1 Concepts of efficient and optimal algorithms

In the PRAM model, the relevant complexity measure of an algorithm are the time 

for parallel computation and the number of processors used. The time-processor 

product of a PRAM algorithm is called the work of the algorithm.

Suppose a PRAM algorithm runs in time t(n) by employing />(») processors for 

a problem size », then the PRAM algorithm can be converted into a sequential 

algorithm of time equal to the work of the PRAM algorithm, t{n) x /)(»). We can 

do this by simulating each parallel step of the PRAM algorithm on a sequential 

processor in p(n) time units. This justifies the definition for an optimal algorithm. 

A PRAM algorithm for the problem in N C  is optimal if the work of the algorithm 

is asymptotically equal to the fastest sequential computation time for the problem.

An optimal parallel algorithm achieves a high degree of parallelism. Analogously, 

a PRAM algorithm for the problem in N C  is efficient if the work of the algorithm 

is within a polylogarithmic factor of the fastest sequential computation time for the 

problem. Designing an optimal algorithm on a CRCW PRAM is easier than on a 

CREW or EREW PRAM. This is because more parallelism can be expressed on a 

CRCW PRAM than on a CREW or EREW PRAM. The class of problems which 

have efficient algorithms, remains unchanged regardless of the PRAM model used 

(for example, sec theorem 2.2.1 ). Thus our notion of efficiency is more robust than 

the notion of optimality.

Concerning speed of computation, one might expect that it is possible to discover 

parallel algorithms that run in constant time. Research on lower bounds for paral­

lel computation indicates that this goal is unachievable for almost any interesting

I
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problems. This is because we require a lower bound of i2(log » /  log log n) time for 

the parity problem of n bits on a priority CRCW PRAM with a polynomial number 

of processors [14]. This is because the parity problem depends on all the inputs. 

But the problem of computing the OR or AND of ti Boolean variables can be done 

in constant time on a CRCW PRAM. Because, the decision of this problem only 

depends on one input. However, this computation requires S2(log n) on a CREW 

PRAM with no restriction on the number of processors [34]. Since any interesting 

problems such as the basic PRAM subcomputations of prefix computation and list 

ranking (described in section 2.4) are typically at least as hard as computing the 

parity of n bits or OR of n variables, we see that constant time parallel computation 

is not admissible for any interesting problems.

2.3 Basic PRAM techniques

A number of general techniques and principles of common use in the design of 

parallel algorithms arc described in this section.

2.3.1 Balanced tree

The balanced binary tree is a fundamental structure in parallel computation. A tree 

is a connected graph containing no circuits, in which one vertex is distinguished as 

a root. In a tree any vertex with of degree one, unless it is the root, is called a leaf. 

A node is said to be an internal node if the node is not a leaf. If (.r,;/) is an edge of 

a tree such that .r lies on the path from the root to i/, then r is said to be the parent of

I
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y and y is the child of x. A tree is balanced if each internal node has same number 

of children. A balanced tree is called complete binary tree if each internal node has 

two children and the number of nodes is 2n — 1. where n is the number of leaves. 

The minimum distance between a leaf and the root in a complete binary tree is log n, 

where ii is the number of leaves.

It is precisely because such logarithmic depth structures are used (either explicitly 

or implicitly) that polylogarithmic time complexities are attained for many PRAM- 

algorithms. In the PRAM model, the balanced binary tree is employed as follows. 

Data for a problem are placed at the leaves, and each internal node corresponds to 

the computation of a subproblem. The sub problems are solved in bottom-up order 

(or in one or more sweeps up and down the tree), with those at the same level in the 

tree being computed in parallel.

For example, consider the problem of adding n numbers. Let n = 2'" and .4 be an 

array of length 2n. The numbers whose sum is to be found can be placed at the leaves 

of a tree, i.e. we store the n numbers in the locations .4(h ), A(v  + 1 ) , . . . ,  A(2n — 1). 

At each level of the tree, numbers arc added together in pairs by different processors 

in parallel and the result sent to the next level as follows [52].

for k• «— m — I step -/ to 0 do

for all j, 2k < j  < 2* + l — 1, in parallel do A(j) «— A(2j) + A(2j+I)

A processor assigned to an internal node reads the values of the left child and the 

right child from the corresponding locations, then writes the sum of the values in 

the location corresponding to the internal node. If the corresponding location of

I
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an internal node is A( j )  then the corresponding locations of its left child and right 

child are respectively A(2j)  and A(2j  +  1). At the end of the computation .4( 1), 

the location corresponding to the root, stores the result. The depth of the tree is 

bounded by [log ii] and so the computation time is 0(log n) using u/2  processors. 

This problem clearly belongs to NC.  It will be shown later how to reduce the 

number of processors to achieve optimal work measure.

2.3.2 Doubling

This technique is normally applied to an array or to a list of elements. Each element 

knows the location of the next element in the data structure. The computation 

proceeds by a recursive application of the calculation in hand to all elements over a 

certain distance (in the data structure) from each individual element. This distance 

doubles in successive steps. Thus after k stages the computation has been performed 

(for each clement) over all elements within a distance of 2*.

For example, consider an array .4 of ti elements which specifics a set of rooted 

directed trees, a forest F.  A location of the array ,4(i ) =  j  if j  is the parent of 

/ in a tree of F,  for 1 < t < n, and if i is a root then .4(i) =  i. Suppose, for 

each t, 1 < i < n,  we want to determine the root of the tree containing the node

i. Let s(i) be the successor of node i, i.e initially .*(/’) = A(i),  for 1 <  t <  n. 

The successor of each node, *(»), is replaced by the successor's successor, «(¿(t)), 

in successive steps. If a processor is assigned to each array location then O(log //) 

steps arc sufficient for this computation. Here h is the maximum height of any tree 

in the forest. Sometimes this technique is referred to as pointer jumping.

t
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The doubling technique is not only applicable to arrays and lists. For example, it can 

be used to compute .4" of a Boolean matrix .4. The computation can be performed 

in at most 2[log2 nj matrix multiplications. First we compute A 2, .44. .48 . . .  .4* by 

squaring the matrix successively, where k is the largest number such that k• < v and 

k- is a power of 2. Now we can compute .4" by multiplying together appropriate 

matrices of the form A2‘,0  < l < [log2 nJ •

2.3.3 Divide-and-conquer

The dividc-and-conqucr technique involves partitioning a problem into subproblcms, 

solving the subproblems, and then combining the solutions to the subproblems to 

form the solution for the original problem. The methodology is recursive; that is, 

the subproblcms themselves may be solved by the dividc-and-conquer technique. 

This method is widely applicable in sequential computation. In a parallel setting 

the method requires that the subproblcms at the same level of recursion can be 

independently computed in parallel and (in order to reduce the depth and therefore 

the computation time) are of similar size.

There arc several examples of the dividc-and-conqucr technique applied in a parallel 

setting. Although the field of computational geometry is rather neglected in this 

thesis, we complete this description of dividc-and-conqucr with an application from 

this area. Given a finite set 5  of points in the plane, computing their convex hull, 

CH(S) ,  is an important basic problem in computational geometry that arises in 

a variety of contexts [38]. CH( S )  is the smallest convex polygon containing all 

the points of 5. A polygon CH(U)  is convex if, given any two points /< and </ in
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CH(U) ,  the line segment whose endpoints are ¡1 and q lies entirely in CH(U) .  A 

tangent of a convex polygon CH(U)  is a line passing through a vertex of CH(U)  

such that CH(U)  lies entirely on one side o f the line. A tangent is called upper 

(lower) common tangent between two convex polygon, CH(U)  and CH( V) ,  if the 

tangent is the common tangent such that C H( U)  and CH( V)  are below (above) it. 

C H( S )  can be constructed as follows:

1. Sort the set S  in some fixed direction (eg. in the x or ¡/-direction). Let U he 

the first |S |/2  points in this sorted order, and V  the remainder.

2. Recursively construct CH(U)  and C H ( V )  in parallel.

3. Compute the upper and lower common tangents o f CH(U)  and CH(V) .

4. Combine C H(U) and CH( V)  by using the upper and lower common tangents 

of CH(U)  andCH(V) ,  to form CH( S ) .

2.3.4 Reducing the number of processors

Consider a computation .4 that can be done in i parallel steps. Let o, be the number 

of primitive operations at step i. To run .4 directly on a PRAM in t parallel steps, the 

number of processors required is the maximum of the o,, say in. Suppose we have 

p < w  processors. The i'h step can be computed in time [»>,/;>], by partitioning the 

o, operations into p groups and assigning a processor to each of the groups. For each 

of (he p groups in parallel, each processor will be computing (in sequential style) for 

at most [o ,//>] time. Hence the total parallel time is no more than t + o</p]
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For example, consider the algorithm described earlier for computing the sum of n 

numbers using the balanced binary tree method. This executes in O(logn) time. 

Notice that n/2 processors are required for the first step. Suppose that we have 

p < 11/ 2  processors. We can simulate the first step with p processors as follows. 

First we divide the n numbers into¡> groups, such that ¡"' group has elements indexed 

from (t fn /p ]) to (((/ + 1)(\ n / p \ )) — 1) for 0 <  t < p. The first (p — 1) of these 

groups contain |n/p"| elements and the remaining group contain n — (p — 1 )[n/p] 

elements. We assign a processor to each of the groups. For all of the p groups 

in parallel, each group now finds the sum in sequential style within its group, and 

the computation takes \n /p \ time. We have reduced the original problem of size 

ii to a problem of size /», and the problem can be solved as described before in 

O(logp) time using the p processors. Thus, overall, we can find the sum of the n 

numbers in |n /p] + log/» time using p <  n /2  processors. Notice that if we set 

p = n /  log ii then we obtain a computation time of ()(log n ) and we thus have an 

optimal algorithm. The work of the algorithm is O(n)  and is same as the best known 

sequential algorithm.

This is an example of applying Brent's scheduling principle [20], and is often used 

in the design of efficient or optimal parallel algorithms. It should be noted that 

this simulation assumes that processor allocation is not a problem. We will sec (in 

section 2.4.2) that this is sometimes a nontrivial task.

I
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2.4 PRAM algorithmic tools

In this section we describe the algorithmic tools, known as prefix computation and 

list ranking, that have been found to be of wide use in the construction of many 

parallel algorithms. One can appreciate this from figure 2.2 [166], which illustrates 

how the solutions of some PRAM algorithms depend on the solutions of others. 

Such a diagram is an example of so-called structural algorithmics. Let P\ and P2 

be the problems in figure 2.2 such that P| is above P?. If there is an edge between 

P\ and P2 then the N C  algorithm that solves P2 is used to obtain an N C  algorithm 

to solve P\. Thus, if there is a path between P\ and Pj then all the solutions to 

the problems on the path are used to obtain an N C  algorithm to solve P \ . As an 

example, the solution to the prefix sum problem is a subroutine in the solution to the 

list ranking problem, the solution to list ranking is a key subroutine to the so-called 

the Euler tour technique and so on.

2.4.1 Prefix computation

Given an array [.r0. x \ , . . . ,  .r„-i] of n elements together with an associative operator 

*, a prefix computation gives Si -  .r0 * .r\ * • • • * ,r,, for 1 < t <  n — 1. There is a 

simple algorithm for performing prefix discovered by Ladner and Fisher |86|. The 

algorithm is perhaps easily understood with reference to the complete binary tree of 

the compulation. Let n be a power of 2, otherwise we add a minimum number of 

dummy elements to achieve this. At the outset we store the n numbers at the leaves 

of the tree so that r, is in the corresponding location of the tlh leaf forO < 1 <  » — 1. 

The leaves arc numbered from 0 to n — 1 from the left to the right. Levels arc
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Figure 2.2:

I
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numbered from 0 to log n, from the level of the leaves upwards. Let any node j  of 

a complete binary tree cover the leaves from positions /> to q (note if j  is a leaf then 

p — q). Then let A(j)  and B(j )  be storage locations that will be used respectively 

to store the values of xp * j-p+i * • • • * .r, and .r0 * xj  * ■ • • * xq. The following code 

performs the desired computation.

for level= I to log n do

for all j  6 level, in parallel do compute A(j)

B(root) «— A(root)

for level = log n — 1 to 0 do

for all j  € level. in parallel do compute B(j)

At the end of computation X\ * ■ • • * x j  is stored in the corresponding location B(j )  

of the j " ‘ leaf, for 0 < j  < n — 1. For each node a processor can identify the level 

of the node and its children as in the computation of the sum of n numbers (sec 

section 2.3.1). Moreover, the first phase of the computation from level 1 (one level 

above the leaves) to the root can be done as explained in section 2.3.1, by reading 

the values from left child and right child. In the second phase from the root to the 

leaves, B(i)  for the node i can be computed as follows. If the node i is the right 

child then B(i) is A(i's parent), otherwise B(i)  is (B(i's parent) * (A(i's sibling)). 

The computation can be run in 0(log ii ) time on an FREW PRAM since there arc no 

conflicts in memory accesses. At first it would seem that we need O(ti) processors 

to achieve this time. Since the input is stored in an array as already described (i.e 

in consecutive memory locations), we can easily achieve a optimal algorithm (i.e. 

the same time complexity with O(/// log») processors) using Brent's scheduling

j



21

principal as in section 2.3.4.

Given an array .4 of locations storing 0 or 1. the associated parity problem is to 

determine whether the number of 1 s is even or odd in the array. This problem can be 

regarded as a special prefix computation problem. Performing such a computation 

on .4 will leave the result of the parity problem in the rightmost location of .4. A 

lower bound of £2( log n/  log log n ) time is known for the parity problem on a priority 

CRCW PRAM with a polynomial number of processors. To match this lower bound 

for the prefix computation. Cole and Vishkin [28] described an optimal algorithm 

(different from the one described above) which runs in time 0 (log n / log log ») 

using n log log n /  log n processors on a CRCW PRAM.

The fact that the prefix-sums problem appears at the bottom of figure 2.2 is meant 

to convey the basic role of this problem. It appears in many guises. For example, 

consider compacting a sparse array. Given an array of n elements, many of which 

are zero, we wish to generate a new array only containing the non-zero elements 

in their original order. This problem can be solved by assigning a value I to the 

non-zero elements, and performing the prefix sums using arithmetic addition. Such 

a computation calculates, for each non-zero element of the array, the position that 

such a non-zero clement would have in the new array.

2.4.2 List ranking

Given a linked list, the list ranking problem is to calculate for each member of 

the list its relative position from the end of the list, i.c. its rank in the list. The 

importance of this problem was first identified by Wyllic 1169], An obvious solution
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to list ranking can be regarded as a prefix computation using addition of Is within a 

pointer structure. A linked list is an alternative to an array in storing sequences of 

clement in shared memory. In an array each element knows its address within the 

array whereas in a linked list an clement does not know a priori its rank in the list.

Using the pointer jumping technique (as explained in section 2.3.2) we can solve 

the list ranking problem. Initially we set distance(k) = I for each clement k except 

the last for which we set distance(k) = 0. The last clement can be easily determined 

by looking at the pointer's address, s(i), because the last clement uniquely points to 

itself. The algorithm is then described as follows [52].

repeat [logo] times

for each element k in the list in parallel do 

if s(k) /  s(s(k)) then

distonee(k) *— distanee(k) + dislanee(s(k)) 

s(k)« -  s(s(k))

At the end of the computation diatanct(k)  gives the rank of the element k in the 

list. By associating a processor with each clement of the list we can solve the list 

ranking problem in O(logti) time. However, the algorithm is not optimal, since 

the work of the algorithm is O (u logn) and the sequential time to rank the list 

is ()(n ). In attempting to get an optimal algorithm for this problem using Hrent 

scheduling technique as in the prefix computation we run into a problem. Because 

the elements arc not initially indexed (as in an array) we can not assign processors 

to begin subcomputation at defined positions on the list.
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A substantial amount of effort has been put into finding a optimal algorithm for 

the list ranking. The key step in one optimal algorithm is to cleverly splice out 

elements from the list so that 0 ( n /  log n) elements remain in O(log n) time with 

» /lo g «  processors [26]. Then we can solve the list ranking on the reduced list 

as described above taking O(logu) time using » /lo g »  processors. The original 

list then reconstructed by reinserting the elements that were spliced out. This step 

can also be done in Oflog » ) time with » / log » processors. The total work of this 

algorithm is O(n) which is the best sequential time to rank the list.

Wyllie conjectured that it is impossible to find an optimal parallel algorithm for this 

problem [169]. Cole and Vishkin [26] were able to invalidate Wyllie's conjecture 

by describing all details of the above algorithm which runs on an an EREW PRAM. 

The drawback to their algorithm is that it is complicated and has very large constant 

factors, and they rely on an expander graph construction to solve a scheduling 

problem that arises. Anderson and Miller [8] gave an another optimal algorithm that 

runs in <9(log») time and uses » /lo g »  processors on an EREW PRAM, which is 

much simpler and has reasonable constant factors. Moreover, this algorithm docs 

not rely on an expander graph construction, although it is still fairly intricate for 

practical purposes.

2.5 Graph algorithms

Graphs play an important role in solving real-world problems. Specifically they play 

a major role in important problems in combinatorial optimisation. For example, in 

graph colouring we assign colours to a graph such that no two adjacent edges or
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vertices have the same colour. Edge colouring and vertex colouring can be used 

to solve time-tabling problems. Another important graph problem is to decide 

whether a given graph is planar. For example, in the layout of printed circuits one 

is interested in knowing if a particular electrical network is planar. Other important 

problems are concerned with the so-called connectivity of the graph in question. A 

graph is said to be connected if there is a path between any two vertices. A graph 

is A-vertex (or edge) connected if A- is the minimum number of vertices (or edges) 

whose removal will disconnect the graph. If we think of a graph as representing 

a communication network, the vertex connectivity (or edge connectivity) becomes 

the smallest number of communication stations (or communication links) whose 

breakdown would jeopardise communication in the system. The higher the vertex 

connectivity and edge connectivity, the more reliable the network.

The design of efficient parallel algorithms for graph problems has presented a chal­

lenge since traditional sequential graph search techniques have proved not readily 

to admit parallelisation. Sequential optimal algorithms for many graph problems 

commonly use one of two methods to search a graph: depth-first search (dfs) or 

breadth-first search (bfs) [49). At present, neither of these methods has an efficient 

parallel algorithm, and the most useful of these methods (dfs) is P-complete. Thus 

new tools are needed to replace dfs or bfs. One such tool is the process of ear 

decomposition search (described in section 2.5.3). We need to avoid dfs or bfs 

in the parallel algorithm. For example, computing connected components is often 

considered a basic problem and the best sequential algorithm for this problem uses 

dfs. Two nodes of a graph arc in the same component if there is a path from one to 

another in the graph. An efficient parallel algorithm for connected components on a

I
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CRCW PRAM was described in [70,73, 144] and the algorithm avoids dfs. Another 

example is concerned with finding a topological ordering of directed acyclic graph, 

i.e. assigning a number to each of the vertices such that there is no path from a vertex 

to lower numbered one. This can easily be done in linear time sequentially, but the 

algorithm does not obviously lend itself to parallelism. Kucera [85] described an 

N C  algorithm for this problem using the transitive closure technique (as explained 

in section 2.5.4).

