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On the edge arboricity of a random graph 

P.A. Catlin and Zhi-Hong Chen 
Department of Mathematics 

Wayne State University 
Detroit, MI 48202

E.M. Palmer

Department of Mathematics 
Michigan State University 
East Lansing, MI 48823

Abstract 

The edge arboricity a( G) of a graph G is the minimum 
number of acyclic subgraphs whose union covers the edge set 
of G. In this note we show that if the edge probability is given 
by p3n = clog n, then almost every graph has 

a(G) = rlE(G)ll 
n-1 

provided the constant c is sufficiently large. 

Dedicated to Roger Entringer on the occasion of his 60th 
birthday 

1 Introduction 

The edge arboricity a(G) of a graph G is minimum number of acyclic
subgraphs whose union covers the edge set of G. Nash-Williams 
[Na64] proved that 

r IE(H)I la(G) = w� IV(H)l -1 (1.1) 

where the maximum runs over all non-trivial induced subgraphs H 
of G. The first two authors showed [CaC91] that when the edge 

ARS COMBINATORIA 35-A(1993), pp. 129-134 



probability p is fixed, almost all graphs G have the property that 
IE(H)l/(IV(H)I - 1) attains its maximum in (1.1) if and only if 
G = H. Following closely the method of [CaC91], we will extend 
that result for p = p(n) ---+ 0. 

Our sample space consists of all labeled graphs G with n vertices. 
The vertex set of G is V(G) = {1, 2, ... , n} and the edge set is E(G). 
Given the edge probability O < p < l, the probability of a graph G
with M edges is defined by 

(1.2) 

where N = (;), the number of slots available for edges. Thus the 
sample space consists of Bernoulli trials and the edges are selected 
independently with probability p. Suppose Q is a set of graphs of 
order n with some specified property Q. If the probability P( Q) 
approaches 1 as n goes to infinity, then we say that almost all graphs 
have property Q or the random graph has property Q a.s. (almost 
surely). 

For background material and notation not provided here one.can 
consult the introductory book on random graphs [Pa85] and for the 
strongest and many of the most recent results we use the extensive 
and comprehensive treatise [Bo85]. 

2 Edge arboricity 
For any non-trivial, connected graph G of order n, define 

G - max IE(H)I 
,( ) - H<;P IV(H)I -1' (2.1) 

where the maximum is taken over all non-trivial subgraphs Hof G.

We use the following elementary inequalities frequently: 

(2.2) 

Let :F( G) be the family of non-trivial subgraphs H of G such that 

IE(H)I 
,(G) = IV(H)l -1'
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Thus these graphs H achieve the maximum value in (2.1) and it is 
also easy to see that ,(H) = ,(G). 

Theorem 2.1. With edge probability defined by p 3
n = clogn, if 

the constant c is at least 28, almost surely :F( G) = { G} and hence 
the edge arboricity is 

a(G) = rlE(G)l l · 
n-1 (2.4) 

Proof: Suppose G is any connected graph of order n > 1. Let H be 
in the family :F(G) and set r = IV(H)I. First we find a lower bound 
for r in terms of the number of edges of G. By the definition of H 
we have 

,(H) = ,( G) = IE(H) I_
r-1 (2.5) 

Now we combine (2.2) and (2.5) and use the fact that H has order r
to obtain. 

r = _
2

_ (r) > _
2

_1 E(H) I = 2,(G) > 2IE(G)I _ (2.6) r-1 2 r-1 n-1

Next we can use Chebyshev's inequality to derive an approximation 
for the number of edges in a random graph G from which we can 
determine a lower bound for IE(G)I. See, for example, a special case 
in exercise 3.1.2 of [Pa85]. For a slightly more general result, we have 
the following. For any positive sequence en -+ 0, 

(2.7) 

provided that c�pn2 -+ oo. 
By hypothesis our edge probability is well beyond the threshold 

for connectedness (see [Bo85] or [Pa85]) so we can assume that almost 
all graphs are connected. 

Combining (2.6) and (2.7) we observe that for almost all graphs, 
the number r of vertices in a graph H from the family :F( G) satisfies 

(2.8) 

provided that the condition in (2. 7) on en is satisfied. 
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At this point we need an estimate for the number of edges in H.Using Theorem 8, p. 44 of [Bo 85), we can conclude that IE(H)I isalmost surely quite close to p (;). In particular, we can conclude that 
(H) = IE(H)I < � { (7plogn) 1/2 } ' 1 - 2 p+ --- ' r- r 

almost surely, provided that 
r > (252/p) logn. 

(2.9) 

(2.10) 
And this latter condition will be met if the lower bound in (2.8) exceeds the right side of (2.10), i.e. we_just need

pn(l - en )> (2 52/p) logn. (2.11) 
On solving this equation for p, we find that all required conditions on p ar� met if p is defined as in the hypothesis. Now we are ready to compare n and r by using the lower bound on ,(G) in (2.6) and (2.7) and the upper bound on 1(H) from (2.9). Since 1(H) = ,(G), we have 

� {p + (7pl;gnf2 } > ';' (1 - en )- (2.12 ) 
On substituting the expression from the hypothesis for p in this inequality, after a few steps we find that 

n - r < co(nlogn/p) 1l2, (2.13) 
for suitable en and where co is a constant greater than y7. Now suppose that there is a vertex v of G that is not also in H.We are going to find an upper bound for the degree of v in G that is too far from the mean to hold for almost all graphs. This will imply that such vertices almost surely do not exist. Define H11 to be the subgraph of G induced by v together with the r vertices of H. By the definition in (2.1), 

(2.14) 
But since H achieves the maximum value in (2.1), 

(2.15) 
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Combining (2.14), (2.15) and (2.5), we have 
IE(Hv)I < ,(Hv)r < ,(H)r = IE(H)I + 1(H). (2.16) 

This implies that the degree of v in H is at most ,( H), and hence the degree of v in G is at most n - r 
+ ,(H), i.e., almost surely

Using the bounds in (2.9) and (2.13), we find 
r { ( 7p log n) 1/2 }degcv < eo(n log n/p)112 

+ 
2 P + r 

(2.17) 

(2.18) 
And after a bit of work on the right side of (2.18) in which the value of Co depends on c > 28, we have 

(2.19) 
for large n and sufficiently small e > 0.This last inequality contradicts a theorem of Erdos and Renyi which states that if pn/ log n � oo, then almost surely the degrees of all vertices satisfy 

(1 - c)pn < degc v < (1 + c)pn. (2.20) 
where c > 0 is arbitrary (see p. 66 of [Pa85]). // We suspect that the theorem gives the right value for the edge arboricity for much lower edge probabilities but the family :F( G) maynot consist of G alone.
3 Tree packing number 
The tree packing number t(G) of a connected graph G is the maximum number of edge-disjoint spanning trees contained in G. It can be used as a measure of network vulnerability and is closely related to the edge arboricity a(G). And the same method of [CaC91) can beapplied here with the same result. Tutte [Tu61) and Nash-Williams [Na61) proved that 

t(G) = l11(G)j, (3.1) 
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where 
'11(G) = min IEI 
·, 

E<;E(G) c(G - E) - 1
(3.2) 

and c( G - E) is the number of components of G - E.

For any graph satisfying :F( G) = { G}, we always have 1( G) =
rJ(G) (see [CaGHL92]). But it can be shown that almost surely 1(G) 
is not an integer and hence random graphs for which :F(G) = {G}, 
have 

a(G) = t(G) + 1. (3.3) 

Of course, we only have found the values of these packing and cover
ing numbers for random graphs when pis defined as in Theorem 2.1. 
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