75 research outputs found

    Optimal path and cycle decompositions of dense quasirandom graphs

    Get PDF
    Motivated by longstanding conjectures regarding decompositions of graphs into paths and cycles, we prove the following optimal decomposition results for random graphs. Let 0<p<10<p<1 be constant and let GGn,pG\sim G_{n,p}. Let odd(G)odd(G) be the number of odd degree vertices in GG. Then a.a.s. the following hold: (i) GG can be decomposed into Δ(G)/2\lfloor\Delta(G)/2\rfloor cycles and a matching of size odd(G)/2odd(G)/2. (ii) GG can be decomposed into max{odd(G)/2,Δ(G)/2}\max\{odd(G)/2,\lceil\Delta(G)/2\rceil\} paths. (iii) GG can be decomposed into Δ(G)/2\lceil\Delta(G)/2\rceil linear forests. Each of these bounds is best possible. We actually derive (i)--(iii) from `quasirandom' versions of our results. In that context, we also determine the edge chromatic number of a given dense quasirandom graph of even order. For all these results, our main tool is a result on Hamilton decompositions of robust expanders by K\"uhn and Osthus.Comment: Some typos from the first version have been correcte

    Complete Acyclic Colorings

    Full text link
    We study two parameters that arise from the dichromatic number and the vertex-arboricity in the same way that the achromatic number comes from the chromatic number. The adichromatic number of a digraph is the largest number of colors its vertices can be colored with such that every color induces an acyclic subdigraph but merging any two colors yields a monochromatic directed cycle. Similarly, the a-vertex arboricity of an undirected graph is the largest number of colors that can be used such that every color induces a forest but merging any two yields a monochromatic cycle. We study the relation between these parameters and their behavior with respect to other classical parameters such as degeneracy and most importantly feedback vertex sets.Comment: 17 pages, no figure

    On the spanning tree packing number of a graph: a survey

    Get PDF
    AbstractThe spanning tree packing number or STP number of a graph G is the maximum number of edge-disjoint spanning trees contained in G. We use an observation of Paul Catlin to investigate the STP numbers of several families of graphs including quasi-random graphs, regular graphs, complete bipartite graphs, cartesian products and the hypercubes

    On the edge arboricity of a random graph

    Get PDF

    Characterization of removable elements with respect to having k disjoint bases in a matroid

    Get PDF
    AbstractThe well-known spanning tree packing theorem of Nash-Williams and Tutte characterizes graphs with k edge-disjoint spanning trees. Edmonds generalizes this theorem to matroids with k disjoint bases. For any graph G that may not have k-edge-disjoint spanning trees, the problem of determining what edges should be added to G so that the resulting graph has k edge-disjoint spanning trees has been studied by Haas (2002) [11] and Liu et al. (2009) [17], among others. This paper aims to determine, for a matroid M that has k disjoint bases, the set Ek(M) of elements in M such that for any e∈Ek(M), M−e also has k disjoint bases. Using the matroid strength defined by Catlin et al. (1992) [4], we present a characterization of Ek(M) in terms of the strength of M. Consequently, this yields a characterization of edge sets Ek(G) in a graph G with at least k edge-disjoint spanning trees such that ∀e∈Ek(G), G−e also has k edge-disjoint spanning trees. Polynomial algorithms are also discussed for identifying the set Ek(M) in a matroid M, or the edge subset Ek(G) for a connected graph G

    Graph Decompositions

    Get PDF
    corecore