The following sections briefly describe algorithmic techniques which can be used as 

building blocks for graph algorithms. These exemplify new paradigms for parallel 

algorithm design.

2.5.1 Euler tour on trees

The construction of a rooted spanning tree, and the computation of various tree 

functions ( for example, preorder and postordcr numbering of vertices in the tree, 

distances of each vertex from the root of the tree, and the number of descendants 

of each vertex in the tree) are common features in many efficient parallel graph 

algorithms. It is often the case for particular algorithms that polylogarithmic ef­

ficiency is obtained simply because the algorithm has been contrived to perform 

certain functions on a tree. These functions can be computed by finding a so-called 

Euler tour of the tree and performing list ranking on the Euler tour. The Euler tour of 

a tree reduces the computation of many tree problems to some form of list ranking. 

The Euler tour technique was introduced by Tarjan and Vishkin [152].

An Eulcrian circuit is a circuit in a graph which traverses every edge precisely once.

I
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Given an undirected and unrooted tree, by replacing each edge of the tree by two 

anti-parallel directed edges an Eulerian circuit (or Euler tour) can be constructed 

optimally by a clever use of the adjacency lists of the tree vertices and the optimal 

list ranking algorithm (see for example (52], pages 21 -24). If we break the Eulerian 

tour at an arbitrary edge, fixing some edge (», j )  as a first edge of the list so formed, 

then it is easy to see that the tour represents a depth-first traversal of the tree with 

i as the root. Tarjan and Vishkin called such a list a traversal list of the tree. The 

parent-child relation, preorder and postorder numbering, number of descendants 

of each vertex can be determined by ranking the traversal list using appropriate 

weights [152]. Hence, all these tree functions can be computed in O(logzi) time 

using 0 ( n /  log v) processors on an EREW PRAM.

We can also use the traversal list to compute the distance of each vertex from the 

root of the tree. This proved to be key subroutine used to compute the biconnectcd 

components of a graph (152]. A graph is biconncctcd if there is no vertex whose 

removal leaves the graph disconnected. Using the Euler tour in trees, Schicbcr and 

Vishkin [ 140] solved another problem on trees, that of finding the lowest common 

ancestor of each pair of vertices. This was then used as part of optimal algorithms 

for computing strong orientations of sparse graphs. Given an undirected graph, the 

strong orientation problem is to assign a direction to each edge so that (he resulting 

graph is strongly connected. A graph is strongly connected if for any pair of vertices 

u and v, there exist directed paths from ii to v and from v to u.

I
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2.5.2 Tree contraction

Tree contraction is an efficient parallel method of evaluating an expression given 

the associated tree. The method transforms the input tree in stages using local 

operations in such a way that an /i-node tree is contracted into a single node by local 

contractions in O(logn) stages, each of which takes constant time on a PRAM. 

Optimal algorithms for tree contraction are described by Gibbons and Rytter [53] 

and others in [29, 47], that run in Oflog n) time on an EREW PRAM.

In addition to expression evaluation, tree contraction has been applied to a wide 

variety of problems. The technique easily generalises to arbitrary (nonbinary) 

trees, and has been used to drive parallel algorithms for various graph-theoretic 

computations on trees such as maximum matching, minimum vertex cover and 

maximum independent set [62]. Other applications of tree contraction can be found 

in [105].

2.5.3 Ear decomposition

An Ear decomposition of a graph is an ordered collection simple paths called cars, 

such that the end points of each car appear in previous cars but such that the interior 

vertices of each ear appear for the first time in that car. Ear decomposition search 

has been developed for undirected graphs and was suggested as a replacement for 

dfs to search undirected graphs. This method provides efficient parallel algorithms 

for several graph problems on the PRAM model. This can be seen in figure 2.2. 

Several of these parallel algorithms convert to entirely new and optimal sequential

I
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algorithms. This is an example of a new emerging discipline enriching an existing 

one. Surveys of these results can be found in (42, 76, 128, 166],

2.5.4 Matrix computations

Matrix computation provides a fundamental tool for placing many graph problems 

in .VC, using the strategy of repeated matrix multiplication. Let .4 =  («,,) and 

D = (b,j) be n x n boolean matrices. Let C = AD  be the product of A and D\ 

that is, the ( i , j )  entry of C is defined by r,j = ®*=0("i* ® h j ) ,  where © and ® 

are two binary operators. This can be done in 0(log n ) time using n2 ’76 processors 

on a CRCW PRAM [35]. However, the algorithm is of theoretical interest only 

because it quite complicated and the big-oh notation hides a large constant factor 

in the running time, and the algebraic structure with the binary operates © and © 

requires to be a ring. The standard method of multiplication in Oflog n) time with 

n ' processors on a BREW PRAM, still remains the algorithm of practical choice.

The transitive closure of .4 (denoted by .4") is ©¡£lo-4*. where .4° =  /  (identity 

matrix) and .4* = A k~i ()A  for h > I . Let matrix D be the matrix /  0  A. It can be 

shown that A * = [68 |. Hence, the straightforward method of computing

the transitive closure of an v x ti matrix is to compute the 2 |jog2 ?/]"' power of the 

matrix D using repeated squaring as we explained in section 2.3.2.

We can solve several (directed) graph problems by taking powers of the adjacency 

matrix as in the transitive closure problem. For a given graph G(V , E) of n ver­

tices, the adjacency matrix of the graph is the u x n matrix, M  = (tn, j ) (say) such that
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rtiij =
1 if edge (*', j )  € E  

0 otherwise

The transitive closure of a graph G'( V, E)  is the graph (denoted by G'*) with nodes 

V  and edges E " =  {(*, j )  | there is path from i to j  in Gr'}. Let M" be the adjacency 

matrix of G". To find M" it is sufficient to compute the transitive closure of M  here 

® and are replaced by logical operators or and and respectively. Hence, by this 

computation we can find whether one vertex is reachable from another in a directed 

graph.

As a second example consider finding the shortest path between each pair of vertices 

in the weighted graph. Here the operators ® and are replaced by min and + 

respectively [85]. and the input matrix is the edge-weight matrix (i.e. m,j is weight 

of the edge

Several other problems on directed graphs can be solved using this strategy of 

repeated matrix multiplication. These include topological sorting and strong com­

ponents [128].

I



Chapter 3

Parallel Approximation Algorithm

A major part of this chapter is the description of an efficient parallel approximation 

algorithm for finding minimum weight perfect matching in graphs. This represents 

joint work with A.M. Gibbons and N. W. Holloway, which was published in the 

proceedings of the 19,,< International Workshop on Graph Theoretic Concepts in 

Computer Science [136]. Preliminary sections of the chapter provide essential 

background material.

3.1 Introduction

In sequential complexity theory, it has been the consensus view that the so-called 

NP-complete problems (which includes literally hundreds of computationally impor­

tant problems, many in the area of combinatorial optimisation) arc computationally 

intractable [3, 46. 49]. Although there is no proof of this fact, so much effort 

has been fruitlessly expended in the search for polynomial time algorithms that

I
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most theoreticians now believe that none exist. The absence of polynomial time 

algorithms for the NP-complete problems has spawned the development of many 

approximation algorithms which run in polynomial time but which provide an ap­

proximation (within guaranteed bounds) to the required result [46]. In a similar 

vein, N C  approximation algorithms for P-complele problems have been developed 

recently [ 102 , 141].

For many problems in P , not much is known concerning their parallel complex­

ity. For example, although the problem of constructing a minimum weight perfect 

matching is known to be in P N C  it is not known if it belongs to N C . A problem 

is said to belong to the class P N C  if the problem can be solved in polylogarithmic 

parallel time by a randomised parallel algorithm, using a polynomially bounded 

number of processors. A matching in a graph is a set of edges M , so that no two 

elements of M  have a common vertex. If every vertex of a graph is an end-point 

of some element of M  then M  is a perfect matching. Not every graph contains a 

perfect matching. Given a weighted graph, a minimum-weight perfect matching is a 

perfect matching whose sum of edge weights is a minimum.

In this chapter an N C  approximation algorithm is described for finding a minimum- 

weight perfect matchings in complete weighted graphs satisfying the triangle in­

equality. In a graph satisfying the triangle inequality, the weight of any single edge 

forming a triangle with two other edges is less than or equal to the sum of the weights 

of these other two edges. Such an inequality is satisfied in many natural problems. 

The problem that we address is an important sub-task for many problems of com­

binatorial optimisation and features, for example, in solutions to Chinese Postman
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Problems (CPP) and in Approximations to the Traveling Salesman Problem (TSP) 

149]. Given a graph (directed or undirected) and a weight for each edge, the CPP is 

the problem of finding a circuit of minimum total weight which contains each edge 

at least once. The TSP requires to find a minimum weight circuit of a weighted 

graph which visits every vertex at least once.

3.2 Performance ratios of approximation algorithms

We can measure the performance of an approximation algorithm by comparing the 

optimal solution and the (approximate) solution produced by the approximation 

algorithm [46). If Q is an optimisation problem and 7 a particular instance of that 

problem, then the performance ratio of an approximation algorithm .4 on 7 is given 

by R \ ( I ) defined as follows:

/?•»(/) =
if Q is a minimisation problem 

^  it Q  is a maximisation problem

Here .4(7) and ()p(I) arc respectively the approximate solution produced by the 

algorithm .4 on 7 and the optimal solution for 7. It is clear from this definition that 

7? i(/)  > I always. However, a useful performance ratio is a ratio that is known 

never to exceed some constrained value for any instance of the problem. Let 7? i 

denotes the worst-case performance ratio, for all problem instances. Then generally 

we require to prove that 7?,t is always constrained for any input.

I
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3.3 Minimum weight perfect matching

As [88] has emphasised, matching problems have played an important role in the 

foundations of sequential algorithmic complexity theory. This is because they are 

important problems that arise in many guises that can be solved in polynomial time, 

but for which all naive algorithms take exponential time. In fact, it was in Edmonds’ 

celebrated paper [41 ] on matching algorithms that the connection between tractable 

problems and polynomial time solvable problems was first made. It is likely that 

matching problems will play a similar role in the development of parallel algorithmic 

complexity theory.

There are practically no extant algorithms placing matching problems in N C  with 

the notable exception of the maximal matching problem [67] and certain algorithms 

for special classes of graphs. The class of problems which can be solved in poly- 

logarithmic expected time using a polynomial number of processors is called It N C  

(see, for example, [148]and section 2.5.5. of [88]). Most matching problems can 

be solved in parallel using randomness [77, 1 1 0 ] and so belong to the class I tNC.  

It has been stated [88] that whether a modern definition of a tractable problem in 

parallel computation is one can that can be solved rapidly with randomisation or 

one that can be solved rapidly without randomisation may ultimately depend upon 

whether fast parallel algorithms for matching require randomisation.

Even with restrictions on the graph such as completeness and triangle inequality 

satisfaction, the problem scents very difficult to place in N C . We have therefore 

addressed the problem of finding an N C  approximation algorithm. Specifically, we 

describe an N C  approximation algorithm for the minimum-weight perfect matching



34

problem for graphs satisfying triangle inequality for which 7 ? =  2 log, n. This is the 

first such deterministic algorithm with a sub-linear performance ratio. Previously, 

it was known (see [148]) that there is an JVC approximation algorithm for the 

maximum- (equivalently, minimum-) weight perfect matching problem such that 

77.4 = n.

Karp. Upfal and Wigderson [77] described an Ii.VC  algorithm for the minimum 

weight perfect matching problem, which runs in 0 (logu log2(H/ »)) time (after 

the improvements of [45]) using 0 (W » V5) processors, where W  is the maximum 

weight of any edge. A faster R N C  algorithm was obtained in [110] which runs 

(7(log2») time using 0 (mH,n , ! ) processors, where m  is the number of edges. 

These algorithms arc in 7?JVC only if W  is relatively small (that is, W -  n0<l)).

Although finding a JVC algorithm for minimum weight perfect matching seems to 

be hard, there are JVC algorithms for finding a perfect matching in special classes 

of unweighted graphs. Examples are dense graphs [37], bipartite graphs with a 

bounded permanent [60], complements of transitive oriental graphs [63] and line 

graphs [111]. However, there is no known deterministic NC algorithm for minimum 

weight perfect matching for complete graphs. The best known deterministic parallel 

algorithm for complete graphs runs in O(n*/p + ii2 log n) polynomial time using p 

(< n) processors [115].

An exact solution for minimum weight perfect matching can be computed in 0 (/i’) 

sequential time by the intricate algorithm of Edmonds [41 ] and this provides a target 

for the work measure of parallel algorithms. There arc sequential approximation 

algorithms for special graphs [66, 121, 137, 151]. The algorithms of [121] find an

I
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approximate minimum-weight perfect matching for graphs satisfying the triangle 

inequality. However, it is not clear that these algorithms can be effectively paral­

lelised. Even if they could be, they would provide a much more intricate solution 

to the problem solved in the following section. One of the virtues of the algorithm 

described here is its simplicity.

3.4 Approximate minimum weight perfect matching 

in a complete weighted graph

We start by providing an overview of the algorithm whose input is a complete 

weighted graph G = (V. E) with edge set E  and vertex set V, where | V  |=  n 

and n is even. The first part of the algorithm concerns the construction of a graph 

F = (V', E') where E' C E, thus F  may be obtained from E  by a set of edge 

deletions. The essential properties of F  will be that each component contains an 

even number of vertices and the total sum of its edge weights will be less than 

(2 log, n)M,  where M  is the sum of edge weights of a minimum weight perfect 

matching in G. The second part of the algorithm first constructs, for each component 

of F, a Hamiltonian circuit which will be even length. The sum of the edge weights 

over all such circuits is less than (4log, n)M.  A perfect matching in G is then 

obtained by taking alternate edges on each such circuit and such that (of the two 

possibilities presented by each circuit) the lightest weight possibility is chosen. The 

weight, M',  of the perfect matching constructed in this way satisfies the inequality: 

M' < 2M  log, n. We now consider the two parts of the algorithm in more detail.
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Afterwards we consider precise details of its parallel execution, justify the bounds 

on the approximation and consider the complexity parameters.

The Algorithm

/. Construction ofF.

The construction is performed over at most log, n phases. At the beginning of each 

phase, the vertices of G have been partitioned into disjoint subsets whose union is 

V. Each such subset is called a super-vertex. If such a super-vertex contains an 

even number of vertices of G, then it is an even super-vertex, otherwise it is an odd 

super-vertex. Before the first phase, every vertex of G is a super-vertex.

Now, the action of each phase is as follows. In the ilh phase, first construct the 

weighted complete graph G, which is the graph whose vertex set is the set of super- 

vertices and the edge (Vj, 14) between super-vertices Vj and V* has weight equal to 

the weight of the lightest edge in G that connects a vertex in Vj to a vertex in V*. Note 

that G, does not hold the triangle inequality. Now construct the complete weighted 

graph G\ from G, as follows. The vertices of 6 " are the odd super-vertices of G, and 

the weight of the edge (V'', V j) between the super-vertices Vj and Vj of G\ is the 

weight (that is, the sum of the weights of the edges) of a shortest path between these 

super-vertices in G,. We now construct a weighted digraph G'j, whose underlying 

graph (that is, the graph obtained by removing the edge orientations) is a subgraph 

of G[. The vertex set of G'j is the vertex set of G\. We choose precisely one edge 

to be directed from  each vertex of G'j. If e is an edge of least weight with such a 

vertex as an end-point in G[, then the edge chosen from the vertex in G'j is directed 

towards the vertex corresponding to the other end-point of < in G\. This directed
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edge has weight equal to the weight of e. Each such directed edge of G" corresponds 

to a path and so to a set of subset of edges (the edges on the path) of G, and, for 

all such directed edges, we now add to F  these corresponding subsets of edges. 

As we shall see later (Lemma 3.4.1), the sum of weights of these edges does not 

exceed 2M  log, n. To complete the description of what happens within each phase, 

it remains to say how the super-vertices are constructed for the next phase. Those 

super-vertices belonging to the same component of G" are coalesced into larger 

super-vertices. Provided all the super-vertices are not even super-vertices, we enter 

another phase of the construction of F.

2. Construction o f the matching from F

The input to this stage of the algorithm is the graph F. We arc interested in 

the partition of the vertices of G that is implied by the components of F. Each 

component F, of F has an even number of vertices of G. We find a minimum weight 

spanning forest of F , that is, a minimum weight spanning tree Ti for each F,. For 

each T, we then find a preorder numbering of the vertices. Now, for each 7’,, such 

a numbering defines an even-length circuit in G obtained by visiting the vertices in 

the order of their pre-order indices. For each such circuit, we take alternative edges 

(of the two possible subsets that can be chosen in this way, we choose that of the 

smallest weight) to be edges of the approximate minimum-weight perfect matching. 

The total weight (Lemma 3.4.2) of edges chosen to belong to the approximate weight 

perfect matching is less than 2 M  log, n

end of the algorithm
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3.4.1 Validity of the approximation ratio claim

We now prove that the total weight of the edges of the graph F  is less than 2 M  log , n. 

First notice that within each iterated phase employed in the construction of F , each 

odd super-vertex is coalesced with at least one other so that the number of odd super- 

vertices reduces by a factor of at least two within each phase. However, we continue 

to iterate only if there are odd super-vertices remaining and this only happens if at 

least three odd super-vertices are coalesced. Thus log, n repetitions arc sufficient 

to remove all the odd super-vertices (notice that by an elementary theorem of graph 

theory, there will always be an even number of odd super-vertices). All we now 

need for our proof is the following Lemma.

Lemma 3.4.1 The sum o f  the edge weights o f the edges added to F in each iterated 

phase o f its construction is less than or equal to 2 M.

Proof In any of the iterated phases used in the construction of F , the edges added 

to F  are those belonging, for every odd super-vertex, to a shortest path from such a 

super-vertex to another. We first show that, in G',, there exists a path from any odd 

super-vertex to some other odd super-vertex only using edges of a minimum-weight 

perfect matching. Consider then any odd super-vertex V' of G,. Now because there 

arc an odd number of vertices of G in V, not all these vertices can be matched by 

edges of a minimum-weight perfect matching of G  which connect pairs of vertices 

contained in V. There must therefore be an edge of a minimum-weight perfect 

matching connecting V  to some other super-vertex that is a vertex of G,. This is the 

first edge of the path whose existence we wish to prove. If this edge takes us to a
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vertex corresponding to an odd super-vertex then we have finished. If it takes us to a 

even super-vertex, then it will match one of its constituent vertices and there will be 

an odd number remaining to be matched by a minimum-weight perfect matching. 

The implication is that there is another edge from this vertex corresponding to an 

even super-vertex which takes us on to yet another vertex of G,. Continuing in this 

way, we see that there must exist a path from every vertex of G, corresponding to an 

odd super-vertex to a similar vertex and that in G, such a path only uses edges of a 

minimum-weight perfect matching. Notice, of course, that any two such paths may 

have edges in common. Let S* be the sub-set of edges defining the shortest path 

from vertex A- (which corresponds to some odd super-vertex) to some other similar 

vertex which uses edges of a minimum-weight perfect matching only and let S[ be 

the subset defining the path from vertex A- to some odd super-vertex as constructed 

by the algorithm.

We need to obtain a worst case bound on the weight of the union of the S[ in terms of 

the weight of the union of the S*-. This is because we already have a worst case bound 

on the weight o f the union of the S* provided by M , the weight of a minimum-weight 

perfect matching of G. Notice that for all k, weight(S'k ) < weiglit(Si,) because 

the algorithm chooses minimum-weight paths; however, it docs not follow that the 

weight of the union of the Sk. will be less than the weight of the union of the S* 

because there may be an entirely different sharing of edges between paths in the two 

cases. To obtain a worst bound, we need to consider the cases in which the S'k have a 

minimum union and the S* have a maximum union. By maximum (minimum) union 

we mean that the number of shared edges of paths between the odd super-vertices 

is maximum(minimum). In the latter case, notice that no two of the 5« may share
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edges whose combined weight is more than half the weight of the lightest set of the 

two, otherwise the St would not be shortest paths of their type. The situation of a 

maximum weight union of the S* corresponds to every path sharing half its weight 

with every other path. The case of minimising the weight of the union of edges of 

the S'k is essentially that of practically no sharing (although the detail is a little more 

subtle, this observation suffices to achieve the bound we seek). Thus, the weight of 

the union of the Sk. is bounded, in the worst case, by twice the weight the union of 

the St, but the weight of the union of the S* is bounded by XI and so the lemma 

follows. □

We have proved that the sum of the weights of the edges of F  is bounded by 

2M  log, n. The following Lemma provides a similar bound on the approximation 

ratio of the algorithm.

Lemma 3.4.2 The weight, M '. o f the perfect matching found hy the algorithm is 

hounded as follows:

M ' < 2 M  log, n

where, M is the weight o f a minimum-weight perfect matching and n is the number 

o f nodes o f G. The input G is a complete weighted graph satisfying the triangle 

inequality.

Proof The total weight of the edges of the graph F  is, by Lemma 3.4.1, bounded by 

2M  log, n. For each component F, of F, the total weight of the edges of T, is less 

than the total weight of the edges of F„ because T, is a minimum weight spanning 

tree of F,. Hence, the total weight of all the trees edges is less than 2M  log, n.
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For each T,, consider the standard twice-around-the-spanning-tree circuit (see, for 

example, [49]), C,, obtained by visiting the nodes in pre-order and making short­

cuts to avoid re-visiting nodes that have already been visited. Such short-cuts are 

always possible because G is complete and they will be short-cuts because we have 

triangle-inequality holding. Thus, for each », the weight of C, is bounded by twice 

the weight of T,'s edges. However, the weight of the edges chosen for the matching 

from C, constitute at most half the weight of the circuit and so at most weight of T,. 

Thus, over all such circuits, we choose a weight of edges for the matching which is 

less than or equal to the weight of F  and the lemma is proved. □

3.4.2 Parallel execution and complexity of the algorithm

Consider first the construction of the graph F. There are log, n phases and within 

each, the activities dominating the computation time arc the construction of all 

shortest paths and the coalescing of super-vertices which can be achieved by an 

algorithm for finding connected components of a graph. As we cite later, there are 

well known polylogarithmic time parallel algorithms performing these tasks using a 

polynomial numbers of processors. Other tasks arc trivially solved by more efficient 

parallel algorithms. Thus, we may express the time-complexity for constructing 

F  as 0( (SP (n )  + CC(ti)) log n ) using max(psp(n) +  prep,)) processors, where 

SP(n)  is the parallel time for the all shortest paths problem using psp(n) and CC(ii) 

is the parallel time for the connected components problem using pcc{n) processors.

Now consider the construction of the approximate minimum-weight perfect match­

ing from the graph F. The dominating activity from the point of view of the
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computation time might seem to be that of finding a spanning forest. This can be 

done in log2 n time using n2/lo g 2 j/ processors [25]. A pre-order numbering of 

tree vertices can be found by the Euler tour technique of [152], and the problem of 

choosing a set of alternate edges of least weight from a circuit can be computed by 

employing ranking and summing. Note that the parallel time and work required for 

the construction of the approximate minimum-weight perfect matching from F  are 

small compared with what are required for the construction of F.

Thus overall, we see that the problem of finding an approximate minimum-weight 

perfect matching has a parallel solution taking 0(( SP (n )  -I- CC(n)) logn) time 

using rnax(psp(n), Pcc(n)) processors. We can now see what this means in terms of 

variants of the P-RAM and using the best extant parallel algorithms for the problems 

of finding all shortest paths and connected components.

Consider first the best practical (in terms of modest constants hidden by the order 

notation) extant solutions for the all pairs shortest path problem. The problem can 

be solved in (7(log2 n) time using n3/  log a processors on a CREW P-RAM or on 

an EREW P-RAM. These algorithms arc adaptations (sec, for example, [52]) of a 

common CRCW P-RAM algorithm of Kuccra [85]. Clearly, the same algorithm 

will run within the same complexity bounds on an arbitrary CRCW P-RAM. On the 

model for which it was described. Kuccra's algorithm runs in Oflog n) time using 

n4 processors. Now consider the best extant solutions for the connected components 

problem. The problem can be solved on an arbitrary CRCW P-RAM in Oflog ii) 

time using {m + n) processor* [144], For the EREW P-RAM [73] (and therefore 

for the CREW P-RAM. although an earlier algorithm [70] already existed for this
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model) the problem can be solved in 0 (log3̂ 2 n) time using 0 (m  + n) processors, 

where m  is the number of edges.

From the preceding information, we have the following theorem.

Theorem 3.4.1 There is an algorithm to find an approximate minimum-weight per­

fect matching o f a complete weighted graph satisfying the triangle inequality, with 

n nodes, having a performance ratio Ii,\ = 2 log, n which:

1. runs in (7(log2 n ) time using ti* processors on an arbitrary CRCW P-RAM.

2. runs in 0(log3 n) time using n3/  log n processors on either a CREW P-RAM 

or an EREW P-RAM.

For all P-RAM models, the problem of finding all shortest paths (both in terms of 

time complexity and work) dominates the computation time and the work measure 

(that is, the processor number, computation time product). The best sequential time- 

complexity for an exact solution on complete graphs, ()(n3), can still be achieved 

by the primal-dual algorithm of Edmonds |40| as improved by Gabow [44| and 

Lawler [87). Thus, our algorithm is within a factor of log2 n of the work measure 

of Edmonds' algorithm. The faster computation afforded by implementation on the 

CRCW P-RAM comes (as in commonly the case for P-RAM implementations) at a 

high cost in terms of numbers of processors required.
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3.5 Further work

There are many open problems in the area of parallel approximation. In general, the 

question of approximating certain intransigent problems in NC,  although often dif­

ficult does provide some hope for fast parallel computation which may not otherwise 

exist. We believe that work in the area of parallel approximation is bound to play 

an important role in a deep understanding of parallel computation. The following 

describe some further work in this area.

1. The existence of parallel algorithms. Some P-complete problems do not 

have an approximating solution in N C  for any value of the performance ratio 

unless N C  =  P  [81, 82, 141). One such problem is Linear Programming 

(L P ) [141 ]. Given an integer n x d matrix .4, an integer n x 1 vector b, and 

an integer 1 x <I vector c, LP  problem is to find a rational d x 1 vector ./• such 

that .4.r <  h and C.r is maximised. Identifying such problems will further 

refine the complexity classes.

2. Threshold behavior. Some P-complete problems exhibit threshold behavior. 

For certain values of the performance ratio, an approximation algorithm exists 

while no such algorithm can exist for other values [9, 142, 141). For example 

consider the High Degree Subgraph (HDS)  problem, defined as follows: For 

given a graph G compute the largest d such that the nodes of the induced 

subgraph of G have degree at least d. This problem cannot be approximated 

in N C  by a performance ratio 7?.» < 2 unless P  = N C ,  but it can be 

approximated to within any R A for /? ., > 2 by an algorithm in N C  |9). Many
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Chapter 4

Realistic Issues

4.1 Introduction

The PRAM is a virtual design-space for a parallel computer, that is the PRAM 

is a theoretical model of an idealised parallel computer. The PRAM assumes 

constant-length data paths from every processor to every memory cell. In current 

technology, this quickly becomes physically unrcalisable as we scale up the number 

of processors and the size of the shared memory. In feasible large scale parallel 

computers, packing constraints such as this force the inevitability of employing 

communication networks. A feasible parallel model consists of processing elements 

each placed at the node of an inter-connection network. The machine memory is 

split into modules each of which is also located at a node of the network. That is, an 

intercommunication docs not generally provide constant time access between every 

processor and every memory location. Further delays can occur due to congestion 

in the network and contention at the memory modules. The need for such networks
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may be obviated in the long term by the appearance of new technologies (optical 

communication provides one such hope (8 , 99, 131]), but for the foreseeable future 

we will have to contend with the complication of networks with communication 

delay and restricted message passing density. The PRAM does not account for 

possibility processor failure and break down in communication links. Moreover, 

the PRAM assumes that it operates in lock step synchrony, but the processors of the 

feasible models may or may not have to be synchronised. This chapter reviews all 

of these issues. In chapter 6 we demonstrate that using the facts described in this 

chapter there is no theoretical hindrance in designing a feasible large scale parallel 

computer.

4.2 Interconnection Networks

A feasible parallel computer is a number of processing elements interconnected 

by a network. Each processing element may thought of as a conventional random 

access machine. The interconnection network can be depicted by a graph in which 

edges represent communication links and nodes represent processing elements or 

switching elements. Each processing element or switching clement has ability 

to route messages (one in unit time) to adjacent nodes of the graph. The inter­

connection networks can be broken into two broad classes depending on whether or 

not a processing clement is located at every node. In a multistage or indirect network, 

the computing elements and memory modules arc interconnected by a network of 

switches. In a direct network, there is a (processing clement) computing clement 

and a memory module at each node of the network. Note that, in both networks
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each computing element can access any memory module. Hence, we consider the 

union of the memory modules in both networks as a virtual shared memory.

The cost of communication is related to the topology of the graph. To reflect physical 

packaging constraints we require that the degree of the graph should be small. The 

degree of a graph is the maximum number of edges attached to any node of the 

graph. The diameter of a graph is the maximum minimum-length path between 

any pair of nodes of the graph. TWo processors may be separated by a path of this 

length. Therefore the diameter provides a lower bound on communication delay in 

the graph. Thus we require that both the degree and the diameter of a graph are 

small (preferably constant or growing slowly, for example logarithmically with the 

size of the graph). Note that we should consider the tradeoff between diameter and 

degree. For example, Moore graphs, which arc graphs of minimum diameter for 

fixed network size and degree, have been studied in [69]. However, the need to able 

to support high parallel message passing density dictate a little away from optimality 

in Moore sense. Also we may advantageously use recursively decomposable graphs 

which not only naturally support recursive algorithms but can also aid physical 

construction and size enhancement. Here we describe some of the networks that 

have been proposed for general purposes [88, 124, 146. 147, 153],

4.2.1 The hypercube family
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Figure 4.1:

Hypercube

The (/-dimensional hypercube, d-hypercube, has n = 2'1 nodes and <12rf_l edges. 

For example, I, 2 and 3 dimensional hypcreubcs are shown in figure 4.1 (a), (b) 

and (c) respectively. Nodes are addressed by binary strings of length <1 and edges 

connect binary strings which differ in precisely one bit position. As a consequence, 

each node is incident to d = log n other nodes. Thus the degree of the d-hypercube 

is log a. The length of a shortest path between any pair of nodes is the number of 

positions in which their binary strings differ. Since binary strings of any two nodes 

differ in at most d positions, the diameter of the hypercubc is il. A shortest path 

from a node, .4, to a node, B, can be constructed by successively visiting the nodes 

whose labels are those obtained by modifying the bits of .4 one by one (for example, 

from left most significant bit to right most significant bit) in order to transform .4 

into B. For example, the shortest path between 000 and 011 in the d-hypercube is 

000 -» 010 -» O il.

Edges which connect nodes which differ in the i"‘ position arc called edges of the
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i"‘ dimension. The hypercube is a recursively decomposable graph. If we remove 

the i"‘ dimension edges of the d-hypercube, for 1 < i <  d, then we get two disjoint 

copies of a (d-l)-hypercube. Conversely, a d-hypercube can be constructed from 

two (d-1 )-hypercubes, by joining every vertex of the first (d-1 )-hypercube to the 

vertex of the second having the same number (or binary string). Indeed, it suffices 

to renumber the nodes of the first cube as b\b2 • • bj_ ,0  (add 0 as last bit) and 

b,/>2 ■ ■ • 1 (add 1 as last b it), where b,b2 ■ ■ ■ bj-\ is a binary string representing

the two similar nodes of the (d-1)-hypercubes.

The cube-connected cycles, butterfly and Benes networks

Although the hypcrcube is quite powerful from a computational point of view, the 

degree of the hypercube grows logarithmically with its size. This is a disadvantage of 

its use as an interconnection network for parallel computation. The cube-connected 

cycles [123], the butterfly network and the Benes network [15] can be regarded as 

constant-degree variations of the hypcrcubc. These networks have properties similar 

to those of the hypcrcubc.

A <1 dimensional cube connected cycles (d-cube connected cycles) is a d-hypercube 

in which each node of the hypcrcubc has been replaced by cycle of <1 nodes. Hence 

the d-cube connected cycles has ii =  ill'1 nodes. The ¡"' dimensional edge origi­

nally incident to a node of the hypcrcubc is now connected to the i"‘ node of the 

corresponding cycle. Each node of the cube connected cycles can be represented by 

a pair (/>, c), where p is the position of the node of the cycle c. For each node (p. c) 

of the d-cube connected cycles e is a </-bit binary string and I < p < </, since there
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Figure 4.2:

arc d nodes in any cycle of (he d-cube connected cycle and each cycle corresponds 

to a node of the d-hypercuhe. Two nodes of the d-cube connected cycles (p. c) 

and (p',c') are connected by an edge if and only if p = / /  and c differs from c' in 

precisely the p"' bit, or <• = d  and |p — pt\ is I or </ — 1. Figure 4.2 illustrates the 

graph for d = 3. It is easy to see that, for all <1, the degree of a d-cube connected 

cycles is three. The diameter is 3 [r//2] or 3 [log n/2] for a d-cube connected cycles. 

This is because a message from (p, r) to (/>'. r') can reach (p, d) within <1 steps then 

(p, d) to (p \ d) takes at most \d / l \  steps.

Figure 4.3 shows the butterfly of dimension 3. In general, a d dimensional butterfly, 

d-butterfty or n-input butterfly, has 2''( d + 1 ) (or n (log n + 1 )) nodes and 2',+ 1 d (or 

2n log n) edges. The butterfly network is an example of a multistage network. The 

nodes arc divided into (d + 1) levels with 2'1 nodes in each level. Sometimes, the 

nodes on level 0 arc called Inputs and the nodes on level d arc called outputs. Let 

node (r, /) refer to the node on the rlh row and the l"‘ level, where r is a r/-bit binary
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level 0 level 1 level 2 level 3

Figure 4.3:
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string and 0 < / < d. There is an edge between nodes (r, I) and (/•', /') if and only if 

/ =  / '+ !  and either r = r' or r and r' differ in precisely l"‘ bit. The entire network 

is made of such "butterfly" pattern hence the name. The butterfly has a interesting 

recursive structure, by removing level 0 nodes of the d-butterfty we can obtain two 

(d-l)-butterfties. Moreover, a d-hypercube can be obtained from a d-buiierfly by 

collapsing each row of nodes, i.e. i"‘ node of the hypercube corresponds to the i,h 

row of the butterfly.

There is a unique path of length log u (or </) from every input node to every output 

node in the d-butterfty. This unique path is referred to sometimes as the logical path. 

The path between input node u and output node v can be constructed by using the 

edge from a i,h level node (w, i ) to a i + I *' level node (w', i + 1), 0 <  i < d — 1, such 

that w and w' differ in the ( / + 1)"' bit if ii and r differ in the (i +  1)”' bit otherwise 

ti> = ir'. In other words, the path from an input to an output moves downwards 

at a node on the tlh level 0 < i <  (</ — I ) if the (« + 1)"' bit of the destination is 

a I, and upward otherwise. The unique path from (001.0) to (100,3) is shown in 

figure 4.3. As a simple consequence of this fact, we can sec that any two nodes in 

the d-butterfty can be connected by a path of length at most 2 log n (or 2d). The 

diameter of the d-butterfty is 2 log n or 2d, and the (maximum) degree is 4.

A number of variations of the butterfly have been proposed in the literature (for 

example sec (84]) which include the wrapped butterfly, the omega network, the 

flip network, the Banyan and Delta network, the A-ary butterflies and the Bcncs 

network. Among the variations the Bcncs network has an interesting property. 

The d dimensional Bcncs network, d-Hcnes network is constructed from two d-
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butterflies connected back-to-back. Figure 4.4 shows the 3-Benes network. On the 

Bcncs network of d dimension we can construct edge-disjoint paths one path from 

each node on level 0 to a unique node at level 2d, for any permutation of the inputs 

to the outputs [ 15, 50, 168).

4.2.2 The shuffle-exchange and de Bruijn networks

The (/ dimensional shuffle-exchange graph, d-shuffle-exchange graph, has n nodes 

and 3t;/2 edges, where n = 2'1, Each node i, for I < i < n — 1, is labeled with a 

corresponding f/-bit binary string [ 150). There arc two types of edges, a shuffle edge 

connects any node b\ki..hm to the node and an exchange edge connects

any node b\hj..bm to the node b\b2 ..tfm, where h„, ^  h'm, Hence the maximum 

degree of d-shuffle-exchange graph is three, for all d. For example, see figure 4.5 

lor a 3-dimensional shuffle-exchange graph. In the figure dashed edges represent
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oio on

Figure 4.5:

001 o il

Figure 4.6:

exchange edges, and solid edges represent shuffle edges. The diameter of a d- 

sh uffle - exchange graph is 2 log n -  1 or 2d -  1. We can construct a path of length at 

most 2 log n — I between any two nodes in the d-.•shuffle-exchange graph by simply 

using the exchange edges and shuffle edges alternately.

The <1 dimensional dc Bruijn graph has n nodes, where n = 2'1. The nodes arc 

labeled from 0 to n -  I with binary labels. The graph has 2n edges. There is an 

edge between two nodes u and c if and only if ii = />, l>2 • • • h,t and v is Mb • • • M), 

Mb •••/»,<1, Oh, l>2 ■ ■ • l>,i_ | or 1 l>t l>2 ■ ■ ■ b j - 1. The <I dimensional dc Bruijn graphs have 

diameter of </(= log n) and their degree is four. Figure 4.6 shows the 3-dimensional 

de Bruijn graph. In chapter 5 we shall look this graph in more detail.
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Figure 4.7:

4.2.3 Meshes

Meshes are another class of network that have received wide attention. A d di­

mensional mesh, d-mesh, of dimensions <l\ ,d2, - - - .  d,t has nodes {1 1 } x

{1, * * 4/2} x ••• x {1, • • •, </,<} and edges connecting each node of the form

[-1 - - 2. with nodes [*i. «2, •••,*< ±  I , • • •, crf], for I <  i <  d. Such

a mesh is called a d\ x <lj x ■ • • x dj  mesh. The diameter of a d-mesh is

(r/i — 1 ) + (<¡2 — !) +  ••• +  (i/j — 1 ) and it has degree of 2d, if each d, > 3.

If all the dimensions arc of the same size, N  (say), then the diameter is the mini­

mum for fixed number of nodes and d. That is, the number of nodes n is equal to 

,\ x A x - x N  = N '1 and the diameter is H( n 1̂ ) .  Moreover, if all the dimensions 

equal to 2 then the d-mesh is the d-hypercube. ( 4 x 5 )  2-mesh, ( 4 x 4 x 2 )  d-mesh 

and ( 2 x 2 x 2 x 2 ) d-mesh (or 4-hypercuhe) arc shown in figure 4.7 (a),(b) and (c) 

respectively.

Although (low dimensional) meshes are relatively simple to construct, they suffer 

from having large diameter. However, by adding edges to the mesh the diameter can 

be reduced by a small constant factor. For example, figure 4.8(a) shows a (4 x 4)
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(a) (b)

Figure 4.8:

mesh with wrap-around connections and figure 4.8(b) shows the same mesh with 

toroidal connections.

By adding nodes and edges to the d dimensional N  x  N  x  - A ' mesh, such that 

the A’ nodes of each one-dimensional "row" arc the leaves of a complete binary 

tree, we can construct a graph called a mesh o f trees. This has the small diameter 

2d log .V. For example, consider a 2-dimcnsional N  x Ar mesh of trees, which can 

be constructed from an .V x N  mesh by adding nodes and edges to form a complete 

binary tree in each row and each column. In a 2-dimcnsional mesh of trees any two 

nodes u, v can be connected by a path of length at most 4 log ,V. Suppose u is a 

node on the row and i> is a node on the j lh column and let w be the node on the 

/"' row and j " ‘ column. We first construct a path of length at most 2 log n from u to 

w using the tree of the i"' row and then finish the path in at most 2 log n steps from 

te to ti using the tree of the j " ‘ column. Hence the diameter is 4 log ti.
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4.2.4 Randomly-wired networks

Among randomly-wired networks the most popular one is called multibutterfly. 

Informally, the </ dimensional multibutterfly is like a d-hutterfly in which the nodes 

at each level are randomly connected to the next level [155]. The object of random 

wiring is that the logical path between the input nodes (the nodes on level 0) and 

the output nodes (the nodes on level d) of the <I dimensional multibutterfly can be 

realised by a myriad of physical paths. We shall see in section 4.3.3 that the large 

number of these paths allow to construct an optimal routing in the network. Recall 

that, there is the unique path of length d between every input node and every output 

node in the d-butterfly. To define the multibutterfly network more formally, we need 

to understand the graph called a splitter, which is the basic building block of the 

network.

An (a,l),m ,2k-)- or m-input- splitter is a bipartite graph G = (A . D . E ), where 

|A| =  \B\ = in. A graph is bipartite, if it is possible to partition the vertices of 

the graph into two subsets, .4 and D, such that every edge of the graph connects a 

vertex in .4 to a vertex in D. The nodes in .4 arc arc called inputs, and the nodes 

in D arc called outputs. The outputs arc divided into two blocks of n /2  nodes. 

The block consisting of the first n/2  nodes is called the upper block, and the block 

consisting of the remaining nodes is called the lower block. The edges from the 

inputs to the upper block arc called up edges, and those to the lower block arc called 

down edges. The up and down edges arc chosen at random subject to the constraint 

that each input is incident to k- up and down edges, and each output is incident to 

2k edges. Moreover, the splitter has («, (i)-expansion, i.e., every subset of inputs,
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up edges

Figure 4.9:

-V, |-Y| < a m , is connected to at least /i|A'| outputs in the upper block and ,i|.Y| 

outputs in the lower block (see figure 4.9). Note that, although splitters can be 

constructed deterministically in polynomial time, random choice of edges provides 

the best known possible expansion [71,95, 155). Sec for example [89) for recent 

work on practical implementations of this network.

An (n,k,  a , fl)-multibutterfly is a logo dimensional network, with ii input nodes 

and n output nodes. The niultibutterfly and the log n-butterfly arc strongly related 

to each other. The only difference between the two networks is that the degree of 

log n-butterfly is 4, and the degree of the niultihuttcrfly is 2k. More precisely, in the 

niultibutterfly. the edges from level / to level / + I in rows j n / 21 to (j  + I )n/2'  form 

a (o ,/i, n/2‘,2k)-or n/21-input-splitter, for all 0 < / <  log)» -  I ) undo < j  < 2'.
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N input N/2 input N/4 input
Splitter Splitter Splitter

N outputs

Figure 4.10:

The nodes on each level of multibutterfly can be partitioned into blocks. All the nodes 

on level 0 belong to same block. On level 1, there arc two blocks, one consisting 

of the nodes that are in the upper tt/2 rows, and other consisting of the nodes that 

are in the lower ti/2 rows. In general, there arc 21 blocks of size n/21 on level /, for 

0 < / < log n. Each block l>t on level / is connected to two blocks of size n /2 ,+ l on 

level / T 1. We refer to the two blocks as the upper block, «/, and lower block, //. 

Now iii and // contain the nodes on level / + I that arc in the same row as the upper 

n/ 2,+ l nodes of l>t, and the same rows as the lower n/ 2,+ l nodes of hi, respectively. 

The three blocks, l>i, m and //, form the splitter (o, ¡1, n/21,2k),  for which hi forms 

inputs and (u/ U //) forms outputs. Figure 4.10 shows a mullibuttcrfly with ii inputs.

Like in the butterfly, the logical path between every input nodes and every output 

nodes can be constructed by using up and down edges. Furthermore, since each
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node has k■ up and k down edges, each step of a logical path can take any one of k 

edges. Hence, we have a large number of choices to construct one logical path.

4.3 Contention and congestion

In the PRAM there are conventions for multiple access to any one memory location 

depending on whether the PRAM is defined as EREW, CREW or CRCW. In feasible 

machines shared memory is distributed amongst memory modules, and the memory 

modules are connected by an interconnection network. Each memory module 

contains many memory locations, and each is capable of serving only a constant 

number of requests during each time step. This is because, the interconnection 

network can only carry a certain density of messages, and the memory modules can 

only store or retrieve a constant number of requests per time unit. Congestion occurs 

when network links or nodes arc overloaded with messages to pass. Contention 

occurs when memory modules arc overloaded with memory requests in any time 

step. Local congestion occurs at so-called hot spots. Unless hotspots arc managed, 

wc might not efficiently implement PRAM algorithms on the feasible models. This 

is because excessive accesses and transmission will be serialised and served over 

several sequential time steps.

One solution to avoid contention is to randomly distribute the logical addresses to 

the memory modules using some hash functions. Another solution is to keep the 

copies of each logical address in several memory modules [104, 156). A special kind 

of contention occurs when running a CRCW or CREW PRAM algorithm, several 

processors attempt to access (read or write) a value in the same memory location.



6 2
This can be avoided by a combining mechanism. Note that if the patterns of shared 

memory access are known in advance then we can deterministically distribute the 

shared memory among the memory modules to avoid contention.

A large amount of work (for example see [89] for a list of references) has been done 

on the development of efficient routing algorithms for interconnection networks, to 

reduce congestion and getting the right data to the right place within a reasonable 

time. A wide variety of routing problems may arise in practice, such as one-to- 

one routing problems or /tartial permutations: at most one message starts at each 

processing element and is destined for at most one processing element, one-to-many 

routing problem: one message may be destinated for more than one place, many-to- 

one routing problem: many messages are destined for the same place. In general, 

an h-relation is a routing problem in which at most h messages are sent front each 

processing clement and at most h messages arrive at each processing clement. The 

natural lower bound for routing is the diameter of a network. Deterministic parallel 

routing strategies can often be improved by using randomised algorithms. The 

routing paths can be set up in two ways. First, in an off-line fashion, the routing 

paths arc precomputed using global information. Second, in an on-line fashion, 

the routing paths arc made using only local information. We arc interested in on­

line routing, the requirement of global information for off-line routing is not often 

available, or can only be obtained with excessive time-penalties.

I



63

4.3.1 H ash ing

The most promising method to avoid contention is to randomly hash the memory. 

The PRAM memory locations are distributed among the memory modules of a fea­

sible machine using some hash function. In this section we consider that concurrent 

access does not occur (i.e. we consider only HREW PRAM algorithms). Suppose, 

an EREW PRAM algorithm uses M  memory locations. To implement the algorithm 

with p memory modules we randomly distribute the M  memory locations among 

l> memory modules. More precisely, all of the EREW PRAM memory locations 

which are logical addresses, are mapped into memory locations which are physical 

addresses of a feasible model, using some randomly chosen hash function h from 

5 a/, h: [0, • • •. M  — 1 ] —► [0. • • •, M  — 1 ]. 5 a/ is the full set of permutations of 

[0, ■ • •, M - 1], Let memory module p „  0 < ■ ?< /> — 1, contain the content of loca­

tion x, if logical address .r mapped into a physical address y, and physical address 

y is in the memory module />., i.e.,

h(x) = y and

y modp  = z, x ,y  € (0, • • •, M — 1],

The motivating idea is that if the random mapping is used by some hash function, 

then we can minimise the maximum number of memory requests which arc assigned 

to the same memory module. Let be the maximum of /?:, where /?.. is the 

number of requests for addresses located in module z, 0 < z < ¡> — I . The requests 

for each module arc queued in some order and served sequentially, thus we need 

to be small. In addition, we need to minimise the time for computing /i(.r), 

0 < r < M  — I, and storing the mapping. If li is a totally random function of
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the form h : [0, • • •, M — 1] —> [0, • • • M — 1] (i.e. randomly chosen from Sa/), then 

every computing element needs additional, log M m = M  log M  bits (assuming a 

suitable encoding) to store an element h e 5a/, which can be expensive if M  is 

large. Fortunately, it is sufficient for us to choose // randomly from among a much 

smaller set, H  (say), of easily computable functions. Hash functions for this parallel 

context have been analysed by Mehlhorn and Vishkin [104]. Their work is based on 

universal hashing as introduced by Carter and Wcgman [21].

Suppose an arbitrary step of an EREW PRAM requests a set S up to t> number of 

addresses of the shared memory (i.e. |S | < t>), where 5  C [0. • • •, M — 1], Then we 

need to make sure that h(S)  is spread evenly among // memory modules. Consider 

the class H of hash functions h of the form.

//(x) = (ao + rt|X +  • • • + a*_|X*-1 ) mod M,

where no, a i, • • •, u*_ i arc b integers chosen uniformly and independently at random 

from the interval [ I , A/ — 1 ]. Let Rmax(p, v . H)  be the maximum number of requests 

to the memory module which has the largest such number, with respect to all possible 

5 addresses of size t’, and with respect to all hash functions of H.  Using the results 

of [104] Valiant proved the following results [158],

Theorem 4.3.1 Let v = //log// and h = 4 log//. I f  M  is prime then with a high 

probability Rmar(p, v . H)  = .flog// = J.v/p.

Note that if M  is not prime then we can choose M ' where M' is the smallest prime 

larger than M, and define the corresponding H as before but for .)/' rather than
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M . From theorem 4.3.1 we can see that r requests are spread evenly among p 

memory modules, with high probability each module will get no more than 3 .e/p 

requests which is only three times the expected number. However, H  is not a class 

of permutations, the hash functions randomly drawn from H are not one-to-one. 

Up to k- = 4 logy) addresses may map to the same memory location. This can 

be avoided with high probability by choosing different hash functions of the form, 

h mod [3//;)], where h Ç. H and k > 4 logy) [158]. Another problem of this 

hashing occurs if v = p. Then rather than having a constant number of requests 

to each memory module, with high probability one memory module will get about 

logy>/ log log y) number of requests and some will get none. Hence, we need to 

ensure that t> > p log p.

Since we are using the class of polynomials of degree k- =  4 logy), we need 

special purpose hardware to compute these polynomials in constant time. Note 

that O(loglogy)) parallel steps are needed to evaluate the logy) degree polyno­

mials. However, recent analysis shows that a fixed degree polynomial is suffi­

cient [83, 145, 130, 109]. For example, the class of hash functions of the form 

((« + b.r) mod 3 /'), where a, b e  [1 ,3 /' — I], will result in excellent performance, 

if the choice of a, b is suitably restricted [ 109]. The following theorem is proved in 

183] for the class of hashing functions of fixed degree k-.

Theorem 4.3.2 Let v = y)1 and Id k- > 6o . I f  M  = r"  then with high probability 

n<nns(l>,V.H) = 2.vlp.

Note that whenever more than 2.t>/p requests arc generated for any memory module 

we rehash the entire memory, using a new randomly chosen hash function b € H.
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However, the probability of rehashing is significantly small.

4.3.2 Combining

In the last section we saw how to evenly distribute the memory accesses among 

memory modules when all of the memory accesses are for distinct memory locations 

(or addresses). Several or all the computing elements may wish to access not only 

the same memory module, but also the same memory location at the same time. This 

may happen when running a CRCW or CREW PRAM algorithm. Here, randomly 

distributing the PRAM memory to the memory modules cannot help. The number 

of accesses for the same memory location at the same time will be the same no 

matter where the memory location physically exists.

Fortunately, we can solve this (concurrent) access problem by using a so-called 

combining technique. For example, in a butterfly network each request for accessing 

a common memory location moves along the directed path from its source to the 

destination in the interconnection network. These paths are in general not disjoint. 

Thus these requests can be viewed as flowing from the leaves of a tree to the root. 

Then as explained below we can combine these messages into a single message at 

a node of the tree.

Suppose the requests arc for reading the same memory location, concurrent read, 

then there is no need to send more than one read request along any branch of this 

tree. Of course, the reply message needs to flow in the reverse direction, along each 

edge of the tree so that each requesting processor receives a reply. To accomplish 

this, whenever the read requests are combined at a node of the tree, the sources of the
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requests in that stage are stored at that node. Suppose several computing elements 

want to write a value in the same memory location at the same time, concurrent 

writes (write conflicts can be resolved as explained in section 2.2). Whenever two 

or more concurrent write requests meet at a node of the tree, the node can send any 

one of the requests. Moreover, for concurrent write we do not have to worry about 

a flow of information in the reverse direction. Note that, two or more requests to 

distinct memory locations within the same memory module might be passed through 

a node, in which case the requests should be concatenated.

One approach to implementing combining is to use combining networks, i.e. net­

works that can combine and replicate messages in addition to delivering them in 

a point-to-point manner. The NYU Ultracomputer incorporates a combining net­

work; computing elements and memory modules arc connected by switches with 

the geometry of the Omega network [58], where the switches are capable of com­

bining the messages. The experiments on the NYU Ultracomputer reveal poor 

performance, and combining increases the switch si/.c and cost [119]. The Fluent 

machine of Ranade [ 129) supports inexpensive hardware for a combining network, 

and the combining (based on 1130]) is efficient. The nodes of the Fluent machine arc 

connected with the geometry of the butterfly. where each node contains a computing 

clement, a memory clement and 6 switches.

The reason that Ranadc's combining works well is that the requests leaving each 

node arc sorted by destination. This works with the help of ghost messages. These 

contain information on the minimum location address, which can identify to which 

subsequent messages can be sent. After a request leaves a node no more requests
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to the same destination will arrive at that node. In other words if two requests to 

a common destination pass through a node then they will pass through the node at 

the same time, in which case the node combines the two requests and forwards the 

result. So, a request waits at each node until the node determines that there arc no 

more messages arriving at the node which will request to the same destination, or 

until another request to the same destination arrives.

Ranade’s combining method ensures that the queue-size of the requests at each 

node is 0( 1). Moreover, if a memory of CRCW PRAM with size M  is randomly 

distributed among p nodes of the butterfly (each node is a computing element and a 

memory module), then the combining gives the following theorem. The memory is 

randomly distributed by the class of hash functions of the form ((« +  b.r) mod M'),  

where a, b £ [ 1. M ' — 1 ] and M ' is a fixed prime no less than M.

Theorem 4.3.3 1129] Let p he the number o f accesses requested by a CRCW PRAM 

at any step. The p accesses can be realised in a p node butterfly in time 15 log /» 

with hif>h probability.

In addition, concurrent requests to the same memory location can be provided 

without the use of combining networks. For example. Valiant 1158] and Kruskal et 

al. 183] provide algorithms for simulating concurrent requests on networks. The 

simulation uses a sorting algorithm of [ 127] to sort the concurrent requests according 

to the destination addressees so that access requests to the same location in memory 

will be adjacent in the sorted array. In [ 159] Valiant described another algorithm 

which is more efficient and practical than previous solutions [ 158, 83].
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Theorem 4.3.4 [159] For any constant e > 0, v <  ;>l+* requests o f CRCW PRAM 

can be realised on a p node network in optimal 0 ( j f  ) time with high probability.

The results assume that each node of the network has a computing element and 

a memory module, and the memory of a CRCW PRAM is distributed among the 

memory modules using the randomly chosen hash function as previously described. 

Moreover, the v requests of a CRCW PRAM are spread among ;> components such 

that each component sends at most p" requests.

4.3.3 Routing

The simplest kind of routing problem is a I-relation. In fact /-relations can be 

realised in a p-node network by sorting the p items. If processing elements arc 

indexed according to some natural scheme, then by sorting the items which are 

distributed across the network, one located at each processing element, we can route 

the item which would be the ilh (in a sorted list of the items) to the processing 

clement with index i.

Among deterministic parallel sorting algorithms the fastest known is based on the 

AKS sorting network which is a p-node bounded degree network and capable of 

sorting p items in 0(\ogp)  time [5], Although the algorithm is asymptotically 

optimal the constant factor involved in the run time is large, and the network 

topology is complicated and nonregular. Batcher's sorting algorithm 113] which has 

been known for several decades remains the most practical algorithm for sorting. 

For example, the algorithm can be implemented in (){p) lime on a p x p mesh, 

and in Of log2/») on a p-node hypcrcubc and on a p-node shuffle-exchange. This
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implementation matches the lower bound for the mesh, and is a log p factor worse 

than the lower bound for the hypercubc and shuffle-exchange networks. Recently, 

Cyper and Plaxton [36] described a sorting algorithm for sorting p items on a p-node 

hypercube in 0(log /#(log log/»)2) time orO(log /»(log log /»)) time with a substantial 

amount of off-line computation, which is very close to the lower bound. It is not 

known whether or not there is an on-line deterministic algorithm to realise a I- 

relation or to sort /» items on a log/» dimensional hypercubic network in 0 (lo g /») 

time.

If we restrict a deterministic routing algorithm to be oblivious, then the following 

lower bound holds. A routing algorithm is oblivious if the routing paths arc deter­

mined only by the sources and destinations, and not in any way by the interacting 

traffic on the network.

Theorem 4.3.5 ¡19, 72] For any oblivious algorithm there is a permutation rout­

ing problem or I-relation which will take £l(y/p/<P^2) time on a p-node degree-d 

network.

Among oblivious algorithms the greedy algorithms arc known to perform very well 

for almost all routing problems, and very poorly for some of the most important 

and most common routing problems in practice [88], A Greedy algorithm routes 

every packet along a shortest path to its destination. For example, on any log/» 

dimensional hypercubic network the greedy algorithm can realise any monotone 

routing problem, in optimal time, 0(log /») time. A monotone routing problem is 

a I-relation for which the relative order of the packets is unchanged. Similarly 

optimal performance is exhibited by the greedy algorithm for a routing problem for
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which each message has a destination address which is the complement of its initial 

address. This I-relation can be realised in exactly log p time on a p-node hypercube.

On the other hand, there are bad cases, such as the hit-reversal permutation and the 

transpose permutation, for which the greedy algorithm performs very poorly. Con­

sider the hit-reversal permutation, routing messages to the address of its initial loca­

tion read backwards, will take at least y/Ji steps on a p-node hypcrcube. The reason is 

that there are 2^^"“ -  ^  nodes with addresses of the form u\it2.. . .  »Hmi-nOO. . .  0, 

and all messages starting from such nodes will be at address (X). . .  0 halfway through 

execution of the algorithm (see section 4.2.1 for a shortest path between any two pairs 

of nodes in hypercube). The permutations associated with worst-case performance 

can be overcome by randomising the memory and/or randomised routing.

Any /-relation can be converted into a random routing problem by hashing the 

memory. This is because each message, x, will now be destined for a random 

location, h(x),  where the memory is randomised by the hash function h. Then the 

greedy algorithm can be shown to perform well on the butterfly as in (129, 130], 

However, there will still be some permutations which require i l(y/n)  time with low 

probability on the butterfly, if we use the greedy algorithm |89].

Valiant proposed a routing algorithm to realise any /-relation without altering the 

memory organisation at all (however, to solve memory contention problems we 

may need hashing and/or combining). Moreover, the algorithm docs not exhibit 

consistent worst case behavior for any ¡-relation |I60, 161, 163], This algorithm is 

known as two phase randomised routing, anti works as follows,

I. For each node / wishing to send a message, choose an intermediate target node
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t(i) randomly. That is, for the binary address of t(i) choose each bit to be 0 

or I with equal probability. Then send the messages by the greedy algorithm,

2. When a message reaches t(i) it is then sent to its true destination, again by the 

greedy algorithm.

Two phase randomised routing was first shown to work for the d-hypercuhe. With 

the high probability any ¡-relation can be realised in less than 8tl (or 8 log n) steps 

[163]. Using this two phase randomised routing, subsequent work has been extended 

to show that, with high probability a ¡-relation can be realised on a d-cube connected 

cycles, d-butterfly, d-shuffle-exchange and (d x d) 2-mesh in O(d) (i.e. proportional 

to the diameter of the network) steps [7, 88, 138, 154, 158]. Moreover, Valiant has 

proved the following stronger result for the hypercubc.

Theorem 4.3.6 / 15H] With high probability, every log p-relation can be realised on 

a p-node hypercube in (7( log p) steps.

An interesting alternative to using two phase randomised routing is to use determin­

istic routing on a randomly wired network. It is shown that deterministically any 

¡-relation can be realised on a log;» dimensional multibutterfly in ()(logp) steps 

[90. 155]. Moreover, the routing algorithm on the multibutterfly is shown to be 

robust against faults [90]. Recall that, there is a large number of paths between 

every input and every output on a multibutterfly.
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4.3.4 Information dispersal algorithm

The performance of a routing problem can be affected, when a node or a link ceases 

to transmit data, and/or when a node or a link transmits incorrect data. Moreover, 

if we use only one path to route a packet then every node and every link must be 

reliable. An obvious alternative is to create a number of copies of the packet, and 

route the packets along different paths. This will result in increase in the network 

load.

Rabin proposed a method in [125]. This is called the Information Dispersal Algo­

rithm (IDA) which breaks each packet into a collection of subpackets such that only 

a fraction of them suffice to reconstruct the original packet. Since only a fraction 

of the subpackets have to reach their destination, the algorithm is tolerant to faults. 

Using the IDA it has been shown that, with high probability, any / -relation can be 

realised on a p-node hypercube without any additional delay (i.e. in 0(log />) steps), 

even if many nodes and links in the hypercubc arc faulty [61, 97], Similar results 

have been obtained for the de Bruijn graph [98].

In addition, the IDA can be used to avoid contention in memory [ 12,88]. We encode 

each item in the memory into a number of subitems, k (say), such that the original 

item can be reconstructed from any fraction of the sub-items, storing each sub-item 

across k memory modules. Then contention can be avoided by simply dropping 

subitems, if they occur at hotspots.
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4.4 Synchrony and asynchrony

The PRAM model operates in lock step synchrony. There is an implicit synchro­

nisation barrier after every instruction. This lock step synchronisation guarantees 

that processors reading from global memory can be sure to obtain the correct value 

from that memory at the end of the previous instruction, easing the task of algorithm 

design. The PRAM model, however, neglects the cost of this synchronisation. If we 

add a synchronisation barrier after every step in a feasible parallel model algorithm, 

then this would increase the complexity by a factor typically of the order of the 

network diameter. This question is addressed again in chapter 6.
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Chapter 5

Embeddings

This chapter describes joint research with A.M. Gibbons and M.S. Paterson. The 

results described in this chapter on dense edge-disjoint embedding of binary tree 

were published in [ 133] and [ 134]. Similar results for the mesh, which appeared in 

[51 ] were merged with those of [133, 134] then extended and published in [ 135].

5.1 Introduction

Our concern in this chapter is the improvement of running times for PRAM al­

gorithms when implemented on feasible parallel computers in which processing 

elements with associated memory arc located at the node of an interconnection 

network. The implementation of a large class of PRAM computations on these 

models can be made to run optimally fast by the employment of certain strategics. 

For example, if a particular PRAM algorithmic structure is frequently employed, 

then the idea of embedding this structure in the communication network can lead.
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as we will show, to optimal implementation on feasible machines. Perhaps the 

most commonly occurring structure in this regard is the complete binary tree. It 

is precisely because such logarithmic depth structures are used (either explicitly 

or implicitly) that polylogarithmic time complexities are often attained for many 

PRAM algorithms. In this chapter we describe optimally efficient embeddings of 

the complete binary tree in the following graphs: the hypercube, the de Bruijn. the 

shuffle-exchange and 2-dimensional mesh.

5.2 Efficiency requirements

In the PRAM model, the complete binary tree is most usually employed as follows. 

Data for a problem (or sub-problem) are placed at the leaves, and the required result 

is obtained by performing computations at the internal nodes in one or more sweeps 

up and down the tree, so that computations at the same depth are performed in 

parallel. It should be noted however that some algorithms may require simultaneous 

computation at an arbitrary number of nodes at different depths of the tree. If we arc 

to embed the complete binary tree into the host topology of some distributed memory 

machine, we therefore need to observe the following requirements to achieve an 

efficient embedding:

/. All tree nodes at the same depth should he mapped into disjoint intercon­

nection network nodes if  (as in the PRAM computation) computations arc to 

he performed in parallel at these nodes. In addition, PRAM algorithms may 

require compulation at nodes o f the tree which arc o f  different depth. Thus
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for greatest utility, the embedding should map at most a constant number o f 

tree nodes to any node o f the host graph.

2. Tree edges at the same depth should correspond to edge-disjoint paths in the 

interconnection network i f  the commonest types ofPRAM algorithm employing 

this technique are to be simulated. For greatest flexibility, all tree paths should 

be mapped to disjoint paths in the host graph.

3. The maximum distance from the root to a leaf o f the tree (in terms o f edges 

o f the host graph) in the embedding should be minimised in order that the 

routing time is minimised.

4. Consistent with satisfying the above points, the size o f  the host graph should 

be a minimum in the interests o f processor economy.

5.3 The embeddings

In ihc subsections that follow, we describe embeddings of the complete binary tree 

with n leaves in the hypcrcubc and dc Bruijn graphs and in the doubly-connected 

2-dinicnsional mesh and shuffle-exchange graphs, each with ii nodes. These arc 

all topologies that have been advocated for interconnection networks and which we 

individually recall in the following subsections. By doubly-connected, we mean that 

each edge in the standard definition of the graph is replaced by two parallel edges. 

As we shall sec, with the exception of the shuffle-exchange graph, the embeddings 

arc such as to satisfy the following crucial properties which guarantee that in every 

respect the efficiency requirements stated in the previous section arc met.
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Embedding Properties:

1. Each node of the host graph is assigned exactly one leaf of the tree.

2. Each node of the host graph, except one, is also assigned exactly one internal 

node of the tree.

3. Distinct tree edges are mapped onto edge-disjoint (possibly null) paths in the 

host graph.

4. Consistent with Embedding Properties 1 and 2, the maximum length of images 

in the host graph of tree paths from a leaf to the root is optimally short.

In the case of the shuffle-exchange graph, the embedding that we describe ensures 

that embedding properties 1-3 arc satisfied. However, we can only conjecture that 

embedding property 4 is also satisfied by our embedding. In the embedding, the 

maximum length of an image of a leaf to root path is 2 log2 " +  2, whereas our best 

lower bound in this case is (3/2) log2 n.

Let DR C DT  be shorthand for Double Rooted Complete Binary Tree. A D R C D T  

is a complete binary tree in which the path (of length 2) connecting the two children 

of the root is replaced by a path. P,  of length 3. Each of the two internal nodes of 

P (both of degree two) is a root of the DRCDT.  These roots will be denoted by 

>'i and r2. In the hypercube, dc Bruijn and shuffle-exchange graphs, each with n 

nodes, we shall in fact embed the D R C D T  with 2n nodes.

The following subsections establish that Embedding Properties 1-3 hold for the
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Figure 5.1:

embeddings described. We delay consideration of Embedding Property 4 until the 

following section. As we shall see, it is also the case that the multiplicity of the 

topologies (that is, the maximum number of parallel edges between any pair of 

nodes) is a minimum consistent with Embedding Properties 1-2.

5.3.1 Embedding in the de Bruijn graph

The undirected de Bruijn graph of degree m, m > 0, has n — 2"' nodes which 

are all the possible distinct binary strings of length m. Each node M '2 - • • K, is 

connected to node M m ■ • • bmb\ by a shuffle edge, and to node M m • • • fc„, I>\ by a 

shuffle-exchange edge. Here h  is the complement of bk. By implication, each node 

is also connected to /)jM '2 • • • M i a°d to M 'ih2 • • ■ M i) .

For our purposes it is convenient to direct the edges of the dc Bruijn graph from each 

node M m • • • b,„ towards nodes M m • • ■ b„,h\ and M m • • • This automatically

assigns a direction to every edge of the graph and ensures that each node has both 

out-degree and in-dcgrcc of 2. figure 5.1(a) shows the directed dc Bruijn graph of 

degree 4.

I
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It is also convenient here to direct the edges of the DRCDT.  All edges are directed 

away from the roots (the edge between the roots will be bi-directed) as the example 

of figure 5.1 (b) illustrates. We say that each directed edge is from a parent to a child.

For i . j  both non-negative integers and i < j ,  we now inductively define digraphs 

G(i , j )  as follows:

1. G(0. j )  consists of two isolated vertices each denoted by a binary string of 

length j  consisting (for positive j ) o f  alternating Os and Is, one string begining 

with a 0 and the other begining with a 1.

2. G( i . j ) is constructed from G(i — 1 , j )  as follows. From each vertex v — 

b\b2 ■ • ■ bj of G(i — 1, j )  we add new directed edges (if they do not already 

exist) to (possibly new) vertices b2b^.. .bj 1 and b2b^. . .  bjO. The former is 

called the left-child o f v and the latter the rif>hi-child of v.

Lemma 5.3.1 Fori < j ,  G( i . j )  is a directed D RC  DT and for i = j ,  G( i , j )  is a 

directed de Hritijn uraph.

Proof First suppose that i < j  and, to avoid trivial cases, that j  > 2. Let [01]* 

denote cither of the binary strings of length le consisting of alternating 0's and 1 's 

that begins with a 0 or a 1. Now, G( 1, j ) is easily seen to be the directed DRC DT  

with four nodes. The roots are of the form [01], and are connected by anti-parallel 

edges. The two additional nodes arc r| =  [01]j_200 which is a right-child of one 

root and r2 =  [01 ]^_211 which is the left-child of the other. As long as / < j  the 

inductive construction of G(i , j )  is such as to grow complete out-trees rooted at ri 

and f'2, each of depth i. To sec this, it is sufficient to show that at each inductive
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step in which G(i . j )  is constructed from G(i -  1, j ) ,  the only new edges connect 

leaves of G(i — 1. j  ) to nodes whose labels arc distinct from all previously obtained 

nodes and arc distinct amongst themselves. Thus, the new nodes will be leaves 

of G(i ' j ).  It is easy to see that the new nodes are of the form [01 ]^_|_, 1 lo  or 

[01]j _ i _,00<>. where a  is a binary string of length (t — 1 ). These arc distinct from 

all previous labels because, starting at the i"‘ position from the right, they contain 

cither the substring (X) (if they arc descendcnts of C| ) or the substring 11 (if they are 

desccndcnts of c2) and all previously existing nodes contain cither 10 or 01 at this 

position. Any two of the new nodes descended from the same r, will have different 

os because each such n  is uniquely determined by the path sequence of left-child, 

right-child moves that must be traced from <■,.

Thus, we have proved that for i < j ,  G( i , j )  is a directed DRCDT.  By a trivial 

proof, if i = j  — l the D liC D T  has 2J distinctly labelled nodes. Because this is the 

maximum number of distinct binary strings of length j ,  it follows that G(j , j )  will 

have the same set of nodes as G(j  — l , j ) .  Also, every leaf of the G(j  — \ , j )  will 

have the form OOn or 11 o, so that the rightmost substring of length (j — 1 ) is distinct 

amongst the labels of the leaves. This ensures that in the inductive construction of 

G(j.  j  ) from G(j  — I. j  ) the new edges (all directed from leaves of G(j  — I , j  )) will 

be directed to distinct nodes. In this way, every node of G(j , j  ) has in-dcgrcc and 

out-degree of 2. In fact, it trivially follows from the construction of G(j.  j  ) that every 

node v = h2. . .  bj is connected to h2h\ . . .  I>,0 and .../>> I which arc the children 

of v and edges arc directed lo r from t>( = Oh] l>2. . .  fy_| and r2 =  IA,/>2. . .  bj_t . Of 

this last pair of nodes, if h\ = 0 then t>i is a leaf of G(j  — I , j )  and r2 is the parent 

of r  in G(j -  I,./). If l>\ = I then the rôles of t>t and tt2 arc reversed. Thus, the



Figure 5.2:

nodal connections of G{j , j )  are precisely those of the directed dc Bruin graph and 

this observation completes the proof. □

The following theorem follows trivially from the proof of the preceding lemma.

Theorem 5.3.1 The directed DRC DT with n leaves can he embedded in the di­

rected n-node de Hrnijn graph so as to satisfy Properties 1-3.

Figure 5.1 provides an illustration of the theorem. Both (a) and (li) arc G(3.3). In 

(h) each node appears twice, once as a leaf of the directed D R C D T  and once as an 

internal node. Copies of nodes arc identified in («) to show the directed dc Bruijn 

graph.

5.3.2 Embedding in the shuffle-exchange graph

An undirected shuffle-exchange graph of dimension m has ii = 2"' nodes which arc 

all the possible distinct binary strings of length m. Each node btb2. . .  bm. tb„, 

is connected by an exchange edge to b\b2 . . .  and by a shuffle edge to

b2l>). . .  /»,„/»). By implication, each node b{b2 . . .  b,„ is also connected by a shuf­

fle edge to />,„/)) b2. | .

I



83

Figure 5.2 shows the shuffle-exchange graph of degree 6 in which each exchange 

edges has been replaced by a pair (dashed for emphasis) of anti-parallel edges and 

each shuffle edge has been replaced by a pair of parallel edges. This particular form 

is derived from a previously known (see [108], for example) embedding of the de 

Bruijn graph in the shuffle-exchange graph. The embedding has both congestion 

and dilation of 2. The dilation of an embedding is the maximum distance in the 

host between the images of adjacent guest nodes. The congestion of an embedding 

is the maximum, over all edges < in the host graph, of the number of edges in the 

guest graph mapped to a path in the host graph which includes e. The embed­

ding is obtained by removing each shuffle-exchange edge (M m . . .  /<„,. M m . . .  hmb\ ) 

from the directed de Bruijn graph and replacing it with the directed path consist­

ing of the shuffle edge (6162 ••• b,„, 62^3 ••• bmbf) followed by the exchange edge 

(M m . . .  b,„h[. M m • • • b„J>[) of the shuffle-exchange graph. Because the graph now 

employs just the nodal connections of the shuffle-exchange graph, it is precisely 

such a graph but with parallel and anti-parallel edges. In this way, for example, 

it is easy to see that figure 5.2 can be derived from figure 5.1(a). The following 

theorem follows immediately from this embedding of the dc Bruijn graph and from 

theorem 5.3.1.

Theorem 5.3.2 The D R C D T  with n leaves can he embedded in the doubly- 

connected shuffle-exchange graph with 11 nodes so as to satisfy conditions I — 3 .
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5.3.3 Embedding in the 2-dimensional mesh

The 2-dimensional doubly-connected mesh is the target graph for the embedding 

of this sub-section. Adjacent nodes are connected by a pair of anti-parallel edges. 

The guest graph of the embedding is the complete binary in-tree, that is, a complete 

binary tree in which the edges arc directed towards the root. Note that there is 

a large corpus of work concerning embedding of different classes of graph into 

the 2-dimensional mesh, for example see [39, 93, 118, 162]. These use different 

constraints on the embedding form than the ones used here, and address different 

optimisation issues such as minimising the area of the host graph.

We prove the following theorem [51 ].

Theorem 5.3.3 For all in > 1, there are embeddings o f the complete binary tree 

with 22'" and 22m+l leaves, into a doubly-connected 2"' x 2"' mesh and a doubly- 

connected 2"' x 2",+l mesh respectively which satisfy Embedding Properties 1-3.

Proof First consider the embedding in a square for the tree with 22’" leaves. The 

case m = 1 is easy. For in = 2, figure 5.3 shows one possible embedding in the 

4 x 4  mesh. In this figure, the internal tree nodes and the the paths corresponding 

to the tree edges, are drawn with increasing size and boldness from leaves to root 

respectively. The edges arc directed towards the root. The leaf nodes are not shown 

explicitly since there is one at each mesh node. Note that some tree edges, incident 

with the leaves, arc mapped to null paths, indicated by loops in the figure. The root is 

embedded on the left side, but the heavy path shown from this to the top-left corner 

is used later in larger embeddings. The node distinguished with a dotted square in
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Figure 5.5:

the figure is that unique node which has not yet been assigned an internal tree node. 

The small diagram underneath gives the salient features of this embedding, .42, for 

use in the recursive construction. The arrows on the perimeter indicate the usage so 

far of the outside edges, and show that all the clockwise outside edges on three of 

the sides arc as yet unused. Perhaps, this embedding can easily understand with the 

help of figure 5.4. Left hand side of this figure shows the internal nodes of a 32-node 

(or 24 leaves) tree, and the right hand side shows a 4 x 4 mesh. Each number 

1 < « < 16, of the figure indicates that internal node with number / is mapped into 

the mesh node with number i.

This construction requires also an alternative 4 x 4  embedding, Di, shown in fig­

ure 5.5. The root here is embedded in the interior of the square but there is an 

outgoing path from it to the lower-right corner. This time, all the clockwise edges

I
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on the top, left and bottom sides are free.

The next stage in our construction, the embeddings for m > 3, is shown in figure 5.6. 

Three Am_|S and one 5 m_i are combined to give embeddings of the 22m-leaf tree 

in a 2’" x 2"' mesh. The three new internal tree nodes required are shown by 

white and black circles, and are connected by paths of appropriate weight. For 

the recursion, the embedding is continued in two different ways, the black root 

node can be connected to the top-left corner by one of the hatched paths shown, 

or joined to the lower-right corner by another hatched path. The first alternative 

yields an embedding A„, which has edge characteristics of type .4 given by the 

small diagram in figure 5.3, while the second similarly yields D,„. The arrangement 

shown in figure 5.6 therefore represents a recursive step by which the construction 

can be continued indefinitely. The third path illustrated, with different hatching, 

to the lower-left corner, will be used in the 22"‘+l-lcaf embedding. For the case 

2'" x 2",+l, if m  > 3 we can connect seven copies of A m-\ with one copy of C„,_i 

as shown in figure 5.7. The cases where in < 3 are simple. □

5.3.4 Embedding in the hypercube

A hypcrcube has n nodes (where n =  2'", for some positive integer m) labelled 

from 0 to n — 1 in binary and such that there is an edge between two nodes if and 

only if their binary labels differ in exactly one bit. For completeness, we briefly 

present the following result which was first described in 1133].

Theorem 5.3.4 The double-rooted complete binary tree (DRCBT) with n > 8 leaves 

can he embedded in the hypercube with n nodes so as to satisfy Embedding Proper-

I
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ties 1-3.

Proof For n > 16 inductively construct the embedding starting with the base case 

of n =  32, as shown in figure 5.8. In the figure nodes occur at the corners of the 

squares defined by the dashed lines and the labels of nodes in the top left-hand 

quarter of the figure are shown. The first two binary bits of the labels of nodes in 

the other quarters are shown at the center of their quarter of the figure. The last 

three binary bits of such an address will be the same as the corresponding node in 

the top left-hand quarter. Generally speaking, figures will only show some edges of 

the hypercube, just those that are of interest. Dashed edges happen to correspond 

to certain hypercube edges but are used merely as an aid in locating nodes in the 

layout. For clarity, two figures (5.8 (a) and (b)) are employed to describe this case. 

Figure 5.8(a) shows the embedding of those tree edges which have leaves as end­

points. For clarity, some embedded tree edges point towards that endpoint which is 

a leaf of the tree. Some tree edges are mapped to null paths which are indicated by 

loops, figure 5.8(b) shows the embedding of all other tree edges. Notice that hashed 

edges arc used for the path of length 3 on which full circles denote the possible roots 

of the embedded complete binary tree. Also, notice that the three edges on this path 

belong to three different dimensions of the hypcrcubc. In figure 5.8(b), the internal 

nodes arc drawn with increasing size and the tree edges arc drawn with increasing 

boldness the nearer they arc to the root. It is easy to sec that this base case satisfies 

Properties 1-3 in all respects.

Figure 5.9 illustrates the inductive step in the construction of the embedding of the 

D RC D T  with ti leaves in the hypcrcubc with n nodes from two embeddings of n/2

l
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Figure 5.8:

Figure 5.9:
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leaf D R C B Ts  in hypercubes with n/2  nodes. These two embeddings are denoted 

by T  and T' in figure 5.9(a). The hashed vertical edges in that figure are edges 

of the new dimension of the constructed hypercube. The hashed horizontal paths 

((C1.r 1.r2.c2) and (c'|, r\, r2, c'2)) are the paths of length 3 which have as internal 

nodes the possible roots of the embedded complete binary trees with n /2  leaves. The 

triangular shapes attached to children of these possible roots represent the embedded 

subtrees rooted at these children. The two smaller hypercubes are oriented so that 

n  and o', are made to correspond, then the dimension corresponding with the edge 

(ri,r2) is made to correspond with the dimension of the edge (ci.rj). In this way, 

the nodes r2 and r\ arc made to correspond. Similarly, the dimension of (r2,c2) is 

made to correspond with the dimension of (r\,r2) and so node r2 is brought into 

correspondence with r2. This is always possible given the edge transitivity of the 

hypercube and given that each of the horizontal hashed paths of length 3 has each 

edge of different dimension. Figure 5.9(b) shows the embedding of the D R C D T  

with ji leaves and unit dilation in the constructed hypercubc with n nodes. The 

labelling of nodes in this figure makes clear its derivation from figure 5.9(a).

For n =  16, an embedding satisfying the Properties 1-3 is shown in figure 5.10. 

Note that figure 5.10 ((a) and (b)) is the hypcrcubc layout corresponding to the top 

half of figure 5.8 ((a) or (b)). Again, for convenience of illustration the embedding 

of tree edges attached to leaves in one diagram (figure 5.10(a)) and the embeddings 

of all are shown other edges in another (figure 5.10(b)). P

1
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Figure 5.10:

5.4 Depths of the embedded trees

In this section we examine the quality of our embeddings from the point of view of 

Embedding Property 4. The maximum distance from the root to a leaf in the image 

of the complete binary tree for any host graph is an important algorithmic parameter. 

It is a measure of the routing time required for a single sweep of the balanced binary 

tree. We denote this distance by P(n)  for the complete binary tree with n nodes. 

If the embedding satisfies Embedding Properties 1-3 of Section 5.2, the Oflog ii) 

routing time of the PRAM algorithm for such a sweep translates to ()(P(n))  for the 

interconnection network.

We first determine P{n) for the embeddings in each of the four interconnection 

networks considered in this chapter. Then we establish lower bounds for maximum 

root-to-lcaf distances for these embeddings which we use to show that, in all cases 

except for that of the shuffle-exchange graph, our values of P ( v ) arc asymptotically 

as short as possible. We conjecture that this fact is also true for the shuffle-exchange 

graph, although there is a gap between the /*(») of our embedding and the lower 

bound obtained.
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It will also be evident from this section that the congestion and the load of our host 

graphs are a minimum consistent with satisfying Embedding Properties 1-3. The 

load of an embedding is the maximum number of the guest nodes mapped to a node 

of the host graph.

5.4.1 Maximum root-to-leaf distances of the embeddings

For the »-node hypercube and de Bruijn graphs P(n)  is log2» + 1. This is because 

each edge of the »-leaf D RC DT is mapped into at most one edge of the »-node host 

and there are root-to-leaf paths for which every such edge is mapped to precisely 

one edge of the host. Thus, for the embedded D R C D T  the maximum length of 

root-to-leaf paths is log2» in these cases. This translates to log2» +  I for the 

complete binary tree when its root is identified with a particular one of the two roots 

of the DRCDT.

In our embedding of the »-leaf D RC D T  in the doubly-connected »-node shuffle- 

exchange graph one of the pair of edges from each parent to its children is mapped 

into two edges of the host and so for this case P (») =  2( log2 » + 1) -  2 log2 » -|- 2.

Now consider the embedding of the » = 22m-leaf complete binary tree into a doubly- 

connected 2"' x 2'“ mesh. Let D (w ) be P( ii) when expressed as a function of »». It 

is a trivial matter to construct an embedding for in =  1 for D(m)  is 2. For in = 2, 

wc sec by inspection of the embedding of figure 5.5 that this maximum distance 

is 6 mesh steps and so D(2) = 6 . Now consider square meshes with » = 22’" nodes, 

in > 2. Let A(»0, B(»i) and C(»)). be the maximum distances from a leaf to the 

output from the top left corner of pattern .4,,,, the lower-right corner of pattern D,„
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and the lower-left corner of pattern C,„, respectively. From figures 5.3 and 5.5, we 

see that A(2) -  10 and B(2) -  8. A corresponding layout C2 with C(2) -  9 is easy to 

derive from D2. We can verify from figure 5.3 the following recurrence equations

for m > 3:

A(m) =  D(m)  +  2m,

B(m ) = D(m)  +  2™ — 2,

C(m) = D(m)  +  2™ -  1,

D(tii) = m a x[A (m  — 1) +  2 ,B(m  — 1) -I- 2}

=  D(m  — 1) + 2™-1 + 2.

The solution to these equations is:

D(m)  =  2’" + 2m -  2, for  m > 1,

that is.

P(n)  = \/n +  2log2n — 2 =  \/n + O(logn)

Now consider the case of embedding the n = 22m+l-leaf tree into a doubly-connected 

2"' x  2",+l mesh. Î ct D'(m)  be the corresponding maximal Icaf-to-root distance. 

We may verify in figure 5.7 that:

D'(m) = m ax{A (m  — 1 ) + 4. C(m — 1 ) + 3} +  2"'~l

and so in this case,

P(n)  = + f7(log n)
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5.4.2 Lower bounds for the embedded tree depths

Here we obtain lower bounds for the depth of the complete binary tree for the different 

embeddings of this chapter and show that, in the cases of the mesh, hypercubc and 

de Bruijn graphs, these bounds asymptotically match the values of P(i>) that were 

obtained in the previous subsection.

For a given graph, let its radius, p, be the minimum distance r  such that for 

some central node c, every node is at a distance at most r from c. Clearly, for 

any embedding of a complete binary tree in a communication network in which 

Embedding Properties 1-3 are met. a lower bound for P(n)  is provided by p.

Lemma 5.4.1 The following relationships hold for graphs with u nodes: for the 

hypercuhe p = log2 n and for the shuffle-exchange graph p = ' (log2 n — 1) for 

log2 ii odd and p — \ log2 n + 1 for  log2 n even.

Proof Follows easily from the definitions. □

For the hypcrcubc we can obtain a marginally stronger lower bound for P( n ) from 

the following Lemma.

Lemma 5.4.2 Consider leaf disjoint embeddings o f a complete binary tree with n 

leaves into the n-nodc hypercuhe. For any such embedding P(ti) > log2 n + I.

Proof If there were an embedding satisfying Embedding Properties 1-3 and P ( n ) 

was log2 n, then this would imply that a unit dilation embedding of the complete 

binary tree (perhaps with some leaf to parent edges mapped to null paths) was
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possible in the hypcrcubc. Consider the mapping of the subtree consisting of all 

edges other than leaf to parent edges. An embedding of this subtree would have to 

be vertex disjoint with every edge being mapped to a hypcrcubc edge, this is not 

possible because such a graph is not a subgraph of the hypercubc as follows. Both 

the subtree and the hypercubc arc bipartite graphs. In the case of the hypcrcubc both 

halves of the bipartition contain the same number of nodes, this is not the case for the 

subtree and (with each subtree edge mapped precisely to an edge of the hypcrcubc) 

this would force more than one node of the subtree to be embedded in a single node 

of the host. 0

Lemma 5.4.3 Consider leaf-disjoint embeddings o f a tree with n leaves into the 

mesh. For an arbitrary embedding

P(n)  >  y | - O d ) ,

for an embedding into an r x ,s rectangle where n =  vs ,

P(n) > r ^ l  +  r ^ l  =  ( r  + *) /2  -  0 ( I ).

Proof Let br be the number of vertices of the mesh graph Z x Z  within path length 

i of the origin, where Z  is the set of integers. Then U(> = I , h\ = 5. and in general 

hr =  I + = 2 r(r + 1) + I for r  > 0. For any injective mapping of u

leaves into the mesh, if n > h, then some vertex has to be mapped to a mesh node 

at distance greater than r from the root. □

From the above Lemmas, and consistent with Embedding Properties 1-2, it follows 

that the values of P(u) attained by our embeddings arc asymptotically as short as

I
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possible for the de Bruijn, two-dimensional mesh and hypercube interconnection 

networks. Thus for these graphs. Embedding Property 4 has been optimally met. We 

conjecture that Embedding Property 4 has been optimally met also for the shuffle- 

exchange graph, although in this case the P ( n ) of our embedding is asymptotically 

a constant factor of j greater than our lower bound.

5.5 Further remarks and algorithmic issues

Here we briefly justify the use of parallel or anti-parallel edges in our embeddings, 

where they occur, so long as the embeddings have the density implied by Embedding 

Properties 1-2. We then comment on the complexity gains afforded by our embed­

dings when they might be employed for PRAM implementation on the associated 

communication networks.

A natural question to consider is whether the pairs of anti-parallel edges arc necessary 

for the mesh. Can the complete (undirected) tree be densely embedded in the usual 

undirected mesh? Each mesh node (except two) is host to one leaf vertex, with 

degree one. and one internal vertex, with degree three, and so has a total of at least 

four embedded edges incident with it. Note that some of the edges adjacent to 

leaves can be mapped into paths of length zero, the loops in our figures, and so some 

mesh nodes may require only two of their incident mesh edges. Thus there is no 

immediate contradiction from degree considerations. However, we now consider 

local details and easily find a contradiction. Consider boundary mesh nodes, away 

from the one special node that docs not host an internal tree vertex. Any such node 

has degree less than four and so must have a loop in the embedding. It therefore
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is host to a leaf vertex and the internal node adjacent to that leaf, and requires one 

incoming path from another leaf, and one outgoing path to the parent vertex. Since 

the neighbouring boundary nodes are in the same predicament, there is an impossible 

situation at the boundary, even worse if it is at a corner.

It is also easy to see that we need parallel (or anti-parallel) edges for the shuffle 

exchange graph when embedding the complete binary tree if the embedding is 

consistent with Embedding Properties 1-2. This is because the shuffle exchange has 

degree 3 but any internal node of the tree which is not adjacent to a leaf has to be 

mapped to the same node of the shuffle exchange graph as a leaf. This requires that 

at least four tree edges have this shuffle exchange node as an end-point which is not 

possible without parallel (or anti-parallel) edges being added to the shuffle exchange 

graph to ensure edge-disjointness of the embedding. Notice that it also then follows 

that the dilation of the embedding must be greater than 1.

For the hypcrcubc. dc Bruijn and shuffle exchange graphs our embeddings show that 

the complete binary tree can be cdgc-disjointly embedded in hosts that arc generally 

half the size compared with previously described embeddings without detriment 

to the time complexities of PRAM algorithmic implementations that employ the 

complete binary tree. The embedding o f  a complete binary tree in the hypcrcubc 

described in |I6) meets all our efficiency requirements except that the host graph 

is twice as large as it need be. In fact [16] embeds the u leaf complete binary 

tree in the hypcrcubc with 2;i nodes. In [88| (pages 407-410), an embedding is 

described in which the n leaf tree is embedded in the n node hypcrcubc. However, 

in this embedding, up to log2 v tree nodes of different depths arc mapped to a

I
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single node of the hypercube. Although the embedding is such as to facilitate the 

efficient implementation of most PRAM algorithms, there may be difficulties in the 

exceptional cases when simultaneous computation is required to take place at an 

arbitrary number of different levels within the tree. Such an example is cited later 

in this section.

For the two-dimensional mesh, our embeddings may not only reduce the size of 

the host graph but will also improve running times of the implementations. For 

example, in the well-known H-tree construction (see for example, page 84 of [153]), 

the complete binary tree with n leaves is embedded in the (2>Jn — 1) x (2>fn — I ) 

mesh and the maximum root to leaf distance in the mesh image is 2>Ju — 2. Of 

course, this embedding was not designed from the point of view of our criteria and 

would in any case be very costly in terms of unemployed processor sites. In the 

embedding of [54], although the complete binary tree with u leaves is embedded 

in the square mesh with n nodes, the maximum root to leaf distance is 3.54>/n. 

Moreover, only tree edges at the same depth arc mapped to disjoint paths.

Compared with previous embeddings and for some PRAM algorithms, the edge- 

disjointness property of our embedding in the mesh yields further complexity gains. 

Occasionally it is useful for all nodes in the tree, not just those at the same level, 

to pass messages simultaneously to their children in such a way that this continues 

until all messages (including that from the root) reach the leaves of the tree. An 

example of such a cascading requirement is provided within the implementation of a 

bracket matching algorithm on a mesh detailed in [54], This can be simulated in the 

embedding of [54] by allowing the messages from the internal tree nodes adjacent to



100

leaves to be passed directly to the leaves, then subsequently messages from the nodes 

at the next level are sent to the leaves and so on, until finally the message from the 

root is allowed to be copied down to all descendants. In this way, only tree edges at 

the same level are being employed at the same time and the lack of disjointness of all 

paths from the root to the leaves is no hindrance. In the embedding of [54], the routing 

time for such a process would be 3.54(1 + 1/2 + 1/4 + 1/8 + • • ■ +  l /2 l,,g")v/” 52 

7.08y/ii. The successive terms in the series arise from routing from successive tree 

levels. This is because in successive iteration the size of each subproblcm and the 

required area of the mesh for each subproblem are recursively reduced by a factor of 

2. For the embedding of this chapter, the path-disjointness property allows messages 

to be passed down the tree simultaneously from all levels, and so the routing time 

for the cascading requirement is just that for passing a message from the root to the 

leaves (this masks the time for message passing from all other internal nodes) which

is s/n.

5.6 Summary and open problems

We have described dense edge-disjoint embeddings of the complete binary tree with 

ii leaves in the following n node intercommunication networks: the hypercubc, the 

dc Bruijn and shuffle-exchange graphs and the 2-dimensional mesh. The embed­

dings have the following properties: paths of the tree arc mapped onto edge-disjoint 

paths of the host graphs, at most two tree nodes (just one of which is a leaf) arc 

mapped onto each host node. We also proved (except for the shuffle-exchange 

graph) that an algorithmically important parameter, the maximum distance from a
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leaf to the root of the tree, is asymptotically as short as possible. We conjecture 

that for the shuffle-exchange graph this distance is also optimally short within our 

embedding. The embeddings facilitate efficient implementation of many PRAM 

algorithms on these networks and improve extant results. For the mesh and shuffle- 

exchange graphs these embeddings were not possible without replacing each edge 

by a pair of parallel (or anti-parallel) edges.

A number of problems remain open. Because of the logarithmic lower order term 

in P(n) for the embedding of a complete binary tree in the mesh there is a small 

gap between the distance obtained here and the naive lower bound of the network 

radius. Whether this gap can be closed, from either side, is an open question. A 

mesh architecture sometimes used is in the form of torus, with no boundary. It 

seems unlikely that a complete binary tree with 22'" leaves could be embedded in 

the directed 2'" x 2"' torus, but we have not been able to prove this. There is 

also no proof of our conjecture that for the shuffle-exchange graph our embedding 

exhibits a shortest possible maximum root to leaf distance consistent with our other 

embedding requirements.

The question of how to find similarly dense embeddings of complete binary trees in 

meshes of higher dimension is unanswered. Similarly, the question of finding dense 

embedding of complete trees of fixed higher degree in communication networks is 

insolvcd. From a graph-theoretic point of view, dense edge-disjoint embeddings 

of arbitrary trees in communication networks present a challenge, although these 

problems may prove to be of less general algorithmic importance than embedding 

complete trees.



Chapter 6

Practical Parallel Models of Parallel 

Computation

The work described in this chapter was carried out as part of the ESPRIT I project 

PUMA which was supported by the European Community (under project number 

P2701) and appeared in a report [132] to the European Commission. This chapter 

reviews the Models of Massively Parallel Computation that have been proposed to 

investigate the major issues in practical parallel computation (including scalability, 

granularity, asynchrony, latency, fault tolerance, contention and congestion which 

were introduced in chapter 4). None of these models has yet achieved a consensus 

as a target model for both hardware and software design, but each provides its own 

lessons for the design of efficient, fast, reliable parallel software. With the use of 

theoretical solutions which arc described in chapter 4. this chapter demonstrates that 

there is no theoretical hindrance in designing massively parallel models of parallel 

computation.
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6.1 Introduction

In the previous chapter we described architecture dependent embedding techniques 

which can lead to optimal PRAM algorithmic PRAM simulation on feasible ma­

chines. Such techniques, although of wide usefulness, are not always applicable. 

In this chapter we address the important question of bridging models for general 

purpose parallel computing which (like the von Neumann machine in sequential 

computation) can act as an interface between the actual hardware and the PRAM 

model. Thus software issues will be separated from hardware issues and the prospect 

of genuinely portable software in an environment of user friendly high level coding 

would be a possibility. In other words, from the programmer’s point of view, the 

realistic parallel model can be made to appear like a PRAM.

There have been several models proposed to bridge the gap between the PRAM 

model and feasible machines. These models variously take account of communi­

cation latency, contention and congestion, asynchrony and/or component failures. 

They have been introduced together with simulation results, demonstrating the ex­

tent to which PRAM algorithms can be implemented with little or no asymptotic 

loss in efficiency. In particular, a user can view these models as extended PRAMs, 

which hide hardware details from the user. We shall briefly describe some of these 

models and survey some of the difficulties involved in simulation. By doing so, we 

show the possibility of general purpose parallel computing.

I
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Figure 6.1:

6.2 The practical PRAM model

The practical PRAM consists of a set of components or processing elements con­

nected by a network. Each processing element consists of a computing element 

and a memory module, as in figure 6.1(a). We may even consider that, the com­

puting elements and the memory modules arc separated as in figure 6.2(b). In both 

models, all the memory modules can be considered to be global memory or virtual 

shared memory. Each computing element can access any non-local memory module 

through the network.

From an algorithm designer's view, the network becomes a "black box". Reads 

and writes to and from the non-local memory module by a computing element arc 

sub ject to uniform delay, or communication latency, which is a parameter / of the

I
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machine. As a function of p (the number of processors), I can vary depending on the 

architecture (e.g. it might be ()(s/p)  for the J p  x ,/p-node 2 dimensional mesh, or 

Oflog/<) for a /»-node hypercube). By uniform delay, we mean that the access time 

to a non-local memory module is independent of the processor making the request.

There is a router for routing data between computational elements and memory 

modules. As computing elements and (non local) memory modules communicate 

through a router [157], the tasks of computation and communication can be sepa­

rated. The router operates independently of the individual processors. Once a data 

packet is delivered to the router (through a router interface), the packet is routed 

through the network to its destination without any burden on the processing elements 

which may continue their processing. Note that, by separating computation from 

communication, no particular network topology is favoured beyond the requirement 

that a high throughput be delivered.

For example, if computational elements want to access distinct non-local memory 

modules, realising a I-relation, then they send the requests to the router through a 

router interface. As we saw in section 4.3.3, a I-relation can be realised in 0(1) 

time, where / is the diameter of the network. Note that the algorithm designer docs 

not need to know about the topology of the network.

The global memory of the feasible machine is divided into a number of memory 

modules, in contrast to the PRAM's memory which is a single block. Moreover, 

accessing a global memory location will take the 0(1) steps on the practical PRAM, 

whereas the time is 0(  1) on the PRAM. However, the practical PRAM and PRAM 

arc similar to the user, since both models have no notion of network locality. In

I
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this chapter we survey optimal simulations of PRAM algorithms on the practical 

PRAM, and argue that the practical PRAM could be a candidate for general purpose 

parallel computing. By optimal simulation we mean that when simulating a PRAM 

algorithm on a practical PRAM the work done for the algorithm on the PRAM is 

equal to, within a constant factor, the work done on the practical PRAM.

6.3 Latency hiding

A naive approach to implementing a PRAM algorithm on the practical PRAM is 

to allow 0(1) time for message routing after every step of the PRAM algorithm. 

This significantly slows down the algorithm. Techniques arc needed to "tolerate'* 

or “hide” the network latency. Recently, a series of results in [I, 2, 24, 55, 83, 

116, 117, 157, 158] have shown how parallel algorithms for realistic models can be 

designed such that the effect of network latency can be minimised with respect to 

work measure.

First we consider 12,116,117], which capture the communication and computational 

complexity of PRAM algorithms. The model used is called the Local-memory 

Parallel Random Access Machine (LPRAM) [2], The LPRAM is a CREW PRAM 

in which as well as global memory each processor is provided with an unlimited 

amount of local memory. As in our practical PRAM, the LPRAM has a parameter 

I which is the time taken by one communication step. Each computation step time 

takes unit time . The total time of an algorithm is T  + (l x C), where T  is the 

number of computations steps and C  is the number of communication steps. The 

different model of 1117] can be thought of as a pipelined version of the LPRAM .

I
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The computational problem to be solved is presented as a data-dependency graph. 

The data dependency graph is a directed acyclic graph (DAG). We model the compu­

tational problem to be solved as a DAG, with its nodes corresponding to operations 

and its arcs corresponding to the values computed by performing such operations. 

A computation schedule of the DAG consists of a sequence of computation steps 

and communication steps. At a computation step each processor may evaluate a 

node of the DAG; this evaluation can only take place when its local memory has the 

values of all incoming arcs into this node. At a communication step, any processor 

may write into the global memory any value that is presently in its local memory, 

and then it may read into its local memory a value from global memory.

A node of the DAG with in-degree zero corresponds to the value of an input. The 

inputs arc initially stored in the global memory, and the output of the DAG has to 

be written into the global memory. Our problem is to efficiently schedule a DAG to 

minimise overall computation time and communication time such that the total time 

is minimum. For example figure 6.2 shows a DAG and the schedule that computes 

the DAG with two processors, P and Q.

This schedule computes the DAG in five communication steps (i.e. C = 5) and 

three computation steps (T  = 3), the total computation time is 3 +  51. Note that if 

we allow Q, which is idle at the communication steps 1 and 2, to read a and />, then 

communication step 3 is not necessary. Hence, the total time is reduced to 3 + 4/. 

In other words, allowing several processors to compute the same value can save 

some communication at no additional time delay. It is an open problem whether 

rccomputation can save more than a constant factor in time or communication.
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Comm, stepl : P reads a 

Comm. step2: P reads b 

Comp, step 1: P computes c 

Comm. step3: P writes c, Q reads it 

Comp. step2: P computes d; Q computes e 

Comm. step4: Q writes e, P reads it 

Comp, step 3: P computes f 

Comm. step5: P writes f

Figure 6.2:

Moreover, it is an NP-completc problem to decide, given a DAG, an integer /, and 

Tmnr, whether there exists a schedule 5  such that no time greater than Tmaj is used

[117].

In [ 116] nontrivial trade-offs between communication and computation were shown 

for the diamond DAG. Those results were not satisfactory because no general prin­

ciple or technique was described which is applicable to all DAGs. But, in [117] 

the technique was generalised to all DAGs and the technique was applied to three 

particular families of DAGs: the complete binary tree, butterfly, and the diamond. 

Aggarwal et at. [2] have shown that matrix multiplication can be modelled as a 

DAG in the form of a complete binary tree. Furthermore, they obtained (upper 

and lower) bounds for any binary tree DAG (in which each internal node has ex­

actly two children). This DAG is determined by the design of the algorithm but 

none of 1116, 117, 2] have described a general technique for algorithmic design for 

these types of trade-offs. However, they show that, if we schedule a DAG such
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that temporal locality of reference is utilised then the communication cost can be 

reduced.

Aggarwal, Chandra and Snir introduced a model called the Block PRAM (BPRAM) 

in [1]. They show that efficiency can be enhanced by using temporal and spatial 

locality of reference. Spatial locality of reference is that data items to be accessed 

by a processor are in contiguous locations in the global memory. The BPRAM is 

similar to our practical PRAM and LPRAM, in which a processor may access a 

block of contiguous locations from global memory, and it may write a block into 

contiguous locations of the global memory. Recall that access to a global memory 

location may take up to 0(1) units time. On the other hand, a block of /»consecutive 

words in global memory (or local memory of another processor for the model of 

(83]) can be copied into local memory, optimally, in time / +  /» and vice versa. For 

example, / consecutive words in global memory can be accessed in 0(1) time, not 

in 0(12) time. To support this, recent randomised routing algorithms provide strong 

theoretical support |4, 91], The router can realise any permutation of p messages 

(i.e. a l-rclation) of size m in time ()(tn + log/») with high probability on a p- 

node hypcrcubc. This is because, there is a significant overhead for establishing a 

communication. Once established, a large amount of information can be transferred 

at low cost. The latency can be hidden in (his way by pipelining a block of global 

memory access.

We can implement block pipelining to hide latency provided that each processor 

has multiple requests to global memory at the same time, and requests can be 

grouped into blocks of length £2(/). This can be resolved by assigning many PRAM

I



processors ("virtual processors”) to each actual processor ("physical processor”) of 

the machine. The ratio v/p  is called the parallel slackness, here v is the number 

of "virtual processors” and p is the number of “physical processors”. Instead of 

executing one process on each processor, we now provide each processing element 

with a scheduler allowing it to share its time between v /p  processes. In other words, 

the algorithm is written for t> virtual processors, where v significantly exceeds p, 

the number of physical processors. Then each physical processor may make many 

requests during each simulation step. Note that here the requests are made to blocks 

of contiguous locations in global memory

Many PRAM algorithms can be restructured specifically to provide for block ac­

cesses using ()(/) parallel slackness (i.e. v > //>)(!,24). For example, consider the 

problem of transposing a \ /v  x s/T' matrix. The matrix is given in row major order 

at,i, a |,2, . . .  nj.i, • • •, «yr.yr ¡n the first v locations of global memory, and

the output « u , «2.1, . . . , « 1,2, •. • ,a ^ ,yr i ¡s desired in the next v locations. 

This computation can be performed on an EREW PRAM in 0 (  1 ) time using v 

processors.

On the BPRAM the transposing computation can be done in () (v/p  -F lyjv/p) time 

using p < v processors. During the computation each processor is assigned to 

transpose a submatrix of size \Jvj~p x \Jv/p. That is each physical processor is 

doing the “job" of v/p  virtual processors. The algorithm executes in rounds, which 

arc cither read rounds or write rounds. Each row of a submatrix requires a separate 

block read operation from global memory, likewise each column requires a separate 

block write operation. During a read round each processor reads a block of size

n o
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y fi fp  (i.e. a row of the assigned submatrix) from global memory, taking / + 

time. Since each submatrix has <Ji'/p rows there are \Jv/p read rounds. Thus all the 

read rounds take 0 ( v /p  + lyfv/p) time, similarly all the write rounds take the same 

time. Note that each block access is to consecutive locations of global memory.

This BPRAM algorithm is an optimal algorithm if v/p  > I2. In this case the work 

done by the PRAM, Wpram  =  0 (  1) x r , is equal, to within a constant factor, to the 

work done by the BPRAM, Wbpram , where Whpham = 0 ( v / p +  ly fifp )  x p = 

0( v).

In general, a BPRAM takes up to / times as long as to run its EREW PRAM 

counterpart. However, the factor of / can be reduced in the BPRAM for several 

problems. These include matrix transposition, matrix multiplication and Fast Fourier 

Transform [I], The factor of / occurs for problems (for example, performing 

general permutations on elements in memory [I]) that have fine granularity [84): 

the computation can not efficiently use large blocks for communication. This can 

cither be due to poor spatial locality: data items to be accessed by a processor arc 

not in contiguous locations, or due to poor temporal locality: successive accesses 

can not be blocked together, c.g. because of control dependencies. In particular. 

Chin justifies the claim of Gaz.it, Miller and Tcng |47) that list ranking procedure 

should be replaced with prefix sum whenever possible on the BPRAM [24). This is 

because prefix sum has better locality of reference than list ranking.

Now consider arbitrary pipelining, instead of bhxk access to contiguous locations 

in global memory, a processor can access any h locations distributed in global 

memory. Block pipelining has the practical advantages that a batch of values arc
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guaranteed to return in order, and the entire line or cache line or memory page can be 

transferred to local memory as a unit. However, arbitrary pipelining is clearly more 

flexible than block pipelining. It is also easier to use, since the programmer does not 

have to ensure that values of interest are collected into contiguous locations. That 

is, the programmer does not need to worry about locality of references.

The Bulk Synchronous Parallel (BSP) model of Valiant [157] and the Phase PRAM 

of Gibbons [55] allow arbitrary pipelining. Computation on these models proceeds 

in a sequence of supersteps. In each superstep each processing element is given 

a task that can be executed using the data that is already available locally before 

the start of the superstep. The task can be computation, message transmission or 

message receipt. Let L denotes the time to complete a superstep.

Assume that a router can realise any h-relation in gh time, where </ is the throughput 

of the router. Then we choose L to be at least gh. That is, in a superstep L local 

operations, or an Llg-relation can be realised. Note that an L/g -relation can be 

realised in L time because L > gh.

To support the BSP model Valiant provides a strong theoretical result. Theorem 

4.3.6 of chapter 4 shows that a log/» relation can be realised on a p-node hypcrcubc 

in 0 (g  log p) time. This gives an optimal simulation. A superstep of the BSP model 

can be simulated in 0( L ) time, when the topology of network is a hypcrcubc every 

node of which is a computing clement with memory, and L > </ log p. In each 

superstep L local computations arc performed or an Llg-relation is realised. All this 

can be done in O(L) time on the hypcrcubc.

I
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6.4 Asynchronous computation

It is clear that a PRAM algorithm can be converted into an asynchronous PRAM 

algorithm by imposing synchronisation after each statement of the algorithm. How­

ever, this significantly slows the algorithm down. In this section we investigate the 

design of algorithms which minimise the cost of synchronisation.

Recent papers [33, 101, 113] focus on the implicit cost of synchronisation. For 

example, in [101] the time complexity of an asynchronous algorithm is the number 

of instructions executed by a processor including busy wait instructions (i.e. taking 

the implicit costs of synchronisation into account). The model used is the CRCW 

PRAM, but the processors can have arbitrary asynchronous behavior, including 

arbitrary unbounded delays in executing instructions. These delays can be overcome 

through the use of randomisation as follows. In this model processors are not 

assumed to have unique IDs; each processor is instead equipped with an independent 

random number generator. A directed acyclic graph (DAG) representing the tasks to 

be performed, and the dependencies between them arc placed in the shared memory. 

Each processor selects a task at random, performs the task if its predecessors in the 

graph have been completed, and repeats. In this way, processors that arc delayed, 

or that have failed, do not unduly slow down the computation: the fast processors 

will simply evaluate more nodes in the graph. For example, a maximum finding 

algorithm proceeds in the following manner:

/. Examine the root node. I f  it has been evaluated, exit the compulation

2. Select an interior node uniformly at random

I



114

I f  the children o f  the interior node have been evaluated, evaluate the node 

4. Return to step I

By this method any »-processor PRAM algorithm that solves a DAG in ( ) (T (n)) 

time can be transformed into an asynchronous computation with 0(n T(n ))  ex­

pected work using n /  log log' n processors [ 101 ]. Hence the simulation is optimal. 

However, the model does not account for communication delay. If there is a commu­

nication delay (as in practical machines) then choosing a node of a DAG randomly 

will not minimise the communication delay.

The APRAM, introduced by Cole and Zajicek [32] focuses on the explicit costs of 

synchronisation. The goal of the APRAM model is to design algorithms which avoid 

global synchronisation, thereby reducing the explicit costs of synchronisation. In 

this scheme one time unit is called a round, which was introduced earlier in [96. 10]. 

In one round each processor executes at least one instruction, the slowest executes 

one and faster processors execute more. For instance in the parallel summation 

problem, the algorithm uses 2n — I (shared) memory location treated as an implicit 

complete binary tree. Each location is assumed to contain an extra valid bit; the 

valid bit of the input value is assumed to be initially true and all other locations 

start with a valid bit of false. The algorithm terminates when the valid bit of the 

root is true. The algorithm for process i is given below, where L(i) and /?(/) arc 

respectively the left and right children of node /:

/. wait until (L(i) is valid)

I
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2. wait until <R(i) is valid)

3. V(i):=L(i) + R(i)

4. valid(i) := true

The sum of n numbers can be computed in O(logzi) rounds, the worst case is 

achieved when every processor executes a single step each round. The APRAM 

permits multiple sets of processors to synchronise independently and in parallel, 

it does not account for communication delay, and it permits concurrent reads and 

writes. This measure docs not capture the extent to which slowing down a subset of 

the processors slows down the overall running time of the algorithm. They introduce 

a complexity measure by dividing processes into two sets, the slow and the normal 

processes. For example, the summation algorithm takes O(log n) + /(.s, c), where 

/  is a function of .s and r. Each of the slow processes executes at least one event in 

any * consecutive rounds, where r is the number of slow processes. Flowcvcr, this 

measure is difficult to analyse and to implement on practical machines.

Many asynchronous algorithms have been developed for particular problems [32. 

33, 101, 113, 126, 57], Most of this work is tailored to specific machines and docs 

not present a general treatment of asynchronous parallel computation. Moreover, 

communication delays have not been considered for developing asynchronous al­

gorithms. As in feasible models, delay for communication will not give reasonable 

time complexity for their algorithmic techniques.

Gibbons [55] suggested an asynchronous PRAM model, the Phase PRAM, which 

includes extra hardware needed to achieve synchronisation. The set of operations

I
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between two synchronisation barriers is called a phase. The cost of a phase is the 

maximum number of steps taken by any of the processors during that phase, and 

the cost of a synchronisation barrier is B(p), which is a function of the number of 

processors.

Valiant’s BSP model 1157) incorporates barrier synchronisation in a similar way to 

the Phase PRAM. Each processor operates in accordance with a barrier synchronisa­

tion protocol which may be supervised by a master synchroniser. The synchroniser 

ensures that all (or subset of ) the processors (and the router) have completed a 

superstep (that is a phase) and, if so, signals all processors to continue to the next 

superstep.

In essence, the insertion of synchronisation barriers between supersteps ensures 

that the algorithm is slowed down to the speed of the slowest processor within each 

superstep. Although the number of steps executed remains the same regardless of the 

relative speeds of the processors, the time elapsed to execute this type of algorithm is 

in fact very sensitive to changes in speeds of processors. In particular, if the slowest 

processor is very slow, then so is the actual running time of the algorithm. It is a 

weakness that such considerations arc not reflected in the complexity measure.

However we can overcome the problem by synchronising all or a subset of the 

components at regular intervals of L time units where L is a periodicity parameter. 

After each period of L time units, a global check is made to determine whether 

the superstep has been completed by all the processors. If it has not, then the next 

period of L units is allocated to the unfinished superstep. The results of the runtime 

analysis will not change by more than small constant factors.

I
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Synchronisation is needed in a PRAM algorithm precisely when a write to a shared 

memory location is followed by a read to the same location. Provided there is 

no need for synchronisation, processors running asynchronously can execute L 

instructions each between synchronisation barriers. In this way processors in an 

asynchronous machine can perform L instructions, followed by a synchronisation 

barrier cost < L, not in time 0 (L 2), but optimally in time O(L). We can use 

this bulk synchrony to hide the synchronisation overhead, provided that we have 

sufficient parallel slackness so that each processor makes many memory accesses 

during each simulation step.

A common algorithm design technique is to have each processor take about L steps 

during each supcrstcp, to balance communication and computation costs. Within 

each superstep each component sends or receives at most h messages in time T, 

then we can fix L as greater than T. Not surprisingly, many PRAM algorithms can 

be restructured specifically to provide for bulk synchrony using parallel slackness.

6.5 Memory management

To design algorithms for a virtual shared memory model machine, we need to know 

how to distribute the logical memory addresses among the physical locations of the 

machine such that distribution will not slow down the computation (i.e avoid con­

tention and congestion). The distribution can be done randomly or deterministically.

Under fairly general assumptions, Upfal and Wigdcrson 1156]) showed that an on­

line simulation of T  PRAM steps by a synchronous practical PRAM with the same
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number of processors requires i i(T  log » /  log log n) time, where n is the number 

of processors. Their simulation assumes each processing element of the practical 

PRAM consists of a computing element and a memory module, and the processing 

elements are connected by a complete network.

We saw in section 4.3.1 that the most promising method known for randomly 

evening out memory accesses (to avoid contention) is hashing. Using randomised 

hash functions, the simulation of a PRAM on a practical PRAM is governed by the 

following:

1. The time to evaluate the hash function.

2. The maximum number of shared memory accesses which are mapped to the 

same memory module under the hash function.

3. The time needed to access memory location (i.e communication latency /).

Simulation using hash functions was dealt with in [24, 74, 104, 129, 130, 157, 158). 

Recently Karp and Luby [75) introduced a simulation which is more involved than 

that using a simple hashing scheme. The simulation uses two or more hash functions, 

and thus makes the contents of each PRAM cell accessible in two or more places.

As we saw in section 6.3, efficiency can be enhanced by using spatial locality of 

reference. The results of [24] show the possibility of exploiting locality during the 

simulations by using locality-preserving hash functions. This simulation supports 

block pipelining. Valiant [157, 158) gave strong theoretical evidence for supporting 

arbitrary pipelining during simulations of PRAM on the BSP model. Each process­

ing clement of the BSP model consists of a computational clement and a memory
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module. Each computational element has a capability for efficiently computing hash 

addresses. This can be done by a hardware hashing module associated with a router 

interface without slowing down the computations performed by the processor.

Theorem 6.5.1 ¡157, 158] Any EREW PRAM step o f the v processors can he 

simulated on the p-processors BSP in optimal expected time (()(v/p ) time), provided 

v = p log p and g = 0(1), where g is the throughput o f the router.

I’roof We randomly choose an appropriate hash function that will randomise memory 

and distribute memory requests evenly among p memory modules of the BSP. We 

distribute the v processors of a EREW PRAM so that each processor of the BSP 

model simulates c/p  = log/» of these. In one superstep the BSP model completes 

one EREW PRAM step. In the superstep each processor may need to access log/» 

memory locations. Recall theorem 4.3.1. The expected largest number of accesses 

made to any memory module is ()(log />). So each processor will send log /»requests 

and each memory module will receive at most 0(log/>). Hence the duration of 

the superstep, L, needs to be large enough to accommodate the routing of a log/>- 

relation. From theorem 4.3.6, we can choose L as large as (){</ log />) for the 

hypcrcubc. By assuming »/ = 0 (  1), the superstep can be completed in optimal time.

□

Note that, if hashing is to be exploited efficiently, then the periodicity L may as well 

be at least logarithmic. Moreover, Valiant’s results arc justified only if wc assume 

that the hash function can be evaluated in constant time.

The prevailing vision of general-purpose parallel computers is that the network 

topology should be hidden, but the programmer should retain control of memory
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management, including the decision whether or not to hash the shared memory. 

This decision should take into account the cost of hashing, as well as the relative 

intricacies of the model and simulated PRAM algorithms.

When the patterns of shared memory accesses are known in advance, the memory 

locations can be deterministically addressed, to avoid contention. This reduces 

the amount of slack required in programming [48. 157], Moreover, we need not 

maintain logarithmic periodicity, i.e the length of a superstep does not need to be 

logarithmic.

6.6 Conclusion

Overall the material of this chapter demonstrates that there is no theoretical hindrance 

in designing massively parallel machines for parallel computation.

I
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Chapter 7

Bulk Synchronous Parallel 

Algorithms

The work of this chapter was carried out as part of the ESPRIT I project PUMA as 

explained in the beginning of the last chapter and appeared in a report ( 132] to the 

European Commission. This chapter shows that scalable transportable algorithms 

can be written for certain basic tasks, balanced tree computations. Fast Fourier 

Transform (P'PT) and matrix multiplications.

7.1 Introduction

There are two modes of programming, automatic mode and direct mode. In the 

automatic mode the virtual shared memory is distributed among memory modules 

by a hash function. Thus, the memory distribution is hidden from the user (as in the 

PRAM  model). However, optimal simulation with the automatic mode requires

I
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the slackness to be at least logarithmic, and g to be close to unity (theorem 6.5.1). 

Moreover, we assume that the hash function can be evaluated in constant time. If the 

patterns of shared memory accesses are known in advance, then the programmer can 

retain control of the memory management to avoid hashing. This is called the direct 

mode of programming. In this chapter we describe some transportable algorithms 

in the direct mode on a BSP model.

Recall that the BSP model is defined as the combination of four attributes [ 157]):

• A number of components each performing computational and/or memory 

operations.

• A common hashing function being evaluated by an individual hashing mod­

ule associated with each computational clement. Each hashing module is 

implemented in hardware.

• A router for routing data between computational and memory elements. The 

router operates independently of continued computation and storage access in 

the computational and memory elements.

• A synchroniser for all or a subset of the components.

A computation on the BSP model consists of a sequence of supersteps. In each 

superstep. each component is allocated a task consisting of some combination of 

local computation steps, message transmissions and message arrivals from other 

memory elements. After each period of L time units, a global check is made 

to determine whether the superstep has been completed. If it has, the machine 

prixccds to the next superstep. Otherwise the next period of L units is allocated to

I
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the unfinished superstep. The performance of a BSP algorithm measured by three 

parameters, // the number of processors, g a parameter such that an /i-relation can 

be realised in gh steps, L which captures the minimum reasonable interval between 

global synchronisation. We can choose L as small as the time units to realise a 

//-relation, where // = L/g. For example, if the network is a //-node hypercube then 

we choose // = log p/g and L = log p.

Note that, the algorithms described below assume that each processor of the BSP 

model is performing computational and memory operations.

7.2 Balanced tree computation

As we saw in section 2.3.1, the complete binary tree computation can be performed 

on a EREW PRAM by // processors in ()(log//) time. For the BSP model, when 

there is substantial communication latency. /, for example if / = log2/», then the 

complete binary tree is no longer the natural structure for parallel computation. 

This is because the synchroniser needs to synchronise at the every level of the 

tree, and each superstep consists of 2 computational steps and each computational 

clement sends or receives at most 2 messages. Recall that, each internal node of 

a complete binary tree has two children. Each superstep will take 0 (lo g p) time, 

that is L =  O(logp). But each superstep consists of only 2 ( <  L) computational 

operations.

However, this can be improved by using a //-ary tree [117, 48]. Figure 7.1 shows 

the 4-ary tree with 64 leaves. At each level of the tree, each active processor reads
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Figure 7.1:

// values, computes at most L operations, writes the result, and then

synchronises. Hence, if // = p ]̂ k then k- supersteps will suffice and each superstep 

will take 0 ( L ) time.

7.3 Fast Fourier Transform

It is a well known fact that the FFT can be efficiently computed in parallel using 

a communication pattern that is a butterfly graph. Recall that, the v input butterfly 

has n rows and log v + 1 levels (or columns). The inputs arc at level 0 and the 

outputs at level log r. By assigning a processor to each row we can simulate one 

level at a time. In this way a PRAM can compute the FFT in O(logt>) time using <> 

processors. Likewise, the BSP can simulate one such level at a time, synchronising 

after each layer, to solve an FFT problem in log// supersteps with // processors, 

where // is equal to v. Notice that in each superstep we need to realise a I-relation. 

If the time to realise I-relation is equal to //-relation then we can improve upon the 

work as follows (55, 117],
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We partition the levels of the butterfly into log t</ log// stages of log// consecutive 

levels each. By the structure of the butterfly, the value at each node in the last level 

of its stage depends on the values at // nodes in the last level of the previous stage. 

Moreover, the values of a set of // nodes in the last level of their stage depend on 

the values of a set of // nodes in the last level of their previous stage. For example, 

figure 7.2 shows a butterfly graph of t> = 16 inputs. The levels are divided into 

stages of log // levels when // = 4. The set of values of four circled nodes in last 

level of stage I depend on the set of values of four squared nodes in level 0. The 

dependencies between the circled nodes and the squared nodes are shown in thick 

edges. Interestingly, these thick edges form a butterfly graph of four inputs. There 

are four independent similar butterfly graphs in stage 1. In general, each stage 

consists of /’/  // independent butterfly graphs of // inputs each. Here the expressions 

are integers rounded appropriately. At each stage a processor can mimic each of 

these butterfly graphs of // rows and log // levels in // log // sequential time. All the 

butterfly graphs in a stage can be executed in // log// time using /’/  // processors. 

Once a stage (or superstep) is completed the next stage (or superstep) can start. 

In each superstep each processor computes // log// local operations and sends and 

receives // messages. Kach superstep will take L =  0 ( // log //) time. Initially we 

distribute t> inputs uniformly among // =  r /  // processors, // inputs in each. We can, 

therefore, evaluate the FFT on v /  // processors in log />/ log // supersteps, with total 

time // log v. Note that the work of this algorithm is ()(v  log /’) and equal to the work 

of the best known PRAM algorithm. Hence we have an optimal implementation.

I
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7.4 Transitive closure and graph algorithms

As described in section 2.5.4, the transitive closure of an adjacency matrix solves 

several graph problems including topological sorting, strong components and all 

pairs shortest paths. Recall that the transitive closure .4" of an n x n matrix .4 is 

equal to "1, where D =  I  0  A  and I  is the identity matrix. Here the matrix 

product is defined with two binary operators ® and .

Suppose we have p < n2 processors. We assume that the elements of .4 are initially 

distributed as evenly as possible among the p processors. First we compute the 

matrix D , this can be done in 0(  1) time. Now A" can be computed by repeated 

squaring of D as was explained in section 2.3.2, chapter 2. Each squaring operation 

is performed as follows. This is similar to the algorithm of Valiant [157] for 

computing the product of two n x n matrices.

Consider the squaring operation on matrix D, i.e. computing D2’ from D", for 

I < ,s < [log2 »]. We assign to each processor the sub problem of computing 

an {»/y/p  x u /^ p )  submatrix of D 2\  To compute the position of D2\  a

processor has to receive the i'h row and the j ' h column of D". Suppose a processor 

computes positions (k \j)  of D2’, where / < j  < I + n^/p. Then the processor 

has to receive data describing the k lh row and columns from the I"’ column to the 

((/ + <>\/p) ~  1 )'h column of matrix D*. That is, the processor has to receive n 

elements of the row and ii(v / y/p) elements of the column. There are »/>//» such 

rows required to compute all the positions of the n/y/p  x ii/ submatrix. Thus, 

each processing elements has to receive 2 i i 2/ ¡/p  elements of D". Now consider 

the number of messages each processor has to send. Elements of each row of
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Figure 7.3:

D* is required by 0 5  processing elements. This is because each row of D2" is 

partitioned into 0 5  pieces of length n /0 5 , and the pieces are computed by distinct 

processing elements. Similarly, elements of each column of D’ required by 0 5  

processing elements. Thus each element of D" is required by 2 05  processors. 

Assume that the n2 elements describing D" are distributed uniformly among ¡> 

processors. Each processor has n2/p  elements of D". Each processor thus has 

to replicate each of its elements 2 05  times and send the appropriate elements to 

the 2 0 5  processors requiring them. Hence we have a communication pattern that 

each processor has to send 2n2/0 5  messages and receive 2n2/ 0 5  messages, i.e. 

realising 2n2/05-relation. Now each processor can compute an n /0 5  x n /0 5  

submatrix of D2’ in 2»r’/p  sequential time, using the standard sequential algorithm. 

Suppose 2i/2/ 0 5  =  //, then wc can square the matrix D’ in ()(ti*/p) time (i.e. in 

a superstep of length ()(n*/p)). For example, figure 7.3 shows the partition of D 2’ 

when ii2 = 16 and p = 4. The elements of the matrices arc shown in thick dots. 

Each square in D2' represents a subproblcm. Each processor computes the elements 

in a square in D2". For example, the processor computes the elements of the top left 

hand corner square has to receive the elements of D". These elements arc enclosed 

in squares on the left hand side of the figure.
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Notice that for the next squaring operation on D2’ to compute D4", the elements of 

D2’ are distributed uniformly among /»processors by the squared operation described 

above. We can compute the transitive closure in [log2 ji] supersteps of length n2/p  

using p processors. The total work of this algorithm is ()(it* log n ). We thus have an 

optimal parallel algorithm for topological sorting, strong components and all pairs 

shortest paths on graphs.

7.5 Further work

One can observe front this chapter that algorithmic design requires a new discipline 

to get optimal algorithms in the BSP model. A systematic study ought to be the 

subject of an extensive research program. Some work towards this direction is

described in |48],



Chapter 8

Conclusions

This thesis reviewed the evidence for the statemcntl 166) that: Unless parallel 

machines are designed to support the PRAM, or a model o f  parallel computation 

which is very close to it, the design o f  parallel algorithms is doomed to he a very 

difficult (or even impossible) task. In the course of this review we presented new 

results concerned with parallel approximation algorithms (chapter 3), embeddings 

(chapter 5) and the design of bulk synchronous algorithm (chapter 7). This work 

has appeared in the literature and has been reported at conferences as detailed in the 

declaration at the beginning of this thesis.

We have seen that the PRAM provides a very simple and natural architecture in­

dependent model for the parallel algorithm designer. Furthermore, the PRAM has 

proved to be a valuable tool for theoretical computer scientists studying the power 

and fundamental limitation of parallelism. Unfortunately, the gap between real 

parallel machines and the PRAM may force us to think that the PRAM is not a 

particularly practical model for general purpose parallel computing. However, the
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theoretical community has proved that the gap between the PRAM and feasible 

parallel models can be bridged. Solutions have been found for effectively intercon­

necting processing elements, for routing data on these networks and for distributing 

the data among memory modules without hotspots. Using these solutions, we have 

reviewed the possibility of general purpose computing employing a bridging model. 

Such a model acts as an interface between the actual hardware and the PRAM model. 

We reviewed the evidence that if a practical model can be viewed as a PRAM by 

the user (i.e the model hides all the hardware details) then this will achieve scalable 

parallel performance and portable parallel software. We demonstrated that PRAM 

algorithms can be optimally implemented on such practical models.

Chapter 2 described algorithmic tools and techniques which have been frequently 

used to place many problems in the class N C . In particular, we saw that by com­

puting the transitive closure (of the adjacency matrix) several graph problems can 

be placed in NC. Unfortunately, this technique docs not lead to an efficient parallel 

algorithm. At this time no efficient parallel solutions are known for this problem. 

This difficulty is known as the transitive closure bottleneck [128]. Designing ef­

ficient algorithms without the transitive closure technique for those problems is a 

challenging area for research.

In chapter 3 we considered the notion of parallel approximation algorithms. In 

particular we provide such an algorithm for finding minimum weight perfect match­

ing. The question of whether the problem of finding an exact solution to the 

minimum-weight perfect matching problem can be placed in the class N C  remains 

open. Resolution of the existence or otherwise of appropriate algorithms in this

I
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area may ultimately help to place more precise boundaries around what ought to 

be regarded as tractable problems for parallel computation. The minimum-weight 

perfect matching problem is still open for complete weighted graphs and even if 

they satisfy the triangle inequality. The algorithm of chapter 3 places the problem of 

finding an approximate minimum-weight perfect matching in a complete weighted 

graph satisfying the triangle inequality in N C  with a performance ratio of 2 log, n. 

The algorithm is conceptually very simple and comes within a log2 n factor of the 

work measure of the sequential algorithms. It is also the first JVC-approximation 

algorithm for the task with a sub-linear performance ratio.

In chapter 5 we describe dense edge-disjoint embeddings of the complete binary 

tree with n leaves in the following u-node communication networks: the hypercube, 

the de Bruijn and shuffle-exchange networks and the 2-dimensional mesh. In the 

embeddings the maximum distance from a leaf to the root of the tree is asymptoti­

cally optimal. The embeddings facilitate efficient implementation of many PRAM 

algorithms on these networks. Note that this technique is architecture dependent. 

However, embedding may be hidden by system softwarc/hardwarc in due course.

In chapter 6 we reviewed the practical PRAM models (in particular the BSP model) 

for architecture independent parallel algorithm design. These models differ from 

the well studied PRAM in two important parameters namely / and r/. Although the 

models can cope with the current best values of / and </. we suggest to continue to 

improve these values. A desirable goal is to obtain values of the same order as for 

the PRAM (/ = g = 0 ( I )).

In chapter 7 we described some (direct) bulk synchronous algorithms, but a sys­
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tematic study ought to be the subject of an extensive research program. Some work 

towards this direction is described in [48].

We described some results concerned with fault-tolerant, for example fault-tolerant 

routing using the IDA. However, in this thesis we have not given much attention to 

the problem of coping with processor failures. This is important for large parallel 

systems. The larger the number of processors, the greater the probability of failure. 

But, we assumed that the processing elements of the BSP model operate correctly at 

all times. In this context efficient techiques that will allow PRAM algorithms to run 

optimally on fault-prone practical PRAMs need to be developed. Some important 

work has already been done in [78, 79, 80], However, coping with processor failures 

of a parallel model with communication delay remains to be done.
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